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PAOLO ALUFFI

Preface. These five lectures aim to explain an algebro-geometric approach to the
study of different notions of Chern classes for singular varieties, with emphasis on
results leading to concrete computations.

The notes are organized so that every page deals with essentially one topic (a device
which I am borrowing from Marvin Minsky’s “The Society of Mind”). Every one of
the five lectures consists of five pages.

My main goal in the lectures was not to summarize the history or to give a complete,
detailed treatment of the subject; five lectures would not suffice for this purpose, and
I doubt I would be able to accomplish it in any amount of time anyway. My goal was
simply to provide enough information so that interested listeners could start working
out examples on their own. As these notes are little more than a transcript of my
lectures, they are bound to suffer from the same limitations. In particular, I am
certainly not quoting here all the sources that should be quoted; I offer my apologies
to any author that may feel his or her contribution has been neglected.

The lectures were given in the mini-school with the same title organized by Pro-
fessors Pragacz and Weber at the Banach Center. Jörg Schürmann gave a parallel
cycle of lectures at the same mini-school, on the same topic but from a rather differ-
ent viewpoint. I believe everybody involved found the counterpoint provided by the
accostment of the two approaches very refreshing. I warmly thank Piotr Pragacz and
Andrzej Weber for giving us the opportunity to present this beautiful subject.
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1. Lecture I

1.1. Cardinality of finite sets vs. Euler characteristic vs. Chern-Schwartz-
MacPherson classes. Let Fin denote the category of finite sets. I want to consider
a functor C from Fin to abelian groups, defined as follows: for S a finite set, C(S)
denotes the group of functions S → Z.

Note: we could see C(S) as the group of linear combinations
∑

V mV 11V , where V
runs over the subsets of S, mV ∈ Z, and 11V is the constant 1 on V and 0 in the
complement of V . We could even select V to be the singletons {s}, with s ∈ S, if we
wanted.

How do we make C into a functor? For f : S → T a map of finite sets, we have to
decide what C(f) does; and for this it is enough to decide what function T → Z

C(f)(11V )

should be, for every subset V ⊂ S; and for this, we have to decide the value of

C(f)(11V )(t)

for t ∈ T . Here is the definition:

C(f)(11V )(t) = #(f−1(t) ∩ V )

where # denotes ‘number of elements’. Exercise: this makes C into a functor.
This trivial observation is the source of equally trivial, but rather interesting prop-

erties of the counting function. Note that C({p}) = Z, and for the constant map
κ : S → {p},

C(κ)(11S) = #S .

So if S1, S2 are two subsets of S and S = S1 ∪ S2, thinking about the covariance for

S1 q S2 → S = S1 ∪ S2 → {p}
tells us that

#(S1 ∪ S2) = #S1 + #S2 −#(S1 ∩ S2) ;

and, more generally, the ‘inclusion-exclusion’ counting principle follows.
A much more remarkable observation is that the topological Euler characteristic

satisfies the same properties. If S admits a structure of CW complex, define χ(S) to
be the number of vertices, minus the number of edges, plus the number of faces, . . . .
Then whenever S1, S2, S all admit such a structure one verifies immediately that

χ(S1 ∪ S2) = χ(S1) + χ(S2)− χ(S1 ∩ S2) ;

and, more generally, an inclusion-exclusion principle for χ holds. So we could think
of the Euler characteristic as a ‘counting’ function.

The main character in these lectures will be ‘the next step’ in this philosophy: the
Chern-Schwartz-MacPherson class of a variety V , cSM(V ), will be an even fancier
analog of ‘counting’, in the sense that it will satisfy the same ‘inclusion-exclusion’
principle. In fact, the Euler characteristic will be part of the information carried by
the CSM class: for V a compact complex algebraic variety, χ(V ) will be the degree∫

cSM(V ) of cSM(V ), that is, the degree of the zero-dimensional part of cSM(V ). The
class cSM(V ) will live in a homology theory for V .

My emphasis will be: how do we concretely compute such classes?

But maybe the first question should be: what does ‘computing’ mean?
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1.2. Computer demonstration. Objection: we have not defined cSM(V ) yet, so
it is unfair to ask how to compute it. This is correct. However, I have defined the
topological Euler characteristic, so it is fair to ask: can we compute it now? Isn’t the
definition itself, as ‘vertices minus sides plus faces. . . ’, already a ‘computation’?

That depends. How would one use this in practice to compute the Euler charac-
teristic of the subscheme of P3 given by the ideal

(x2 + y2 + z2, xy − zw) ?

The point is that what it means to ‘compute’ something strictly depends on what
information one starts from. Of course if I start from a description of V from which
a triangulation is obtained easily, then the Euler characteristic can be computed just
as easily. As an algebraic geometer, however, I may have to be able to start off from
the raw information of a scheme; for example, from a defining homogeneous ideal
in projective space. And then? how do I ‘compute’ a CW-complex realization of
the support of a scheme starting from its ideal? In this sense, χ(V ) = #vertices –
#edges + . . . is not a ‘computation’: if I already knew so much about V as to be able
to count vertices, edges, etc. then I would not gain much insight about V by applying
this formula.

By contrast, here is what a computation is:

themis{aluffi}1: Macaulay2

Macaulay 2, version 0.9

--Copyright 1993-2001, D. R. Grayson and M. E. Stillman

--Singular-Factory 1.3b, copyright 1993-2001, G.-M. Greuel, et al.

--Singular-Libfac 0.3.2, copyright 1996-2001, M. Messollen

i1 : load "CSM.m2"

--loaded CSM.m2

i2 : QQ[x,y,z,w];

i3 : time CSM ideal(x^2+y^2+z^2,x*y-z*w)

3 2

Chern-Schwartz-MacPherson class : H + 4H

-- used 49.73 seconds

this tells me that the Chern-Schwartz-MacPherson class of that scheme is 4H2 +
H3 = 4[P1] + [P0] (once it is pushed forward into projective space); hence its Euler
characteristic is 1.

I will have accomplished my goal in these lectures if I manage to explain how this
computation is performed. As a preview of the philosophy behind the whole approach,
we will ‘divide and conquer’: split the information in the Chern-Schwartz-MacPherson
class into the sum of an ‘easy’ term (this will be what I will call the ‘Chern-Fulton’
class), and an ‘interesting’ one (usually called ‘Milnor class’) accounting specifically
for the singularities of the scheme.

‘Computing’ the Milnor class will be the most substantial part of the work. To
give an idea of how difficult it may be, here is a rather loose question:

Is there a natural scheme structure on the singularities of a given variety V , which
determines the Milnor class of V ?

To my knowledge, this is completely open! But it is understood rather well for
hypersurfaces of nonsingular varieties, so that will be my focus in most of my lectures.
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1.3. Chern-Schwartz-MacPherson classes: definition. Back to our ‘counting’
analogy. For V a variety, let C(V ) denote the abelian group of finite linear combina-
tions

∑
mW 11W , where W are (closed) subvarieties of V , mW ∈ Z, and 11W denotes

the function that is 1 along W , and 0 in the complement of W . Elements of C(V ) are
called ‘constructible functions’ on V . How to make C into a functor?

For f : V1 → V2 a proper function (so that the image of a closed subvariety is a
closed subvariety), it suffices to define C(f)(11W ) for a subvariety W of V1; so we have
to prescribe C(f)(11W )(p) for p ∈ V2. We set

C(f)(11W )(p) = χ(f−1(p) ∩W ) ,

in complete analogy with the counting case. Exercise: this makes C into a functor.
Now observe that there are other functors from the category of varieties, proper

maps to abelian groups. I will denote by A the Chow group functor. As a quick
reminder, A(V ) can be obtained from C(V ) by setting to zero

∑
mW 11W if there is

a subvariety U of V and a rational function ϕ on U such that the divisor of ϕ equals∑
mW [W ]. The equivalence corresponding to the subgroup generated by these con-

structible functions is called ‘rational equivalence’; A(V ) is the abelian group of ‘cycles
modulo rational equivalence’. It is a functor for proper maps under a seemingly less
interesting prescription: for f : V1 → V2 proper, simply set A(f)([11W ]) = d[11f(W )],
where d is the degree of f |W . The Chow group A(V ) should be thought of as a ‘ho-
mology’; indeed, there is a natural transformation A → H∗; in fact, A(V ) = H∗(V )
in many interesting case, e.g., V = Pn.

By construction there is a map C(V ) → A(V ); but the functors C andA do not have
so much to do with each other—this is easily seen not to be a natural transformation.

As a side remark, note however that even this naive recipe does define a natural
transformation on the associated graded functors GC ; GA (where the G is taken
with respect to the evident filtration by dimension); the objection is that this does
not lift to a natural transformation C ; A in the most obvious way.

Does it lift at all? If it does, does it lift in some particularly interesting way? Let
us assume that there is a lift, that is, a homomorphism c∗ : C(V ) → A(V ) for all V ,
satisfying covariance. What can we say a priori about it?

