
LINEAR ORBITS OF ARBITRARY PLANE CURVES

Paolo Aluffi and Carel Faber

Dedicated to William Fulton on the occasion of his 60th birthday

Abstract. The ‘linear orbit’ of a plane curve of degree d is its orbit in Pd(d+3)/2

under the natural action of PGL(3). In this paper we obtain an algorithm computing
the degree of the closure of the linear orbit of an arbitrary plane curve, and give

explicit formulas for plane curves with irreducible singularities. The main tool is an

intersection-theoretic study of the projective normal cone of a scheme determined by
the curve in the projective space P8 of 3 × 3 matrices; this expresses the degree of

the orbit closure in terms of the degrees of suitable loci related to the limits of the
curve. These limits, and the degrees of the corresponding loci, have been established

in previous work.

§0. Introduction

The Gromov-Witten invariants of P2 compute, roughly speaking, the number
of plane curves of given degree d and genus g containing the appropriate number
of general points. In recent years it has been discovered that these invariants are
coherently linked together by the apparatus of quantum cohomology, which exposes
their structure as d and g are allowed to vary.

For nonsingular plane curves, however, these invariants do not carry much in-
formation: the set of nonsingular curves of a given degree d is an open set of a
projective space Pd(d+3)/2, so the corresponding invariant is simply 1. We can con-
sider a more refined question by fixing, as well as the degree d (and therefore the
genus g = (d−1)(d−2)

2 ), the moduli class in Mg of the curve. What data determines
then the corresponding invariant? Can this invariant be effectively computed? Can
other enumerative invariants be computed for the set of nonsingular curves of given
degree and moduli class, such as the number of curves tangent to the appropriate
number of general lines?

In this article we fully answer these questions, and a natural generalization of
these questions to arbitrary (i.e., possibly singular, reducible, nonreduced) plane
curves of any degree. The group PGL(3) of projective linear transformations of
P2 acts naturally on the space Pd(d+3)/2 parameterizing plane curves of degree d.
Our main result is the computation of the degree of the closure in this space of
the orbit of an arbitrary plane curve (in char. 0). Somewhat surprisingly, the

1991 Mathematics Subject Classification. Primary 14N10; Secondary 14L30.

Both authors gratefully acknowledge partial NSF support, under grants DMS-9500843 and

DMS-9801257.

Typeset by AMS-TEX

1



2 PAOLO ALUFFI AND CAREL FABER

enumerative geometers and the invariant theorists of the 19th century do not seem
to have worked on this question. The orbit closure of a curve is a natural object
of study, and its degree has a simple enumerative meaning: for a reduced curve
with finite stabilizer, it counts the number of translates of the curve which contain
8 given general points. For a nonsingular curve, this is the invariant mentioned
above. In this sense, therefore, this problem is an isotrivial version of the problem
of computing Gromov-Witten invariants.

The computation in this paper relies on our previous work on the subject, where
we have dealt with special curves: nonsingular curves were in fact already treated
in [A-F2]; plane curves whose orbit has dimension less than dim PGL(3) = 8 are
classified and studied in [A-F3], [A-F4]. We have also determined in [A-F5] the
limits of an arbitrary plane curve; these are the curves appearing in the boundary
of the orbit, that is, the complement of the orbit in its closure. In the terminology of
[H-M] (p. 138) this solves the ‘isotrivial flat completion problem’ for plane curves.

Our previous enumerative computations relied on the explicit construction (by
means of a sequence of blow-ups over the P8 of 3 × 3 matrices) of smooth varieties
dominating the orbit closures. The case of an arbitrary curve appears to be too
complex for that approach, and we turn in this paper to a more direct study of the
projective normal cone of the base locus (scheme) of the rational map

P8 ��� Pd(d+3)/2

extending the map PGL(3) −→ Pd(d+3)/2 which surjects onto the orbit of a given
curve. Our study of limits of curves in [A-F5] allows us to express the degree of
the orbit closure of a curve in terms of enumerative information concerning curves
in the boundary of the orbit, also available from our previous computations.

For an arbitrary curve, this provides us implicitly with an algorithm computing
the degree of the orbit closure. We illustrate this algorithm in §4 and §5 on specific
classes of curves. For example, a surprisingly simple formula can be obtained to
compute the effect on the degree due to an irreducible singularity p of a curve (see
Theorem 5.1) in terms of the multiplicity of the curve at p, the order of contact with
the tangent line to the branch at p, and the Puiseux pairs describing the singularity.

Of course many questions remain concerning orbit closures, for example regard-
ing their singularities (which curves have smooth orbit closure? smooth orbit clo-
sures of configurations of points in P1 are classified in [A-F1]), or other invariants
such as Euler characteristic, Poincaré polynomials, behavior in positive character-
istic, etc.

Acknowledgement. It is a pleasure to dedicate this paper to Bill Fulton. His
encouragement over the years for our collaboration was vital to its success. Much
of the work on this project was done during several joint visits at the University of
Chicago, at his invitation.

§1. The problem, and the approach

Let C be a curve of degree d in the projective plane P2 over an algebraically
closed field of characteristic 0; we may think of C as a point in the projective space
PN = P(H0(P2,O(d))), where N = d(d + 3)/2. The standard action of PGL(3) on
P2 induces a right action on PN ; specifically, for ϕ ∈ PGL(3) we can consider the
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translate of C by ϕ: if C has equation F (x0 : x1 : x2) = 0, then its translate C ◦ ϕ
has equation

F (ϕ(x0 : x1 : x2)) = 0 .

The action ϕ �→ C ◦ ϕ defines a map

c : PGL(3) −→ PN

whose image is what we call the linear orbit of C. Our aim is the computation of
the degree of the closure of this orbit, for an arbitrary plane curve C, in terms of a
description of the irreducible components and the singularities of C.

Our general approach is based on compactifying PGL(3) to the space P8 of 3×3
matrices, and considering the rational map

P8 ��� PN

determined by c. If c̃ : Ṽ −→ PN is a map resolving the indeterminacies of this
rational map, so that the diagram

Ṽ

π

��

c̃

���
��

��
��

�

P8 c ����� PN

commutes, then the orbit closure of C is the image of c̃. In special but important
cases one can in fact construct and study a nonsingular such variety Ṽ , by a suitable
sequence of blow-ups along smooth centers over PN ; this is carried out in [A-F2],
[A-F3], [A-F4]. The work involved in the construction of an explicit resolution of
the orbit closure pays off in terms of a simpler intersection-theoretic set-up, and
opens the door to a more thorough study of the orbit closure.

Such a construction is however not available for an arbitrary plane curve C. This
is an indication of the fact that singularities of a plane curve can be extremely com-
plicated, and that the orbit closure is highly sensitive to the local features of a curve.
To treat the general case, we resort then essentially to using the most simple-minded
(but highly singular) variety Ṽ as above—we will let Ṽ be the blow-up of P8 along
the base scheme S of the rational map c—and pay the price of a more complicated
intersection-theoretic set-up and of a careful local study of degenerations of C. In
the end we will be able to express the degree of the orbit closure of C in terms of
enumerative information concerning its limits, that is, the curves obtained as limits
of translates C ◦ϕ as ϕ approaches the base locus of c. This enumerative informa-
tion has been obtained in our previous work; it relies on the explicit resolution of
the orbit closure of the limits.

In this section we describe our degeneration technique, and the intersection the-
ory formula we will use in the main computation. The degree of the orbit closure
is the intersection number

hdim c̃(eV ) · [c̃(Ṽ )] ,

where h denotes the hyperplane class in PN . Pulling back to Ṽ , we are then led to
consider the class

hdim c̃(eV ) ∩ [Ṽ ]
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(following common practice, we omit evident pull-back notations); in fact, in order
not to fix from the start the dimension of the orbit of C, we consider the class

[Ṽ ]
c(O(−h))

= (1 + h + h2 + h3 + . . . ) ∩ [Ṽ ] ,

and its push-forward to P8:

π∗
[Ṽ ]

c(O(−h))
= (1 + a1H + a2H

2 + . . . ) ∩ [P8] ,

where H is the hyperplane class in P8, and ai is the degree of π∗(hi ∩ [Ṽ ]). It is
clear that

ai = 0 for i > dim c̃(Ṽ )

and that adim c̃(eV ) equals the degree of the orbit closure times the degree of the
closure of the stabilizer of C in P8. We call this number the ‘predegree’ of the orbit
closure of C, and the whole class written above, which we think of as a polynomial
in H, the predegree polynomial of (the orbit closure of) C.

Note. The ‘polynomials’ appearing in this paper are therefore nothing but classes in
the Chow ring of P8. It will in fact be convenient to take rational coefficients, so that
our polynomials will live in the ring Q[H]/(H9). When manipulating polynomials
we will implicitly work in this ring; in particular, all operations are truncated to
H8. This allows us some convenient abuse of language; for example,

exp(dH) = 1 + dH +
(dH)2

2
+

(dH)3

3!
+ · · · + (dH)8

8!

with our conventions.
Our objective then becomes the following: compute the predegree polynomial

of an arbitrary plane curve C. The degree of the orbit closure of a curve C is
recovered from its predegree polynomial by dividing the top nonzero coefficient by
the degree of the closure of the stabilizer of C. Predegree polynomials are a more
natural object of study, since they carry enumerative information independently of
the dimension of the orbit closure. The information in the predegree polynomial
is equivalent to the information in what we call the adjusted predegree polynomial
(a.p.p.)

π∗(ch(O(h)) ∩ [Ṽ ]) = 1 + a1H + a2
H2

2
+ a3

H3

3!
+ . . . .

Computing adjusted predegree polynomials often leads to simpler formulas, so we
focus on them in this paper. Adjusted predegree polynomials for curves with small
orbits (i.e., of dimension < 8) are computed in [A-F3], [A-F4].

We can analyze the situation in a more general context. Let V be any variety,
L a line bundle on V , and E ⊂ H0(V,L) a nonzero linear system. These choices
determine a rational map

α : V ��� PN = P(E∨) .

Let S be the scheme-theoretic intersection of the sections in E , so that the base locus
of α is the support of S, and (the closure of) the graph Γ of α can be identified with
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the blow-up Ṽ of V along S. We let E be the exceptional divisor of the blow-up,
that is, the part of the graph over S:

E = π−1S

��������������
�� Γ = Ṽ

π

���
��

��
��

��
�� V × PN

����
��

��
��

�

���
��

��
��

��

S �� V
α ����������� PN

In other words, E is a realization of the projective normal cone of S in V . Let
now L̃ denote the pull-back to Γ of the hyperplane class in PN , and notice that
if E is base-point-free to begin with (so S = ∅), then L̃ = L and the quantity
corresponding to the adjusted predegree polynomial is simply

(*) π∗(ch(L̃) ∩ [Ṽ ]) = ch(L) ∩ [V ] in (A∗V )Q.

