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Abstract. We introduce a class extending the notion of Chern-Mather class to

possibly nonreduced schemes, and use it to express the difference between Schwartz-
MacPherson’s Chern class and the class of the virtual tangent bundle of a singular

hypersurface of a nonsingular variety. Applications include constraints on the possible

singularities of a hypersurface and on contacts of nonsingular hypersurfaces, and
multiplicity computations.

§0. Introduction

The notion of Chern-Mather class was introduced by Robert MacPherson in
[10], as one of the main ingredients in his definition of functorial Chern classes for
possibly singular complex varieties. An equivalent notion had in fact already been
given by Wentsün Wu; the two notions are compared in [15]. One way to think
about Mather’s class of Y as defined by MacPherson is the following: blow-up Y
so that the pull-back of its sheaf of differentials is locally free modulo torsion; then
mod out the torsion, dualize, and take Chern classes. The operation can in fact be
performed for any sheaf; this is worked out in [9].

This definition ignores possible nilpotents on Y . We feel that it would be
desirable to have a class in the spirit of Chern-Mather class, but in some way
sensitive to possible nonreduced structures on Y : first, this is natural from the
algebro-geometric standpoint; secondly, as we will see, a natural candidate carries
useful information when applied to the singularity subscheme of a hypersurface (for
which possibly non-reduced scheme structures play a fundamental rôle).

Our candidate is introduced in §1. Its definition is a suitable weighted sum of
‘conventional’ Chern-Mather classes of subvarieties of Y . The subvarieties are the
supports of the components of the (intrinsic) normal cone of Y , and the weights are
the lengths of the components of this cone. The class we obtain (trivially) agrees
with Mather’s if Y is a reduced local complete intersection.

If Y is the singularity subscheme of a hypersurface, we can relate the weighted
Chern-Mather class with other natural classes defined in this case. For example, in
[1] we have defined and studied a µ-class associated with the singularity subscheme
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of a hypersurface; in this paper, we answer a question which we could not address
previously: how to give a reasonable definition for arbitrary schemes Y , from which
the µ-class could be recovered if Y is the singularity subscheme of a hypersurface
X . The weighted Chern-Mather class is precisely such a class (Corollary 1.4). We
hope that this viewpoint will eventually give us the right hint on how to define a
µ-class for the singularities of more general varieties X .

The main application of weighted Chern-Mather classes is to the computation
of the difference between Schwartz-MacPherson’s class of a hypersurface and the
class of its virtual tangent bundle. A formula for the difference, in terms of the
µ-class, is proved ‘numerically’ in [3], and at the level of Chow groups in [2] (The-
orem I.5). Such differences have been named ‘Milnor classes’, as they generalize
the fact that, for local complete intersections with isolated singularities, the Milnor
number computes the difference between the (topological) Euler characteristic and
the degree of the class of the virtual tangent bundle (see [13], [14], [12], [5], and
references therein).

Weighted Chern-Mather classes allow us to recast the formula from [2]. We state
this in §1 (Theorem 1.2), together with other facts about weighted Chern-Mather
classes, such as their relation vis-a-vis a class appearing in [12] or their behavior
under blow-ups. Proofs of these statements are sketched in §2, together with a few
general considerations regarding Milnor classes. Theorem 1.2 is proved in full in §2.

The expression for the µ-class in terms of weighted Chern-Mather classes allows
us in principle to compute the former for a wide class of examples. We give a couple
of applications in this direction in §3, in the spirit of the examples worked out in [1],
§4. For example, we prove that if two nonsingular hypersurfaces M1, M2 of degrees
d1, d2 in projective space are tangent along a positive dimensional subvariety, then
d1 = d2. This fact was proved in [2], but with a strong additional hypothesis on
the contact locus of M1 and M2; the new formula for the µ-class shows that the
extra hypothesis is unnecessary. We also collect in §3 a few explicit computations
of weighted Chern-Mather classes.

The core of this paper is little more than a rewriting of a part of [12]. In that ref-
erence, Adam Parusiński and Piotr Pragacz give an alternative proof of the formula
in [2] by a local computation of multiplicities, which relates it to a formula from [6]
(over C, and in homology) for the characteristic cycle of a hypersurface. For sin-
gularities of a hypersurface, a complex geometry analog of weighted Chern-Mather
classes is introduced in [12]; the classes are compared here in Theorem 1.5. The
proof of Theorem 1.2 given in §2 owes much to the approach of Parusiński and
Pragacz: it is my attempt to produce a proof in the style of [12], but in a set-up
closer to intersection theory in algebraic geometry (hence valid for rational equiva-
lence; and potentially more amenable to algebraic generalizations, e.g., to positive
characteristic). The reference to [6] is bypassed by an explicit computation of local
Euler obstructions.

Acknowledgements. I am very grateful to Jean-Paul Brasselet and to Tatsuo
Suwa for organizing the Sapporo symposium on ‘Singularities in Geometry and
Topology’. Conversations with the participants at the meeting, especially Piotr
Pragacz and Shoji Yokura, were very helpful. I am particularly indebted to Piotr
Pragacz (and to the referee of [2]) for pointing out that the main formula in [2]
should be interpreted as the computation of the characteristic cycle of a hypersur-
face.
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§1. Weighted Chern-Mather classes.

