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Abstract. We compute the Euler obstruction and Mather's Chern class of the

discriminant hypersurface of a very ample linear system on a nonsingular variety.

Comparing the codimension-1 and 2 terms of this and other characteristic classes of

the discriminant leads to a quick computation of the degrees of the loci of cuspidal

and binodal sections of a very ample line bundle on a smooth variety, and of the

tacnodal locus for linear systems on a surface. We also compute explicitly all terms

in the Schwartz-MacPherson's classes of strata of the discriminant in the P9 of of

cubic plane curves, and of the discriminant of jO(d)j on P1.

x0. Introduction

The discriminant of a linear system V on a nonsingular varietyM , parametrizing

singular elements of V , is an object with a rich and complicated geometry. Many

enumerative results of recent interest, such as Kontsevich's beautiful recursion for

the number of rational plane curves containing assortments of points, amount to the

computation of the degree of selected strata of the singular locus of the discriminant

of jO(d)j on the plane. The degree of arbitrary strata, or even an exhaustive

combinatorial description of the singular locus of discriminants, seem at this point

completely out of reach.

Simpler invariants of given singularities of discriminants are however well under-

stood. For example, the multiplicity of a discriminant at a point X corresponding

to a hypersurface onM with isolated singularities has long been known to equal the

sum of the Milnor numbers of the singularities of X. More generally, the multiplic-

ity of a discriminant at an arbitrary point can be expressed in terms of Parusi�nski's

generalized Milnor numbers of the (not necessarily isolated) singularities of the

corresponding hypersurface X, or equivalently by expressions in terms of the Segre

class of the singularity subscheme of X (see [P1], [P2], [A-C], and [A1], p. 338-339).

1Supported in part by NSF grant DMS-9500843. The author is grateful to the Mittag-Le�er

institute and the organizers of the year on `enumerative geometry and its interaction with theo-

retical physics' for the generous hospitality under which this research was carried out.
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2 EULER OBSTRUCTIONS AND CLASSES OF DISCRIMINANTS

In this note we aim to bridge from this type of information to standard enumerative

results.

First, we compute the local Euler obstruction of a discriminant at a point X,

under mild assumptions on the situation (essentially, we assume that the discrim-

inant is a hypersurface in P
n = H0(M;L)): we show that the Euler obstruction

at X equals the degree of its �-class, introduced in [A1], and hence agrees with

Parusi�nski's Milnor number of the singularity of X. We then obtain an explicit ex-

pression for Mather's Chern class cM (D) of a discriminant D, which corresponds to

the Euler obstruction function under MacPherson's natural transformation ([MP]).

Pushing this forward to the ambient projective space Pn = PH0(M;L) we �nd

cM (D) 7! c(TPn) \
X
j�1

(�1)j�1
jX

k=1

�
j � 1

k � 1

�
Æk � [P

n�j ]

where Æk denotes the k-th rank of M in the sense of Holme (that is, the (m� k)-th

class �m�k in the sense of [Fulton], p. 253), explicitly

Æk =

Z
c1(L)

k�1c(P1
ML) \ [M ]

(cf. [A1], p. 340) with c(P1
ML) = c(L)c(T �M
L) the class of the bundle of principal

parts of L.

By comparing the degrees of the codimension-one terms of Mather's class and

other characteristic classes of the discriminant, we recover formulas for the degree of

the loci C, G parametrizing respectively cuspidal and binodal elements of the linear

system. While formulas for these loci are not new (see for example [D-L], p. 5),

the method employed here seems particularly straightforward and leads naturally

to simple expressions: we �nd

degC = m(Æ1 + Æ2) + 2K � cm�1

degG =
Æ21
2
�

3m+ 1

2
(Æ1 + Æ2)� 3K � cm�1

where m denotes the dimension of M , K its canonical divisor, and ci = ci(P
1
ML).

As another application of this circle of ideas, we obtain the (known) formula for

the locus of tacnodal sections of a linear system on a surface:

5Æ1 + 3Æ2 + 26Æ3 + 17K � c1

with notations as above, by comparing codimension-2 terms of suitable character-

istic classes.

The lesson we draw from these examples is that it would be valuable to com-

pute a number of `characteristic classes' of discriminants. In principle one should

aim to computing Schwartz-MacPherson's class (and not just the degree) of strata

of discriminants: the good additivity properties of Schwartz-MacPherson's classes

make these invariants very well-behaved, in the sense that any computation of a

characteristic class yields a linear relation among these invariants. We expand on

this viewpoint at the end of section 3.
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More interesting applications will depend on computing several classes associated

to a discriminant, such as Schwartz-MacPherson's class of its strata, or the Segre

class of its singular scheme. We obtain these for the 12-ic hypersurface D of P9

parametrizing singular plane cubics. This allows us to compute the multiplicity

and Euler obstruction of its discriminant (a degree-23,579,476,910 hypersurface of

P
293;929) at D|while such a result is certainly not particularly useful in itself, it

should serve as a good illustration of the application of our formulas in an extreme

situation.

Finally, we compute Schwartz-MacPherson's classes of strata of the discrimi-

nant of O(d) on P
1, in terms of the multiplicity type of representative elements

of the strata. While we are able to obtain explicit forms for these expressions,

we do not know a general formula for Schwartz-MacPherson's class of the clo-

sure of the stratum corresponding to an arbitrary combinatorial type. We obtain

such a formula for the discriminant itself, and an explicit formula for a `weighted'

Schwartz-MacPherson's class to which each substratum contributes according essen-

tially to the order of a group of automorphisms of the corresponding combinatorial

type.

I am grateful to Ragni Piene and Israel Vainsencher for several very useful com-

ments.

x1. The Nash blow-up of a discriminant

We work over an algebraically closed �eld of characteristic 0.

Let M be a complete irreducible nonsingular variety, and consider a line bundle

L on M . We assume for simplicity that L is very ample, giving an embedding

M �! PH0(M;L)_ = P
n_ :

By the discriminant D of L we mean the subset of Pn consisting of singular sections

of L; that is, D is the dual variety D � P
n of M . The results of this note should

extend to more general line bundles and linear systems, the crucial hypothesis being

however that the map � de�ned below is birational.

Denoting by VM the trivial bundle with �ber V = H0(M;L), we have a surjection

VM
�
�! P1

ML �! 0

where P1
ML denotes the bundle of principal parts of L on M .

We consider the projective subbundle D = P(ker �) of P(VM ) = P
n�M . We have

observed in [A-C] that D is the image of D in P
n via the projection P

n�M �! P
n.

Blanket hypothesis. We assume from now on that the projection

� : D �! D

is birational, as `in the majority of cases' (cf. [D-L], p. 4).

Note also that biduality holds, by our characteristic 0 assumption.

Lemma 1. D �! D is the Nash-blow-up of D.

Proof. The Nash-blow-up can be obtained as the closure of the image of the

map

D 9 9 KP
n � P

n_

X 7! (X; tangent hyperplane to D at X)
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de�ned for all X at which D is smooth. By biduality, the tangent hyperplane to D

at a smooth point X corresponds to the one point of M at which the hyperplane

of Pn_ corresponding to X is tangent to M , that is to the one singular point of X.