The following proposition shows how to modify the fundamental class of [V ] in this
formula to account for the base locus S of α. The correction term will be obtained
from the cycle of E:

[E] = m1[E1] + · · ·+ mr[Er] ,

as follows. We denote by h the hyperplane class in PN and its pull-backs (for
example, h = c1(L̃) on Γ); write � = c1(L), and let

Li =
∑
k≥0

1
k + 1

k∑
j=0

(−�)k−j

j!(k − j)!
π∗(hj ∩ [Ei])

(so a priori the Li might have nonzero terms in all dimensions from 0 to dimV −1).
Here is the main observation in this section:

Proposition 1.1.

π∗(ch(L̃) ∩ [Ṽ ]) = ch(L) ∩ (
[V ] − (m1L1 + · · ·+ mrLr)

)
in (A∗V )Q.

Proof. Note that h = c1(L̃) = �− e, where e is the class of E and as usual we omit
obvious pull-back notations. Therefore

π∗(ch(L̃) ∩ [Ṽ ]) = π∗(exp(� − e) ∩ [Ṽ ]) = exp(�) ∩ π∗(exp(−e) ∩ [Ṽ ])

= exp(�) ∩ ([V ] − π∗(1 − exp(−e)) ∩ [Ṽ ])

giving the correction term to the fundamental class as

−π∗(1 − exp(−e)) ∩ [Ṽ ] = −π∗
∑
i≥0

(−e)i

(i + 1)!
∩ [E] , that is

−π∗
∑
i≥0

(h − �)i

(i + 1)!
∩ (m1[E1] + · · ·+ mr[Er]) .

The statement follows by expanding this expression. �
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In our situation V = P8, L = O(dH) (where d is the degree of the curve C), and
E is the linear system corresponding to the rational map c = α. We note that the
support |E| of E ↪→ P8 × PN is described set-theoretically by

|E| = {(σ, X) ∈ P8 × PN :

X is a limit of α(σ(t)) for some curve germ σ(t) ⊂ P8 centered at σ ∈ S} ,

so that it records the behavior of α as one approaches its base locus S. Since E
is identified with the projective normal cone of S in P8, it is a scheme of pure
dimension 7; invariably this will turn out to be reducible and nonreduced. Often
challenging is the computation of the multiplicities mi of the various components
Ei of E; for our specific problem all this information can be found in [A-F5], and
it will be recalled in the next section. In §3 we will compute explicit expressions

Ei = (ε1hNH + · · ·+ ε8h
N−7H8) ∩ [P8 × PN ] ,

yielding

Li =
∑
k≥0

 k∑
j=0

(−d)k−jεj+1

j!(k − j)!

 Hk+1

k + 1
.

According to Proposition 1.1, the a.p.p. can be computed by expanding

exp(dH) · (1 − (m1L1 + · · · + mkLk)
)

.

This will be our main tool in §4 and §5.

Example 1.1. As an illustration, we describe the components of E for C a smooth
curve of degree d ≥ 2, with only ordinary flexes. Recall ([A-F2]) that in this case
the base locus S consists of the set of rank-1 matrices whose image is a point of C.
We will see (§2) that E consists of one component dominating S, and components
dominating the set of matrices whose image is an inflection point of C.

More precisely, the first component is supported on the locus G ⊂ P8 × PN :

G = {(σ, Cσ) | imσ ∈ C, and Cσ is the union � ∪ c of a (d − 2)-fold line �

supported on kerσ and a nonsingular conic c tangent to �}.

Computing the class of this locus is a standard exercise in the enumerative geometry
of conics, and we obtain

[G] = 6d H5hN−4 + 4d(5d − 9) H6hN−5 + 6d(d − 2)(5d − 8) H7hN−6 ,

and the corresponding class

LG =
dH5

20
− d(5d + 18)H6

360
+

d(9d + 8)H7

420
− d2H8

60

in P8. The multiplicity of this component in the projective normal cone turns out
to be 2 (Fact 2(ii) in §2).

For each flex p on C we will also find a component of E supported on F ⊂ P8×PN :

F = {(σ, Cσ)|imσ = p, and Cσ is the union of a (d − 3)-fold line � supported on kerσ

and a cuspidal cubic c with cuspidal tangent �}.
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Again the computation of the class of this locus in P8 ×PN is not hard, and yields

LF =
H6

144
− H7

70
+

197H8

13440

in P8; the multiplicity of F in the projective normal cone will be found to be 3
(Fact 4(ii) in §2). Since a smooth curve of degree d ≥ 2 (and only ordinary flexes)
has 3d(d−2) flexes, the adjusted predegree polynomial of such a curve is, according
to Proposition 1.1,

exp(dH) · (1 − 2 · LG − 3d(d − 2) 3 · LF )

= 1 + d H + d2 H2

2
+ d3 H3

3!
+ d4 H4

4!
+ (d5 − 12d)

H5

5!
+ (d6 − 97d2 + 162d)

H6

6!

+ (d7 − 427d3 + 1566d2 − 1488d)
H7

7!
+ (d8 − 1372d4 + 7992d3 − 15879d2 + 10638d)

H8

8!
.

The coefficient of H8

8! reproduces the result of the computation in [A-F2] for d ≥ 3.
Also note that, for d = 2, this expression reduces to

1 + 2H +
4H2

2
+

8H3

3!
+

16H4

4!
+

8H5

5!
,

the adjusted predegree polynomial for a smooth conic, in agreement with [A-F3],
§4.2. We note in passing that the expression does not yield the a.p.p. of a line for
d = 1; this is not surprising, since a line is not a curve with ordinary flexes.

§2. Limits of plane curves—summary of results

In this section we recall the results from [A-F5] which we need for the enumerative
computations in this paper.

As we saw in §1, we are interested in the structure of the projective normal cone
E of the base scheme S of the rational map

c : P8 ��� PN

extending the action of PGL(3) on a given plane curve C of degree d. Now S ⊂ P8

consists of all matrices whose image is contained in C; in particular, S has exactly
one component for each component of C. More precisely, if no component of C is
a line, then

|S| ∼= P2 × |C| ⊂ P2 × P2 ⊂ P8 :

S consists of rank-1 matrices with arbitrary kernel, and image a point of C. Every
linear component � of C contributes a 5-dimensional component to S, consisting of
the P5 of rank-≤ 2 matrices whose image is contained in �.

We have realized E set-theoretically as a subset of pure dimension 7 of P8 ×PN :

|E| = {(σ, X) ∈ P8 × PN :

X is a limit of c(σ(t)) for some curve germ σ(t) ⊂ P8 centered at σ ∈ S} .

We are interested in a description of the components of this locus, as well as the
multiplicities with which they appear in E. A given component may arise in several
ways according to the procedure described in this section; its multiplicity in E will
be understood to be the sum of all multiplicities listed in each case.

A first rough description of the components of E can be given in terms of the
locus on S they dominate:
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Fact 1. There is one component of E dominating each component of S (hence,
one for each component of C), and components dominating loci ∼= P2:

{σ ∈ P8 | σ is a rank-1 matrix with image p ∈ C}

where p is either a flex or a singular point of C.

We call the first kind of components ‘global’, and the second kind ‘local’.
Components are usually best described as orbit closures of specific elements

(σ, Cσ) of P8 × PN under the induced (right) action of PGL(3). In each case Cσ

will be the limit obtained along a germ centered at σ; thus it will be clear a priori
that the given locus is a component of E. The content of the results listed below is
that they provide an exhaustive list of all components of E for a given curve, and
compute the multiplicity with which each component appears. Also, of course in
each case Cσ will be a curve with small linear orbit; these curves have been studied
in [A-F3] and [A-F4], and we use the terminology employed there.

Global components are easy to describe precisely:

Fact 2. (i) Let � be a line appearing with multiplicity m in C, and let λ be the
(d − m)-tuple of points cut out on � by the other components of C. Then the
component of E corresponding to � is the orbit closure of

(σ, Cσ), where σ is a rank-2 matrix with image �, and Cσ is a fan consisting of a star

centered at kerσ and reproducing projectively the tuple λ, and of a residual m-fold line ,

with multiplicity m.
(ii) Let C′ be a non-linear component appearing with multiplicity m in C. Then

the component of E corresponding to C′ is the closure of the locus

{(σ, Cσ) ∈ P8 × PN |σ is a rank-1 matrix with image a point of C′, and Cσ consists of a

(d − 2m)-fold line supported on kerσ, and of an m-fold smooth conic tangent to kerσ} ,

with multiplicity 2m.

We call components as in part (i) components of type I, and components as in
part (ii) components of type II.

Local components of E are substantially harder to describe, since the germs of
curves σ(t) in P8 giving rise to such components have to be carefully tailored to the
local features of C. As shown in [A-F5], only two kinds of germs must be considered,
requiring separate discussions: one kind (1-parameter subgroups, or 1-PS for short)
accounts for limits with multiplicative stabilizer; the other will be responsible for
limits with additive stabilizer.

We start with the (simpler) case of 1-PS limits. Again, we first give a rough
description of the situation.

Fact 3. Let p be either a flex or a singular point of C. For each line in the tangent
cone to C at p, there is a corresponding Newton polygon. The possible components
of E due to 1-PS centered at p are indexed by sides of these Newton polygons;
further, an additional component is present if the tangent cone is supported on at
least three distinct lines.

To be more precise, suppose p has multiplicity m, and denote by λ the tangent
cone to C at p (hence λ determines an m-tuple in the pencil of lines through p).
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Fact 4(i). The component present exactly when λ is supported on three or more
distinct lines is the orbit closure of

(σ, Cσ), where σ is a rank-1 matrix whose image is p, and Cσ is a fan consisting of a

star projectively equivalent to λ, and of a residual (d − m)-fold line supported on kerσ ,

with multiplicity mA, where A is the number of automorphisms of λ as a tuple in
the pencil of lines through p.

(The reason why this locus is not a component of E if λ is supported on ≤ 2 lines
is simply that it is not big enough to be one: it is immediately checked that this
locus has dimension 7 if and only if λ is supported on ≥ 3 lines.) We call such
components components of type III.

To determine the components corresponding to a line � in the tangent cone,
choose coordinates (x : y : z) in P2 so that p = (1 : 0 : 0) and � is the line z = 0;
then consider the Newton polygon for the curve, that is, the boundary of the convex
hull of the union of the positive quadrants with origin at the points (j, k) for which
the coefficient of xiyjzk in the equation for C is nonzero (see [B-K], p. 380). Note
that the part of the Newton polygon consisting of line segments with slope strictly
between −1 and 0 does not depend on the choice of coordinates. Consider the 1-PS

σ(t) =

 1 0 0
0 tb 0
0 0 tc

 ,

with 1 ≤ b < c relatively prime integers, and −b/c a slope of a side of the Newton
polygon for C.