Just as we did when we were playing with finite sets, consider the constant map
κ : V → {p}. The covariance diagram would then say that∫

c∗(11V ) = χ(V ) .

So whatever c∗(11V ) is, its degree must be the Euler characteristic of V . This should
sound reminiscent of something. . . if for example V is nonsingular, what class canon-
ically defined on V has the property that its degree is χ(V )?

Answer: c(TV ) ∩ [V ] —in words, the ‘total homology Chern class of the tangent
bundle of V ’. By one of the many descriptions of Chern classes,

∫
c(TV )∩[V ] measures

the number of zeros of a tangent vector field on V , counted with multiplicities; this
is χ(V ), by the Poincaré-Hopf theorem.

So we could make an educated guess: maybe a natural transformation c∗ does
exist, with the further amazing property that c∗(11V ) equals c(TV )∩ [V ] whenever V
is nonsingular.

This was conjectured by Pierre Deligne and Alexandre Grothendieck, and an ex-
plicit construction of c∗ was given by Robert MacPherson ([Mac74]).

Definition. cSM(V ) := c∗(11V ) is the ‘Chern-Schwartz-MacPherson class’ of V .
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1.4. Other classes: quick tour. Thus, Chern-Schwartz-MacPherson classes are
‘characteristic classes for singular varieties’, in the sense that they are defined for all
varieties and agree with the ordinary characteristic classes for nonsingular ones.

The definition of Chern-Schwartz-MacPherson classes I just gave is only partly use-
ful for computations, and does not hint at the subtleties of MacPherson’s construction.
Neither does it say anything about the subtleties of the alternative construction given
by Marie-Hélène Schwartz, which in fact predated MacPherson’s contribution (but to
my knowledge does not address the functorial set-up); see [BS81] and [Bra00].

MacPherson’s construction is obtained by taking linear combinations of another
notion of ‘characteristic class’ for singular varieties, also introduced by MacPherson,
and usually named ‘Chern-Mather class’.

To define these, assume the given variety V is embedded in a nonsingular variety
M . We can map every smooth v ∈ V to its tangent space TvV , seen as a subspace of

TvM ; this gives a rational map V 99K Grass(dim V, TM). The closure Ṽ of the image
of this map is called the Nash blow-up of V . It comes equipped with a projection ν
to V , and with a tautological bundle T inherited from the Grassmann bundle. Since
T ‘agrees with’ TV where the latter is defined, it seems a very sensible idea to define
a characteristic class by

cMa(V ) = ν∗(c(T ) ∩ [Ṽ ]) .

(Exercise: this is independent of the ambient variety M .) This is the Chern-Mather
class. It is clear that if V is nonsingular to begin with, again cMa(V ) = c(TV ) ∩ [V ].
Still, cMa(V ) 6= cSM(V ) in general. MacPherson’s natural transformation can be
defined in terms of Chern-Mather classes; we’ll come back to this later.

There are other sensible ways to define ‘characteristic classes’ for singular varieties—
in fact, for arbitrary schemes. A seemingly very distant approach leads to classes
known as (Chern-)Fulton and (Chern-)Fulton-Johnson classes. Both of these are de-
fined as c(TM)∩S(V, M), where again we are embedding V in a nonsingular ambient
M , and S(V, M) is a class capturing information about the embedding.

—For Fulton classes, S(V, M) is the Segre class of V in M . These will be very
important in what follows, so I’ll talk about them separately.

—For Fulton-Johnson classes, S(V, M) is the Segre class of the conormal sheaf of
V in M .

If I is the ideal of V in M , the conormal sheaf of V in M is the coherent sheaf
I/I2; that is, I restricted to V (I mean: tensored by OV = OM/I). To think about
the Segre class of a coherent sheaf F on V , consider the corresponding ‘linear fiber

space’ Proj(SymF)
p→ V ; this comes with an invertible sheaf O(1), and we can set

s(F) = p∗c(O(−1))−1 ∩ [Proj(SymF)] .

So Fulton-Johnson classes capture, up to restricting to V and standard intersection-
theoretic manouvers, the Symmetric algebra of I.

What do Fulton classes capture? Exactly the same kind of information, but for the
Rees algebra rather than the Symmetric algebra. This is not a minor difference in
general, but it is completely invisible if I is (locally) a complete intersection.

Important example. If V is a hypersurface in a nonsingular variety M (or more
generally a local complete intersection) then both Fulton and Fulton-Johnson classes
yield c(TM)c(NMV )−1 ∩ [V ]. If V is nonsingular, this is automatically c(TV ) ∩ [V ].

The main point here is that, at least when V is a local complete intersection, these
classes are ‘easier’ than the functorial Chern-Schwartz-MacPherson classes.

So you may hit upon the idea of trying to relate the two.
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1.5. Preliminaries: Segre classes. Segre classes will show up often (they already
have), and it will be important to have a certain technical mastery of them. If V is a
proper closed subscheme of M , the Segre class of V in M is the element of AV (the
Chow group of V characterized by the following two requirements:

• if V ⊂ M is a regular embedding, then s(V, M) = c(NV M)−1 ∩ [V ];
• if π : M ′ → M is a proper birational map, and p : π−1(V ) → V is the

restriction of π, then p∗s(π−1V, M ′) = s(V, M).

These are enough to define s(V, M) in any circumstance, since by the second item we
can replace M with the blow-up of M along V , and V by the exceptional divisor in
the blow-up; this is regularly embedded, so the first item clinches the class.

In fact this argument reduces the computation of a Segre class s(V, M) to the
computation when V is a hypersurface of M , that is, it is locally given by one equation.
The shorthand for the Segre class is then

s(V, M) =
[V ]

1 + V
,

by which one means the sum (1− V + V 2 − V 3 + . . . ) ∩ [V ] = V − V 2 + V 3 − . . . .
Often one can use this in reverse.
Example. Consider the second Veronese embedding of P2 in P5. The hyperplane

H in P5 restricts to twice the hyperplane h in P2. Standard sequences lead to the
following computation of the Segre class of v2(P2) in P5:

s(v2(P2), P5) =
(1 + h)3

(1 + 2h)6
∩ [P2] = [P2]− 9[P1] + 51[P0] .

Now let P̃5 be the blow-up of P5 along the Veronese surface, and let E be the excep-

tional divisor. The birational invariance of Segre classes then says that s(E, P̃5) must
push-forward to s(v2(P2), P5); that is,

E − E2 + E3 − E4 + E5 7→ [P2]− 9[P1] + 51[P0] .

This is enough information to determine the Chow ring of the blow-up. Interpreting
P5 as the P5 of conics, then a standard game in enumerative geometry would compute
the number of conics tangent to five conics in general position as

(6H − 2E)5 = 7776− 2880 · 4 + 480 · 2 · 9− 32 · 51 = 3264 .

(Exercise: make sense out of this!) In fact, Segre classes provide a systematic frame-
work for enumerative geometry computation; but this is of relatively little utility, as
Segre classes are in general extremely hard to compute.

Why? Because blow-ups are hard to compute. If I is the ideal of V in M , ‘com-
puting’ the blow-up of M along V amounts to realizing

Proj(ReesI) = Proj(O ⊕ I ⊕ I2 ⊕ I3 ⊕ . . . ) :

this isn’t easy.
One way to do this in practice is to see V as the vanishing of a section of a vector

bundle on M : s : M → E; then it is not hard to show that the blow-up of M
along V is the closure of the image of M in P(E) by the induced rational section
s : M 99K P(E). Then the line bundle of the exceptional divisor is the restriction of
the tautological O(−1) from P(E). We will use this remark later on.

For applications of Segre classes to enumerative geometry, see [Ful84], Chapter 9
(and elsewhere).



6 PAOLO ALUFFI

2. Lecture II

2.1. (Chern-)Fulton classes vs. (Chern-)Fulton-Johnson classes. I would like
to look at a simple example to explore the difference between the Chern-Fulton and
Chern-Fulton-Johnson business.

Consider the planar triple point S with ideal I = (x2, xy, y2) in the affine plane A2.
For such an object we can be most explicit.

First of all, I is dominated by k[x, y]⊕3:

k[x, y]〈s, t, u〉 → I → 0 ,

sending s 7→ x2, t 7→ xy, u 7→ y2. Tensoring by k[x, y]/I:

(k[x, y]/I)〈s, t, u〉 → I/I2 → 0 ,

with the same prescriptions for the map. The kernel is computed to be (xt−ys, xu−
yt). Thus Proj(SymI/I2) is defined by the ideal (xt − ys, xu − yt) in the product
S × P2. Now if I believe Macaulay2, taking primary decomposition here gives me
(x, y)∩ an embedded component. That is, Proj(SymI/I2) is the reduced P2 inside
the (nonreduced) S × P2. The Fulton-Johnson class is then 1 times the class of the
point supporting S.