That is, the above map factors

D 9 9 KP
n �M � P

n � P
n_

X 7! (X; SingX)

Next, SingX consists of points at which sections of L corresponding to X vanish to

�rst order; hence points (X; SingX) are points of P(ker �) = D and the map factors

D 9 9 KD � P
n � P

n_

However dimD = dimD, and D is irreducible, so D must be the closure of the

image of this map, which is what we need. �

x2. Local Euler obstruction and Mather's Chern class

The Mather-Chern class of D is obtained by pushing forward from the Nash

blow-up D the class of the tautological bundle T , whose �ber at (X;PH) 2 P
n�Pn_

is the subspace TPH of TPn = TPV .

Lemma 2. c(T ) =
c(TPn)

c(OPn(1)
OPn_(1))
:

Proof. From the Euler sequence

0 �! O �! H 
OPn(1) �! TPH �! 0

we see that

c(T ) = c(H
OPn(1)) ;

where H is the (pull-back to P
n � P

n_ of the) bundle over Pn_ whose �ber over

PH is the subspace H � V . This is realized by dualizing

0 �! OPn_(�1) ,! V_

into

0 �! H �! V �! OPn_(1) �! 0 ;

tensoring by OPn(1) shows

c(H
OPn(1)) =
c(V 
OPn(1))

c(OPn(1)
OPn_(1))

and we are done since c(V 
 OPn(1)) = c(TPn). �

Let now X 2 D, so that X comes from a singular section of L. We denote by

JX the singularity subscheme of X, de�ned by the ideal of partial derivatives of

local sections of X. In [A1] we have introduced and studied the class

�L(JX) = c(T �M 
 L) \ s(JX;M) :
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Theorem 3. The local Euler obstruction of the discriminant D of L at X is the
degree of the �-class of JX with respect to L:

EuDX =

Z
�L(JX)

Proof. As we have shown thatD
�
�! D is the Nash-blow-up ofD, and computed

the relevant tautological bundle in Lemma 2, we can use Gonzalez-Sprinberg|

Verdier's formulation of the Euler obstruction ([Fulton], p. 78) and obtain

EuDX =

Z
c(TPn)

OPn_(1)
OPn(1)
\ s(��1X;D) :

Now we observe that ��1X = JX, and that we computed s(��1X;D) in [A-C]:

s(��1X;D) = c(P1
ML) \ s(JX;M) :

For a given X, OPn(1) and TP
n are trivial once restricted to the corresponding slice

fXg�P
n_, hence on its intersection ��1(X) with D, so the class of the tautological

bundle restricts to

c(TPn)

c(OPn(1)
OPn_(1))

����
Pn_

=
1

c(OPn_(1))
=

1

c(L)

In conclusion,

EuDX =

Z
c(P1

ML)

c(L)
\ s(JX;M) =

Z
c(T �M 
 L) \ s(JX;M) ;

which is the claim. �

Putting this together with Proposition 2.1 in [A1]:

Corollary 4. (Over C .) The Euler obstruction of D at X equals Parusi�nski's
Milnor number of X (cf. [P1]).

Remarks. (1) The Euler obstructions of a variety and of its dual are in fact re-

lated in great generality by a Radon transform, as shown by L. Ernstr�om ([E]); and

Parusi�nski shows ([P1], Corollary 1.7) that his generalization of the Milnor number

measures the di�erence between the Euler characteristics of X and of a general

section of L. Combining these results gives an alternative proof of Corollary 4.

(2) If the singularities of X are isolated, then Theorem 3 says that EuDX equals

the degree of the Segre class of the singular subscheme of X in M . This however

equals the sum of the Milnor numbers of the singularities of X, which is well-known

to compute the multiplicity of D at X. Hence: If the singularities of X are isolated,
then EuDX = mDX, the multiplicity of D at X.

In general, Euler obstruction and multiplicity do not agree: for example, the

discriminant of plane cubics has multiplicity 8 at a triple line X (see for example

[A-C], p. 253), and Euler obstructionZ
�O(3)(JX) = 2 :



6 EULER OBSTRUCTIONS AND CLASSES OF DISCRIMINANTS

Comparing Theorem 3 and the formula for the multiplicity given in [A-C] yields in

fact an expression for the di�erence: with notations as above,

mDX � eDX =

Z
c1(L) \ �L(JX) :

For example, this shows: If the singular locus of X is a curve, then EuDX =

mDX � c1(L) � fJXg, where fJXg denotes the dimension-1 term in s(JX;M).

As for Mather's Chern class cM (D) of D, let i : D �! P
n denote the inclusion.

Then

Theorem 5.

i�cM (D) = c(TPn) \
X
j�1

(�1)j�1
�Z

c(L)j�1c(P1
ML) \ [M ]

�
[Pn�j ]

Proof. By Lemma 1 and 2 we have

cM (D) = ��c(T ) \ [D] = c(TPn) \ ��
[D]

c(OPn(1)
OPn_(1))
:

Tracing the Euler sequences

0 ����! O ����! ker �
OPn(1) ����! TDjM ����! 0


 ??y ??y
0 ����! O ����! V 
OPn(1) ����! TPVjM ����! 0

gives

c(NDPV) = c(P1
ML 
OPn(1)) ;

and in particular

[D] = ctop(P
1
ML
 OPn(1)) \ [Pn �M ]

as a class in P
n�M . Denoting by � : Pn�M �! P

n the projection and identifying

OPn_(1)jM �= L, we see then that

i�cM (D) = c(TPn) \ ��
ctop(P

1
ML 
 OPn(1)) \ [Pn �M ]

c(OPn(1)
 L)
:

Now �� kills all pull-backs from M except those in codimension m = dimM .

Writing ci = ci(P
1
ML), ` = c1(L), and h = c1(OPn(1)), we are pushing forward

�
cmh+ cm�1h

2 + � � �+ hm+1
� 1

1 + `
�

1

1 + h
1+`

=
1

1 + `

�
cmh+ cm�1h

2 + � � �+ hm+1
��

1�
h

1 + `
+

h2

(1 + `)2
� � � �

�

The coeÆcient of hj in this expression is

j�1X
i=0

(�1)i
cm+1�j+i

(1 + `)i+1
=

j�1X
i=0

(�1)icm�(j�1�i)
X
k

�
k + i

i

�
(�`)k
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Extracting the codimension-m piece gives

(�1)j�1
j�1X
i=0

cm�(j�1�i)

�
j � 1

i

�
`j�1�i

= (�1)j�1
Z
(1 + c1 + � � �+ cm)

j�1X
i=0

�
j � 1

i

�
`j�1�i

= (�1)j�1
Z

c(P1
ML) c(L)

j�1

which gives the claim. �

The coeÆcients of [Pn�j ] in the second factor of the expression given in the

Theorem are easily expressed in terms of the numbers

Æj =

Z
c1(L)

j�1c(L) c(T �M 
 L) \ [M ] ;

obtaining the formula given in the introduction.

Note that, as an immediate consequence of the Theorem, we obtain a formula

for the (well-known) degree of the dual variety of M :

degD = deg cM (TD) = Æ1

(cf. [A1], Corollary 2.4, and remember that we are assuming that the discriminant

is a hypersurface).

x3. Other characteristic classes, and enumerative applications

As observed in [D-L], p. 4{5, the singular locus of D consists of the closures of

two loci: the locus C consisting of X 2 D having a unique singular point at which

the quadratic form of the de�ning section has rankm�1, and the locus G consisting

of X with two non-degenerate quadratic singularities. We say that X is `cuspidal'

if it belongs to C, and `binodal' if it belongs to G. Away from pathologies, these

loci have codimension 1 in D; we will assume this is the case in the following. Also,

N will denote the nonsingular locus of D, consisting of sections with a node (an

ordinary double point) as unique singularity.