Fact 4(ii). For each line � in the tangent cone of C, and for each 1-PS selected by
the above procedure, there is a component E′ of E supported on the orbit closure of

(σ, Cσ), where Cσ is the limit as t → 0 of C along the selected 1-PS σ(t), and σ = σ(0) ,

provided this locus has dimension 7. If xqyrzq
∏S

j=1

(
yc + αjx

c−bzb
)

is the limit
obtained along the 1-PS σ(t), then the contribution to the multiplicity of E′ is

(Sbc + rb + qc)
A

δ
,

where A is the number of components of the stabilizer of the limit, and δ is the
degree of the map from E′ to its image in PN .

The limits appearing in this statement are among the curves with small orbit
studied in [A-F3]. The number δ is 1 unless c = 2 and q = q, in which case it is 2
(see [A-F5]). The number A/δ can be computed directly in terms of the tuple {αj}
(see [A-F3], Lemma 3.1). We will see in §3 that this factor is absorbed by other
terms in the computation of the contribution of such components.

We call components arising as in Fact 4(ii) components of type IV.
In order to visualize part of this somewhat complicated recipe, note that if

(j0, k0), (ji, k1), j0 < j1, are vertices of a side of the Newton polygon of C of slope
strictly between −1 and 0, then the corresponding multiplicity (provided the locus
specified in the statement has dimension 7) is

j1k0 − j0k1

S

A

δ
,
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where S + 1 is the number of lattice points on the selected side. Also, note that
q = d − j1 − k1, r = j0, and q = k1 with these notations; and δ = 2 exactly
when (j0, k0), (ji, k1), and (d, 0) lie on a line with slope −1/2. The tuple {αj} is
determined by the specific coefficients appearing along the side.

Example 2.1. Suppose that C has a general multiple point at p, by which we mean
an ordinary multiple point such that the tangent line to each branch intersects that
branch with multiplicity 2 at p. Let m be the multiplicity of C at p. For each
line in the tangent cone, the Newton polygon contains exactly one side as in the
prescription given above, from (m − 1, 1) to (m + 1, 0); each line then contributes
a multiplicity of (m + 1)A/δ to the component consisting of the orbit closure of

(σ, Cσ),where σ =

0
@ 1 0 0

0 0 0

0 0 0

1
A, and Cσ is the curve xd−m−1ym−1(y2 + xz) = 0 .

This component therefore appears in E with multiplicity m(m+1)A/δ. Note that
here δ = 2 exactly when the curve has degree m + 1. Also, if m ≥ 3 we find one
component supported on the orbit closure of

(σ, Cσ), where σ is a rank-1 matrix whose image is p, and Cσ is a fan consisting of a

translate of the tangent cone at p, and of a residual (d − m)-fold line supported on kerσ ,

with multiplicity m.

The real subtleties in the discussion occur in the next and last case, dealing
with limits with additive stabilizer. The components of E detect an interaction
between different (formal) branches of C sharing a tangent at a singular point.
This phenomenon does not occur for e.g., ordinary multiple points.

Consider a line in the tangent cone to C at p, and as above choose coordinates
so that p = (1 : 0 : 0), and the line is z = 0. Let m be the multiplicity of C at
p. It is well-known (cf. [B-K]) that there are m formal branches of C at p, where
nonreduced branches are counted according to their multiplicity. For a general
choice of y, these can be written

z = f(y) =
∑

i

γλi
yλi ,

where f(y) is a power series with fractional exponents λi ∈ Q, λ0 < λ1 < . . . .
Let B be the collection of all m branches of the curve at p. We then have a finite

sequence of rational numbers c > 1, determined as those numbers c for which at
least two of the branches tangent to z = 0 agree modulo yc, differ at yc, and satisfy
λ0 < c. Call Bc the collection of those branches.

Each c determines a finite number of truncations f(y): these are the truncations
at yc (excluding yc) of the branches in Bc. These truncations determine germs

σ(t) =

 1 0 0
ta tab 0

f(ta) f ′(ta)tab tac

 ,

where b = c−λ0
2 +1, and a is the least positive integer clearing all denominators in the

exponents. We identify truncations if the corresponding germs are equivalent after
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reparameterization, that is, after multiplication on the right by

 1 0 0
0 ηab 0
0 0 ηac

,

with η a primitive a-th root of unity.
To each such germ we associate two numbers � and W . The number � is defined

as the least positive integer µ such that f(yµ) has integer exponents. The weight
W is defined as follows. For each branch β in B, let vβ be the first exponent at
which β and f(y) differ, and let wβ be the minimum of c and vβ . Then W is the
sum

∑
wβ .

Fact 5. Each germ σ(t) contributes a component to E: the orbit closure of

(σ, Cσ), where Cσ is the limit of C along the germ σ(t), and σ = σ(0) ,

with multiplicity � WA, where A is the number of components of the stabilizer
of Cσ.

The limits Cσ appearing in this statement consist of unions of quadritangent
conics, plus possibly a multiple of the distinguished tangent; these curves have
been studied in [A-F3], §4.1. For enumerative purposes, they can be described
in terms of the multiplicities si of the different conics, and of the number A of
components of their stabilizer. As in the case of 1-PS limits, this number A will be
absorbed by other terms in the computation of the contribution to the predegree
of C.

We call the components identified in Fact 5 components of type V.
An example will clarify the procedure described above.

Example 2.2. Consider the quartic given in affine coordinates by

(y2 − xz)2 = y3z .

Expanding at the origin gives two formal branches

z = y2 ± y5/2 + . . . ;

with the notations used above: c = 5
2 , b = 5/2−2

2 +1 = 5
4 , and f(y) = y2; hence the

weight W is 5
2 + 5

2 = 5, � = 1, and the germ determined by the truncation is

σ(t) =

 1 0 0
t4 t5 0
t8 2t9 t10

 .

The corresponding component of E is the orbit closure of

(σ, Cσ), where σ =

0
@ 1 0 0

0 0 0

0 0 0

1
A, and Cσ is the curve (y2 − xz + x2)(y2 − xz − x2) ;

one checks A = 4, and concludes that the multiplicity of this component in E is
1 · 5 · 4 = 20.

To close the section, we remark that not all singular points of (the support of)
a curve contribute components to the projective normal cone:
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Example 2.3. If �1, �2 are lines contained in C (with any multiplicity), and p =
�1 ∩ �2 is not a point of the remainder of the curve, then p does not contribute a
component to E.

Indeed, the tangent cone to C at p consists of only two lines, so there are no
components of type III; next, the Newton polygon at p with respect to either line
has no sides of slope between −1 and 0, so there are no components of type IV;
finally, the branches of C at p only consist of lines, so they do not interact in the
sense of providing a ‘truncation’ as in Fact 5.

§3. Contributions to the adjusted predegree polynomial

The task in this section is to apply the results of [A-F3], [A-F4] and obtain
explicit expressions for the contributions to the adjusted predegree polynomials of
a curve C due to the various possible components of the corresponding projective
normal cone E. Together with the description of the projective normal cone re-
called in §2, the results of this section yield a procedure computing the predegree
polynomial of any given plane curve, in terms of the multiplicities of its components
and a description of its flexes and singular points.

Recall from §1 that we have expressed the adjusted predegree polynomial (a.p.p.)
of a curve as

exp(dH) · (1 − (m1L1 + · · · + mkLk)) ;

our objective here is to obtain explicit expressions for the different ‘correction’ terms

−miLi

due to the various components of the projective normal cone described in §2. The
results will be used in §4 and §5 to obtain explicit expressions for contributions to
the a.p.p. due to various features of a plane curve. A correction term −miLi yields
an additive contribution

exp(dH) · (−miLi)

to the a.p.p. of a curve of degree d. All expressions −miLi will only have terms
of degree 3 or higher in H; those corresponding to local components will only have
terms of degree 6 or higher. Hence, the effect of a local correction term on the
a.p.p. of a curve can also be expressed as a multiplicative contribution by

(1 − miLi) ;

we will often prefer this alternative, since it does not involve the degree of the curve.
Also, sometimes we may list the effect of a component as a correction term to the
predegree of a curve, taking account of other effects such as the number of flexes
absorbed by a given singularity.

In Propositions 3.1–3.5 below we will compute the correction terms −miLi . As
in §2, we start with the global components.

§3.1. Type I contributions.

Proposition 3.1. Let � be a line appearing with multiplicity m in C, and let ri

denote the multiplicities of the intersections of � with the rest of C. Then the
correction term due to � is the antiderivative (w.r.t. H) with 0 constant term of

−m3

2
exp(−dH) H2

∏
i

(
1 + riH +

r2
i H2

2

)
.
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Explicitly:

−
„

m3H3

6
− m4H4

8
+

m5H5

20
− m3(m3 +

P
r3
i )H6

72
+

m3(m4 + 4m
P

r3
i + 3

P
r4
i )H7

336

−m3(m5 + 10m2
P

r3
i + 15m

P
r4
i + 6

P
r5
i )H8

1920

«
.

Proof. According to Fact 2(i) in §2, the component E� of E corresponding to �
is the orbit closure in P8 × PN of (σ, Cσ), where σ has image � and Cσ is a fan
consisting of an m-fold line and a star C′

σ of lines with multiplicities r1, r2, etc.,
centered at kerσ. Denote by

[E�] = (ε1HhN + · · ·+ ε8H
8hN−7) ∩ [P8 × PN ]

the class of this component, so that εi = H8−ihi−1 · [E�].

Claim. Let β0 + β1H + · · · + β5H
5 be the adjusted predegree polynomial of C′

σ.
Then

εi =


0 i < 3

m2

2
(i − 1)! βi−3 i ≥ 3

To see this, consider the embedding

PN ′ × P2 −→ PN ,

where PN ′
parameterizes plane curves of degree d−m, P2 parameterizes lines, and

the embedding attaches to a given curve of degree d−m an m-fold line. We get an
embedding

(P8 × PN ′
) × P2 ι−→ P8 × PN ,

and it is readily understood that E� = ι(E′
� × P2), where E′

� is the orbit closure of
(σ, C′

σ). Pulling back to (P8 × PN ′
) × P2, we see that εi = 0 for i < 3, and

εi = m2

(
i − 1

2

)
H8−ih′i−3 · [E′

�]

for i ≥ 3, where h′ is the hyperplane in PN ′
. Now note that E′

� is the part of the
closure of the graph of the map

P8 ��� PN ′

(extending the action of PGL(3) on the star C′
σ) over the P5 of matrices whose

image is ⊂ �. By Remark 2.4 in [A-F4]

H8−ih′i−3 · [E′
�] = (i − 3)! βi−3 ,

and the claim follows.
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The a.p.p. for a star is computed in Theorem 2.5 in [A-F4]:

β0 + β1H + · · ·+ β5H
5 =

{∏
i

(
1 + riH +

r2
i H

2

2

)}
5

({}5 denotes truncation to H5). Also, the multiplicity of this component of E is
m, according to Fact 2(i) in §2. By the claim and Proposition 1.1, the correction
term is therefore

−m
∑
k≥0

 k∑
j=0

(−d)k−jεj+1

j!(k − j)!

