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Abstract. We express the Chern-Schwartz-MacPherson class of a possibly singular variety in terms

of the total Chern class of a bundle of differential forms with logarithmic poles. As an application, we

obtain a formula for the Chern-Schwartz-MacPherson class of a hypersurface of a nonsingular variety, in
terms of the Chern-Mather class of a suitable sheaf.

§1. Introduction and statement of the result

In relation with the question of the existence of a canonical lift of the Chern-Schwartz-MacPherson
homology classes of a singular variety to intersection homology (with rational coefficients), Jean-Paul
Brasselet has asked whether it is possible to compute these classes by means of differential forms.
The main aim of this short note is to propose an answer to Brasselet’s question. The result is
stated in this §1, and proved in §2. An application of this result is given in §3, where we compute
the Chern-Schwartz-MacPherson class of a hypersurface of a nonsingular variety in terms of the
Chern-Mather class of a certain sheaf.

Let X be a (possibly singular) algebraic variety over an algebraically closed field of characteris-
tic 0. There is a notion of characteristic class of X, agreeing with the total Chern class of the tangent
bundle of X when X is nonsingular, and satisfying good functoriality properties. This class was intro-
duced in homology by Robert MacPherson for complex varieties ([9]), and was shown to agree with
the Alexander dual of the class introduced ten years earlier by Marie-Hélène Schwartz (see [13], [4]).
Gary Kennedy extended the definition to varieties over arbitrary algebraically closed fields of char-
acteristic 0 ([7]), after ideas of Claude Sabbah ([12]); in this context, which we will assume here, the
class lives in the Chow group A∗X of X. We will denote by cSM(X) the Chern-Schwartz-MacPherson
class of X.

The functoriality properties of the class amount to the existence of a natural transformation c∗
from the functor of constructible functions to Chow group (or homology), such that cSM(X) is the
image of the constant function 1X by the homomorphism induced by c∗; abusing notations,

cSM(X) = c∗(1X) ∈ A∗X .

The push-forward of a constructible function by a proper map is defined by taking Euler character-
istics of fibers.
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Now assume that X is embedded as a closed subvariety of a nonsingular variety M , by i : X −→ M .
We are interested in the image i∗cSM(X) of the Chern-Schwartz-MacPherson class of X in A∗M .
Also, recall that if X ′ is a (reduced) divisor with smooth components and normal crossings in a
nonsingular variety M̃ we have a sheaf Ω1fM (log X ′) of differential forms with logarithmic poles along

X ′. This is a locally free sheaf, of rank equal to the dimension of M̃ . The main result of this note
is the following:

Theorem 1. Let i : X −→ M be as above. Let π : M̃ −→ M be a proper birational map, with M̃ a
nonsingular variety, such that X ′ = (π−1(X))red is a divisor with smooth components and normal
crossings in M̃ , and π|fM−X′ is an isomorphism. Then

i∗cSM(X) = c(TM) ∩ [M ]− π∗

(
c(Ω1fM (log X ′)∨) ∩ [M̃ ]

)
∈ A∗M .

The proof of this result is given in the next section. We remark that embedded resolution of
singularities in characteristic 0 guarantees that a variety M̃ as specified in the statement of the
theorem always exists.

I would like to thank Jean-Paul Brasselet for organizing the very pleasant Groupe de travail
“Classes de Milnor” at the CIRM in February 1999, and for much needed help. Thanks are also
due to Roberto Silvotti, for remarks which led me to the results in this paper.

§2. Proof of Theorem 1

We first note (cf. for example [15], §3) that there is an exact sequence of sheaves on M̃ :

0 −→ Ω1fM −→ Ω1fM (log X ′) −→ ⊕OXi −→ 0

where Xi, 1 = 1, . . . , r are the components of X ′, and the map Ω1fM (log X ′) −→ ⊕OXi
is defined by

taking residues. Therefore

c(Ω1fM (log X ′)) = c(Ω1fM ) ·
∏

c(OXi
) =

c(Ω1fM )

(1−X1) · · · (1−Xr)

and hence c(Ω1fM (log X ′)∨) =
c(TM̃)

(1 + X1) · · · (1 + Xr)
.

Next, denote by j the inclusion X ′ ⊂ M̃ ; then we claim that

j∗cSM(X ′) = c(TM̃)
(

1− 1
(1 + X1) · · · (1 + Xr)

)
∩ [M̃ ] .