The �rst task in this section is to compare the term of codimension one in

the Mather-Chern class of D and other characteristic classes; this yields at once

expressions for the degrees of C and G in the ambient P
n. Next, we similarly

compare terms of codimension two to obtain the degree of the `tacnodal' locus.

First, recall that there exists a natural transformation c� from the functor of

constructible functions, with push-forward de�ned by Euler characteristic of the

�bers, to Chow groups ([MP]), such that the image c�(1V ) of the characteristic

function of a nonsingular variety V evaluates its total Chern class c(TV ) \ [V ]. In

general, one de�nes

cSM(V ) = c�(1V ) ;

for possibly singular V ; cSM(V ) is known as Schwartz-MacPherson's Chern class

of V . A subproduct of the construction of c� is that Mather's Chern class is the

image of the local Euler obstruction function:

cM (V ) = c�(EuV ) :
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By Theorem 3 we have

EuDX =

8>>><
>>>:

� � �

2 G

2 C

1 N

;

where we indicate the value of the function for X =the general point of the listed

locus. Therefore

EuDX = 1D + 1C + 1G + : : : ;

and it follows that, under our hypotheses:

cSM(D) = cM (D)� [C]� [G] + higher codimension terms

Now Theorem 5 gives an expression for the right-hand-side; independent compu-

tations of cSM(D) will then yield relations involving [C] and [G]. Here is one such

computation:

Proposition 6. Denote by cF (D) the class of the virtual tangent bundle of D.
Then

cSM(D) = cF (D) + 2[C] + [G] + higher codimension terms ;

that is

i�cSM(D) � c(TPn) \
�
Æ1 [P

n�1]� Æ21 [P
n�2] + � � �

�
+ 2[C] + [G]

up to terms of higher codimension.

Proof. This follows from the main result in [A3] (in fact Lemma 3 in [A2]

suÆces for degree computations). The di�erence between cSM and cF is measured

by a twist of s(JD;Pn); as the twist does not a�ect the top-dimensional term, it

suÆces to show that

s(JD;Pn) = 2[C] + [G] + � � � ;

and this follows from the well-known fact that the discriminant is itself cuspidal

along C, while it has two nonsingular branches along G.

Next, we have observed in x2 that D has degree Æ1 in P
n. Therefore

cF (D) = c(TPn) \
Æ1 [P

n�1]

1 + Æ1 h

= c(TPn) \
�
Æ1 [P

n�1]� Æ21 [P
n�2] + � � �

�
:

from which the stated expression follows. �

Comparing the two expressions obtained for cSM(D):

cM (D)� cF (D) = 3[C] + 2[G] + higher codimension terms ;

and pushing forward to P
n we obtain the simple relation
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Corollary 7.

3[C] + 2[G] = (Æ21 � Æ1 � Æ2)[P
n�2]

where the Æi are de�ned in the introduction. As Ragni Piene kindly pointed out

to me, this is nothing but Pl�ucker's formula for a general plane section of the

discriminant.

To get expressions for [C] and [G] individually we need more information. For

this, push-forward the characteristic function of D to obtain

��(1D)(X) =

8>>><
>>>:

� � �

2 G

1 C

1 N

(since general cuspidal sections have one singular point, and binodal sections have

two), that is

��(1D)(X) = 1D + 1G + : : : :

Applying MacPherson's natural transformation then gives (since D is nonsingular)

cSM(D) = ��c(TD) \ [D]� [G] + � � �

and combining with the above:

[C] � cM (D)� ��c(TD) \ [D] ;

[G] �
1

2
(3 ��c(TD) \ [D]� 2 cM (D)� cF (D))

up to higher codimension terms. To obtain explicit formulas we need to compute

��c(TD) \ [D]:

Proposition 8. The push-forward to P
n of ��c(TD) \ [D] is given by

c(TPn) \
�
Æ1 [P

n�1]� (2K � cm�1 + (m+ 1)(Æ1 + Æ2))[P
n�2] + � � �

�
(up to higher codimension terms), where m = dimM , K is the canonical divisor of

M , and ci = ci(P
1
ML) \ [M ].

Proof. As we have seen in the proof of Theorem 5,

c(NDPV) = c(P1
ML 
OPn(1)) ;

from this it follows that the push-forward of ��c(TD) \ [D] is given by

c(TPn) \ ��

�
c(TM) �

ctop(P
1
ML
 O(1)) \ [Pn �M ]

c(P1
ML 
O(1))

�

and the statement follows by evaluating the �rst two terms in this expression. This

is a straightforward computation, which we leave to the reader. �

From Proposition 8 and the expressions obtained above, we get
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Corollary 9.

degC = m(Æ1 + Æ2) + 2K � cm�1

degG =
Æ21
2
�

3m+ 1

2
(Æ1 + Æ2)� 3K � cm�1

as stated in the introduction.

Example. For M = P
m and L = O(d) (that is, the d-th Veronese embedding

of Pn) we have

Æ1 = (m+ 1)(d� 1)m ; Æ2 =

�
m+ 1

2

�
d(d� 1)m�1

degK = �(m+ 1) ; deg cm�1 =

�
m+ 1

2

�
(d� 1)m�1

giving

degC =
m (m+ 1) (m+ 2)

2
(d� 2) (d� 1)m�1

degG =
(d� 1)2m(m+ 1)2

2
�

(d� 1)m�1(m+ 1)
�
(m+ 2)(3m+ 1)d� 2(3m2 + 6m+ 1)

�
4

Specializing further, for m = 2 we get the degrees of the loci of cuspidal, resp. bin-

odal plane curves of degree d:

degC = 12 (d� 1)(d� 2)

degG = 3 (d� 1)(d� 2)
3 d2 � 3 d� 11

2

which are of course well known (cf. for example [DF-I], p. 86{88, for a very concrete

derivation of this last formula).

As another application of the same philosophy, we consider the locus of tacnodal
sections of a linear system on a nonsingular surface S. We assume (as is generically

the case) that in codimension 2 in the discriminant one �nds only curves with three

kinds of singularities: one node and one cusp; or three nodes; or one tacnode.

Call curves with such singularities NC, NNN, and TAC respectively. Keeping the

notations as above, the local Euler obstruction and image of 1D have values:

EuDX =

8>>>>>>>>>>><
>>>>>>>>>>>:

� � �

3 TAC

3 NNN

3 NC

2 G

2 C

1 N

; ��1D(X) =

8>>>>>>>>>>><
>>>>>>>>>>>:

� � �

1 TAC

3 NNN

2 NC

2 G

1 C

1 N
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We will also consider the push-forward 
�1C0 , where C 0 is the quadric bundle in D

parametrizing curves with a cusp or worse, and 
 = �C0 :


�1C0(X) =

8>>>>>>>>>>><
>>>>>>>>>>>:

� � �

1 TAC

0 NNN

1 NC

0 G

1 C

0 N

and observe that therefore

EuDX � ��1D(X)� 
�1C0(X) =

8>>>>>>>>>>><
>>>>>>>>>>>:

� � �

1 X 2 TAC

0 X 2 NNN

0 X 2 NC

0 X 2 G

0 X 2 C

0 X 2 N

From this:

cM (D)� ��c(TD)� 
�cSM(C
0) = [TAC] + higher codimensional terms

We carry this out explicitly for P2 and O(d), for d � 3. By Lemma 1.4 in [A4], C 0

has class 2(d � 3)k + 2h in D � P
n � P

2, where h; k denote the pull-backs of the

hyperplanes from the factors of the product. The singular locus of C 0 projects to

the set of curves with a triple point, so it does not a�ect the codimension 2 term

of 
� cSM(C
0), which is then computed by


�

 
(1 + h)(

d+2

2 )(1 + k)3[C 0]

(1 + (d� 1)k + h)3(1 + 2(d� 3)k + 2h)
+ � � �

!