 Hk+1

k + 1
= −m3

2

∑
k≥0

 k∑
j=2

(−d)k−j

(k − j)!
βj−2

 Hk+1

k + 1
,

yielding the expressions given in the statement. �
Example 3.1. The a.p.p. of a curve consisting of a union of lines, with multiplicity
mi and no three meeting at a point, is

∏
i

(
1 + miH +

m2
i H

2

2

)

(by our notational convention, this expression stands for its truncation at H8).
Indeed, by Example 2.3 there are no components of E due to the points of

intersection of such a configuration of lines; the only components are therefore those
corresponding to the lines themselves. Using Proposition 3.1, the total correction
term evaluates to

−
„P

m3
i H3

6
−
P

m4
i H4

8
+

P
m5

i H5

20
− (
P

m3
i )2H6

72
+

(7(
P

m3
i )(
P

m4
i ) − 6

P
m7

i )H7

336

− (15(
P

m4
i )2 + 16(

P
m3

i )(
P

m5
i ) − 30

P
m8

i )H8

1920

«
.

Applying Proposition 1.1 yields the expression given in the statement.
This computation reproduces results from §2 of [A-F4], where a more general

‘multiplicativity’ of adjusted predegree polynomials for configurations of lines meet-
ing transversally is discussed.

§3.2. Type II contributions. Next, we consider nonlinear components of C:

Proposition 3.2. Let C′ be a component of C of degree e > 1, appearing with
multiplicity m in C. Then the correction term due to C′ is

−2em5

(
H5

20
− (5d + 18m)H6

360
+

(9d + 8m)mH7

420
− dm2H8

60

)
.

Proof. According to Fact 2(ii), the corresponding component of E is the locus EC′

of (σ, Cσ), where the image of σ is a point of C′ and Cσ consists of a (d− 2m)-fold
line supported on ker σ, and of an m-fold conic tangent to ker σ. Let

[EC′ ] = (ε1HhN + · · ·+ ε8H
8hN−7) ∩ [P8 × PN ];

then εi = H8−ihi−1 ·[EC′]. To evaluate this, note that EC′ is contained in B×PN ⊂
P8 × PN , where B = P2 × C′ is the set of rank-1 matrices σ with image on C′.
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Denoting by k the pull-back to B of the hyperplane class from the P2 factor, and
by � the pull-back of the restriction of the hyperplane class from the other factor,
we have

εi = (k + �)8−ihi−1 · [EC′ ] = (8 − i)k7−i�hi−1 · [EC′ ] ;

in particular εi = 0 unless i = 5, 6, or 7. The class � splits EC′ into e components,
each of which consists of points (σ, Cσ) with σ constrained to have a fixed image.
Also note that intersecting by k amounts to imposing a linear condition on the
distinguished tangent line in Cσ; therefore, εi = (8− i)e times the number (counted
with multiplicity) of curves Cσ through i − 1 general points, with tangent line
constrained to contain 7 − i general points, where i = 5, 6, or 7.

For these values of i, the corresponding number of configurations (in case d > 2m)
is computed by arguing as in [A-F3], Proposition 4.1:

εi = (8 − i) e
(i − 1)!

6!
∂7−i

∂q7−i
P (q)|q=d−2m ,

where P (q) is the polynomial giving the degree for a curve such as Cσ, with dis-
tinguished tangent taken with multiplicity q. This is the coefficient of t6/6! in the
a.p.p. for Cσ (computed in §4.2 of [A-F3]: set n = 2; m = m = 1; S = s1 = m;
r = q = 0 in the formulas given there), divided by 4, the degree of the stabilizer:

P (q) = 12m5q + 30m4q2 .

The same formula holds in the case d = 2m. This yields

[EC′ ] = em4
(
6H5hN−4 + 4(5d − 9m)H6hN−3 + 6(5d − 8m)(d − 2m)H7hN−2

)
.

According to Fact 2(ii) in §2 this locus appears in E with multiplicity 2m. From
this we obtain the stated correction term. �
Example 3.2. If C is reduced and irreducible, then the only component of type II
considered in Proposition 3.2 is the one dominating the whole curve. Setting e = d,
m = 1 we get a correction term of

−2d

(
H5

20
− (5d + 18)H6

360
+

(9d + 8)H7

420
− dH8

60

)
agreeing with the class −2 LG used in Example 1.1

§3.3. Type III contributions. Moving on to the correction terms due to local
features of the curve, we first establish a technical lemma, which will be used in
the proofs of the statements that follow, and which explains a recurrent feature of
the correction terms we will compute.

The components of type III, IV, and V, arising from local features of the curve,
consist of orbit closures of points (σ, Cσ) ∈ P8 × PN , where σ is a rank-one matrix
with a given image point and Cσ is a curve with a distinguished line, that is sup-
ported on ker σ and has multiplicity q = d− ρ (where ρ changes from case to case).
Let P (q) denote the coefficient of H7 in the predegree polynomial for such a curve;
this is always a polynomial of degree at most two in q. Also, let δ be the degree
of the map from the component to its image in PN . As pointed out already in §2,
this number is 1 in almost all cases.
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Lemma 3.3.1. The corresponding contribution to the correction term is

−δ

(
P ′′(−ρ)H6

42 · 6!
+

P ′(−ρ)H7

7 · 7!
+

P (−ρ)H8

8!

)
.

Proof. Let E′ denote a component of E arising from a point p of the curve, and let

[E′] = (ε1HhN + · · ·+ ε8H
8hN−7) ∩ [P8 × PN ]

be its class. Since E′ is the orbit closure of a point (σ, Cσ) ∈ P8 × PN , with σ a
rank-1 matrix with image p, E′ is in fact contained in P2 × PN ⊂ P8 × PN , where
P2 consists of all rank-1 matrices with image p. If k denotes the hyperplane class
in P2, pulling back to P2 × PN shows that

εi = k8−ihi−1 · [E′] ;

this gives immediately εi = 0 unless i = 6, 7, or 8. Also, note that under the
identification of P2 with rank-1 matrices σ with fixed image, the class k imposes a
linear condition on the line ker σ. Now, Cσ consists in each case of a curve with a
distinguished line supported on kerσ, appearing with multiplicity q = d − ρ in our
notations. Let P (q) = αq2 + βq + γ be the polynomial in q giving the coefficient of
H7 in the predegree polynomial for such a curve. Using Proposition 4.1 in [A-F3]
we get

εi

δ
=


P ′′(d−ρ)

42 i = 6
P ′(d−ρ)

7 i = 7

P (d − ρ) i = 8

and therefore

[E′] =
2α

42
H6hN−5 +

2α(d − ρ) + β

7
H7hN−6 + (α(d − ρ)2 + β(d − ρ) + γ)H8hN−7.

Computing the corresponding correction term as prescribed in §1 gives the stated
expression. �

This observation explains why the degree d of C does not appear explicitly in
the correction terms we will list. Note that a similar phenomenon also occurs in
the second formula in Proposition 3.1.

Let p be a singular point of C. As recalled in §2, Fact 4(i), a component of
type III of the projective normal cone is present if the tangent cone to C at p is
supported on ≥ 3 distinct lines.

Proposition 3.3. Let ei denote the elementary symmetric functions in the multi-
plicities of the distinct lines in the tangent cone to C at p (so e1 = the multiplicity
of C at p). Then the correction term corresponding to this component is

−e1(e2e3 − e1e4 − e5)
(

H6

24
− e1H

7

28
+

e2
1H

8

64

)
.

Note that the expression given in this statement vanishes automatically if the
tangent cone is supported on ≤ 2 lines.
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Proof. Using Fact 4(i) and Lemma 3.3.1, the main ingredient in the computation
is the polynomial P (q) expressing the degree for a fan Cσ with star projectively
equivalent to the tangent cone to C at p, and residual q-fold line. From [A-F4],
Theorem 2.5(ii), this polynomial is

P (q) =
630 q2

A
(e2e3 − e1e4 − e5) ,

where A is the number of automorphisms of the tuple determined by the lines in
the tangent cone as elements of the pencil of lines through p. By Lemma 3.3.1,
with q = d − e1, the correction term is

−(e2e3 − e1e4 − e5)
A

(
H6

24
− e1H

7

28
+

e2
1H

8

64

)
times the multiplicity with which the component appears in the projective normal
cone. By Fact 4(i) this multiplicity is e1A, and the statement follows. �
Example 3.3. If the tangent cone consists of m distinct reduced lines, then Propo-
sition 3.3 evaluates its corresponding correction term as

−m

((
m

2

)(
m

3

)
− m

(
m

4

)
−

(
m

5

)) (
H6

24
− mH7

28
+

m2H8

64

)
,

that is

−m2(m − 1)(m − 2)(m2 + 3m − 3)
(

H6

720
− mH7

840
+

m2H8

1920

)
.

As an illustration, consider a star of d reduced lines through a point. The point
will contribute as above, with m = d; also, according to Proposition 3.1 each line
contributes

−
„

H3

6
− H4

8
+

H5

20
− (1 + (d − 1)3)H6

72
+

(1 + 4(d − 1)3 + 3(d − 1)4)H7

336

− (1 + 10(d − 1)3 + 15(d − 1)4 + 6(d − 1)5)H8

1920

«
.

From the discussion of §2, we know that there are no other correction terms.
Putting everything together and using Proposition 1.1, the a.p.p. of this curve is

exp(dH)

„
1 − dH3

6
+

dH4

8
− dH5

20
− d2(d − 3)(d3 + 3d2 − 11d + 12)H6

720

+
d3(2d4 − 35d2 + 70d − 42)H7

1680
− d4(d4 − 16d2 + 30d − 16)H8

1920

«

that is

1+dH +
d2H2

2
+

d(d − 1)(d + 1)H3

6
+

d(d − 1)(d2 + d − 3)H4

24
+

d(d − 1)(d − 2)(d2 + 3d − 3)H5

120

Note that the polynomial detects that the orbit closure of this curve has dimension
≤ 5; of course the stated expression is the truncation{(

1 + H +
H2

2

)d
}

5

as prescribed by [A-F4], Theorem 2.5(i). In fact, Propositions 3.1 and 3.3 suffice to
compute the a.p.p. for an arbitrary configuration of lines in the plane, recovering
Theorem 2.8 in [A-F4].
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§3.4. Type IV contributions. Next, let p be a singular or an inflection point
of (the support of) C, and consider a line � of the tangent cone to C at p. We
have recalled in Fact 4(ii) that these choices determine a Newton polygon, and that
there are components (of type IV) of the projective normal cone corresponding to
the sides of this polygon of slope strictly between −1 and 0.

Consider then such a side Σ, from (j0, k0) to (j1, k1) (j0 < j1); and let S + 1 be
the number of lattice points on Σ. Let γ0, . . . , γS be the coefficients on Σ of the
equation for C, and consider the S-tuple in P1 determined by the polynomial

γ0ξ
S + γ1ξ

S−1η + · · ·+ γSηS ;

let si be the multiplicities of the points of this S-tuple (so for example S =
∑

si).
The side Σ determines then the following expressions:
• R(Σ) = (j1k0 − j0k1), that is, twice the area of the triangle with vertices at

(0, 0), (j0, k0), and (j1, k1);
• a polynomial G(Σ) = 1

S

(
4

∑
i s5

i
H6

6!
− 36

∑
i s6

i
H7

7!
+ 192

∑
i s7

i
H8

8!