What about Chern-Fulton? To obtain the Segre class of S in A2, blow-up A2 along
S. We can fit the blow-up in A2 × P2, and a bit of patience gives its ideal:

(xt− ys, xu− yt, su− t2) .

Note the extra generator! That is the difference between the Rees algebra of I,
computed here, and the Symmetric algebra, which is what comes up in the Fulton-
Johnson computation. The exceptional divisor of the blow-up is the intersection
of the blow-up with S × P2 (the same S × P2 as before!), and taking the primary
decomposition again shows it is S×a conic in P2.

It’s completely different: it was a P2 before, it is a curve now. Its degree is 2×2 = 4,
so the Chern-Fulton class is 4 times the class of the point.

Remark. Taking away the extra generator xy leaves the multiple point (x2, y2),
a complete intersection. It is a fact that this does not change the Chern-Fulton class
(because xy is integral over this ideal); on the other hand, Chern-Fulton and Chern-
Fulton-Johnson agree for complete intersections, so they must both give 4 times the
class of the point in this case. Exercise: verify this explicitly.

One moral to be learned from such examples is that classes such as Chern-Fulton
or Chern-Fulton-Johnson are extremely sensitive to the scheme structure. This is
important for me, since I am aiming to develop a tool that can do computations
starting from an arbitrary ideal. On the other hand, no scheme considerations have
entered the discussion of Chern-Schwartz-MacPherson or Chern-Mather classes.

To cover such cases, I will simply declare that the Chern-Schwartz-MacPherson
class of a possibly non-reduced scheme is the class of its support. This turns out to
be computationally convenient, but it is not arising from any ‘functoriality’ consider-
ations.
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2.2. Segre classes again: inclusion-exclusion. In view of the considerations that
took us here, we may now want to ask: are classes such as Chern-Fulton or Chern-
Fulton-Johnson classes also a fancy form of ‘counting’? That is, do they satisfy
‘inclusion-exclusion’?

Since the difference between these classes and Segre classes is a common factor
(c(TM)∩), the question for Fulton classes is equivalent to: do Segre classes satisfy
inclusion-exclusion?

Example. Take V = the union of two distinct lines L1, L2 in the projective plane.
Then s(V, P2) = 1

(1+2H)
∩ [V ] = [L1] + [L2] − 4[pt], with hopefully evident notations.

On the other hand, s(Li, P2) = [Li]− [pt]. Thus

s(L1, P2) + s(L2, P2)− s(V, P2) = 2[pt] 6= s(L1 ∩ L2, P2) .

In other words, inclusion-exclusion fails miserably for Segre classes, on the very first
example one may try.

Is there a way out? Actually yes, [Alu03c]; it is completely trivial, and I didn’t
notice it for many years. The remark is that variations on the definition of Segre
classes do tend to satisfy inclusion-exclusion.

This follows immediately from 8th grade algebra. The simplest case, which is also
the only one I need in what follows, goes like this:

R1 + E

1 + R1 + E
+

R2 + E

1 + R2 + E
− R1 + R2 + E

1 + R1 + R2 + E
− E

1 + E

=
R1R2(2 + R1 + R2 + 2E)

(1 + R1 + E)(1 + R2 + E)(1 + R1 + R2 + E)(1 + E)

How can this possibly say something useful? Assume X1, X2 are effective Cartier
divisors in an ambient scheme M , and Y = X1∩X2 (scheme-theoretically, of course).
Blow-up M along Y , and let E be the exceptional divisor. Then, by our definition of

Segre classes, s(Y,M) = p∗
[E]

1+E
, where p is the blow-up map. On the other hand, p∗Xi

will consist of E and of a proper transform Ri (‘residual’). Note that R1R2 = 0, since
the proper transforms do not meet (this is why I am stressing that the intersection

must be ‘scheme-theoretic’). Further, by the projection formula, p∗
[Ri+E]

1+Ri+E
= [Xi]

1+Xi
=

s(Xi, M). That is, 8th grade algebra says

s(Y, M) = s(X1, M) + s(X2, M)− p∗
[R1] + [R2] + [E]

1 + R1 + R2 + E
:

something very close to inclusion-exclusion. The funny term

p∗
[R1] + [R2] + [E]

1 + R1 + R2 + E

is where one would expect ‘the class of the union’; this would instead equal

p∗
[R1] + [R2] + 2[E]

1 + R1 + R2 + 2E
.

My point of view is that inclusion-exclusion does works for Segre classes once one
takes care to correct them adequately for (something like) multiple contributions of
subsets. The case I just illustrated (which generalizes nicely to arbitrarily many Xi of
any kind. . . ) is one way to correct the classes. We will run into another one later on.
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2.3. Remark on notations. Before massaging the formula we just obtained into
something yielding any readable information, I must introduce two simple notational
devices.

These concern rational equivalence classes in an ambient scheme M , which I will
now assume to be pure-dimensional. The notations are best written by indexing the
classes by codimension: so I will write a class A ∈ AN as A =

∑
i≥0 ai, denoting by

ai the piece of A of codimension i. Then I will let

A∨ =
∑
i≥0

(−1)iai ,

and I will sloppily call this the ‘dual’ of A. Note that the notation hides the ambient
space, which may sometime lead to confusion. The rationale for the notation is simple:
if E is a vector bundle on M , or more generally a class in the K-theory of vector
bundles, then with this notation one simply has

(c(E) ∩ A)∨ = c(E∨) ∩ A∨ .

The second piece of notation is similar, but a bit more interesting. Let L be a line
bundle on M . I will let

A⊗ L =
∑
i≥0

ai

c(L)i
.

This also hides the ambient M ; when necessary, I subscript the tensor: ⊗M . But in
these lectures all tensors will be in the ambient variety.

The rationale for the second notation is similar to the first: if E is a class in
K-theory and of rank 0, then one can check that

(c(E) ∩ A)⊗ L = c(E ⊗ L) ∩ (A⊗ L) .

Watch out for the ‘rank 0’ part!
Of course the notation A⊗L suggests an ‘action’, and this is easy to verify: if M

is another line bundle, one checks that

(A⊗ L)⊗M = A⊗ (L ⊗M) .

Also, (A⊗ L)∨ = A∨ ⊗ L∨.
All these observations are simple algebra of summations and binomial coefficients;

they are useful insofar as they compress complicated formulas into simpler ones by
avoiding

∑
’s and elementary combinatorics.

Here is an example of such manipulations, which I will need in a moment.

−E

1 + X − E
=

(
E

1 + E −X

)∨

= (E ⊗O(E −X))∨ = ((E ⊗O(E))⊗O(−X))∨

=

(
E

1 + E
⊗O(−X)

)∨

=

(
E

1 + E

)∨

⊗O(X) .
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2.4. Key example. Let’s go back to the ‘inclusion-exclusion’ formula we obtained
a moment ago:

s(Y,M) = s(X1, M) + s(X2, M)− p∗
[R1 + R2 + E]

1 + R1 + R2 + E
.

Here we had Y = X1 ∩X2, where X1, X2 are hypersurfaces; and E is the exceptional
divisor of the blow-up along Y , Ri the proper transform of Xi. Assuming that the
ambient M is nonsingular, and capping through by c(TM), gives

cF(Y ) = cF(X1) + cF(X2)− c(TM) ∩ p∗
[R1 + R2 + E]

1 + R1 + R2 + E
,

where cF denotes Chern-Fulton class.
Now assume X1, X2, and Y are nonsingular. Then cF = cSM, since both equal the

classes of the tangent bundle. That is:

cSM(Y ) = cSM(X1) + cSM(X2)− c(TM) ∩ p∗
[R1 + R2 + E]

1 + R1 + R2 + E

in this extremely special case. On the other hand, cSM satisfies inclusion-exclusion on
the nose:

cSM(Y ) = cSM(X1) + cSM(X2)− cSM(X1 ∪X2) .

The conclusion is that if X1, X2 are transversal nonsingular hypersurfaces in a non-
singular ambient variety M , and X = X1 ∪X2, then

cSM(X) = c(TM) ∩ p∗
[R1 + R2 + E]

1 + R1 + R2 + E
.

Let’s work on the funny piece [R1+R2+E]
1+R1+R2+E

in this formula. First, Ri + E stands for

(the pull-back of) Xi; so we can rewrite this as [R1+R2+E]
1+R1+R2+E

= [X−E]
1+X−E

. Next, another
bit of 8th grade algebra:

[X − E]

1 + X − E
=

X

1 + X
+

1

1 + X
· −E

1 + X − E

Using the example from the previous section:

−E

1 + X − E
=

(
E

1 + E

)∨

⊗O(X)

Put everything together and use the projection formula:

cSM(X) = c(TM) ∩ p∗

(
X

1 + X
+

1

1 + X
·
((

E

1 + E

)∨

⊗O(X)

))
= c(TM) ∩

(
s(X, M) +

1

1 + X
· (s(Y, M)∨ ⊗O(X))

)
.