= 12(d� 2)(d� 1)h2 + 2(3d4 � 65d2 + 168d� 120)h3 + � � �

Mather's class and ��c(TD) are given by Theorem 5 and (the next term in) Propo-
sition 8: we get:

3(d� 1)2h+
3

2
(d� 1)d(d2 + 2d� 5)h2 +

1

8
d(3d5 + 12d4 � 24d3 � 66d2 + 125d � 42)h3 + : : :

for Mather's class and

3(d�1)2h+
3

2
(d�1)(d3+2d2�13d+16)h2+

1

8
(d6+4d5�24d4�22d3+255d2�398d+192)h3+: : :

for the push-forward of c(TD). The di�erence yields

[TAC] = 2
�
25 d2 � 96 d+ 84

�
h3 :

Summarizing, we have proved
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Corollary 10. For d � 3, the degree of the closure of the locus of tacnodal
degree-d plane curves is

2
�
25 d2 � 96 d+ 84

�
:

It is in fact not much harder to do the same for very ample line bundles L on

a smooth surface S, under the blanket assumptions on the discriminant mentioned

above. In this case and keeping the above notations,

c1(O(C
0)) = �2c1(TS) + 2`+ 2h = 2c1(P

1
SL)� 2`+ 2h ;

so C 0 has class 2(c1 � `+ h). Curves with multiplicity� 3 occur in codimension 3,

so MacPherson's class of C 0 up to codimension 2 agrees with the push forward of

the class of its virtual tangent bundle,

c(TD)
2(c1 � `+ h)

1 + 2(c1 � `+ h)
:

Computing from this gives


�(cSM(C
0)) = c(TPn)

�
2(Æ1 + Æ2 +K � c1)[P

n�2]

�(10Æ1 + 14Æ2 + 28Æ3 + 26K � c1)[P
n�3] + : : :

�
At the same time, Theorem 5 and Proposition 8 give, for a surface:


�(cSM(D)) = c(TPn)
�
Æ1[P

n�1]� (3Æ1 + 3Æ2 + 2K � c1)[P
n�2]

+(6Æ1 + 13Æ2 + 3Æ3 + 9K � c1)[P
n�3] + : : :

�
and

cM (D) = c(TPn)
�
Æ1[P

n�1]� (Æ1 + Æ2)[P
n�2] + (Æ1 + 2Æ2 + Æ3)[P

n�3] + : : :
�

Taking cM (D)� ��c(TD)� 
�cSM(C
0) gives

(5 Æ1 + 3 Æ2 + 26 Æ3 + 17K � c1)[P
n�3] + : : :

from which we read the degree of the locus of tacnodal curves, given in the intro-

duction.

For example, for a degree-d surface in P
3 one computes

Æ1 = (d� 1)2d ; Æ2 = (d� 1)d ; Æ3 = d ; K � c1 = (d� 4)(d� 1)d

from which the degree of the tacnodal locus (that is, the number of hyperplanes

intersecting S into a tacnodal curve) turns out to be

2 d (d� 2) (11d� 24) :

Singularities of surface sections are studied in [V2].

In view of enumerative applications such as the simple ones presented above,

it would be valuable to have explicit expressions for several characteristic classes
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associated with discriminants, in the form of their push-forward to the ambient

projective space. By characteristic class here we loosely mean the image of a

geometrically de�ned constructible function onD via MacPherson's transformation.

We are equally imprecise on the notion of stratum in posing the following problem:

Compute the image c�(1Y ) of the characteristic functions of strata Y of the

discriminant.

Giving a strati�cation of the discriminant amounts to classifying singularities of

sections of a line bundle; the `right' classi�cation depends on the context. (For

example, for second-order singularities a strati�cation was introduced by J. Roberts,

cf. [R] and [V1].) Note that the information of c�(1Y ) contains in particular the

information of degree of Y . The computation of this piece of information alone for

the locus Y of sections with arbitrarily prescribed singularity `type' is completely

out of reach at present, so it should seem even more unreasonable to ask for the

whole information carried by c�(1Y ). On the other hand, every computation of a

characteristic class provides with a relation among the c�(1Y ), as dictated by the

corresponding constructible function, so it is relatively easy to give partial answers

to the problem in the form of nontrivial combinations of c�(1Y ).

Summarizing, we have seen how to get such an expression for Mather's Chern

class; similarly one can write out all terms in the class ��c(TD) \ [D] of Propo-

sition 8. These two classes correspond via MacPherson's natural transformation

c� respectively to the Euler obstruction function (computed in Theorem 3), and

to the constructible function mapping X 2 D to the Euler characteristic of the

singular locus of X, and hence provide us with information on selected combina-

tions of c�(1Y ). As we have seen, this information yields immediately enumerative

applications.

In the next two sections we answer in full the problem given above, for the

discriminant of plane cubic curves, and for the discriminant of O(d) on P
1.

x4. Characteristic classes of the discriminant of plane cubics

The discriminant D of O(3) on M = P
2 is a hypersurface of P9 parametrizing

singular plane cubic curves. In this case Æ1 = 12, Æ2 = 18, Æ3 = 9, and Æi = 0 for

i � 4; according to Theorem 5, the push-forward to P
9 of Mather's Chern class is

then:

12[P8]+90[P7]+297[P6]+567[P5]+693[P4]+567[P3]+315[P2]+117[P1]+27[P0] :

This class corresponds to the Euler obstruction function via MacPherson's natural

transformation c�. In this section we will compute the push-forward to P
9 of the

image via c� of the characteristic functions of all strata of D, parametrizing di�erent

kinds of singular cubics. Names for these (open) strata will be:

I: the set of triple lines;

X: the set of unions of a line and a double (distinct) line;

S: the set of stars of three distinct lines through a point;

T : the set of unions of three nonconcurrent lines;

P : the set of unions of a nonsingular conic and a tangent line;

G: the set of unions of a nonsingular conic and a transversal line;

C: the set of cuspidal cubics;

N : the set of nodal cubics.
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Abusing notations, we denote by c�(I), etc. the push-forward to P
9 of the corre-

sponding classes c�(1I), etc. We will prove:

Theorem 11.

c�(I) = 9[P2]+ 9[P1]+3[P0]

c�(X) = 24[P4]+54[P3]+42[P2]+18[P1]+6[P0]

c�(S) = 15[P5]+18[P4]+ 6[P3]

c�(T ) = 15[P6]+30[P5]+33[P4]+21[P3]+ 9[P2]+ 3[P1]+ [P0]

c�(P ) = 42[P6]+87[P5]+96[P4]+60[P3]+24[P2]+ 6[P1]

c�(G) = 21[P7]+21[P6]+21[P5]+21[P4]+21[P3]+12[P2]+ 3[P1]

c�(C) = 24[P7]+42[P6]+57[P5]+60[P4]+48[P3]+24[P2]+ 6[P1]

c�(N) =12[P8]

We note that these classes show several features which seem hardly `random'.

We have no conceptual explanation for most of these features. However, the very

simple expression for c�(N):

c�(N) = 12 [P8]

must be due to the fact that N is an orbit under PGL(3) with �nite stabilizer.