)
;

• and a polynomial L(Σ) given by

`
6j2

0k2
0 + 3j0j1k2

0 + j2
1k2

0 + 3j2
0k0k1 + 4j0j1k0k1 + 3j2

1k0k1 + j2
0k2

1 + 3j0j1k2
1 + 6j2

1k2
1

´ H6

6!

− `30j3
0k2

0 + 18j2
0 j1k2

0 + 9j0j2
1k2

0 + 3j3
1k2

0 + 30j2
0k3

0 + 12j0j1k3
0 + 3j2

1k3
0 + 12j3

0k0k1 + 18j2
0 j1k0k1

+ 18j0j2
1k0k1 + 12j3

1k0k1 + 18j2
0k2

0k1 + 18j0j1k2
0k1 + 9j2

1k2
0k1 + 3j3

0k2
1 + 9j2

0j1k2
1 + 18j0j2

1k2
1

+30j3
1k2

1 + 9j2
0k0k2

1 + 18j0j1k0k2
1 + 18j2

1k0k2
1 + 3j2

0k3
1 + 12j0j1k3

1 + 30j2
1k3

1

´ H7

7!

+
`
90j4

0k2
0 + 60j3

0 j1k2
0 + 36j2

0 j2
1k2

0 + 18j0j3
1k2

0 + 6j4
1k2

0 + 180j3
0k3

0 + 90j2
0 j1k3

0 + 36j0j2
1k3

0

+ 9j3
1k3

0 + 90j2
0k4

0 + 30j0j1k4
0 + 6j2

1k4
0 + 30j4

0k0k1 + 48j3
0 j1k0k1 + 54j2

0 j2
1k0k1 + 48j0j3

1k0k1

+ 30j4
1k0k1 + 90j3

0k2
0k1 + 108j2

0 j1k2
0k1 + 81j0j2

1k2
0k1 + 36j3

1k2
0k1 + 60j2

0k3
0k1 + 48j0j1k3

0k1

+ 18j2
1k3

0k1 + 6j4
0k2

1 + 18j3
0 j1k2

1 + 36j2
0 j2

1k2
1 + 60j0j3

1k2
1 + 90j4

1k2
1 + 36j3

0k0k2
1 + 81j2

0 j1k0k2
1

+ 108j0j2
1k0k2

1 + 90j3
1k0k2

1 + 36j2
0k2

0k2
1 + 54j0j1k2

0k2
1 + 36j2

1k2
0k2

1 + 9j3
0k3

1 + 36j2
0 j1k3

1 + 90j0j2
1k3

1

+180j3
1k3

1 + 18j2
0k0k3

1 + 48j0j1k0k3
1 + 60j2

1k0k3
1 + 6j2

0k4
1 + 30j0j1k4

1 + 90j2
1k4

1

´ H8

8!

This polynomial is symmetric in the vertices of Σ; unfortunately, we do not have
a more intrinsic interpretation for it.

Proposition 3.4. The correction term due to the selected line � in the tangent
cone to C at p is

−
∑
Σ

R(Σ) (L(Σ) − G(Σ)) .

Proof. This follows from Lemma 3.3.1 and Fact 4(ii). Using the notations of
Fact 4(ii), for each side Σ we need the coefficient of the term of degree 7 in the
predegree polynomial for limit curves Cσ with equation

xqyrzq
S∏

j=1

(
yc + αjx

c−bzb
)

,

where
γ0ξ

S + γ1ξ
S−1η + · · · + γSηS = γ0

∏
j

(ξ − αjη) .
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These are precisely the curves studied in [A-F3]; the predegree polynomial for such
curves is computed in Theorem 1.1 of [A-F3]. In our situation, we have

r = j0, q = k1, q = d − (j1 + k1)

(hence we use ρ = j1 + k1 when applying Lemma 3.3.1), and

b =
k0 − k1

S
, c =

j1 − j0
S

;

applying Lemma 3.3.1 to the polynomial in q obtained from Theorem 1.1 in [A-F3]
gives the expression

−Sδ

A
(L(Σ) − G(Σ)) ,

where A denotes the number of components of the stabilizer of Cσ, and δ is as in
Lemma 3.3.1.

According to Fact 4(ii), the contribution to the multiplicity of this component
due to Σ is

(Sbc + rb + qc)
A

δ
=

j1k0 − j0k1

S

A

δ
= R(Σ)

A

Sδ
;

the correction term is therefore as stated. �
Example 3.4. Suppose p is a k-flex of C, that is, a nonsingular point of C at
which C and its tangent line � meet with multiplicity k. (For example, an ordinary
inflection point of C is a 3-flex in this terminology). The Newton polygon at � has
only one side Σ with slope between −1 and 0, with vertices (0, 1) and (k, 0). We
have S = 1, and the expressions given above evaluate to

R(Σ) = k , G(Σ) =
4H6

6!
− 36H7

7!
+

192H8

8!

L(Σ) =
k2H6

6!
− (3k2 + 3k3)H7

7!
+

(6k2 + 9k3 + 6k4)H8

8!
,

giving a correction term of

k(k − 2)
(

(k + 2)H6

720
− (k2 + 3k + 6)H7

1680
+

(2k3 + 7k2 + 16k + 32)H8

13440

)
.

For k = 3, this recovers the term LF used in Example 1.1.

The analysis presented up to this point suffices already to compute the predegree
of an arbitrary plane curve with ordinary multiple points; this case is analyzed in §4.

§3.5. Type V contributions. We are left with the case of components of the
projective normal cone E of type V, arising from the interaction of different formal
branches with the same tangent line at a point p of C. As pointed out in §2,
contributions corresponding to these components arise from truncations of power
series with fractional exponents representing the different branches: roughly, a
contribution arises when two branches agree up to a certain exponent c, but differ
at that exponent. Truncating there determines a germ σ(t), centered at σ = σ(0),
and a limit Cσ; the corresponding component consists of the orbit closure of (σ, Cσ).
Further, the germ determines two numbers �, W (see Fact 5 in §2).

Limits Cσ obtained by this procedure consist of unions of 4-tangent conics, and
a multiple of the distinguished tangent, which is supported on kerσ. We let si

denote the multiplicities with which the conics appear in Cσ, and write S =
∑

si.
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Proposition 3.5. With notations as above, the corresponding correction term is

−�W

(
4(S5 − ∑

i s5
i )H

6

6!
− 36(S6 − ∑

i s6
i )H

7

7!
+

192(S7 − ∑
i s7

i )H
8

8!

)
.

Proof. This is obtained from Lemma 3.3.1 and Fact 5 in §2, by the procedure
applied in Propositions 3.3 and 3.4. The main ingredient is the predegree of the
curves Cσ, which is given in §4.1 of [A-F3]. �
Example 3.5. As an illustration, we take the origin (1 : 0 : 0) in the curve

(y2 − xz)2 = y3z .

As seen in Example 2.2, only one truncation needs to be considered for this point;
the corresponding limit is a pair of distinct conics; further, � = 1 and W = 5.
With notations as above we have s1 = s2 = 1, so according to Proposition 3.5 the
corresponding correction term is

−5
(

H6

6
− 31H7

70
+

3H8

5

)
.

Applying Proposition 1.1, this yields a contribution to the a.p.p. of

−
(

5H6

6
+

47H7

42
+

17H8

21

)
;

in particular, the contribution due to this limit to the predegree of the curve is

−8!
17
21

= −5 · 6528 .

This example belongs to a class of singular points which can be realized on a quartic
curve, and are analytically isomorphic to the singularity z2 = yk, k = 5 (as in this
example), 6, 7, or 8. The corresponding contribution to the predegree of the quartic
turns out to be −k · 6528 in all cases (cf. Example 5.4).

Remark. As an immediate application of the results obtained above, we can mea-
sure the effect on the contribution of a point p due to taking a ‘multiple’ of the
curve on which p lies.

If C has ideal (F (x : y : z)) and m is a positive integer, we let mC denote the
curve with ideal (Fm). Let p ∈ C, and assume the contribution of p to the a.p.p. of
C is K(H).

Claim. Then the contribution of p to mC is K(mH).

Proof. This follows from the homogeneity of the various correction terms. The
effect of replacing C by mC is that of replacing ei by miei in correction terms
of type III; (ji, ki) by (mji, mki), W by mW , and S,

∑
s5

i ,
∑

s6
i ,

∑
s7

i by mS,
m5

∑
s5

i , m6
∑

s6
i , m7

∑
s7

i respectively in correction terms of type IV and V. The
claim follows. �

A similar homogeneity holds for global correction terms as well, so that if P (H)
is the a.p.p. of a curve C, then P (mH) is the a.p.p. of its multiple mC. This
can also be deduced by considering the map Pd(d+3)/2 −→ Pmd(md+3)/2 defined by
C �→ mC, a projection of the m-th Veronese embedding.
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§3.6. Summary. The results obtained in this section, together with the discus-
sion in §2, give an algorithm to compute the adjusted predegree polynomial of an
arbitrary plane curve. This will be illustrated in §4 and §5 by applying it to several
classes of curves.

For reference we list here the contributions to the predegree of a curve (with orbit
of dimension 8) due to its features. Each of these is obtained by applying Propo-
sition 1.1 to the results obtained in Propositions 3.1–3.5, obtaining corresponding
additive contributions to the a.p.p., then reading the coefficient of H8

8! .
Assume C has degree d. The predegree of its orbit closure is obtained then

by subtracting various contributions from d8, indexed here according to the corre-
sponding type:

(I) A line appearing in C with multiplicity m, meeting the rest of the curve along
a (d − m)-tuple of points with multiplicities ri, gives a contribution of

m3
“
d3
`
10d2 − 15dm + 6m2

´
+ 10

`
28d2 − 48dm + 21m2

´ “
(d − m)3 −

X
r3
i

”
−45 (8d − 7m)

“
(d − m)4 −

X
r4
i

”
+ 126

“
(d − m)5 −

X
r5
i

””
.

(II) A component of C of degree e > 1 and appearing with multiplicity m
contributes

16dem5
(
7d2 − 18dm + 12m2

)
.

Points p ∈ C may contribute different terms:
(III) Let ei be the elementary symmetric functions in the multiplicities of the

distinct lines in the tangent cone to C at p. Then the corresponding contribution
is

30e1(e2e3 − e1e4 − e5)
(
28d2 − 48de1 + 21e2

1

)
.

(In particular, no such contribution is present if the tangent cone consist of < 3
distinct lines.)