To see this, one may argue by induction on the number r of components of the divisor with normal
crossings X ′: for r = 1,

c(TM̃)
(

1− 1
(1 + X1)

)
∩ [M̃ ] = j∗

c(TM̃)
(1 + X1)

∩ [X1] = j∗c(TX1) ∩ [X1] = j∗cSM(X1);

and the equality for general r follows since both sides satisfy ‘inclusion-exclusion’.
Combining the two ingredients shows that

c(Ω1fM (log X ′)∨) ∩ [M̃ ] = c(TM̃) ∩ [M̃ ]− j∗cSM(X ′) = c∗(1fM−X′) .

Now applying the functoriality of MacPherson’s classes yields the statement of the theorem:

π∗

(
c(Ω1fM (log X ′)∨) ∩ [M̃ ]

)
= π∗c∗(1fM−X′) = c∗π∗(1fM−X′) = c∗(1M−X)

= c(TM) ∩ [M ]− i∗cSM(X)

as needed. �
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§3. Variations on the theme

If X is a hypersurface in M , the theorem in §1 can be used to obtain an alternative description
of the Chern-Schwartz-MacPherson class of X. For this, denote by L the line bundle O(X) on M .
A section s of L defining X determines a section O S−→ P1

ML of the bundle of principal parts of L
(a very accessible reference for bundles of principal parts is Appendix A in [11]). Denote by ΩX the
cokernel of this section after tensoring by the dual line bundle L∨, so that

(*) 0 −→ L∨ −→ L∨ ⊗ P1
ML −→ ΩX −→ 0

is an exact sequence of sheaves on M ; ΩX is a coherent sheaf on M , of rank equal to the dimension
of M .

Remark. Note that X is nonsingular precisely when (*) is an exact sequence of vector bundles, and
ΩX is locally free in that case; and

c(ΩX) ∩ [X] = c(T ∗X) ∩ [X] if X is nonsingular, since

c(ΩX) =
c(T ∗M ⊗ L⊗ L∨)c(L ⊗ L∨)

c(L∨)
=

c(T ∗M)
1−X

.

As a consequence (if X is nonsingular)

i∗c(TX) ∩ [X] = c(TM) ∩ [X]
1 + X

= c(TM)
(

1− 1
1 + X

)
∩ [M ]

= c(TM) ∩ [M ]− (c(ΩX) ∩ [M ])∨

where, for a class α ∈ AkM , α∨ denotes (−1)dim M−kα. Theorem 2 will generalize this formula to
the case in which X is singular.

If X is singular, the sheaf ΩX is not locally free. Now, for an arbitrary coherent sheaf F there
is a notion of Chern-Mather class, which we denote cMa(F), agreeing with the (homology) Chern
class for locally free sheaves. This notion stems from work of Marie-Hélène Schwartz [14], and is
discussed in detail in Micha l Kwieciński’s thesis ([8]). It can be viewed as the result of performing
for arbitrary coherent sheaves the operation described for the cotangent sheaf Ω1

X of X in Example
4.2.9. (a) of [6]. In particular, cMa(Ω1

X)∨ recovers the ordinary Chern-Mather class of X, defined
in [9].

Theorem 1 allows us to extend the formula given in the remark to the case when X is a singular
hypersurface, by using this notion of Chern-Mather class. The precise statement is the following:

Theorem 2. Let X be a hypersurface in a nonsingular variety M , and let i denote the inclusion
X ↪→ M . Then, with notations as above:

i∗cSM(X) = c(TM) ∩ [M ]− cMa(ΩX)∨

Proof. By Theorem 1, and with the notations used there, we only need to prove that

cMa(ΩX) = π∗

(
c(Ω1fM (log X ′)) ∩ [M̃ ]

)
where π : M̃ −→ M is a proper birational map such that π−1X is a divisor with smooth (possibly
multiple) components and normal crossings, and X ′ = (π−1X)red. We may in fact assume that,
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further, the singularity subscheme Y of X (locally defined by the partials of a section defining X)
pulls back in M̃ to a Cartier divisor Y ′ = π−1Y .

Observe that Y is precisely the zero-scheme of the section S : O −→ P1
ML induced by the section

of L defining X; therefore, S induces an embedding of vector bundles 0 −→ O(Y ′) −→ π∗P1
ML. It

follows that we have a surjection of sheaves of the same rank:

π∗ΩX −→ L∨ ⊗ π∗P1
ML

L∨ ⊗O(Y ′)
−→ 0 ,

and as the target is locally free we have

cMa(ΩX) = π∗c

(
L∨ ⊗ π∗P1

ML
L∨ ⊗O(Y ′)

∩ [M̃ ]
)

.

Our main tool now is a morphism of locally-free sheaves on M̃ :

L∨ ⊗ π∗P1
ML −→ Ω1fM (log X ′) .