Proof of Theorem 11. We consider naive parametrizations for the closures

of the loci listed above; each parametrization gives a class in A�P
9 (obtained by

pushing-forward Schwartz-MacPherson's class of the parameter space), and a con-

structible function (obtained by pushing-forward the characteristic function of the

parameter space). Every parametrization gives then a speci�c linear combination

of the classes c�(I), c�(X), etc., and 8 independent such combinations suÆce to

determine the individual classes.

We will denote the parametrizing spaces by adding a 0 to the letter of the corre-

sponding locus in D, and the parametrization map by the corresponding lower case

letter. Also, we will write cSM( ) for the push-forward to P
9 of Chern-Schwartz-

MacPherson's class of parameter spaces. Here are most of the notations in one

diagram:

C 0 � N 0

c

))RRRRRRRRRRRRRRRR N 0 = D � P
9 � P

2

n

��

I 0 �= P
2

i

uullllllllllllllll

G0 �= P
5 � P

2
g //

P
9 X 0 �= P

2 � P
2xoo

P 0 � G0

p

55llllllllllllllll
T 0 �= P

2 � P
2 � P

2

t

OO

S0 � T 0

s

iiRRRRRRRRRRRRRRRR

�I 0 = I �= P
2 and c(TP2) \ [P2]. Pushing forward to P

9 via the 3rd Veronese

embedding gives:

cSM(I
0) = 9[P2] + 9[P1] + 3[P0] :

The corresponding constructible function is

i�1I0(p) = 1 p 2 I ;
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0 on other loci.

�X is dominated by the nonsingular X 0 = P
2 � P

2. Therefore cSM(X
0) is the

push-forward to P
9 of the class of the tangent bundle of P2 � P

2, giving

cSM(X
0) = 24[P4] + 54[P3] + 51[P2] + 27[P1] + 9[P0] :

The parametrizing map x is a bijection, hence

x�1X0(p) =

�
1 p 2 I

1 p 2 X

� Next, we consider locus S0 � P
2 � P

2 � P
2 of concurrent (ordered) lines, and

the generically 6-to-1 map

S0
s
�! S :

Listing Euler characteristics of preimages, we see that

s�1S0(p) =

8><
>:
1 p 2 I

3 p 2 X

6 p 2 S

To compute cSM(S
0) we will use Proposition IV.6 in [A3]. In natural coordinates

((a0 : a1 : a2); (b0 : b1 : b2); (c0 : c1 : c2)), S0 is given by

������
a0 a1 a2
b0 b1 b2
c0 c1 c2

������ = 0 ;

so S0 is of type (1; 1; 1), and it is easily checked that the singular scheme of S0 is

the small diagonal P2
�
,! P

2 � P
2 � P

2. Applying Proposition IV.6 from [A3]:

cSM(S
0) =

(1 + h1)
3(1 + h2)

3(1 + h3)
3

1 + h1 + h2 + h3
\ [S0] +

(1 + h)3

1 + 3h
\ [P2]

with hopefully evident notations. Pushing forward to P9 (the hyperplane pulls back

to h1 + h2 + h3 and 3h), this gives

cSM(S
0) = 90[P5] + 180[P4] + 198[P3] + 135[P2] + 63[P1] + 21[P0] :

� Moving on to triangles, we have the map

T 0 = P
2 � P

2 � P
2 t
�! T

which gives

t�1T 0(p) =

8>>><
>>>:

1 p 2 I

3 p 2 X

6 p 2 S

6 p 2 T
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As is easily seen, c(TP2 � P
2 � P

2) pushes forward to

cSM(T
0) = 90[P6] + 270[P5] + 378[P4] + 324[P3] + 189[P2] + 81[P1] + 27[P0] :

� Conics union tangent lines: we consider the analogous locus P 0 � P
5�P

2, and

the obvious map P 0 p
�! P . We �nd

p�1P 0(p) =

8>>><
>>>:

1 p 2 I

2 p 2 X

3 p 2 S

1 p 2 P

To compute cSM(P
0), we again use [A3]. Straightforward computations give that

P 0 is a divisor of type (2; 2) in P
5�P

2, with singular scheme the locus of pairs (c; `)

where ` is a component of c. This locus is nonsingular, and isomorphic to P
2 � P

2

embedded in P
5 � P

2 by

(`1; `2) 7! (`1`2; `2) :

Proposition IV.6 from [A3] then gives

cSM(P
0) =

(1 + h)6(1 + k)3

1 + 2h+ 2k
\ [P 0]�

(1 + h1)
3(1 + h2)

3

1 + 2h1 + 4h2
\ [P2 � P

2]

with evident notations, and explicitly (the hyperplane from P
9 pulls back to (h+k)

and (h1 + 2h2)):

cSM(P
0) = 42[P6] + 132[P5] + 198[P4] + 186[P3] + 117[P2] + 51[P1] + 15[P0] :

� The set G of conics union arbitrary lines is dominated in the evident way by

P
5 � P

2:

G0 = P
5 � P

2 g
�! G

with

g�1G0(p) =

8>>>>>>>><
>>>>>>>>:

1 p 2 I

2 p 2 X

3 p 2 S

3 p 2 T

1 p 2 P

1 p 2 G

Pushing forward c(TP5 � P
2) to P

9 gives

cSM(G
0) = 21[P7]+108[P6]+243[P5]+318[P4]+270[P3]+156[P2]+63[P1]+18[P0] :

� Next we work in the bundle N 0 = D � P
9 � P

2 introduced in x1, realizing the

Nash-blow-up of D = N . Note that the �ber of D over p 2 P
2 is the P

6 of cubics

singular at p. Cuspidal (or worse) curves determine a quadric bundle C 0 � D over

P
2 surjecting onto C:

C 0 c
�! C :
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As the �ber of the projection D �! P
9 over Y 2 P

9 consists of the singular locus of

Y , we see

c�1C0(p) =

8>>>>>><
>>>>>>:

2 p 2 I

2 p 2 X

1 p 2 S

1 p 2 P

1 p 2 C

(2 =Euler characteristic of P1 =singular locus of a triple line, etc.). Now the singu-

lar subscheme of C 0 is easily seen to be the P3-bundle R whose �ber over p consists

of cubics with a triple point (or worse) at p. Applying again Proposition IV.6 from

[A3] gives

cSM(C
0) =

c(TD)

c(NC0D)
\ [C 0]�

c(TR)

c(NC0D)
\ [R]

(where push-forward to P9 is understood). We use [A4] (Lemma 1.4) to see that C 0

is a divisor in D of class 2h, where h is the pull-back of the hyperplane from P
9. As

for R, it is the complete intersection of six divisors of class (h+ k) in P
9 � P

2 (the

vanishing of the 6 second partials). Together with the computation of the class of

D from x2 (proof of Theorem 5), we get

(1 + h)10(1 + k)3

(1 + h+ 2k)3(1 + 2h)
[C 0]�

(1 + h)10(1 + k)3

(1 + h+ k)6(1 + 2h)
[R]

and pushing down to P
9

cSM(C
0) = 24[P7]+84[P6]+159[P5]+222[P4]+222[P3]+150[P2]+66[P1]+18[P0] :

� Finally, we dominate D = N with N 0 = D:

N 0 = D
n
�! D = N :