All schemes in this note are of finite type over an algebraically closed field of
characteristic 0, and (for simplicity) embeddable in an ambient nonsingular variety,
which we will denote by M .

Assume that Y is reduced and irreducible, of dimension k. The Chern-Mather
class of Y can be defined as follows. Let Gk(TM) denote the Grassmann bundle
whose fiber over p ∈ M consists of the Grassmannian of k-planes in TM , and let
Y ◦ be the nonsingular locus in Y . Consider the map

Y ◦ −→ Gk(TM)

defined by sending p ∈ Y ◦ to TpY ⊂ TpM . The Nash blow-up of Y is the closure Ỹ
of the image of this map; it comes equipped with a proper map ν to Y , and with
the restriction T of the tautological subbundle over Gk(TM). This data is easily
checked to be independent of the ambient variety M . The Chern-Mather class of
Y is defined by

cMa(Y ) := ν∗
(
c(T ) ∩ [Ỹ ]

)
in the Chow group A∗Y of Y . This class of course agrees with the total (‘homology’)
class of the tangent bundle of Y if Y happens to be nonsingular to begin with.

Note that this definition assumes that Y is reduced, as it needs Y to be nonsin-
gular at the general point, and ignores by construction the presence of nilpotents
along subvarieties of Y . Our task is to modify this notion to take account of possible
nilpotents on Y .

Let then Y ⊂ M be arbitrary. We consider the normal cone CY M of Y in M ,

and associate with Y the set {(Yi, mi)}i, where the Yi
ji
↪→ Y are the supports of the

irreducible components Ci of CY M , and mi denotes the geometric multiplicity of
Ci in CY M (so [Ci] = mi[(Ci)red]).

Lemma 1.1. The data {(Yi, mi)} is intrinsic of Y , i.e., independent of the ambient
nonsingular variety.

Proof. (Cf. [7], Example 4.2.6.) It is enough to compare embeddings Y ↪→ M ,
Y ↪→ M ′, where both M , M ′ are nonsingular, and M is smooth over M ′. In this
case there is an exact sequence of cones

0 −→ TM ′|M −→ CY M −→ CY M ′ −→ 0

(where TM ′|M is the relative tangent bundle) in the sense of [7], Example 4.1.6, and
it follows that the supports of the irreducible components of the two cones coincide,
as well as the geometric multiplicities of the components. �

By Lemma 1.1, the following definition is also intrinsic of Y :

Definition. The weighted Chern-Mather class of Y is

cwMa(Y ) :=
∑

i

(−1)dim Y −dim Yimiji∗cMa(Yi) in A∗Y .

(Warning: we will henceforth neglect to indicate ‘obvious’ push-forwards such as
ji∗, and pull-backs.)
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Note that if Y is a reduced irreducible local complete intersection, then its nor-
mal cone is reduced and irreducible, so the class defined here agrees with the
Chern-Mather class of Y . In particular, if Y is nonsingular then cwMa(Y ) =
c(TY ) ∩ [Y ] is the total homology class of the tangent bundle of Y .

A few examples of computations of weighted Chern-Mather classes can be found
in §3. Our main motivation in introducing the class cwMa(Y ) is that we can prove
it is particularly well-behaved if Y is the singularity scheme of a hypersurface X
in a nonsingular variety M . By hypersurface here we mean the zero-scheme of a
nonzero section of a line-bundle L on M ; the singularity subscheme of X is the
subscheme locally defined by the partial derivatives of an equation for X . (This
scheme structure is independent of the ambient variety M .) In the rest of this
section we survey a few facts about cwMa(Y ) under the hypothesis that Y is the
singularity subscheme of a hypersurface. Proofs are given in §2.

Our motivation is to highlight apparently different contexts in which the class
cwMa(Y ) manifests itself. Although these contexts will invoke other characters of
the play, remember that cwMa(Y ) is a class intrinsic of Y , and which is defined re-
gardless of whether Y is the singularity subscheme of a hypersurface. The challenge
is to find extensions of these results which do not assume that Y is the singularity
subscheme of a hypersurface.

For the first fact, let cSM(X) ∈ A∗X denote Schwartz-MacPherson’s Chern class
of X , and let cF(X) ∈ A∗X denote the class of its virtual tangent bundle; the
subscript F is to remind us that this class agrees with the class introduced (for
much more general schemes) by William Fulton, cf. Example 4.2.6 of [7].

Theorem 1.2. Let L = O(X), and let Y be the singularity subscheme of X. Then

cwMa(Y ) = (−1)dim X−dim Y c(L) ∩ (cF(X) − cSM(X)) in A∗(X).