Now we are back in M : everything relating to the blow-up has been absorbed into
terms in the original ambient space. We may also note that c(TM)∩s(X, M) = cF(X),
so that what we are really saying is that

cSM(X) = cF(X) + c(TM) ∩
(

1

c(O(X))
· (s(Y, M)∨ ⊗O(X))

)
.

We have proved that this holds if X is the union of two nonsingular hypersurfaces in
a nonsingular variety M , meeting transversally along Y .
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2.5. Main theorem. That is a reasonably pretty formula, but how do we interpret
it in more ‘intrinsic’ terms? ‘What is’ Y = X1 ∩X2, in terms of X = X1 ∪X2, when
X1 and X2 are nonsingular and transversal?

Working locally, suppose (Fi) is the ideal of Xi. Then X has ideal (F1F2). The
‘singularity subscheme’ of a hypersurface with ideal (F ) is the scheme defined by the
ideal (F, dF ), where dF is shorthand for the partial derivatives of F . It is clear that
this scheme is supported on the singular locus of X; the specified ideal gives it a
scheme structure (it is easy to see that this structure patches on affine overlaps).

For our X, this ideal would be

(F1F2, F1dF2 + F2dF1) .

It is clear that this is supported on Y = X1∩X2, since X1 and X2 are nonsingular. But
in fact we are asking X1 and X2 to be transversal: thus dF1 and dF2 are independent
at every point of Y . Hence the ideal of the singularity subscheme is (F1F2, F1, F2) =
(F1, F2) : that is, precisely the ideal of X1 ∩ X2 = Y . In other words, Y is the
singularity subscheme of X in this case.

Therefore, we can rephrase the formula we have obtained above: if X is a (very
special) hypersurface in a nonsingular ambient variety M , and Y is the singularity
subscheme of X, then

cSM(X) = cF(X) + c(TM) ∩
(

1

c(O(X)
· (s(Y, M)∨ ⊗O(X))

)
.

Theorem 2.1. This formula holds for every hypersurface in a nonsingular variety.

This is the main result of the lectures: everything else I can say is simply a variation
or restatement or application of this theorem.

Many proofs are known of this statement, and I will review some of them in the
next lecture. The first proof, going back to 1994 ([Alu94]), proved this formula over
C and in a weak, ‘numerical’ sense. The formula is in fact true in the Chow group
of X, and over any algebraically closed field of characteristic 0 (the theory of CSM
classes extends to this context, by work of Gary Kennedy, [Ken90]).

The 1994 proof is instructive in the sense that it clarifies what kind of information
the difference cSM(X)− cF(X) carries. Read the term of dimension 0:∫

cSM(X)− cF(X) = χ(X)− χ(Xg) ,

where
∫

cSM(X) = χ(X) as we have seen, and Xg stands for a general, nonsingular
hypersurface in the same rational equivalence class as X (should there be one). It
is well-known (see for example [Ful84], p.245-246) that if the singularities of X are
isolated then this difference is (up to sign) the sum of the Milnor numbers of X.
Adam Parusiǹski ([Par88]) defines an invariant of (not necessarily isolated) hyper-
surface singularities by taking it to be this difference in general. On the other hand,
I had obtained a formula for Parusiǹski’s number in terms of the Segre class of the
singularity subscheme of X ([Alu95]). A bit of work using the funny ⊗ notations
shows then that the Theorem holds for the dimension 0 component of the class. The
numerical form can be obtained by reasoning in terms of general hyperplane sections.

Because of this history, it makes sense to call the difference cSM(X) − cF(X) the
‘Milnor class’ of X (up to sign, depending on the author). I do not think Milnor has
been informed. . .
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3. Lecture III

3.1. Main theorem: Proof I. I would like to review some of the approaches de-
veloped in order to prove the formula for the Milnor class of a hypersurface X in a
nonsingular variety M :

cSM(X)− cF(X) = c(TM) ∩
(
c(O(X))−1 ∩ (s(Y,M)∨ ⊗O(X))

)
.

The first one ([Alu99a]) is rather technical, but has the advantage of working over an
arbitrary algebraically closed field of characteristic 0, and for arbitrary hypersurfaces
(allowing multiplicities for the components).

The idea is the following. It would of course be enough to show that the class
defined by

c?(X) = cF(X) + c(TM) ∩
(
c(O(X))−1 ∩ (s(Y,M)∨ ⊗O(X))

)
is covariant in the same sense as the CSM class. This would be very nice, but I have
never quite managed to do it directly.

Using resolution of singularity, however, it is enough to prove a weak form of
covariance, and this can be done. Specifically:

• if X is a divisor with normal crossings and (possibly multiple) nonsingular
components, then c?(X) = cSM(X);

• if π : M̃ → M is a blow-up along a nonsingular subvariety of the singular
locus of X, then π∗c?(π

−1X) = c?(X) + π∗cSM(π−1X)− cSM(X).

Indeed, by resolution of singularities one can reduce to the normal crossing case after
a number of blow-ups; then c? and cSM agree there, by the first item; and as they
map down each step of the resolution, c? and cSM change in the same way, so they
must agree for X. Note that this forces us to work with nonreduced objects!

The proofs of the two listed properties are rather technical. The first one in the
reduced case boils down to the following: if X = X1 ∪ · · · ∪Xr is a reduced divisor
with normal crossings and nonsingular components, with singularity subscheme Y ,
then

s(Y, M) =

((
1− c(L∨)

c(L∨
1 ) · · · c(L∨

r )

)
∩ [M ]

)
⊗ L

where L = O(X) and Li = O(Xi). Proof: induction, and properties of ⊗.

The other item is more interesting. If M̃ is obtained by blowing up M along a
nonsingular Z of codimension d, one is reduced to showing that

π∗c?(π
−1(X)) = c?(X) + (d− 1)c(TZ) ∩ [Z] .

This should be much easier than it is! After a number of manipulations, one is led to
transferring the question to within the bundle P(π∗P1

ML ⊕ P1fML), where P1 denotes
‘principal parts’. I will return to these later on, so I won’t say much about them
here. Suffice it to say that there are two classes in this bundle, related to the blow-up

of M along the singularity subscheme Y of X, and to the blow-up of M̃ along the
singularity subscheme of π−1(X). The statement is translated in a suitable triviality
of the difference between these two classes.

Once one phrases the problem in this manner, one sees right away what is the most
natural tool to attack it: it’s the graph construction—maybe not surprisingly, since
this was the key tool in the original paper by MacPherson. Here it must be applied to
the graph of the ‘differential’ map π∗P1

ML → P1fML. Lots and lots of technical details
later, the needed relation is proved.
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3.2. Characteristic cycles. The proof I just surveyed was obtained in 1995-6, but
only found the glory of the printed page in 1999: the reason is simply that referees
did not like it at all. They pointed out that a different viewpoint would probably
yield a much shorter and more insightful proof.

That turned out to be correct. The key is to rephrase the whole question in terms
of characteristic cycles, a translation of the constructible function framework that
goes back to Claude Sabbah and yields a very powerful approach. The subject is
discussed at length in Lecture 3 of Jörg Schürmann’s lecture cycle.

Sabbah summarizes the situation very well, in the following quote from [Sab85]: la
théorie des classes de Chern de [Mac74] se ramène à une théorie de Chow sur T ∗M ,
qui ne fait intervenir que des classes fondamentales. The functor of constructible
functions is replaced with a functor of Lagrangian cycles of T ∗M (or its projec-
tivization P(T ∗M)); then the key operations on constructible functions become more
geometrically transparent, and this affords a general clarification of the theory. I can
recommend [Ken90] for a good treatment of cSM classes from this point of view.

I’ll summarize the situation here. Let M be a nonsingular variety. If V ⊂ M is
nonsingular, then we have a sequence

0 → T ∗
V M → T ∗M |V → T ∗V → 0

where T ∗
V M denotes the conormal bundle (or ‘space’) of V ; we view this as a subvariety

of the total space of T ∗M . If V is singular, do this on its nonsingular part, then close
it up in T ∗M to obtain its conormal space T ∗

V M . Linear combinations of cycles [T ∗
V M ]

(these are the classes fondamentales in Sabbah’s quote) form an abelian group L(M)
(L stands for ‘Lagrangian’).

Now go back to the Nash blow-up ν : Ṽ → V , with tautological bundle T . For
each p ∈ V we can define a number as follows:

EuV (p) =

∫
c(T ) ∩ s(ν−1(p), Ṽ ) .

This is the ‘local Euler obstruction’, a constructible function originally defined (in
a different way) by MacPherson in his paper. As it happens, these functions span
C(M), so we may use them to define a homomorphism Ch from C(V ) to L(V ): require
that Ch(EuV ) = (−1)dim V [T ∗

V M ]. The cycle Ch(ϕ) corresponding to a constructible
function ϕ is called its characteristic cycle. In particular, every subvariety V of M has
a characteristic cycle Ch(11V ): this is a certain combination of T ∗

V M and of conormal
spaces to subvarieties of V , according to the singularities of V .