Computing Euler characteristics we see

n�1D(p) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

2 p 2 I

2 p 2 X

1 p 2 S

3 p 2 T

1 p 2 P

2 p 2 G

1 p 2 C

1 p 2 N

Also, we have already computed cSM(N
0) =push-forward of c(TD)\ [D] in general

in x3, Proposition 8. For M = P
2 and L = O(3), this gives

12[P8]+66[P7]+171[P6]+291[P5]+363[P4]+327[P3]+201[P2]+81[P1]+21[P0] :
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Summarizing, we have obtained

0
BBBBBBBBB@

i�1I0

x�1X0

s�1S0

t�1T 0

p�1P 0

g�1G0

c�1C0

n�1N 0

1
CCCCCCCCCA

=

0
BBBBBBBBB@

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 3 6 0 0 0 0 0

1 3 6 6 0 0 0 0

1 2 3 0 1 0 0 0

1 2 3 3 1 1 0 0

2 2 1 0 1 0 1 0

2 2 1 3 1 2 1 1

1
CCCCCCCCCA

0
BBBBBBBBB@

1I
1X
1S
1T
1P
1G
1C
1N

1
CCCCCCCCCA

from which, inverting the matrix and applying c�:

0
BBBBBBBBB@

c�(1I)

c�(1X)

c�(1S)

c�(1T )

c�(1P )

c�(1G)

c�(1C)

c�(1N )

1
CCCCCCCCCA

=

0
BBBBBBBBBB@

1 0 0 0 0 0 0 0

�1 1 0 0 0 0 0 0
1
3 �1

2
1
6 0 0 0 0 0

0 0 �1
6

1
6

0 0 0 0

0 �1
2 �1

2 0 1 0 0 0

0 0 1
2 �1

2 �1 1 0 0

�1
3 �1 1

3 0 �1 0 1 0

0 0 �1
2

1
2 2 �2 �1 1

1
CCCCCCCCCCA

0
BBBBBBBBB@

cSM(I
0)

cSM(X
0)

cSM(S
0)

cSM(T
0)

cSM(P
0)

cSM(G
0)

cSM(C
0)

cSM(N
0)

1
CCCCCCCCCA

;

which gives the statement. �

The data collected in Theorem 11 can now be assembled to compute any charac-

teristic class of the strata. For example, by Theorem 3 (using for example Remark

(2) following Corollary 4 in x2) we have

EuD(p) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

2 p 2 I

3 p 2 X

4 p 2 S

3 p 2 T

3 p 2 P

2 p 2 G

2 p 2 C

1 p 2 N

from which

cM (D) = 2c�(I) + 3c�(X) + 4c�(S) + 3c�(T ) + 3c�(P ) + 2c�(G) + 2c�(C) + c�(N)

with the same result as listed in the beginning of the section.

Applying to

1D = 1I + 1X + 1S + 1T + 1P + 1G + 1C + 1N

we obtain
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Corollary 12. The push-forward to P
9 of the Schwartz-MacPherson class of

the discriminant of plane cubics is

12[P8] + 45[P7] + 120[P6] + 210[P5] + 252[P4] + 210[P3] + 120[P2] + 45[P1] + 10[P0]

The remarkable near-symmetry of this expression is inherited from the total

Chern class of P9:

c(TP9) \ [P9] = [P9] + 10[P8] + 45[P7] + 120[P6] + 210[P5]

+ 252[P4] + 210[P3] + 120[P2] + 45[P1] + 10[P0]

from which we also obtain a class for the locus P9 �D of nonsingular cubics:

c�(1P9�D) = [P9]� 2[P8]

We do not have a conceptual explanation for this surprisingly simple expression

(although we again feel that the action of PGL(3) must be responsible for it).

Finally, the knowledge of cSM(D) allows us to compute the (push-forward of the)

Segre class of the singularity subscheme JD of D:

Proposition 13.

s(JD;P9) = 69[P7]� 1086[P6] + 12093[P5]� 108660[P4]

+ 750015[P3]� 2369910[P2]� 40989270[P1] + 1143250160[P0] :

Proof. This is obtained by using the result of [A3], relating Chern-Schwartz-

MacPherson's class, obtained above, to the class of the virtual tangent bundle of D:

cF (D) = (1 + h)10
[D]

(1 + 12h)
= 12[P8]� 24[P7] + 828[P6]� 8496[P5] + 104472[P4]

� 1250640[P3] + 15010200[P2]� 180120960[P1] + 2161452060[P0]

as a class in P
9. Theorem I.5 in [A3] gives (with notation as in [A3])

cSM(D) = cF (D) + c(O(12))8 \ (�O(12)(JD)_ 
P9 O(12))

from which one can then obtain

�O(12)(JD) = 69[P7] + 5676[P6] + 200226[P5] + 3926268[P4]

+ 46220754[P3] + 326651280[P2] + 1283190093[P1] + 2161452050[P0]

As �O(12)(JD) = c(T �P9
O(12))\s(JD;P9), this information is enough to obtain

s(JD;P9), with the stated result. �

For example, using [A-C] and Theorem 3 in x2 we can now compute the multi-

plicity m3 and Euler obstruction e3 at the discriminant D of plane cubics in the

discriminant hypersurface of O(12) on P
9:

Corollary 14.

m3 = 17559733166

e3 = 2161452050

In fact it is not hard to give a compact formula for the Euler obstruction ed at

the discriminant of degree-d plane curves of the corresponding discriminant (d � 2):

ed =
1

3(d� 1)2

�
(3(d� 1)2 � 1)(

d+2

2 ) � (�1)(
d+2

2 )
�

(we will leave this as an exercise for the entertainment of the interested reader); we

know of no such formula for the multiplicity md.
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x5. Discriminant of O(d) on P
1

In this section we compute Schwartz-MacPherson's class of strata of the dis-

criminant of O(d) on P
1. We picture Pd = H0(P1;O(d)) as the space of unordered

d-tuples of points in P
1, and the discriminant consists then of nonreduced d-tuples.

We consider the strati�cation of the discriminant by the loci in P
d parametriz-

ing d-tuples of a given combinatorial type. More precisely, for every partition

m = fm1; : : : ;msg of d

d = m1 + � � �+ms

into nonincreasing summands m1 � m2 � � � � � ms, we compute the image in

A�P
d (via MacPherson's transformation) of the characteristic function of the locus

of d-tuples m1p1 + � � �+msps with distinct pi's.

The main ingredients in the answer are the elementary symmetric functions

sj(m) = sj(m1; : : : ;ms), and the order autm of m, by which we mean the number

of row-shu�ings preserving the corresponding Young diagram. For example, for

m = f5; 4; 3; 3; 3; 2; 2g:

we have autm = 1! 1! 3! 2! = 12.

With these notations, the answer is:

Proposition 15. Schwartz-MacPherson's class of the locus of d-tuples
m1p1 + � � �+msps with distinct pi is

1

autm

sX
k=0

�
s� 3

k

�
(�1)kk! (s� k)! ss�k(m) [Ps�k]

(We use the convention
�
�a
b

�
= (�1)b

�
a+b�1

b

�
.)