That is, cwMa(Y ) essentially measures the difference between the functorial ho-
mology Chern class cSM(X) and the class of the virtual tangent bundle of X .
The functoriality of the class cSM(X) was proved by Robert MacPherson [10]; the
class was later shown to agree with the class previously defined by Marie-Hélène
Schwartz. For a treatment of Schwartz-MacPherson’s classes over any algebraically
closed field of characteristic 0, see [8]; this is the context we assume here. Also,
we let cSM(X) = cSM(Xred); with this proviso, Theorem 1.2 holds for nonreduced
hypersurfaces X—remarkably, the drastic change in cF when some component of
X is replaced by a multiple is precisely compensated by the change in the weighted
Mather class of the singularity subscheme.

For the next result, it is convenient to employ the following notations (a variation
on the notations used in [2], [3]): for a ∈ Ap and L a line bundle, set

a∨ = (−1)pa , aL = c(L)p ∩ a .

(So aL = c(L)n ∩ (a ⊗ L), where the term in () uses the definition in [3], and n is
the dimension of the ambient scheme). These notations behave well with respect
to several natural operations, similarly to the notations introduced in [3]. For
example, the formula on the right defines an action of Pic on the Chow group: that
is, aL1⊗L2 = (aL1)L2 for line bundles L1 and L2.
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Proposition 1.3. Let Y be the singularity subscheme of a section of a line bundle
L on a nonsingular variety M . Then

cwMa(Y ) = (−1)dim Y (c(T ∗M ⊗ L) ∩ s(Y, M))∨L in A∗Y .

Here s(Y, M) denotes the Segre class of Y in M , in the sense of [7], Chapter 4.
Note that this equality is completely false unless Y is a singularity subscheme of
a hypersurface in M . However, if Y is a singularity subscheme of a hypersurface
in M , then the right-hand-side must be independent of M : this was proved di-
rectly in [1], Corollary 1.7, and follows again as the left-hand-side is intrinsic of Y .
Proposition 1.3 is significant in view of the consequence:

Corollary 1.4.
µL(Y ) = (−1)dim Y cwMa(Y )∨L .

The class µL(Y ) is the ‘µ-class’ defined and studied in [1]; it carries a notable
amount of information about X , with applications to duality and to the study of
contacts of hypersurfaces. Corollary 1.4 solves a puzzle left open in [1] (p. 326): to
define a class for arbitrary schemes, specializing to µL(Y ) for singular schemes of
hypersurfaces. It also clarifies the dependence of the µ-class on the line bundle L:
it follows from Corollary 1.4 that if L1, L2 are line bundles, then

µL2(Y ) = µL1(Y )L∨
1 ⊗L2

(this does not follow formally from the expression for the µ-class in terms of the
Segre class of Y .) For applications of Proposition 1.3 and Corollary 1.4, see Exam-
ples 3.4, 3.5.

The next fact we list also requires some notations. We now assume that X is a re-
duced hypersurface, over C. The question is whether, in this particularly ‘geometric’
case, cwMa(Y ) can be recovered from numerical invariants of X . The answer comes
from [12]: define a function µ : Y −→ Z by setting µ(y) = (−1)dim X(χ(y)−1), where
χ(y) is the Euler characteristic of the Milnor fiber of X at y; µ is a constructible
function on Y , so we can apply to it MacPherson’s transformation cSM (that is,
write µ as a linear combination of characteristic functions 1Z for subvarieties Z of
Y , then replace each 1Z in this combination by cSM(Z)).

Theorem 1.5.
cwMa(Y ) = (−1)dim Y cSM(µ) in A∗Y .

Equivalently, write µ as a linear combination of local Euler obstructions (also an
ingredient in [10]): µ =

∑
�iEuYi

; then the content of Theorem 1.5 is that in this
situation the Yi’s are precisely the supports of the components of the normal cone
of Y , and the numbers �i determined by µ agree (up to sign) with the multiplicities
mi used to define cwMa(Y ). Again, we would be very interested in extensions
of this result to more general Y : what numerical invariants of a space X (not
necessarily a hypersurface) determine the multiplicities of the components of the
normal cone of its singularity subscheme? Can these multiplicities be computed for
an arbitrary scheme Y , by a similar ‘Milnor fiber’ approach? Once more, note that
the left-hand-side in Theorem 1.5 is defined for arbitrary Y ; to what extent can
the right-hand-side also be defined for arbitrary Y ? We know of several problems
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in enumerative geometry for which finding these multiplicities is one of the main
computational ingredients. For an explicit computation (not directly related to
enumerative geometry) see Example 3.6.

Finally, it would be interesting to have results on the functoriality of the class
cwMa(Y ); little is known about the functoriality of the ordinary Chern-Mather class.
Again, something can be said if Y is the singularity subscheme of a hypersurface
X (over an arbitrary algebraically closed field of characteristic zero, and possibly
nonreduced). Let Z be a nonsingular subvariety of Y ⊂ X ⊂ M , and consider the
blow-up M̃ of M along Z:

Y ′ ��

��

X ′ ��

ρ

��

M̃

π

��
Z �� Y �� X �� M

.

Here X ′ = π−1X is the scheme-theoretic inverse image of X , a hypersurface of M̃ ,
and Y ′ is the singularity subscheme of X ′.