(IV) Let � be a line of the tangent cone of C at p, and let Σ denote the sides
of slope strictly between −1 and 0 of the corresponding Newton polygon. With
notations as in Proposition 3.4, the contribution due to each Σ is obtained by
adding

16(j1 − k0)
S

(
7d2

∑
s5

i − 18d
∑

s6
i + 12

∑
s7

i

)
and

(j1k0 − j0k1)
`
90j4

0k2
0 + 180j3

0k3
0 + 90j2

0k4
0 + 60j3

0k2
0j1 + 90j2

0k3
0j1 + 30j0k4

0j1 + 36j2
0k2

0j2
1

+ 36j0k3
0j2

1 + 6k4
0j2

1 + 18j0k2
0j3

1 + 9k3
0j3

1 + 6k2
0j4

1 − 240j3
0k2

0d − 240j2
0k3

0d − 144j2
0k2

0j1d

− 96j0k3
0j1d− 72j0k2

0j2
1d− 24k3

0j2
1d− 24k2

0j3
1d + 168j2

0k2
0d2 + 84j0k2

0j1d2 + 28k2
0j2

1d2 + 30j4
0k0k1

+ 90j3
0k2

0k1 + 60j2
0k3

0k1 + 48j3
0k0j1k1 + 108j2

0k2
0j1k1 + 48j0k3

0j1k1 + 54j2
0k0j2

1k1 + 81j0k2
0j2

1k1

+ 18k3
0j2

1k1 + 48j0k0j3
1k1 + 36k2

0j3
1k1 + 30k0j4

1k1 − 96j3
0k0dk1 − 144j2

0k2
0dk1 − 144j2

0k0j1dk1

− 144j0k2
0j1dk1 − 144j0k0j2

1dk1 − 72k2
0j2

1dk1 − 96k0j3
1dk1 + 84j2

0k0d2k1 + 112j0k0j1d2k1

+ 84k0j2
1d2k1 + 6j4

0k2
1 + 36j3

0k0k2
1 + 36j2

0k2
0k2

1 + 18j3
0 j1k2

1 + 81j2
0k0j1k2

1 + 54j0k2
0j1k2

1 + 36j2
0 j2

1k2
1

+ 108j0k0j2
1k2

1 + 36k2
0j2

1k2
1 + 60j0j3

1k2
1 + 90k0j3

1k2
1 + 90j4

1k2
1 − 24j3

0dk2
1 − 72j2

0k0dk2
1 − 72j2

0 j1dk2
1

− 144j0k0j1dk2
1 − 144j0j2

1dk2
1 − 144k0j2

1dk2
1 − 240j3

1dk2
1 + 28j2

0d2k2
1 + 84j0j1d2k2

1 + 168j2
1d2k2

1

+ 9j3
0k3

1 + 18j2
0k0k3

1 + 36j2
0 j1k3

1 + 48j0k0j1k3
1 + 90j0j2

1k3
1 + 60k0j2

1k3
1 + 180j3

1k3
1 − 24j2

0dk3
1

−96j0j1dk3
1 − 240j2

1dk3
1 + 6j2

0k4
1 + 30j0j1k4

1 + 90j2
1k4

1

´
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(V) Finally there are contributions from truncations, as explained in Fact 5 of §2
and Proposition 3.5. A truncation determines two numbers �, W , and germs whose
limits Cσ consist of unions of 4-tangent conics and a multiple of the distinguished
tangent line; let si denote the multiplicities of the conics in Cσ, and write S =

∑
si.

Then the contribution of the germ is

�W
(
192(S7 −

∑
s7

i ) − 288 d(S6 −
∑

s6
i ) + 112 d2(S5 −

∑
s5

i )
)

.

§4. Ordinary multiple points, and multiplicativity

of adjusted predegree polynomials

In this section we give an illustration of the results of §3 by obtaining explicit
expressions for contributions accounting for ordinary multiple points. We say that
p is an ordinary multiple point for C if C has nonsingular branches with distinct
tangent directions at p; in particular, we allow branches to have flexes of arbitrary
order at p, or to be (reduced) lines. We also discuss to what extent adjusted
predegree polynomials are multiplicative with respect to union of transversal curves.

§4.1. Ordinary multiple points. It is clear that ordinary multiple points do not
contribute components of type V, since there is only one branch along any direction
of the tangent cone. The contribution of an ordinary multiple point is therefore
due to 1-PS germs, that is, components of type III and IV.

Proposition 4.1. Let p be an ordinary multiple point of C, of multiplicity m, and
for all lines � tangent to a non-linear branch of C at p let r� be the intersection
multiplicity of � and C at p. Then the multiplicative contribution to the adjusted
predegree polynomial of C due to p is given by
„

1 − m2(m − 1)(m − 2)(m2 + 3m − 3)

„
H6

720
− mH7

840
+

m2H8

1920

««

·
Y
�

„
1 − r�(2 − 3r� + r2

� − 12m + 3r�m + 6m2)
H6

6!
+ 3r�(−12 + 2r� − 2r2

� + r3
�

+ 10m − 8r�m + 3r2
� m − 20m2 + 6r�m

2 + 10m3)
H7

7!
− 3r�(−64 + 2r2

� − 3r3
� + 2r4

�

+10r�m − 12r2
� m + 6r3

� m + 30m2 − 30r�m
2 + 12r2

� m2 − 60m3 + 20r�m
3 + 30m4)

H8

8!

«

where the
∏

is over all lines � tangent to non-linear branches of C at p.

Note that linear branches do not appear directly in this formula, although they
have impact on the contribution by affecting m and the intersection multiplicities.

Proof. The first factor is the contribution of type III, as in Example 3.3. According
to Fact 4(ii) in §2, the other contributions from p are due to the individual tangent
lines to the branches. Let � be a line in the tangent cone to C at p, and consider
the branch of C tangent to � at p. We note that

—if the branch is a line, � does not contribute to the a.p.p.; indeed, the corre-
sponding Newton polygon has no sides of slope strictly between −1 and 0;

—if the branch is not a line, and has intersection multiplicity k with �, then the
corresponding Newton polygon has exactly one side of slope strictly between −1
and 0; this side has vertices (m − 1, 1) and (r�, 0), where r� = m − 1 + k is the
intersection multiplicity of � and C at p.
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Applying Proposition 3.4 gives the contribution of type IV due to � in terms of
m and r�: this is the factor corresponding to � in the statement. �

To state the result differently, let ei be the elementary symmetric functions in
the intersection multiplicities of C with the tangent lines to the non-linear branches
to C at p. Then the multiplicative contribution of p to the a.p.p. of C is„

1 + (−2e1 + 3e2
1 − e3

1 − 6e2 + 3e1e2 − 3e3 + 12e1m − 3e2
1m + 6e2m + 6m2 − 6e1m2 − 15m3

+10m4−m6)
H6

6!
+(−36e1 +6e2

1−6e3
1 +3e4

1−12e2 +18e1e2−12e2
1e2 +6e2

2−18e3 +12e1e3−12e4

+ 30e1m − 24e2
1m + 9e3

1m + 48e2m − 27e1e2m + 27e3m − 60e1m2 + 18e2
1m2 − 36e2m2 − 36m3

+30e1m3 +90m4 −60m5 +6m7)
H7

7!
+(192e1 −6e3

1 +9e4
1 −6e5

1 +18e1e2 −36e2
1e2 +30e3

1e2 +18e2
2

−30e1e2
2−18e3+36e1e3−30e2

1e3+30e2e3−36e4+30e1e4−30e5−30e2
1m+36e3

1m−18e4
1m+60e2m

− 108e1e2m + 72e2
1e2m − 36e2

2m + 108e3m − 72e1e3m + 72e4m − 90e1m2 + 90e2
1m2 − 36e3

1m2

− 180e2m2 + 108e1e2m2 − 108e3m2 +180e1m3 − 60e2
1m3 + 120e2m3 +126m4 − 90e1m4 − 315m5

+ 210m6 − 21m8)
H8

8!

«

Example 4.1. Suppose p is an ordinary node such that both branches of C at
p intersect the respective tangent lines with multiplicity exactly 2 at p. Then p
contributes

1 − H6

6
+

101H7

280
− 25H8

64
to the a.p.p. (set m = 2, e1 = 3 + 3, e2 = 3 · 3, e3 = e4 = e5 = 0 in the previous
formula). Since p ‘absorbs’ 6 ordinary inflection points, the adjusted predegree
polynomial for a curve of degree d ≥ 3 with n such nodes and only ordinary flexes
is

exp(dH) ·
„

1 − 2d

„
H5

20
− (5d + 18)H6

360
+

(9d + 8)H7

420
− dH8

60

««

·
„

1 − H6

48
+

3H7

70
− 197H8

4480

«3d(d−2)−6n

·
„

1 − H6

6
+

101H7

280
− 25H8

64

«n

(The term following the exponential is the contribution as in Example 3.2; the
next term accounts for the flexes, obtained by setting k = 3 in Example 3.4.) The
predegree of such a curve is therefore

d8 − 1372d4 + 7992d3 − 15879d2 + 10638d − 24n
(
35d2 − 174d + 213

)
.

For instance, the degree of the orbit closure of a quartic of this kind is 14280−1848n;
the predegree of the orbit closure of a rational plane curve of this kind is

d8 − 1792d4 + 11340d3 − 25539d2 + 22482d − 5112 .

Example 4.2. An ordinary multiple point p of multiplicity m, and such that each
branch is smooth, non-linear, and does not have an inflection point at p contributes„

1 − m(m3 + m2 + m + 16)H6

6!
+

3(2m5 + 2m4 + 2m3 + 37m2 + 16m + 11)H7

7!

−21(m6 + m5 + m4 + 21m3 + 13m2 + 17m + 9)H8

8!

«m(m−1)

.
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Using that such a point absorbs 3m(m − 1) flexes, one then sees that the contri-
bution to the predegree of a curve of degree d due to such a point is

− m(m − 1)(21m6 − 48dm5 + 21m5 + 28d2m4 − 48dm4 + 21m4 + 28d2m3 − 48dm3

+ 441m3 + 28d2m2 − 888dm2 + 273m2 + 448d2m − 384dm + 357m − 1260d2 + 4920d − 5130).

For instance, a general quartic curve with a triple point has predegree 14280 − 3 ·
2 · 1890 = 2940.

Example 4.3. A biflecnode is an ordinary node at which both branches have an
ordinary inflection point; its contribution is

1 − H6

3
+

88H7

105
− 15H8

14
(set m = 2, e1 = 4 + 4, e2 = 4 · 4, e3 = e4 = e5 = 0 in the formula given above).
Using that such a point absorbs 8 flexes, we get that a biflecnode corrects the
predegree for a curve of degree d by

−24(140d2 − 832d + 1209) .