Proposition 15 assigns a class to each Young diagram with s rows. This class has

no components in dimension < 3 for s � 3; for s = 3 it consists of one component:

6

autm
m1m2m3 [P

3] ;

for s � 2 it equals(
2m1m2 [P

2] + (m1 +m2) [P
1] + 2 [P0] m1 6= m2

m2 [P2] +m [P1] + [P0] m1 = m2 = m

The good properties of Schwartz-MacPherson's classes endow the classes of

Proposition 15 of many interesting features. For example, the sum of the classes

over all Young diagrams with d boxes must equal the class of the tangent bundle

of Pd, since the corresponding characteristic functions add up to the constant 1Pd

on P
d.
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Example. For d = 5 we have the diagrams

which by Proposition 15 correspond respectively to

[P5]� 2[P4] + [P3] ; 8[P4]� 7[P3] ; 12[P3] ; 9[P3]

12[P2] + 5[P1] + 2[P0] ; 8[P2] + 5[P1] + 2[P0] ; 5[P1] + 2[P0]

Adding up these classes gives

[P5] + 6[P4] + 15[P3] + 20[P2] + 15[P1] + 6[P0] = (1 + h)6 � [P5] = c(TP5) \ [P5]

Other characteristic classes of the discriminant can be obtained either directly, or

by pasting together a suitable combination of the classes obtained in Proposition 15.

For example, according to Theorem 5 Mather's Chern class must be�
(2d� 2)(1 + h)d � d h (1 + h)d�1

�
� [Pd�1] :

This class must be the image via MacPherson's map of the Euler obstruction; for a

d-tuple with partition m = m1 � � � � � ms as above, this is easily computed to beX
(mi � 1) ;

that is, the number of boxes in the diagram obtained by removing the rightmost

box from each row of the Young diagram of m. Adding up Schwartz-MacPherson's

classes (as computed in Proposition 15) weighted according to the Euler obstruc-

tion must give Mather's class. For example, for d = 5 we have the above Young

diagrams, with local Euler obstructions respectively

0 ; 1 ; 2 ; 2 ; 3 ; 3 ; 4

and adding up the corresponding weighted MacPherson's classes (also listed above)

gives

8 [P4] + 35 [P3] + 60 [P2] + 50 [P1] + 20 [P0]

agreeing with the direct computation. Can Proposition 15 (or Lemma 16 below) be

proved `geometrically' (by providing enough direct computations of characteristic

classes)?

Proof of Proposition 15. The proposition follows from the analogous result

for ordered s-tuples of points on P
1. Consider the space

P
1 � � � � � P

1| {z }
s

and the open subset parametrizing s-tuples of distinct points. Let hi denote the

pull-back of the hyperplane from the i-th factor (and note h2i = 0 for all i).
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Lemma 16. The image in A�(P
1�� � ��P

1) of the characteristic function of the
set set of ordered s-tuples of distinct points is

(1� h1 � � � � � hs)
s�3 � [P1 � � � � � P

1]

Granting the Lemma for a moment, the proposition follows: for a partition m

as above, consider the map

P
1 � � � � � P

1 �
�! P

d

(p1; : : : ; ps) 7! m1p1 + � � �+msps

surjecting onto the closure of the corresponding stratum. It is readily understood

that autm equals the degree of �; this is the exact number of preimages over

m1p1+ � � �+msps with distinct pi's, so Schwartz-MacPherson's class of the stratum

is given by

(*)
1

autm
��(MacPherson's class of the set of d-tuples of distinct points)

=
1

autm
��((1� h1 � � � � � hs)

s�3 � [P1 � � � � � P
1])

by the Lemma. Now denote by h the hyperplane in P
d, and note that

��h = m1 h1 + � � �+ms hs :

By the projection formula, and using that h2i = 0,

hs�k��((h1 + � � �+ hs)
k � [P1 � � � � � P

1])

= ��((m1h1 + � � �+mshs)
s�k(h1 + � � �+ hs)

k � [P1 � � � � � P
1])

= ��((s� k)!ss�k(m1; : : : ;ms)k!h1 � � �hs � [P
1 � � � � � P

1])

= (s� k)! k! ss�k(m) [pt]

hence

��((h1 + � � �+ hs)
k � [P1 � � � � � P

1]) = (s� k)! k! ss�k(m) [Ps�k] :

The formula in the proposition follows from applying this to the obvious expansion

of (�). �

Our proof of the Lemma is purely combinatorial:

Proof of Lemma 16. The product P1 � � � � � P
1 is the disjoint union of the

set under scrutiny and the `diagonals' parametrizing s-tuples fp1; : : : ; psg for which

certain subsets of the pi's coincide. There is one such diagonal for each partition

P = fA1; : : : ; Akg

of the set f1; : : : ; sg, and the set of s-tuples of distinct points corresponds to the

longest partition ff1g; : : : ; fsgg. Denoting by cSM(P) Schwartz-MacPherson's class
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of the characteristic function of the subset corresponding to P, we observe that as

1P1�����P1 is the sum of all such characteristic functions, we must have

X
P

cSM(P) = cSM(P
1 � � � � � P

1) =

sY
i=1

(1 + hi)
2 � [P1 � � � � � P

1]

Now the key observation is that each diagonal is itself a set of n-tuples of distinct

points, so its cSM is recursively known. Hence, the last display gives a recursive

relation of which we claim the formula given in the lemma is the solution.

More precisely, denote by [P] the class of the diagonal corresponding to P =

fA1; : : : ; Akg. Each Ai lists a set of factors agreeing in the diagonal, so the (closure

of the) set corresponding to P is the image of the map

P
1 � � � � � P

1| {z }
k

�! P
1 � � � � � P

1| {z }
s

sending the i-th factor on the left to the small diagonal in P
1Ai . Observe that any

hai for ai 2 Ai restricts to the hyperplane in the i-th factor, so according to the

formula proposed in the Lemma

cSM(P) = C(P) � [P]

where

C(P) := (1� h(1) � � � � � h(k))k�3

and where h(i) = hai for any ai 2 Ai. Also, a moment's thought shows that the

class of the small diagonal in P
1Ai is

1

(jAij � 1)!
(
X
a2Ai

ha)
jAij�1 � [P1

Ai

]

where jAij denotes the cardinality of Ai. Indeed (keeping in mind h2i = 0) this

equals the `penultimate' elementary symmetric function in the ha's, which is the

class dotting to 1 against each ha. The class [P] is therefore the product of all such

functions as Ai ranges in P:

[P] = S(P) � [P1 � � � � � P
1]

where

S(P) :=
Y
Ai2P

1

(jAij � 1)!
(
X
a2Ai

ha)
jAij�1 :

Summarizing, in order to prove the Lemma we have to show that

X
P

S(P)C(P) =

sY
i=1

(1� hi)
2

where the summation ranges over all partitions P of f1; : : : ; sg.
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Of course this is shown by induction on s. For s = 1 we have the single partitions

P = ff1gg, for which

S(P) = 1 ; C(P) = (1� h1)
1�3 = 1 + 2h1 = (1 + h1)

2

(once more, since h2i = 0), as needed.