Proposition 1.6. Assume Z has codimension d in M . Then

ρ∗cwMa(Y ′) = (−1)dim X−dim Y cwMa(Y ) − (d − 1)cwMa(Z) in A∗X.

Here of course cwMa(Z) = c(TZ) ∩ [Z], as Z is nonsingular. Also note that by
assumption X is singular along Z, hence Y ′ contains the exceptional divisor in M̃ .

Proofs of the statements made in this section are sketched in §2, with emphasis
on Theorem 1.2, which relates the weighted Chern-Mather class of the singularity
of a hypersurface with its Milnor class.

§2. The Milnor class of a hypersurface.

As is well known, for a compact complex hypersurface X with isolated singu-
larities the sum of the Milnor numbers of the singularities measures the difference
between the topological Euler characteristic of X and that of a nonsingular hyper-
surface linearly equivalent to X (if there is such a hypersurface). To my knowledge,
the first who used this fact to define and study a generalization of the Milnor
number to non-isolated hypersurface singularities is Adam Parusiński, [11].

Now, the functoriality of Schwartz-MacPherson’s class implies that, for a hy-
persurface X as above, the Euler characteristic of X equals the degree of the
(zero-dimensional component of the) class cSM(X). On the other hand, the Eu-
ler characteristic of a nonsingular hypersurface linearly equivalent to X equals the
degree of the class of the virtual tangent bundle of X (that is, of cF(X) with no-
tations as in §1). That is, Parusiński’s Milnor number equals (up to a sign), the
degree of the difference between the two classes:∫

(cF(X) − cSM(X)) .

It is natural then to study the whole class cF(X)−cSM(X); this (or slight variations
of it) has been named the Milnor class of X by some authors (see [5], [12], [14]).
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Note that nothing in the definition of the class cF(X)−cSM(X) requires X to be
a hypersurface: both Schwartz-MacPherson’s and Fulton’s classes can be defined
for arbitrary varieties. For reduced compact complex local complete intersections,
the Milnor class is computed in homology in [5] in terms of vector fields on X , an
approach reminiscent of Schwartz’s definition of cSM(X).

In fact the class makes sense for arbitrary schemes X over any algebraically
closed field of characteristic 0, and naturally lives in the Chow group A∗Y of the
singular locus of X . We would like to pose the following question:

—To what extent is the Milnor class of X determined by the singularity sub-
scheme Y of X? or, in more ambitious terms:

—Is there a natural definition of a class on an arbitrary scheme Y , from which
the Milnor class of X can be computed if Y is the singularity subscheme of X?

In view of the results collected in §1, the situation is clear for hypersurfaces. The
singular locus of a hypersurface has a natural scheme structure, given by the partial
derivatives of local equations of X . Theorem 1.2 then asserts that (for arbitrary
hypersurfaces X over an algebraically closed field of characteristic 0, and writing
L = O(X)|Y )

cF(X) − cSM(X) = (−1)dim X−dim Y c(L)−1 ∩ cwMa(Y ) in A∗X :

that is, if two hypersurfaces have the same singularity subscheme Y and their line
bundles restrict to the same bundle on Y , then they have the same Milnor class;
and, further, this can be recovered from the class cwMa(Y ), which can be defined for
arbitrary schemes Y .

Therefore, Theorem 1.2 answers the two questions posed above, for hypersur-
faces. To our knowledge, the questions are completely open for more general
schemes X . Milnor classes of local complete intersections (for which the singu-
lar locus also carries a natural scheme structure) have been studied in [5], but from
a different viewpoint, which does not seem to address questions such as the ones
posed above.

Theorem 1.2 could be deduced from results in the existing literature (particularly
from [12] or [2]). However, while the main result in [2] is at the level of generality
at which we are aiming, its proof is rather unenlightening. The approach in [12] is
much more cogent, but it is stated in homology and relies on the complex geometry
of the situation—for example, in [12] the hypersurface is assumed to be reduced and
compact. The argument given below works for possibly nonreduced hypersurfaces,
over arbitrary algebraically closed fields of characteristic 0, and gives the formula in
rational equivalence; it only relies on the basic formalism of Schwartz-MacPherson’s
classes (as developed in [8]). We would like to stress that, anyway, at its core is a
multiplicity computation we learned from [12].

Proof of Theorem 1.2. We consider the blow-up M̃
π−→ M along Y , and let X , Y be

the pull-back of X and the exceptional divisor, respectively. Note that Y ⊂ X , so1

there is an effective Cartier divisor in M̃ whose cycle equals X −Y ; we will denote
this divisor by X − Y . Now let p be a point of X . We have π−1(p) ⊂ X − Y , so it
makes sense to consider the Segre class of π−1(p) in X − Y .

1A note of warning to non-algebraic geometers: here and in the following we are using common
set-theoretic notations (such as ⊂, −, etc.) in their scheme-theoretic sense. For example, Y ⊂ X
means that the ideal sheaf of X is contained in the ideal sheaf of Y. Since both X and Y are

Cartier divisors, this just says that local equations for X are multiples of local equations for Y.
This is necessary for the statement that follows.
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Claim 2.1. Denoting degree by
∫
,∫

s(π−1(p),X − Y)
1 + X − Y = 1 .