For instance, the quartic with equation

x2y2 + x2z2 + y2z2 = 0

has three biflecnodes and 24 automorphisms, hence its orbit closure has predegree
14280−3·2904

24 = 232. As it happens, this orbit closure is isomorphic to the moduli
space of semistable vector bundles on P2 of rank 2 with Chern classes c1 = −1 and
c2 = 3, as Hulek proved [H]. It follows that the corresponding Donaldson invariant
of P2 equals 232, in agreement with [K-L].
Example 4.4. Suppose p is an ordinary node for which one branch is a line, and
the other intersects its tangent line with multiplicity k at p. Then p contributes

1 − (k + 1)(k + 2)(k + 3)H6

6!
+

3(k + 1)(k3 + 7k2 + 21k + 23)H7

7!

− 3(k + 1)(k + 3)2(2k2 + 5k + 17)H8

8!

(use m = 2, e1 = k + 1, e2 = e3 = e4 = e5 = 0 in the formula given above). For
k = 2, the contribution is

1 − H6

12
+

101H7

560
− 25H8

128
;

of course this is the square root (modulo H9) of the contribution for a node given
in Example 4.1.

§4.2. Multiplicativity of adjusted predegree polynomials. It is natural
to ask whether the predegree information behaves well with respect to unions of
curves. This is another advantage of adjusted predegree polynomials over other
ways to assemble this enumerative information: adjusted predegree polynomials
are multiplicative under unions of curves, up to correction terms independent of
the degree(!), accounting for the ways in which the curves meet. No such structure
is visible at the level of degrees or predegrees alone.

As a representative example, we let C1, C2 be arbitrary reduced curves, meeting
transversally at nonsingular points, and we further assume that such points are not
inflection points for either curve. Let C′

i resp. Li be the union of the non-linear
resp. linear components of Ci. Let I = #(C′

1 ∩C′
2), J = #((C′

1 ∩L2) ∪ (C′
2 ∩L1)).
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Proposition 4.2. Let PC1(H), PC2(H) be the adjusted predegree polynomials of
C1, C2. Then the adjusted predegree polynomial of their union C = C1 ∪ C2 is

PC(H) = PC1(H) · PC2(H)

·
(

1 − H6

9
+

11H7

40
− 311H8

960

)I

·
(

1 − H6

24
+

7H7

60
− 13H8

80

)J

.

Proof. The main remark is that the components of the projective normal cone for
C1 ∪C2 arise from features of C1, C2 and from the points of intersection of the two
curves; an analysis of the components leads to the formula of the statement. We
go through this analysis here as a template for similar computations.

As pointed out in Example 2.3, the intersection of two lines does not contribute
components. Using the formulas given in Examples 4.1–4.4 to evaluate the contri-
bution of the transversal intersections of two curves at non-flex point, and of a line
and a curve at a non-flex point, we can write

PC(H) = exp((d1 + d2)H)
(
1 + LC′

1
(C) + LL1(C) + LC′

2
(C) + LL2(C)

)
· (1 + Llocal(C1)) (1 + Llocal(C2))

(
1 − H6

12
+

101H7

560
− 25H8

128

)2I+J

where di = deg Ci, and L... denote the various correction terms, with hopefully
evident notations: for example, Llocal(C1) stands for the term arising from all local
features of C1. It is crucial here to recall (cf. Lemma 3.3.1) that such local terms
do not depend on other features of the curve; so the contribution of a local term is
the same whether viewed in Ci or in C. (This is not the case for ‘global’ terms!)
With the same notations we can write

PCi
(H) = exp(diH)

(
1 + LC′

i
(Ci) + LLi

(Ci)
)
(1 + Llocal(Ci))

and therefore the ratio PC(H)
PC1(H)PC2 (H) is expressed by

(1 + LC′
1
(C) + LL1(C) + LC′

2
(C) + LL2 (C))

(1 + LC′
1
(C1) + LL1 (C1))(1 + LC′

2
(C2) + LL2 (C2))

„
1 − H6

12
+

101H7

560
− 25H8

128

«2I+J

.

Lastly, we note that in evaluating this term we may assume that each line meets
the rest of C transversally at non-inflection points: indeed, the terms arising from
special positions of the lines can be evaluated locally, so they can be incorporated
in the Llocal terms. All the terms in this expression can then be evaluated very
simply by Propositions 3.1 and 3.2, giving the stated result. �
Example 4.5. If both C1, C2 are unions of lines, then multiplicativity holds ‘on the
nose’, since I = J = 0 in that case. This in fact holds for non-reduced configurations
of lines as well, cf. Corollary 2.11 in [A-F4].

Example 4.6. The union of a general curve C of degree d ≥ 2 and a general
transversal line has adjusted predegree polynomial

PC(H) ·
(

1 + H +
H2

2

)
·
(

1 − H6

24
+

7H7

60
− 13H8

80

)d

,
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where PC(H) is the adjusted predegree polynomial of a general curve (computed
in Example 1.1). For d = 2, this yields

1 + 3H +
9H2

2
+

13H3

3
+ 3H4 +

7H5

5
+

19H6

60
+

H7

60
,

detecting that the union of a conic and a transversal line has orbit closure of di-
mension 7 and degree 7!

60·4 = 21. This agrees of course with the näıve combinatorial
count, since the orbit of the union of a conic and a transversal line is in fact the
set of all such curves; the degree is then the number of curves through 7 general
points, that is

(
7
2

)
= 21 (the line must contain two of the points, and the conic is

then determined by the other five).
Combinatorics would not suffice to compute e.g. the degree for the union of a

general cubic and a general transversal line; according to the formula given above,
this is 8568. Note that these computations do depend on whether the intersection
points are or are not inflection points for the branches. Using the formula given in
Example 4.4, one obtains that the predegree of the union of a general cubic and a
general transversal line through a flex of the cubic is 8040.

Example 4.7. The union of two transversal conics has a.p.p. given by(
1 + 2H + 2H2 +

4H3

3
+

2H4

3
+

H5

15

)2

·
(

1 − H6

9
+

11H7

40
− 311H8

960

)4

= 1 + 4H + 8H2 +
32H3

3
+

32H4

3
+

122H5

15
+

64H6

15
+

41H7

30
+

41H8

240
,

hence predegree 6888.

The reader will have no difficulties adapting the argument in the proof of Propo-
sition 4.2 to compute terms accounting for other kinds of intersections. For example,
a point of simple tangency of a line with a curve gives a correction term

1 − H6

6
+

7H7

15
− 13H8

20

to the polynomial of the union of the curve and the line (note that this is the 4-th
power (modulo H9) of the contribution for a point of transversal intersection of a
line with a curve. We don’t have a conceptual explanation for this phenomenon).
Thus, the adjusted predegree polynomial for the union of a smooth conic and a
tangent line is
„

1 + 2H + 2H2 +
4H3

3
+

2H4

3
+

H5

15

«
·
„

1 + H +
H2

2

«
·
„

1 − H6

6
+

7H7

15
− 13H8

20

«

= 1 + 3H +
9H2

2
+

13H3

3
+ 3H4 +

7H5

5
+

7H6

30
:

the orbit closure has dimension 6 and degree 6!7
30·4 = 42, as expected.

§5. Irreducible singularities

Our last and most substantial example illustrating the algorithm implicitly de-
scribed in §§2-3 will be the computation of the contribution to the adjusted prede-
gree polynomial due to an arbitrary irreducible singularity p on a curve C.
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It is well-known that C can be described at such a point by its Puiseux expansion{
z = (antn + · · ·+) ae1t

e1 + · · ·+ aer
ter

y = tm

where: m = the multiplicity of C at p; n = the intersection multiplicity of C and
the tangent line z = 0 at p; all exponents are positive integers, and m < n ≤ e1 <
· · · < er; and the coefficients aei

of the ‘essential’ terms are nonzero. An exponent
(or the corresponding term in the expansion) is ‘essential’ if it is not a multiple
of the greatest common divisor of m and the exponents preceding it; the () in the
expansion collects all non-essential terms. The term antn will be essential if and
only if n is not a multiple of m; note that e1 = n in that case.

We also need the numbers

di = gcd(m, e1, . . . , ei) ;

thus d0 = m, and dr = 1. Note that we allow for the possibility m = 1, r = 0; that
is, there may be no essential terms in the expansion.

We will see that the contribution of p to the a.p.p. for C depends only on m, n,
and the essential exponents e1, . . . , er.

An alternative terminology to describe the same information is that of Puiseux
pairs: the singularity is described by the pair (m, n), and by r Puiseux pairs
(m1, n1), . . . , (mr, nr), where{

di = mi+1 · · ·mr

ei = nidi
.

Thus for example a non-singular inflection point of order k is described by

(1, k)

and has no Puiseux pairs (r = 0, no essential exponents, d0 = 1 = m); an ordinary
cusp yn = zm (m, n coprime) is described by

(m, n) ; (m, n)

and has one Puiseux pair (r = 1, e1 = n, d0 = m, d1 = 1). The formula given
below implies that the correction due to p only depends on m, n, and the Puiseux
pairs of C at p.

This result is most easily stated in terms of the numbers di, ei. We let

P (a, b) =
a2b2

(1 + ak)3(1 + bk)3
− 4

(1 + k)3(1 + 2k)3
,

where k is an indeterminate, and set e0 = n, er+1 = 0 for convenience.

Theorem 5.1. With notations as above, the contribution of p to the adjusted pre-
degree polynomial of C is

1 −


(
mnP (m, n) +

r∑
j=0

(ej+1 − ej)djP (dj, 2dj)
)
·
(

k2H6

6!
+

kH7

7!
+

H8

8!

)
2
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where {}2 denotes the coefficient of k2 in the expansion of the term within {}.
Before proving this formula, we illustrate it with a few explicit examples. For

these we will need the number of flexes absorbed by the singularity; remarkably,
this number can be expressed by a formula somewhat analogous to the one given
in Theorem 5.1:

(3mn − 2m − 2n) + 3
r∑

j=0

(ej+1 − ej)(dj − 1)

(cf. [B-K], §9.1, Thm. 2 and [Oka], §2, Proposition 5 and Theorem 7). The correc-
tion term that would be due to the flexes absorbed by p if p were not present is,
according to Theorem 5.1,

1 −
8<
:
„

(3mn − 2m − 2n) + 3

rX
j=0

(ej+1 − ej)(dj − 1)

«
3P (1, 3) ·

„
k2H6

6!
+

kH7

7!
+

H8

8!

«9=
;

2

.

Example 5.1. A nonsingular point has no Puiseux pairs, and (m, n) = (1, k),
where k = the order of contact with the tangent line. By Theorem 5.1, its contri-
bution is

1 −


kP (1, k) ·
„

k2H6

6!
+

kH7

7!
+

H8

8!

«ff
2

= 1 − k(k − 2)(k + 2)H6

720
+

k(k − 2)(k2 + 3k + 6)H7

1680
− k(k − 2)(2k3 + 7k2 + 16k + 32)H8

13440

in agreement with Example 3.4. Note that this contribution is automatically trivial
if k = 2, that is if the point is not an inflection point for C.