To establish the induction step, observe that removing hs from a partition of

f1; : : : ; sg determines uniquely a partition of f1; : : : ; s� 1g; that is, a partition

P = fA1; : : : ; Akg

of f1; : : : ; s� 1g spawns the (k + 1) partitions of f1; : : : ; sg:

P 00 = fA1; : : : ; Ak; fhsgg

P 0i = fA1; : : : ; A
0
i; : : : ; Akg i = 1; : : : ; k

where A0i = Ai [ fhsg. Now observe that S(P 00) = S(P) (since the penultimate

elementary symmetric function of fhsg is 1), while

C(P 00) = (1� h(1) � � � � � h(k) � hs)
(k+1)�3

= (1� h(1) � � � � � h(k))k�2 � (k � 2)(1� h(1) � � � � � h(k))k�3 hs

= (1� h(1) � � � � � h(k) � (k � 2)hs)C(P) :

On the other hand, clearly C(P 0i) = C(P), and the contributions to S(P 0i) due to

the Aj, j 6= i, equal the corresponding contributions to S(P); for j = i, write

Ai = fha1 ; : : : ; harg ;

then the contribution of A0i to S(P
0
i) equals

1

r!
(ha1 + � � �+ har + hs)

r

=
1

r!
(ha1 + � � �+ har )

r +
1

(r � 1)!
(ha1 + � � �+ har )

r�1 hs

=

�
1

r
(ha1 + � � �+ har ) + hs

�
1

(r � 1)!
(ha1 + � � �+ har )

r�1

and, further, each ha (a 2 Ai) hits C(P
0) as h(i); so this shows

S(P 0i) = (h(i) + hs)S(P)

(after restriction to the diagonal). Putting everything together,

X
i�0

S(P 0i)C(P
0
i) = (1� h(1) � � � � � h(k) � (k � 2)hs +

X
i

(h(i) + hs))S(P)C(P)

= (1 + 2hs)S(P)C(P)

= (1 + hs)
2 S(P)C(P)



x5. DISCRIMINANT OF O(d) ON P
1 25

Adding over all partitions, we see

X
P0 partition of f1;:::;sg

S(P 0)C(P 0) =

0
@ X
P partition of f1;:::;s�1g

S(P)C(P)

1
A (1 + hs)

2

and we are done, since by induction
P

P S(P)C(P) =
Qs�1

i=1 (1 + hi)
2. �

As an important special case of the proposition, the complement of the discrim-

inant corresponds to the partition 1d = f1; 1; : : : ; 1g, so we have s = d,

aut 1d = d! ; ss�k(1
d) =

�
d

s� k

�

and the class simpli�es to

dX
k=0

�
d� 3

k

�
(�1)k [Pd�k ] =

X
k�0

�
d� 3

k

�
(�1)k hk[Pd] = (1� h)d�3[Pd]

where h is the hyperplane in [Pd]. We feel that there should be an explanation of

the shape of this class in terms of the obvious PGL(2) action.

As an immediate consequence of this formula:

Corollary 17. Schwartz-MacPherson's class of the discriminant of O(d) on
P
1 is

�
(1 + h)d+1 � (1� h)d�3

�
� [Pd] =

X
j�1

��
d+ 1

j

�
� (�1)j

�
d� 3

j

��
[Pn�j ]

We do not know of a similarly compact formula for Schwartz-MacPherson's class

of the closure of an arbitrary stratum of the discriminant; the case of Corollary 17,

that is the whole discriminant, corresponds to the closure of the stratum corre-

sponding to the partition f2; 1; : : : ; 1g.

A formula can be given for the class obtained by weighing strata according

roughly to the row automorphisms of the corresponding Young diagrams. We say

that a Young diagram P 0 is a `degeneration' of a diagram P, and write P 0 � P,

if P 0 can be obtained from P by collapsing several rows into one; that is, if the

stratum corresponding to P 0 is in the closure of the stratum corresponding to P.

For diagrams P, P 0 we de�ne a weight

w(P;P 0)

as follows: w(P;P 0) equals the number of row automorphisms of P 0 (that is, autm0

for the corresponding partition m0) times the number of ways P 0 can be obtained

as a degeneration of P. For example, the diagram P:
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has degenerations P 0

with weights respectively

2 ; 2 ; 2 ; 1

Also, denote by cSM(P) Schwartz-MacPherson's class of the stratum corresponding

to P, as computed in Proposition 15. Schwartz-MacPherson's class of the closure

of the locus of d-tuples with combinatorial type P would be

X
P0�P

cSM(P
0) ;

we do not have a simple expression for this in general. However:

Proposition 18. Assume P corresponds to the partition m. Then

X
P0�P

w(P;P 0) cSM(P
0) =

sX
k=0

2s�kk! sk(m1; : : : ;ms) [P
k]

Proof. As in the proof of Proposition 15, consider the natural map

P
1 � � � � � P

1 �! P
d

sending (p1; : : : ; ps) tom1p1+� � �+msps. The weight w(P;P
0) computes the number

of preimages of a given d-tuple, so the properties of Schwartz-MacPherson's class

imply that X
P0�P

w(P;P 0) cSM(P
0)

equals the push-forward of the total Chern class of the tangent bundle to P1�� � ��

P
1. This is easily evaluated and gives the right-hand-side. �

The degree of the class given in Proposition 18 computes the `weighted' Eu-

ler characteristic; this equals 2s for the closure of a stratum of dimension s. The

actual Euler characteristic of the closure of a stratum, that is, the degree of its

Schwartz-MacPherson's class, is more elusive. However, by the remarks following

the statement of Proposition 15 we see that there is no contribution to the Eu-

ler characteristic from strata of dimension � 3. It follows in fact that the Euler

characteristic of the closure of the stratum corresponding to a diagram P equals

twice the number of degenerations of P with � 2 rows, minus 1 if P degenerates

to fd2 ;
d
2g. For example, f2; 1; 1g degenerates to f3; 1g, f2; 2g, and f4g, hence the

Euler characteristic of the closure of the corresponding stratum is 5.

Proposition 18 computes the actual Schwartz-MacPherson's class of the closure

of the stratum when all substrata are counted with weight 1. This is the case
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when all sums of subsets of fm1; : : : ;msg yield di�erent numbers; for example,

Schwartz-MacPherson's class of the closure of the stratum corresponding to

is computed by the right-hand side of Proposition 18:

5X
k=0

2s�kk! sk(16; 8; 4; 2; 1) [P
k]

= 122880[P5] + 95232[P4] + 29760[P3] + 4960[P2] + 496[P1] + 32[P0] :

As a �nal remark, observe that the explicit form of Schwartz-MacPherson's class
of the discriminant given in Corollary 17 allows us to obtain the Segre class of its
singularity subscheme. As often is the case, the �-class (in the sense of [A1]) looks

a little nicer: denoting as usual by h the hyperplane class in P
d, the �-class equals

(again by applying [A3], I.5)

�
(1 + (2d� 3)h)d+1

(1 + (2d� 2)h)2
� (1 + (2d� 2)h)2(1 + (2d� 1)h)d�3 + (1 + (2d� 2)h)d�1(2d� 2)h

�
� [Pd]

For example, the degree of this class (that is, Parusi�nski's number of the discrimi-

nant) turns out to be

(2d� 2)d + (�1)d(d+ 1) (d � 3)

This is the local Euler obstruction of the discriminant, seen as a point in the discrim-

inant of the linear system it determines on P
d, cf. Corollary 4. This information is

equivalent to the statement that the Euler characteristic of the discriminant of O(d)

on P
1 is (d+1), that is, it equals the Euler characteristic of Pd; this also follows from

observing that the complement of the discriminant is a union of three-dimensional

PGL(2) orbits, hence its Euler characteristic must vanish. This simple argument

however does not suÆce to compute more sophisticated information, such as the

multiplicity of the discriminant in its discriminant. This can be obtained from the

above expression for the � class, using [A-C] (cf. [A1], x2.2):

(2d� 3)d+1 + (�1)d

2d� 2
+ d(2d� 2)d � (2d� 2)3(2d� 1)d�3 (d � 3) :

For example (d = 3), the discriminant of triples of points on P
1, a quartic surface

singular along a twisted cubic, is a point of multiplicity 148 on the discriminant of

O(4) on P
3.
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