A preliminary result is in order before we prove this claim. We have

π−1(p) ↪→ (X − Y) ↪→ M̃ ,

where the second embedding is regular. We claim that

s(π−1(p),X − Y) = c(NX−YM̃) ∩ s(π−1(p), M̃) .

Note that this is not automatic in this situation, cf. Example 4.2.8 in [7]. In our
case, it will follow from the following lemma:

Lemma 2.2. Let D, E be hypersurfaces in a variety V . Assume that D − E is
positive and has no components in common with E. Then s(E, D) = c(NDV ) ∩
s(E, V ).

Proof of the lemma. By the hypothesis and Lemma 4.2 in [7],

s(E, D) = s(E, E) + s(E ∩ (D − E), D − E) = [E] +
E · (D − E)

1 + E

=
([E] + E · E) + E · (D − E)

1 + E
= (1 + D) ∩ [E]

1 + E
= c(NDV ) ∩ s(E, V ) . �

Proof of Claim 2.1. We apply Lemma 2.2 to the normalized blow-up V of M̃ along
π−1(p), with E =the exceptional divisor, and D =the inverse image of X − Y . To
see that the hypotheses are satisfied, we have to show that every component of E
appears with the same multiplicity in E and D.

For this2, let γ(t) be a germ of a nonsingular curve centered at the general point
of a component of E, let γ̃(t) be the composition to M , and let F be a local equation
for X at p; also, choose local parameters x1, . . . , xn for M at p. The ideal of E is the
pull-back of (x1, . . . , xn) to V , so the multiplicity mE of the component in E equals
the order of vanishing of the pull-back xi(t) = γ̃∗xi of a generic local parameter.
The multiplicity mD in D equals mX − mY , where mX , mY are respectively the
multiplicities in the pull-backs of X , Y .

Now mX is the order of vanishing of

γ̃∗F = F (x1(t), . . . , xn(t)) ,

while mY is the order of vanishing of the pull-back of(
F,

∂F

∂x1
, . . . ,

∂F

∂xn

)
,

2This computation is essentially lifted from an analogous computation in the proof of Propo-
sition 2.2 in [12].
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that is, the order of vanishing of γ̃∗ ∂F
∂xi

for a generic local parameter xi. Now taking
the derivative with respect to t gives (by the chain rule!)

mX − 1 = mY + mE − 1 ,

from which the desired equality mE = mD follows.
Applying Lemma 2.2, we get

s(E, D) = (1 + X − Y) ∩ s(E, V ) ,

hence
s(π−1(p),X − Y) = (1 + X − Y) ∩ s(π−1(p), M̃)

by the birational invariance of Segre classes ([7], Proposition 4.2). From this,

π∗
s(π−1,X − Y)

1 + X − Y = s(p, M) = [p] ,

again by the birational invariance of Segre classes, and the claim follows by taking
degrees. �

We are finally ready to prove Theorem 1.2. Identify Y with the projective normal
cone of Y in M , let Yi be the reduced components of Y , and let Yi be their support
in Y . Then X = X̃ +

∑
niYi

Y =
∑

miYi

for suitable mi, ni. By Claim 2.1,

1 =
∫

s(π−1(p),X − Y)
1 + X − Y

=
∫

s(π−1(p) ∩ X̃, X̃) +
∑

(ni − mi)s(π−1(p) ∩ Yi,Yi)
1 + X − Y

by Lemma 4.2 in [7]

= EuX(p) +
∑

(ni − mi)(−1)dim M+1−dim YiEuYi
(p)

using the formula for Euler obstructions due to Gonzalez-Sprinberg and Verdier, as
computed in [8], Lemma 2 (as pointed out in [2], §1.3 and in [12], §3, the divisor
X−Y can be embedded in P(T ∗M), and 1+X−Y is then the restriction of the class
of the tautological bundle in P(T ∗M)). Now, every relation between constructible
functions yields a relation for characteristic classes. Here, this gives (using the
formula for Mather’s classes in [8], Lemma 1, going back to Claude Sabbah):

cSM(X) = cMa(X) +
∑

(ni − mi)(−1)dim M+1−dim YicMa(Yi)

= c(TM) ∩ π∗

(
[X̃]

1 + X − Y +
∑

(ni − mi)
[Yi]

1 + X − Y

)

= c(TM) ∩ π∗

(
[X ]

1 + X − 1
1 + X

∑
mi

[Yi]
1 + X − Y

)
= cF(X) + c(L)−1 ∩

∑
mi(−1)dim M−dim YicMa(Yi)

= cF(X) + (−1)dim M−dim Y c(L)−1 ∩ cwMa(Y )
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which is the desired formula. �
As observed in the proof, X − Y can be naturally embedded in P(T ∗M). The

content of Claim 2.1 is that X − Y gives then the characteristic cycle of X (corre-
sponding to the characteristic function 1X of X in M).