Assume next that p has exactly one Puiseux pair (m1, n1). With notations as
above, necessarily m1 = m; and d0 = m, d1 = 1; e0 = n, e1 = n1, e2 = 0.
According to Theorem 5.1, the contribution of p is

1 − m(4m4(n1 − n) + m2n3 − 4n1)H6

6!
+

3m(12m5(n1 − n) + m3n3 + m2n4 − 12n1)H7

7!

− 3m(64m6(n1 − n) + 2m4n3 + 3m3n4 + 2m2n5 − 64n1)H8

8!

Example 5.2. For an ordinary (m, n)-cusp (see above) we find

1− mn(m2n2 − 4)H6

6!
+

3mn(m3n2 + m2n3 − 12)H7

7!
− 3mn(2m4n2 + 3m3n3 + 2m2n4 − 64)H8

8!

For instance, an ordinary (2, 3) cusp contributes

1 − 4H6

15
+

3H7

5
− 19H8

28
;

using that such a cusp absorbs 8 flexes, we get that an ordinary cusp corrects the
predegree of a curve of degree d ≥ 3 by

−72(28d2 − 144d + 183) .

Thus a generic cuspidal quartic has predegree 14280−3960 = 10320, etc. Note that
for a cuspidal cubic this gives a ‘predegree’ of 216−216 = 0; this is because cuspidal
cubics have small orbits. According to the formulas given above, the a.p.p. of a
cuspidal cubic is

1 + 3H +
9H2

2
+

9H3

2
+

27H4

8
+

69H5

40
+

3H6

8
+

H7

70
,

yielding a degree of 7!
70·3 = 24, as expected.
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Example 5.3. Characteristic numbers. An enumerative problem that has received
a good deal of attention both in the 19th century and in the recent past is that
of computing the characteristic numbers of various families of plane curves, that
is, the number of curves belonging to the family, containing a collection of general
points, and tangent to a collection of general lines. This problem is in general
surprisingly challenging, even for curves of very low degree.

We note here that the top characteristic number of the (family of curves param-
eterized by the) orbit closure of C is the degree of the orbit closure of the dual
curve C∨: hence the results of this paper allow us in principle to compute the top
characteristic number of the orbit closure of an arbitrary curve, i.e., the number of
translates of the curve which are tangent to a maximal number of general lines.

For example, consider the orbit closure of a nonsingular cubic curve C, that is,
the closure of the set of cubic curves with a given j-invariant. Its top characteristic
number is the degree of the orbit closure of a sextic with 9 cusps; now Example 5.2
lets us compute the predegree of this orbit closure:

predegree of a general sextic − contributions from 9 cusps
= 1119960− 9 · 23544 = 908064 .

For j �= 0, 1728, the stabilizer of C consists of 18 elements; thus there are 908064
18 =

, cubics with fixed j invariant �= 0, 1728 and tangent to 8 lines in general
position. For j = 0, resp. j = 1728 the extra automorphisms of C correct this
number to 50448

3 = ,, 50448
2 = ,, respectively. These results agree with

the more direct computations in [A].
Similarly, the number of nodal cubics tangent to 8 lines in general position is

the degree of the orbit closure of the dual of a nodal cubic, that is, a quartic with
three cusps:

14280 − 3 · 3960
6

=  .

Of course this also agrees with the classical result (cf. for example [S]).
It is curious to observe that the dual of a nodal cubic can also be interpreted

as a sextic consisting of a quartic with three cusps and a double bitangent line, in
the sense that this is what the dual of a nonsingular cubic C degenerates to as C
degenerates to a nodal cubic. Arguing as in §4 to account for the contribution of
the double line, we compute that the predegree of the orbit closure of such a sextic
is 302668; as the stabilizer of a nodal cubic has 6 elements, this gives , as
the top characteristic number of a nodal cubic. This number counts the 400 curves
tangent to 8 lines as well as contributions from curves whose node is on one of the
lines; the fact that this number agrees with the characteristic number for cubics
with j < ∞ was already observed in [A], end of §3.

Apart from these and a few other instances (for example conics, or cuspidal
cubics), the characteristic numbers that can be obtained by applying the results in
this paper are, to our knowledge, new. For example, so is the number ,,
of nonsingular quartics with fixed general modulus and tangent to 8 lines in general
position.

Example 5.4. The quartic curves

(y2 − xz)2 = y3z ; (y2 − xz)2 = yz3
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have a singularity at (1 : 0 : 0) described by (m, n) = (2, 4), and Puiseux pair
(2, k) for k = 5, 7 respectively. Using the formula given above, and that these
points absorb 3k flexes, we find that these singularities correct the predegree of the
quartics on which they lie by −1785k.

These singularities are analytically isomorphic to z2 = yk (cf. Example 3.5).
Remarkably, the same correction term applies for quartics with a point analytically
isomorphic to z2 = yk also in the non-irreducible cases k = 4, 6, 8 (as may be
computed explicitly using Propositions 3.4 and 3.5). For k = 8 the corresponding
quartic is (y2 − xz)2 = z4, that is the union of two quadritangent conics (cf. §4.1
in [A-F3]); the formula gives 14280 − 1785 · 8 = 0, as expected since unions of
quadritangent conics have small orbits.

The case k = 4 can also be analyzed by the same method, and gives a correction
of −1785·4 = −7140. Thus a general tacnodal quartic has predegree 14280−7140 =
7140, that is, precisely half of the predegree of a general quartic. This latter fact
can also be explained conceptually by studying the behavior of the predegree along
families of curves, but we will not pursue this approach here.

Proof of Theorem 5.1. The formula given in the theorem is obtained by evaluat-
ing explicitly the contributions of type IV and V, using Proposition 3.4 and 3.5.
The main subtlety lies in the fact that both these contributions are affected by
whether n is an essential exponent or not; as we will see, the amounts by which
they are affected precisely compensate each other, so that both cases lead to the
same formula.

We consider contributions of type IV first. If d′ = gcd(m, n), and m′ = m/d′,
n′ = n/d′, then the only 1-PS germ giving a contribution is 1 0 0

0 tn
′

0
0 0 tm

′


yielding a limit (

yn′ − ∗xn′−m′
zm′)d′

xd−n = 0 ,

corresponding to the side in the Newton polygon joining vertices (0, m) and (n, 0).
Using Proposition 3.4, this gives a contribution of

1 − mn

 
(m2n2 − 4d′4)H6

6!
− 3(m3n2 + m2n3 − 12d′5)H7

7!

+
3(2m4n2 + 3m3n3 + 2m2n4 − 64d′6)H8

8!

!

which is checked to equal

1 −


mn
`
P (m, n) − P (m, 2m)

´ ·„k2H6

6!
+

kH7

7!
+

H8

8!

«ff
2

− mn

 
(m4 − d′4)H6

180
− (m5 − d′5)H7

140
+

(m6 − d′6)H8

210

!
.

Here d′ = m if n is a multiple of m (in which case the last summand vanishes),
while d′ = d1 = gcd(m, e1) if n = e1 is essential.
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Moving on to the component of type V, the data describing the singularity
determines the structure of the formal branches of the curve at p. Schematically,
here is how they group:

m=d0( )
n e 

1

e 2

e 
3 e 4

d
1

d2

3d

If n is not essential, m = d0 branches will run parallel from the beginning of the
expansion up to the first essential exponent e1; if n is essential, the branching starts
immediately at n = e1. In both cases, at e1 the branches divide into d0/d1 groups
of d1 parallel branches each; at e2, each set of d1 branches splits into d1/d2 groups
of d2 parallel branches, and so on. At the last essential exponent er, the splitting
produces m distinct simple branches.

This gives us the data needed to apply Proposition 3.5. Note that e1 yields a
‘truncation’ in the sense of Fact 5 of §2 only if n is not an essential exponent: if
n = e1 is essential, then the expansion starts at e1 and in particular e1 is not greater
than the first exponent. If n is not essential, the truncation at e1 contributes in the
terminology of Proposition 3.5 a term with � = 1, W = e1, S = m, and si = d1,
giving

−me1

(
(m4 − d4

1)H6

180
− (m5 − d5

1)H7

140
+

(m6 − d6
1)H8

210

)
;

if n is essential, there is no such contribution. Adding this to the contribution of
type IV computed above, we obtain in both cases

1 −
{

mn
(
P (m, n) − P (m, 2m)

) · (k2H6

6!
+

kH7

7!
+

H8

8!

)}
2

− K1

where

K1 = me1

(
(m4 − d4

1)H
6

180
− (m5 − d5

1)H
7

140
+

(m6 − d6
1)H

8

210

)
.

The contribution due to truncation at ej , j ≥ 2, is given by Proposition 3.5,
setting � = m

dj−1
(the least integer such that � e1

m
, . . . , �

ej−1
m

are integers),

W =
j−1∑
k=1

(dk−1 − dk)
ek

m
+ dj−1

ej

m
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(keeping track of the exponents at which formal branches start differing), and S =
dj−1, si = dj . If Kj denotes this (additive) contribution, one checks by induction
that if there are r Puiseux pairs (so that dr = 1)

r∑
j=2

Kj =


r∑

j=2

ej

(
dj−1P (dj−1, 2dj−1) − djP (dj, 2dj)

)(
k2H6

6!
+

kH7

7!
+

H8

8!

)
2

(note: this equality does not hold if dr is not assumed to equal 1!). The whole
contribution is therefore given by

1 −
{

mn
(
P (m, n) − P (m, 2m)

) · (k2H6

6!
+

kH7

7!
+

H8

8!

)}
2

−
r∑

j=1

Kj ,

and the formula given in the statement is obtained by rearranging this sum. �
Formulas for reducible singularities can be obtained by using Propositions 3.3,

3.4, and 3.5. Unfortunately, we haven’t been able to find a simple statement in the
style of Theorem 5.1 and encompassing the most general case.

As a final comment, we note that a formula in the style of Theorem 5.1 can be
concocted to account for some ‘global’ terms as well. For example, the predegree of
the orbit closure of a reduced curve of degree d and (for simplicity) including only
points ‘of type (tm, tn)’ (that is, points described by the pair (m, n) as above, with
no further Puiseux pairs) is in fact given by

d8 −
{

(1 + dk)8
[

4d2

(1 + k)3(1 + 2k)3

+
∑

p∈C of type (tm,tn)

mn

(
m2n2

(1 + mk)3(1 + nk)3
− 4

(1 + k)3(1 + 2k)3

) ]}
2

,

provided that the orbit closure has dimension 8. This formula should be compared
with the formula for the predegree of the orbit closure of a d-tuple of points in P1

(cf. [A-F1]), which can be written

d3 −
{

(1 + dk)3
[

d

(1 + k)2
+

∑
p∈C of type (tm)

m

(
m

(1 + mk)2
− 1

(1 + k)2

) ]}
1

(if the orbit closure has dimension 3), where a point ‘of type (tm)’ is simply a point
of multiplicity m in the d-tuple.

It is tempting to view these two formulas as shadows of a very general, but as
yet mysterious, theorem on degrees of orbit closures of hypersurfaces in projective
space.
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