To define this morphism on (local) sections, assume U is an open subset of M̃ such that X ′ has
equation u1 · · ·ur = 0 for local parameters u1, · · · , un in U ; then π−1X has ideal (um1

1 · · ·umn
n ) for

suitable integers mi ≥ 0, with mi = 0 for i > r. Sections of ΩfM (log X ′) over U can be written

α1
du1

u1
+ · · ·+ αr

dur

ur
+ αr+1dur+1 + · · ·+ αndun ,

and we can describe sections of L∨ ⊗ π∗P1
ML over U by (f ; f1du1 + · · ·+ fndun).

We define a map (L∨ ⊗ π∗P1
ML)(U) −→ Ω1fM (log X ′)(U) by

(f ; f1du1 + · · ·+ fndun) 7→
∑

(fiui −mif)
dui

ui
.

In order to see that this local description patches up to a global morphism of sheaves, observe that
it is induced by a morphism defined at the level of meromorphic sections between

L∨ L
⊗ P1

ML and P1
ML

R
⊗ L∨ ∼= P1

MOM :

here the first tensor is computed (as above) using the usual OM -module structure of P1
ML; the

second is obtained according to the other OM -module structure, cf. [11], §A.5. The isomorphism
with P1

MOM is [5], 16.7.2.1. One defines a morphism between meromorphic sections of the two
tensors in the most natural way that involves the section s of L defining X, that is:

u
L
⊗ g 7→ (su)g

R
⊗ 1

s
.

Pulling back to M̃ , one checks that this morphism is given on a trivializing open set by the local
description given above, and in particular that the image of a holomorphic section is a section of
Ω1fM (log X ′). Also, it is easy to check that the subbundle L∨⊗O(Y ′) of L∨⊗π∗P1

ML is in the kernel
of this morphism. So we obtain a morphism of vector bundles

L∨ ⊗ π∗P1
ML

L∨ ⊗O(Y ′)
−→ Ω1fM (log X ′) .



DIFFERENTIAL FORMS AND CHERN-SCHWARTZ-MACPHERSON CLASSES 5

This morphism has maximal rank (= dim M) off Y ′. The difference(
c

(
L∨ ⊗ π∗P1

ML
L∨ ⊗O(Y ′)

)
− c(Ω1fM (log X ′))

)
∩ [M̃ ]

can be evaluated by means of the graph construction—see for example [6], Example 18.1.6. The
details of the construction needed here are similar to those given in [9], p. 429. Applying the graph
construction shows that the push-forward of the difference to M by π∗ vanishes, so

cMa(ΩX) = π∗

(
c

(
L∨ ⊗ π∗P1

ML
L∨ ⊗O(Y ′)

)
∩ [M̃ ]

)
= π∗

(
c(Ω1fM (log X ′)) ∩ [M̃ ]

)
as needed. �

Alternative proofs of the formula given in Theorem 2 can be derived from recent results on
Chern-Schwartz-MacPherson classes of hypersurfaces. In fact, Theorem 2 is equivalent to a weak
(that is, after push-forward to the ambient variety) version of the main result in [1], of which
it provides a considerably more streamlined proof. More specifically, the reader should have no
difficulties obtaining the (weak form of the) formula in Theorem I.3 in [1] from the statement of
Theorem 2. A different proof of the same formula in [1] can also be found in §3 of [10].

The reader is addressed to [1], [10], and [3], for recent work on the Chern-Schwartz-MacPherson
class of a hypersurface (and, in [3], the more general case of a complete intersection). These references
deal primarily with measuring the difference between the Chern-Schwartz-MacPherson class and
other ‘canonical’ classes such as Fulton’s class and Fulton-Johnson’s class (cf. [6], Example 4.2.6).
The sheaf ΩX seems particularly suited to study such differences: by Theorem 2, its Chern-Mather
class relates to the Chern-Schwartz-MacPherson class of X; while its ordinary Chern class recovers
Fulton’s class cF (X) (that is, the class of the virtual tangent bundle of X):

c(ΩX) ∩ [X] =
c(L∨ ⊗ P1

ML)
c(L∨)

∩ [X] =
c(T ∗M)
c(L∨)

∩ [X] = cF (X)∨ .

As a final remark we also note that as, according to Theorem 2, c(TM) ∩ [M ] − cMa(ΩX)∨

computes the Chern-Schwartz-MacPherson class of X, it is not hard to see that

c(TM) ∩ [M ]− c(O(X)) ∩ cMa(ΩX)∨

computes (up to sign and pushing forward to the ambient variety M) the weighted Chern-Mather
class of the singularity scheme Y of X (cf. [2]). The details are left to the interested reader.
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399–402.
[15] R. Silvotti, On a conjecture of Varchenko, Invent. Math. 126 (1996), 235–248.

Mathematics Department, Florida State University, Tallahassee, FL 32306

E-mail address: aluffi@math.fsu.edu