Now all the ingredients are there. The original definition given by MacPherson for
the natural transformation c∗ is a combination of Chern-Mather classes, with coeffi-
cients determined by local Euler obstructions. A relatively straightforward computa-
tion shows that Chern-Mather classes can be computed in terms of conormal spaces.
The homomorphism C ; L is concocted so as to be compatible with this set-up. All
in all, we get an explicit expression for c∗:

c∗(ϕ) = (−1)dim M−1c(TM) ∩ π∗
(
c(O(1))−1 ∩ [PCh(ϕ)]

)
,

where π is the projection P(T ∗M) → M ([PP01], p.67).
The operation on the right-hand-side may look somewhat unnatural, but is on the

contrary the most direct way to deal with classes in a projective bundle; we may
come to this later. I call the whole operation (maybe up to some sign) casting the
shadow of Ch(ϕ). Thus, the Chern-Schwartz-MacPherson class of V is nothing but
the shadow of its characteristic cycle.
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3.3. Main theorem: proof II. In [PP01], Adam Parusiǹski and Piotr Pragacz give
a proof (in fact, two proofs) of a theorem which implies the formula for the difference
cSM(X) − cF(X) for X a hypersurface of a nonsingular variety M , at least in the
reduced case.

The proof is a clever interplay of certain constructible functions, which are very
close to the geometry of the hypersurface, and characteristic cycles in the sense of
the previous section. I’ll have to pass in silence the story concerning the interesting
constructible functions, but I want to expose the point of contact with [Alu99a].

The formula in [Alu99a] (writing L = O(X)):

cSM(X) = cF(X) + c(TM) ∩
(
c(L)−1 ∩ (s(Y,M)∨ ⊗ L)

)
writes the ‘hard’ part of cSM in terms of the Segre class of the singularity subscheme
Y of X. As we have seen previously, an equivalent formulation is in terms of the

exceptional divisor E of the blow-up M̃ of M along Y ; in fact, tracing the different
terms yields a rather pretty formula (Theorem I.3 in [Alu99a] works this out):

cSM(X) = c(TM) ∩ π∗

(
[X ′ − E]

1 + X ′ − E

)
,

where π is the blow-up map, and I am writing X ′ for the inverse image π−1(X).
Now I mentioned in one of the first sections that there is an efficient way to realize

a blow-up, when the center of the blow-up is the zero-scheme of a section of a vector
bundle. This is our situation: Y can be viewed as the zero-scheme of a section of
the bundle P1

ML which made its appearence above. This bundle fits a nice exact
sequence:

0 → Ω1
M ⊗ L → P1

ML → L → 0 ;

the section is obtained by combining the differential of a defining equation F for X
(in the Ω1 part) with F itself (in the cokernel). The ideal of this section is generated
by F and dF , hence it gives Y .

By the general blow-up story, then, M̃ lives in P(P1
ML). Further, the part over X

lives in the subbundle P(Ω1
M ⊗L), since the cokernel part of the section is 0 along X.

Further still, P(Ω1
M ⊗L) = P(T ∗M) since tensoring by a line-bundle just changes the

meaning of O(1).
Summarizing, we see that the cycle [X ′ − E] lives naturally in P(T ∗M), which is

the home of the characteristic cycle of X. Once one unravels notations, the operation
getting cSM(X) from [X ′ − E] turns out to match precisely the one getting c∗ from
the characteristic cycle.

In the end, and modulo another bit of 8th grade algebra, one sees that the main
formula is equivalent to the statement that [X ′ −E] be the characteristic cycle of X:
if X is a (reduced) hypersurface in a nonsingular variety M , then Ch(11X) = [X ′−E].

This framework offers a different way to prove the main formula. We have to
verify that Ch−1([X ′ − E]) is the constant function 1 on X. Unraveling local Euler
obstructions and using minimal general knowledge about Segre classes reduces the
statement to the equality∫

s(π−1(p), X ′ − E)

1 + X ′ − E
= 1 ∀p ∈ X

This can be checked directly, by a multiplicity computation. The details are in
[Alu00], a spin-off of [PP01].
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3.4. Differential forms with logarithmic poles. Yet another viewpoint on the
main formula comes from aiming to understand the class of the complement of X in
M rather than the class of X itself: after all,

c∗(11M\X) = c∗(11M)− c∗(11X) = (c(TM) ∩ [M ])− cSM(X) ,

so the information can be used to recover cSM(X). One price to be paid here is that
one gets cSM(X) as a class in the ambient variety M rather than on X itself; this is
common to other approaches, and there does not seem to be a way around it.

The observation is now that it is in fact straightforward to compute c∗(11M\X): it
turns out that this can be realized in a way somewhat similar to the computation of

Chern-Mather classes. That is, there is a blow-up M̃ of M and a vector bundle on M̃
whose (honest) Chern classes push forward to c∗(11M\X). Further, this can be done
even if X is not a hypersurface!

For this, blow-up X and resolve singularities, so as to obtain a variety π : M̃ → M
such that X ′ = π−1(X) is a divisor with normal crossing and nonsingular components.
Denote by X ′′ the support of X ′. Then there is an interesting locally free sheaf on

M̃ , denoted Ω1fM(log X ′′): over an open set U where X ′′ has ideal (x1 · · · · · xr) (where

x1, . . . , xn are local parameters), sections of Ω1fM(log X ′′) can be written

α1
dx1

x1

+ · · ·+ αr
dxr

xr

+ αr+1dxr+1 + · · ·+ αndxn :

that is, they consist of differential forms ‘with logarithmic poles’ along the components
of X ′′.

Claim. c∗(11M\X) = π∗(c(Ω
1fM(log X ′′)∨) ∩ [M̃ ]).

This is surprisingly easy, actually: put Ω1fM(log X ′′) in a sequence, then observe
that the resulting class satisfies enough ‘inclusion-exclusion’ as to be forced to agree
with the CSM class. Details are in [Alu99b]. The same remark was made by Mark
Goresky and William Pardon (a small lemma in [GP02]).

This is another case in which we have ‘computed’ something, but we are essentially
no wiser than before. A certain amount of detective work should be performed before
we can extract the information packaged in the Claim. I will summarize in the next
section what is involved in this work in the case of hypersurfaces. To my knowledge,
no one has tried the same for higher codimension varieties, although the Claim given
above works just as well.

I should add that it is not clear that the Claim may not be computationally useful as
is: I am told that embedded resolution of singularities has in fact been implemented,
and it should not be hard to compute the Chern class of an explicit vector bundle
and push-forward. This is another tempting project, waiting for a willing soul to
pursue it.
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3.5. Main theorem: proof III. How can we use differentials with logarithmic poles
to effectively compute cSM(X) for a hypersurface? ‘Effectively’ means: without re-
solving singularities.

The question is how to identify a bundle on M , and some operation on this bundle
that will yield the same classes as the projection of the Ω(log) sheaf as seen above.

The operation that works is again something reminiscent of Chern-Mather classes
of a variety V . Recall that these are defined as the projection of the classes of a

tautological bundle T from the Nash blow-up Ṽ
ν→ V . This bundle agrees with

ν∗TV when the latter is defined. In fact, the cotangent sheaf Ω1
V is always defined,

and by the same token must agree with T ∨ wherever ν is an isomorphism. We can
go one step further: there is in fact an onto morphism

ν∗ΩV → T ∨ → 0 ,

whose kernel is torsion on Ṽ . Thus, we can think (up to duals) of the Chern-Mather
operation as something done on the sheaf of differential forms of V to ‘make it locally
free modulo torsion’; and the Chern-Mather classes are obtained by mod-ing out the
torsion and taking ordinary Chern classes of what is left.

That can be done for every coherent sheaf F on V . The resulting class is called
the Chern-Mather class cMa(F), and has been studied by Marie-Hélène Schwartz a
while back and Micha l Kwieciński more recently ([Sch82] and [Kwi94]).

So the plan is to show that the push-forward of the classes of the Ω(log) sheaf
actually computes the Chern-Mather class of a sheaf that can be effectively described
in M . This works out, but is as usual rather technical. The sheaf on M is very
natural, given the data of a hypersurface X: I have already pointed out that X
determines a section

0 → OM → P1
ML

where L = O(X); tensoring by L∨ we have an injection

0 → L∨ → L∨ ⊗ P1
ML ;

define ΩX to be the sheaf (on M !) obtained as the cokernel of this map.

Claim. cMa(ΩX) = π∗(c(Ω
1fM(log X ′′)) ∩ [M̃ ]).

The obvious approach to proving this would be to construct a surjection from π∗ΩX

to the Ω(log) sheaf. I was not able to do this, but I was able to construct a locally
free sheaf onto which π∗ΩX maps: after blowing up further if necessary in order to
assume that Y ′ := π−1(Y ) is a Cartier divisor, one can show that there is a surjection

π∗ΩX → L∨ ⊗ π∗P1
ML

L∨ ⊗O(Y ′)
→ 0 ,

so one can aim to showing that

c

(
L∨ ⊗ π∗P1

ML
L∨ ⊗O(Y ′)

)
= c(Ω1fM(log X ′′)) .