The other statements in §1 now follow easily, either by comparing the expression
for cSM with the expressions in [2] and [12], or by direct manipulations that can be
extracted from those sources. The argument given here re-proves Theorem I.3 in
[2]/Theorem 3.1 in [12]; and for example, §1 in [2] shows how to go directly from
this form of the result to expressions in terms of Segre classes or µ-classes (thus
proving Proposition 1.3, Corollary 1.4).

The details are left to the reader. Theorem 1.5 is our reading of Theorem 2.3 (iii)
from [12]. The blow-up formula of Proposition 1.6 follows from Proposition IV.2 in
[2].

§3. Examples and applications.

Normal cones behave well with respect to proper finite maps and with respect
to flat maps, cf. Proposition 4.2 in [7]. For example, assume that Y is irreducible,
and M̃

π−→ M is a surjective birational map on the ambient space. Then there is an
induced surjective map from the cone of π−1Y to the cone of Y . This can be used
to obtain the data {(Yi, mi)} of §1, for example by suitably blowing up an ambient
space; this can lead to direct computations of weighted Chern-Mather classes.

Example 3.1. Suppose Y consists of a curve C, with an embedded multiple planar
point at a point p. More precisely, assume C, Y have local ideals respectively IC ,
IC ·(x, y)m, m ≥ 1, near p in a nonsingular ambient surface S with local parameters
x, y. Also, assume that C has multiplicity r at p. Then

cwMa(Y ) = cMa(C) − (m + r)[p] .

Indeed, blow-up S at p; the total transform of Y consists of the proper transform
of C, and of (m + r) times the exceptional divisor. Therefore, the normal cone of
Y contains a component with multiplicity m + r over p. (But note there is no such
component if m = 0.)

For example, take Y to be the union of two lines �1, �2 in P2, with an embedded
planar point at the intersection p = �1 ∩ �2; then cwMa(Y ) = [�1] + [�2] + [p]. If the
embedded point is on one of the lines, but not at p, then cwMa(Y ) = [�1]+[�2]+2[p].
If each line comes with multiplicity r, and the embedded point is at p, then the
class is

rcMa(�1) + rcMa(�2) − (1 + 2r)[p] = r[�1] + r[�2] + (2r − 1)[p] .

Example 3.2. Example 3.1 can be easily generalized to the situation in which Y
is a subscheme of a given ambient space M , and the residual to a Cartier divisor
D in Y is a known scheme Y ′. Then cwMa(Y ) can be written in terms of cMa(D),
cwMa(Y ′), and the multiplicity of D along the distinguished components of Y ′;
details are left to the reader. A very different expression can be obtained if Y ′ is
the singularity subscheme of a hypersurface X in M , and D is the r-th multiple
of X (r ≥ 0).
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Claim 3.1. Let L = O(X)|Y ′ . Then

cwMa(Y ) = r cF(X) + (−1)dim X−dim Y ′ c(L⊗(r+1))
c(L)

∩ cwMa(Y ′) .

The proof is an easy application of the results in §1, and is also left to the reader.
To contrast the two approaches, take again the example of the union of two lines

�1, �2 in P2, each coming with multiplicity r, with an embedded planar point at
the intersection. Since the planar point is the singularity subscheme of the union
of two (simple) lines, Claim 3.1 computes the weighted Chern-Mather class of this
scheme as

r cF(X)+(−1)dim X−dim Y ′ c(L⊗(r+1))
c(L)

∩ cwMa(Y ′) = r
c(TP2)

c(OP2(2))
∩ ([�1] + [�2]) − [p]

= r([�1] + [p]) + r([�2] + [p]) − [p]

with the same result as before, but by a very different route.
It would be useful to have formulas such as Claim 3.1, but with less stringent

hypotheses on X .

Example 3.3. If X = X1 ∪ · · ·∪Xr is a divisor with normal crossings, with all Xi

supported on nonsingular hypersurfaces (Xi)red, and Y is its singularity subscheme,
then

cwMa(Y ) = ±c(TM) ∩
(

1 − 1 + [X ]
(1 + (X1)red) · · · (1 + (Xr)red)

)
∩ [M ] ,

taking the sign +, resp. − according to whether X is reduced or not. The expression
is interpreted by expanding it, which leaves a class naturally supported on Y ; it
follows from Proposition 1.3 and [2], §2.2 (Lemma II.2 in [2] computes the Segre
class if X is reduced, and the computation in the proof of Lemma II.1 is used to
cover the non-reduced case).

Example 3.4. What do we learn about hypersurfaces by studying their Milnor
classes?

As shown in [1], the µ-class of a hypersurface X packs a good amount of infor-
mation about X : for example, the multiplicity of X as a point of the discriminant
of a linear system and the dimension of this discriminant can be recovered very
easily from the µ-class (hence from the Milnor class). In the classical language,
the µ-classes of hyperplane sections of an embedded nonsingular projective variety
M give a localized analog of the ranks of M , and provide a natural tool to study
projective duality.

In a different direction, the good behavior of the µ-class can be used to put
restrictions on the possible singularities of a hypersurface in a given ambient space.
Several examples of this phenomenon are illustrated in [1], §3, where the main tool
was the observation that if the singularity subscheme Y of a hypersurface X is
nonsingular, then

µL(Y ) = c(T ∗Y ⊗ L) ∩ [Y ] .