This does work out—the key to it, after some standard set-up work, is again the
graph construction.

At the same time, the classes on the left-hand-side can be computed ‘formally’;
when one does this, the main theorem comes to light. So this gives another proof of
our main statement for hypersurfaces.

Can the same trick be used in higher codimension? I don’t know!
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4. Lecture IV

4.1. The higher codimension puzzle. Once more, here is the main theorem of
these lectures: if X is a hypersurface in a nonsingular variety M , then

cSM(X) = cF(X) + c(TM) ∩
(
c(O(X))−1 ∩ (s(Y,M)∨ ⊗O(X))

)
.

The next natural question is: what about higher codimension? can one remove the
hypothesis that X be a hypersurface?

In a very weak sense the answer is: yes, cf. the approach via differential forms with
logarithmic poles: the main formula there works for arbitrary X. But this doesn’t
teach us much, since we have almost no access to the resolution necessary in order
to apply that formula. One would want to have a statement that remains within M ,
just as the main formula given above.

The first natural step to take is to go from hypersurfaces to complete intersections,
or local complete intersections if one is brave. For the alternative viewpoints on
Milnor classes mentioned in the previous lecture this has been carried out, first by
Jean-Paul Brasselet et al., [BLSS02]; and now it is part of Jörg Schürmann powerful
theory. Schürmann’s work generalizes the approach by Parusiński and Pragacz in
the sense that it concentrates on the ‘interesting constructible functions’ mentioned
in the previous lecture; this is one of the main topics of Lecture 5 in Schürmann’s
cycle. One way to rephrase that approach is to view the Milnor class as arising from
a constructible function corresponding to vanishing cycles; as Schürmann explains,
this can be done for arbitrary complete intersections.

From this perspective, our ‘Main Theorem’ shows that for hypersurfaces the van-
ishing cycle information is essentially captured by the Segre class of the singularity
subscheme. This statement cries out for a generalization, but one is still lacking.

Thus, a puzzle remains for higher codimensions, even in the cases covered by these
approaches. For this, I must go back to a question I posed in one of the first sections:

Is there a natural scheme structure on the singularities of a given variety V , which
determines the Milnor class of V ?

The Milnor class is, up to sign, simply the difference cSM(X) − cF(X) (recall that
for local complete intersection Fulton and Fulton-Johnson classes agree, so this con-
vention is compatible with the one used by other authors in that context). The main
formula answers this puzzle for hypersurfaces: the Milnor class of a hypersurface X
is determined by the singularity subscheme of X, that is, the subscheme of X defined
by the partials of a defining equation.

It is very tempting to guess that a similar statement should hold for more general
varieties. Candidates for immediate generalizations of the ‘singularity subscheme’ are
not hard to find: for example, we could take the base scheme of the rational map from
V to its Nash blow-up. Still, I do not know of any formula that will start from this
scheme, perform an intersection-theoretic operation analogous to taking the Segre
class and manipulating the result, and would thereby yield the Milnor class of V .

Some comments on what may be behind such an operation will have to wait until
the last lecture. In this lecture I will leave the main philosophical question aside, and
use a brute-force apprach to obtain the information for higher codimension without
doing any new work at all.
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4.2. Segre classes: Inclusion-exclusion again. Brute force means: go back to
inclusion-exclusion considerations. I have already pointed out that a variation on the
definition of Segre class provides a notion that satisfies a certain kind of inclusion-
exclusion.

There happens to be another variation on the theme of a Segre class that satisfies
inclusion-exclusion. We can in fact force inclusion-exclusion down the throat of Segre
classes, by recasting the main formula (for hypersurfaces) as part of the definition.

Explicitly, define the SM-Segre class of a hypersurface X in a nonsingular variety
M , with singularity subscheme Y , to be

s◦(X, M) := s(X, M) + c(O(X))−1 ∩ (s(Y,M)∨ ⊗O(X)) ;

and for a proper subscheme Z of M , say

Z = X1 ∩ · · · ∩Xr ,

with Xi hypersurfaces, set

s◦(Z,M) :=
r∑

s=1

(−1)s−1
∑

i1<···<is

s◦(Xi1 ∪ · · · ∪Xis , M) .

Here Xi1 ∪ · · · ∪Xis is any hypersurfaces supported on the union.
There are a few points to be made here. The first is a formal exercise: check that

s◦(Z,M) satisfies inclusion-exclusion (so s◦(Z1 ∩ Z2, M) = s◦(Z1, M) + s◦(Z2, M) −
s◦(Z1 ∪ Z2, M), for a suitable Z1 ∪ Z2). The second point is more striking: this
definition should look extremely unlikely, due to the amazing range of choices involved
in it. What if I change the Xi to another collection of hypersurfaces cutting out Z?
(for example, what if I throw in a few inessential generators of the ideal of Z?) what if
at each stage in the

∑
I choose some other hypersurface supported on Xi1∪· · ·∪Xis?

What magic property of Segre classes ensures that this definition does not depend
on these choices?

I do not know! It must be something powerful indeed, but I have no clue as to its
true nature.

So how do I know that the definition of s◦(Z,M) really does not depend on the
choices leading to it? Simply because

cSM(Z) = c(TM) ∩ s◦(Z,M) .

Exercise: realize that this is completely obvious, modulo the main result. (The
impatient reader may look up [Alu03b], Theorem 3.1.)

One last, equally obvious, point: if I can compute s◦(X, M) for hypersurfaces, then
I can compute it for everything. There is nothing to this, but it has an important
implication: I have almost bypassed the higher codimension puzzle. The SM-Segre
class s◦(Z,M) stands to cSM(Z) in essentially the same way as the ordinary s(Z,M)
stands to cF(Z).

The qualifiers ‘almost. . . ’, ‘essentially. . . ’ are there for an important reason: as
defined, the class s◦(Z,M) lives in M , not in Z. After the fact I know that there
is a class on Z which agrees with s◦(Z,M) after push-forward to M , but in terms
of computations I won’t be able to squeeze the class down to its proper place. In
fact, this seems to be another puzzle about the definition that must go back to some
mysterious and powerful property of Segre classes.

In any case, these considerations force me to shift my aim a little, and focus on
computing the push-forward of cSM(Z) to the ambient variety M . This seems to be
the most natural question at this point.
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4.3. Putting together the algorithm. At this point the algorithm behind the
Macaulay2 code I showed in action in the first lecture should have few secrets left.
Suppose you can compute Segre classes in some ambient space M ; then formal ma-
nipulations (8th grade algebra again) will allow you to compute s◦(Z,M). For this,
you will need to

• obtain a set of hypersurfaces cutting out Z (for example, a homogeneous ideal
for Z if M = Pn);

• for each subset S of this set, compute the singularity subscheme YS of the
union XS of the hypersurfaces in S;

• compute the ordinary Segre class of Y , and use it to obtain s◦(XS, M);
• put all the information together and obtain s◦(Z,M).

Obtaining cSM(Z) from s◦(Z,M) is trivial, as pointed out in the previous section.
In short: if you are able to compute ordinary Segre classes, then you can compute

Chern-Schwartz-MacPherson classes. This means that after all this work we are
back to the very beginning: how to compute Segre classes? as I mentioned in the
first lecture, this is in general a very hard problem.

Since the actual implementation of the algorithm works in M = Pn, it is worth
rewriting the main formula for hypersurface in this case. So let X be a hypersurface
in Pn; then O(X) = O(d + 1), where d = deg X − 1 (the shift makes some other
formulas a little more pleasant). If F ∈ k[z0, . . . , zn] is a homogeneous polynomial
defining X, then the singularity subscheme Y of X is defined by taking the ideal
( ∂F

∂z0
, . . . , ∂F

∂zn
) (by Euler’s formula, this contains F ). So we may see Y as a zero of a

section
Pn → O(d)n+1 :

again our trick to realize a blow-up tells us what to do—the blow-up of Pn along Y
is the closure of the graph of the induced rational map

Pn 99K Pn .

Let Γ ⊂ Pn × Pn be this closure. Denote by H, K respectively the pull-backs of the
hyperplane class from the first, resp. second factor. As Γ is a class of dimension n, it
is determined by the (n + 1) coefficients in

[Γ] = g0K
n + g1HKn−1 + · · ·+ gnH

n .

Claim. The push-forward of cSM(X) to Pn is

(1 + H)n+1 −
n∑

d=0

gd (−H)d(1 + H)n−d

as an element of Z[H]/(Hn+1) = APn.
This is of course no more and no less than the main theorem again. The switch

from s(Y,M) to the information about Γ is something that has to do with Segre
classes, so I’ll talk about it separately. Everything else is 8th grade algebra, and is
explained more in detail in [Alu03a].
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4.4. Segre classes in projective space: concrete computations. We are back
to Segre classes, and how to compute them in practice. We have already seen where
the main information will be, but it only takes a moment to repeat the set-up more
in general.