Now, Corollary 1.4 from §1:

µL(Y ) = (−1)dim Y cwMa(Y )∨L

is a substantial upgrade of this formula, and this allows us to extend some of those
results.
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Claim 3.2. If two smooth hypersurfaces of degree d1, d2 in projective space are
tangent along a positive dimensional set, then d1 = d2.

More generally, if two smooth hypersurfaces M1, M2 of a variety V are tangent
along an irreducible (for simplicity) set Z, and dimZ > 0, then we claim that

r M1 · [Z] = r M2 · [Z] ,

where r is the order of tangency of M1 and M2 (for example, r = 1 if M1, M2 have
simple contact). This is essentially Proposition IV.7 in [2], with all hypotheses
on the contact locus (except the positive dimensionality) removed. The stronger
statement given above follows from the results in §1. Indeed, in the situation of
the statement, let X = M1 ∩ M2; then X is a hypersurface in two distinct ways:
with respect to L2 = O(M2)|M1 in M1, and with respect to L1 = O(M1)|M2 in M2.
The contact locus is Y = Sing X (with the scheme structure specified in §1), and
[Y ] = r[Z]. By Theorem 1.2

c(L2)−1 ∩ cwMa(Y ) = c(L1)−1 ∩ cwMa(Y ) ,

implying
c1(L1) ∩ [Y ] = c1(L2) ∩ [Y ] ,

which is the statement.

Example 3.5. We say that a hypersurface X of a nonsingular variety M is (ana-
lytically) ‘homogeneous at p’ if the equation of X is homogeneous for some choice of
system of parameters in the completion of the local ring for M at p. We are going to
consider degree-d hypersurfaces X in Pn, whose singular scheme Y has a connected
component supported on a nonsingular curve C of genus g and degree r; we assume
that Y has the reduced structure at all but finitely many points q1, . . . , qs, and that
X is homogeneous at each of the qi. In particular, X has multiplicity 2 at all other
points of C; we let mi be the multiplicity of X at qi.

How constrained is this situation? Examples 3.4—3.6 in [1] deal with the case
in which the singular scheme is reduced, that is, there are no points ‘qi’ as above.
This situation is then very rigid: for example, one sees that only quadrics can have
singular scheme equal to a line, and no hypersurface in projective space can have
singular scheme equal to a twisted cubic (cf. p. 347 in [1]).

The natural expectation would be that letting the singular scheme be nonreduced
should allow many more examples. For instance, cones over nodal plane curves
give examples of hypersurfaces in P3 of arbitrary degree ≥ 2 and singular scheme
generically reduced, but with an embedded homogeneous point (at the vertex).
However, the results in this paper show that the situation is still quite rigid:

Claim 3.3. Under the hypotheses detailed above, (n− 1) must divide 4(g + r − 1).
In fact, necessarily

(n − 1)
(
(d − 2)r −

∑
(mi − 2)

)
= 4(g + r − 1) .

For example, twisted cubics can support singularity subschemes as above only
in dimensions n = 3, 5, 9, regardless of the number of embedded points allowed
on them. (We do not know if such examples do exist.) The only situation in
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unconstrained dimension is for g + r− 1 = 0, that is, g = 0 and r = 1: lines are the
only nonsingular curves in projective space which may support a generically reduced
singularity subscheme in all dimensions (under the local homogeneity assumption).
Further, if Y is supported on a line and only has one embedded homogeneous point,
then the formula implies that the multiplicity of X at this point is d; therefore, X
is necessarily a cone in this case.

For
∑

(mi − 2) = 0, the formula in Claim 3.3 recovers the formula at p. 347 of
[1] (that is, the reduced case). For n = 2, the hypotheses imply that X is a plane
curve consisting of a double component C and a residual curve of degree (d − 2r);
the formula then follows from the genus formula and Bézout’s theorem. In higher
dimensions, the following argument is the only proof we know.

Proof of the claim. We compute directly the weighted Chern-Mather class of Y and
the Segre class s(Y, Pn). Proposition 1.3 gives a relation between these two classes,
and the formula follows by taking degrees.

Explicitly, blow-up Pn at the ‘special’ points q1, . . . , qs, and then along the
proper transform of the curve C. The homogeneity hypothesis implies that the
(scheme-theoretic) inverse image of Y in the top blow-up is a Cartier divisor, with
a component of multiplicity 1 dominating C, and s components with multiplicity
(m1 − 1), . . . , (ms − 1) dominating the qi’s. The Segre class of Y in Pn is then
computed by using the birational invariance of Segre classes, and we get

i∗s(Y, P
n) = r[P1] +

 
s(n − 1) + 2 − 2g − r(n + 1) +

X
i

((mi − 1)n − n(mi − 1))

!
[P0]

(where i : Y ↪→ Pn is the inclusion).
On the other hand, the component dominating qi maps to a corresponding com-

ponent of the projective normal cone to Y in Pn; computing differentials, we see
that this map has degree (mi − 1)n−1 − 1. This allows us to compute the weighted
Chern-Mather class of Y :

cwMa(Y ) = cMa(C) −
∑

i

(
(mi − 1)n−1 − 1

)
(mi − 1)cMa(qi) ,

from which

i∗cwMa(Y ) = r[P1] +

(
2 − 2g −

∑
i

((mi − 1)n − (mi − 1))

)
[P0] .