So let Z be a proper subscheme of Pn, with homogeneous ideal (f0, . . . , fr). We
may assume all generators have the same degree: indeed, otherwise we can multiply
a generator of lower degree by powers of all homogeneous coordinates and bring its
degree up.

This realizes Z as the zero-scheme of a section of O(d)r+1, for some d. Once more,
the blow-up of Pn along Z will simply be the closure Γ of the graph of the rational
map

Pn 99K P(O(d)r+1) = Pn × Pr → Pr

defined by the fi’s.
Incidentally, it is not conceptually hard (but computationally very demanding) to

compute equations for Γ. The key step is performed by elimination theory, a slow
but well understood process. It is easy to instruct Macaulay2 to do this.

As before, the class [Γ] is determined by the (n + 1) numbers gi for which

[Γ] = g0K
r + g1K

r−1H + g2K
r−2H2 + · · · :

these can be viewed as obtained by intersecting Γ with general copies of the hyperplane
K, then pushing forward to Pn and computing degrees. Again, a tool like Macaulay2
can perform these operations.

How do we reconstruct the Segre class s(Z, Pn) (or rather its push-forward to Pn)
from these numbers? Assemble them together into a class G = g0 + g1H + g2

2H
2 + . . .

in APn.
Claim. The push-forward of s(Z, Pn) is 1− c(O(dH))−1 ∩ (G⊗O(dH)).

To see this, write s(Z, Pn) as the push forward of [E]
1+E

from Γ, where E is the
exceptional divisor in the blow-up. The class of E is the hyperplane class in Pn×Pr =
P(O(dH)r+1): chasing classes around shows that we need the push-forward of

[dH −K]

1 + dH −K
.

And this game should now look familiar. Omitting evident notations (using the
projection formula, etc.):

dH −K

1 + dH −K
= 1− 1

1 + dH −K
= 1− 1

1 + dH
· 1 + dH

1 + dH −K

= 1− c(O(dH))−1

(
1

1−K
⊗O(dH)

)
= 1− c(O(dH))−1 · (G⊗O(dH))

since 1
1−K

= (1+K +K2 + . . . ) does precisely what it should (intersect Γ with higher
and higher powers of K to get the components of G).

It is not hard to instruct Macaulay2 to perform these operations (see [Alu03a])
although computation time takes off exponentially, making any serious application
impractical at the moment.



20 PAOLO ALUFFI

4.5. ‘Almost unrelated’ example: enumerative geometry. The most immedi-
ate application of an algorithm computing Segre classes would be enumerative geom-
etry. This is not immediately related to characteristic classes of singular variety (but
see the next lecture), but it is quite a bit of fun. So here is a simple example which
is actually within reach of the Macaulay2 routine. I am taking this almost verbatim
from [Alu03a].

The enumerative question has to do with configurations of point on P1, and is a
baby version of a much harder question in P2. The harder question is: how many
translations of a given curve in P2 contain 8 general points?

Why 8? because ‘translation’ means ‘in the same PGL(3) orbit’, and PGL(3) has
dimension 8; so it is natural to expect that the orbit should have dimension 8, and
that 8 conditions should determine a finite number.

Why is this interesting? For example, for a general plane quartic the answer is
the degree of the rational map from a general P6 inside the P14 of quartics to M3.
More generally, the question should be seen as an ‘isotrivial’ variation on the Gromov-
Witten invariants theme.

It is a little harder to defend why the analogous question should be interesting
in dimension 1; but it is in fact of some interest in representation theory, and it is
a good warm-up case for the harder question. In P1, the question becomes: how
many PGL(2) translates of a given configuration of points (allowing and counting
multiplicities) contain 3 points in general position?

The question translates easily into an intersection question in the P3 of 2 × 2
matrices: if (F (s : t)) is the ideal defining the ‘configuration of points’, then the
condition that a translate contains the point p is written F (ϕ(p)) = 0, where ϕ varies
in P3. This is a certain surface, and we are after ‘honest’ intersections of three general
such surfaces.

The matter of ‘honesty’ has to do with the fact that if ϕ is a matrix whose image
is a zero of F , then F (ϕ(p)) = 0 no matter what p is. That is, the intersection of any
number of surfaces of the type we are considering contains a certain ‘base scheme’ S,
of which it is not hard to compute the ideal in any given case. The intersections we
want to compute are those that are not contained in S.

In fact, we know what the ‘total intersection number’ of three surfaces should be:
if d is the degree of F , then the surfaces have degree d, so by Bézout’s theorem
three of them meet at d3 points, counting multiplicities. The question is, what is the
contribution of S to this number?

Fulton-MacPherson’s intersection theory give a neat answer: the contribution is∫
(1 + dH)3 ∩ s(S, P3) .

Thus if we can compute the Segre class of S in P3 then we can answer our enumer-
ative question. I tried this for the specific F = s(s + 3t)2(s + 5t)(s + 16t), letting
the characteristic of the ground field vary. For example, this collapses to two points
over F2, it’s three points with multiplicities 3, 1, 1 over F3, etc. My Macaulay2 rou-
tine can compute these Segre classes in (very) small characteristic, and the result
matches precisely the general formula I had obtained with Carel Faber a long time
ago ([AF93]).

I must add that this is really an extremely small example. We would need comput-
ers millions of times larger and faster than the ones we have, in order to solve serious
enumerative questions this way.
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5. Lecture V

5.1. Multiplicity of discriminants. I would now like to talk about a few items that
are somewhat loosely related with characteristic classes of singular varieties. They
are all rather concrete questions, so they should serve as ‘after-the-fact motivation’.

I’ll begin with a very concrete computation. Consider the space of plane curves

of degree d: a projective space PN , with N = d(d+3)
2

. In this projective space there
is a discriminant hypersurface D, consisting of all singular plane curves. If X is a
singular curve, then I can think of it as a point of D. What is the multiplicity of the
hypersurface D at the point X?

It has been known for a long time that if X has no multiple components then the
multiplicity is simply the sum of the Milnor numbers of X. So this has the potential
of having to do with Milnor classes, and characteristic classes of singular variety. . .

It is in fact very easy to give a formula for this multiplicity. The hypersurface D
can be realized as the projection from P2×PN of a locus D′ of codimension 3; and in
fact equations for this locus are nothing but the 3 partial derivatives of the generic
homogeneous polynomial of degree d in the homogeneous coordinates P2. Denoting by
H, K respectively the hyperplane classes in P2 and PN , each derivative is a polynomial
of class (d− 1)H + K, so the normal bundle of D′ has class (1 + (d− 1)H + K)3.

Now we want the multiplicity mXD of X in D. Segre classes compute multi-
plicities: s(X, D) = mXD[X]. Segre classes are birational invariants, so s(X, D) =
π∗s(π−1X, D′), where π : D′ → D is the projection. Capping with the classes of the
ambient gives the intrinsic Fulton class, hence: c(TD′) ∩ s(π−1X, D′) = cF(π−1X) =
c(TP2 × PN) ∩ s(π−1X, P2 × PN) or in other words

s(π−1X, D′) = (1 + (d− 1)H + K)3 ∩ s(π−1X, P2 × PN) .

There is more: π−1X is manifestly the singularity subscheme Y of X, and it sits in a
fiber P2 so its Segre class does not depend on the PN factor (another consequence of
the fact that Fulton classes are intrinsic), and further K does nothing to it. Thus

s(π−1X, D′) = (1 + (d− 1)H)3 ∩ s(Y, P2) .

This should start looking familiar. Of course (1+(d−1)H)3 is nothing but the Chern
class of the trivial extension of T ∗P2 tensored by L = O(d):

s(π−1X, D′) = c(L)c(T ∗M ⊗ L) ∩ s(Y,M)

where I have written M = P2. The multiplicity of the discriminant is the degree of
this class.

Claim. This holds in general, for a hypersurface X in a nonsingular variety M ,
with singularity subscheme Y .
The proof isn’t hard—just trace the computation in the general case; details can be
found in [AC93]. What does this have to do with Milnor classes? The point I want
to make is that s(π−1X, D′) = s(Y, D′) ‘is’ the Milnor class! More precisely:

Claim. cSM(X)− cF(X) =

(
s(Y, D′)

c(L)dim M

)∨

⊗ L.

Proof: Exercise. Use the above formula for s(π−1X, D′) and the properties of ∨ and
⊗ to reduce to the main formula.

‘Undoing this’, it is very easy to provide a formula for the multiplicity of a discrim-
inant in terms of cSM and cF. It seems that discriminants naturally embody a lot of
information about characteristic classes of what they parametrize.
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5.2. Constraints on singular loci of hypersurfaces. One class that has surfaced
in the considerations in the previous section:

c(T ∗M ⊗ L) ∩ s(Y,M)

turns out to pack a good amount of information. After the fact this is easy to believe,
since it is the Milnor class up to 8th grade algebra and notation juggling. But when
I run into it at first I was not aware of the connection with characteristic classes, and
I studied it independently of such considerations, cf. [Alu95], calling it the ‘µ-class of
Y with respect to L’, µL(Y ). It is in fact possible to figure out the exact dependence
of this class with respect to L, but this is not important here.