Now let h denote the hyperplane class in Pn. The expression for the Segre class
gives

i∗c(T ∗
P

n ⊗O(d)) ∩ s(Y, P
n) = i∗

(1 + (d − 1)h)n+1

1 + dh
∩ s(Y, P

n)

= r[P1] +

 
(s + rd − 2r)(n − 1) + 2 − 2g − 4r + rd +

X
i

((mi − 1)n − n(mi − 1))

!
[P0]

and therefore

i∗(−1)dim Y (c(T ∗M ⊗L) ∩ s(Y, M))∨L = r[P1]

+

(
(2r − dr − s)(n − 1) − 2 + 2g + 4r −

∑
i

((mi − 1)n − n(mi − 1))

)
[P0].

By Proposition 1.3, this class must equal i∗cwMa(Y ). Equating the two expres-
sions gives the formula in the statement. �
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Example 3.6. Finally, we give an example of the use of weighted Chern-Mather
classes in the computation of the multiplicities of components of a normal cone.
Such multiplicities are important for enumerative applications, and it would be
very useful to develop tools to compute them. For singularity subschemes of hyper-
surfaces, the connection between weighted Chern-Mather classes and Milnor classes
often lets us recover these multiplicities from computations of MacPherson’s classes
and local Euler obstructions. It would be interesting to extend such techniques to
more general schemes.

Let D be the hypersurface of P9 parametrizing singular plane cubics, and let Y be
its singularity subscheme. The following picture represents the natural stratification
of D (with arrows denoting specialization):

S X I

G T

N

C P

The scheme Y is supported on the union of the closures C, G of the loci parametriz-
ing cuspidal cubics and binodal cubics. What are the multiplicities of the compo-
nents of the normal cone of Y in P9? The point here is that we can compute
cwMa(Y ) without knowing these multiplicities:

Claim 3.4. Denote by i the inclusion of Y in P9. Then

i∗cwMa(Y ) = 69[P7]+120[P6]+210[P5]+252[P4]+210[P3]+120[P2]+45[P1]+10[P0].

Proof. This follows from Theorem 1.2 and the computations of characteristic classes
for D in §4 of [4]. �

Now the task is to find the coefficients expressing the weighted Chern-Mather
class of Y as a combination of the Chern-Mather classes of the loci C, G, etc. We
first find the constructible function ν corresponding to cwMa(Y ) under MacPher-
son’s transformation. For this, we use the result of the computation from [4]
of Chern-Schwartz-MacPherson’s classes of the strata of D. Writing cwMa(Y ) =
cSM(ν) = ν(C) · cSM(1C) + ν(G) · cSM(1G) + . . . and solving the resulting system of
linear equations, we find

ν(C) = 2; ν(G) = 1; ν(P ) = 0; ν(T ) = 1; ν(S) = 3; ν(X) = 1; ν(I) = 1.

(The paragraph preceding the statement of Theorem 1.5 gives a geometric inter-
pretation of µ = −ν.) As pointed out in the discussion following Theorem 1.5,
to find the multiplicities we now need to express this constructible function as a
combination of local Euler obstructions of the strata. These are easy to compute
in codimension one, and we proceed to the computation of the multiplicities for
the components dominating the loci C, G, P , T . For these loci, we only need to
observe that C, G are nonsingular along P , and G has multiplicity 3 along T (these
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follows from easy local computations). As the local Euler obstruction agrees with
the multiplicity in codimension one, this gives

EuC =

8>>>>>><
>>>>>>:

· · ·
0 T

1 P

0 G

1 C

, EuG =

8>>>>>><
>>>>>>:

· · ·
3 T

1 P

1 G

0 C

,

where we indicate the value of the function at the general point of the listed locus.
Therefore

ν = 2EuC + EuG − 3EuP − 2EuT + . . .

from which we read that the multiplicities of the components of the normal cone
are: 2 over C, 1 over G, 3 over P , 2 over T .

Finding the multiplicities over the remaining three loci S, X , I requires com-
puting the local Euler obstructions for all the strata of D. We leave this to the
motivated reader.

References

[1] P. Aluffi, Singular schemes of hypersurfaces, Duke Math. J. 80 (1995), 325–351.
[2] P. Aluffi, Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc. 351 (1999),

3989–4026.

[3] P. Aluffi, MacPherson’s and Fulton’s Chern Classes of Hypersurfaces, I.M.R.N. (1994), 455–
465.

[4] P. Aluffi, Characteristic classes of discriminants and enumerative geometry, Comm. in Alg.

26(10) (1998), 3165–3193.
[5] J.-P. Brasselet, D. Lehmann, J. Seade, T. Suwa, Milnor classes of local complete intersections,

Trans. Amer. Math.Soc. 354 (2002), 1351–1371.
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