It should come to no surprise that the Milnor class can be written in terms of the
µ class; the precise formula is

cSM(X)− cF(X) = c(L)dim X ∩ (µL(Y )∨ ⊗ L)

(exercise). That also means that almost everything I say here could be directly
transcribed in terms of Milnor classes.

The subtlest property of the µ-class is that its notation makes sense: that is, that
the ambient variety M does not matter. In other words, if you manage to realize
Y as the singularity subscheme of a hypersurface with bundle L (restricted to Y )
in another nonsingular ambient M , and compute the µ-class there, you will get the
same class. Note that this isn’t so clear, even after the connection with Milnor classes
has been established: who knows what has happened to X in the process?

But it is true. One very special case of this fact leads to very nice applications: what
if Y (the singularity subscheme of X) is itself nonsingular? Then I can pathologically
consider it as the singularity subscheme of the ‘hypersurface’ with equation 0 = 0 on
Y itself, and the main property of µ-classes then tells me

c(T ∗M ⊗ L) ∩ s(Y,M) = µL(Y ) = c(T ∗Y ⊗ L) ∩ [Y ]

(since s(Y, Y ) = [Y ]).
One particularly pretty consequence of this formula is that it poses constraints on

‘what’ nonsingular Y can be singularity subschemes of hypersurfaces in a given M .
Example. The twisted cubic (with the reduced structure) cannot be the singularity

subscheme of a hypersurface in M = Pn.
Indeed, the twisted cubic is abstractly P1, embedded as a curve of degree 3 in Pn. If

it were the singularity subscheme of a hypersurface of degree d, then we would have:

c(T ∗Pn ⊗O(X)) ∩ s(P1, Pn) = µO(3d)(P1) = c(T ∗P1 ⊗O(3d)) ∩ [P1]

that is, calling h the hyperplane on P1:

(1 + 3(d− 1)h)n+1

1 + 3dh

(1 + h)2

(1 + 3h)n+1
∩ [P1] =

(1 + (3d− 1)h)2

1 + 3dh
∩ [P1]

and finally (take degree 1 terms):

(3d− 6)n− 4 = 3d− 2

which is nonsense (read modulo 3).
Many such examples can be found. The moral is that it is very unlikely for a

singularity subscheme to be nonsingular. A ‘general’ example (whatever this may
mean) must have embedded components somewhere. The topologist’s viewpoint on
this should be that the ‘general’ singular hypersurface must have a ‘complicated’
Whitney stratification. I don’t know if there are explicit results in this direction.
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5.3. Enumerative geometry again. I brought up enumerative geometry already a
couple of times, in ways that were only tangentially related to characteristic classes.
But characteristic classes can actually be used to attack some enumerative problems,
at least in comparatively simple instances.

Many enumerative problems can be interpreted as asking what is the degree of
a specific locus in a discriminant. For example, the number of nonsingular plane
cubics tangent to 9 lines (that is: my Ph.D. thesis) can be computed as the degree
of the closure of the locus of plane sextic curves with exactly 9 cusps. Even the
celebrated numbers of rational plane curves of a given degree containing the right
number of general points is manifestly the degree of a geometrically significant locus
in a discriminant.

One difficulty is that these problems are completely unrelated: what connection
can there be between the degree of one locus and the degree of another locus, even
within the same hypersurface in a variety? (The discriminant hypersurface in this
case.) Well, there is a way out of this bind: what if we asked for the cSM class instead?

So I would like to pose a variation on the enumerative problem. For every ‘geo-
metrically significant’ locus X in a discriminant (for example: for every closure of a
PGL(3) orbit in the discriminant of plane curves of a given degree), aim to computing
cSM(X), as a class in the ambient projective space.

This is at least as difficult as computing degrees, since the very first term in cSM(X)
will carry the degree information. On the other hand, the information of cSM classes
is structured: because every class corresponding to a known constructible function
on the discriminant will give a relation between these cSM classes.

The problem is now that there are not that many choice of ‘geometrically significant’
constructible functions on a discriminant D. Two possibilities are 11D and EuD, so
this is a natural place to start: what can one say about cSM(D) and cMa(D), and can
one use this knowledge to get any enumerative information?

If one can play this game at all, it is because the Nash blow-up of a discriminant
is easily accessible. We saw this already in one previous section, where I computed
multiplicities: the variety D′ I used there was nothing but the Nash blow-up. The
tautological bundle can also be computed with ease, and this gives access to the
function EuD:

Claim. If X ∈ D, then EuD(X) =
∫

µO(X)(Y ).
Phrased otherwise, this says that the local Euler obstruction of a discriminant at
a hypersurface X is nothing but Parusiński’s Milnor number of X. (This holds
provided D is a hypersurface.) Now studying the situation in low codimension says
that EuD = 11D + 11C + 11G + · · · , where C is the locus of ‘cuspidal’ hypersurfaces,
and G is the locus of ‘binodal’ hypersurfaces. One could go further down the list of
singularities, although this gets combinatorially messy.

But this is enough for some applications. It says that

cSM(D) = cMa(D)− [C]− [G] + higher codimension terms.

Playing the same game with other classes gives more such relations. When enough
relations are known, one can start solving the relations, getting information about the
loci C, G, etc. This way one can recover classical formulas for cuspidal and binodal
loci, and do a little more—see [Alu98] for more examples.

It would be fun to carry this out for more loci, or to actually compute cSM of all
orbits within a discriminant, for instance for low degree plane curves. I have done it
for degree 3, and it is a very pleasant computation.



24 PAOLO ALUFFI

5.4. What now? Shadows of blowup algebras. . . What keeps me glued to the
main theorem is the high codimension puzzle: even if other approaches are success-
ful in dealing with more general cases than hypersurfaces, I simply cannot believe
that the formula that has come up over and over in these lectures does not admit a
straightforward generalization.

As I see it, the factors that prevent a generalization of the formula are its depen-
dence on the ambient space and on the line bundle: these are elements that make
sense only if X is a hypersurface. A satisfactory formula should not depend on this
information. There must be a way to reformulate the main statement, independent
of these factors.

The most convincing thought I have had recently in this direction is the following.
First, I need a name for the operation involved in the Lagrangian formulation (back

from the third lecture). If PE
ε→ S is a projective bundle of rank e over a scheme

S, then there is a structure theorem for its Chow group: every class C ∈ ArPE
can be written uniquely as C =

∑e
j=0 c1(O(1))j ∩ ε∗(Cr−e+j)) where O(1) is the

tautological line bundle and Cr−e+j ∈ Ar−e+jS ([Ful84], §3.3). So every class in PE
has a counterpart in S, although dimensions ‘get spread out’, introducing lots of fuzz.
The class C can be reconstructed from Cr−e + · · ·+Cr if the dimension of C is known,
but not otherwise. I call this counterpart in AS the ‘shadow’ of C.

Now I claim that we have encountered this operation already. The lagrangian setup
expressed c∗(ϕ) in terms of a certain cycle Ch(ϕ) associated with the constructible
function ϕ, in a projective bundle (Ch was defined in a vector bundle but was conical,
so its information is equivalent to the corresponding cycle in the projectivization, and
now I’ll put it there). Actually one has to introduce a dualization in the process,
changing every other sign (something like ∨ in my favorite notations). So I’ll call
č∗(ϕ) this ‘dualized’ class.

Claim. č∗(ϕ) is the shadow of the characteristic cycle Ch(ϕ).
This remark has the only beneficial effect of providing me with an element of language
that does not immediately seem to depend on the ambient variety. If I manage to
realize the characteristic cycle of X inside any bundle, I will know what to do in order
to extract the information from it without invoking ‘c(TM) ∩ · · · ’.

But by far the most important item is the realization of the characteristic cycle.
As we have seen, the formula is equivalent to the statement that the characteristic
cycle of X can be obtained by pulling X back via the blow-up of the ambient M
along Y , and then taking away one copy of the exceptional divisor. Every word in
this sentence requires M to be there.

I have found a way around this, but (to my total amazement) it seems to rely on
a strange condition on X. I have called this the ×-condition, in a futile attempt at
being funny, and because nodal curves are the prototypical example of hypersurfaces
that satisfies it. In its gory details, the condition relies on the system of differential
equations satisfied by a defining equation for the hypersurface; more geometrically
(but probably not equivalently), the ×-condition is satisfied if the singularity sub-
scheme is linearly embedded in the ambient space. Many examples of this are known
(see [Alu02]) Exercise: find a hypersurface that does not satisfy the ×-condition.

What’s good about surfaces satisfying the ×-condition?
Claim. Up to signs and duals, cSM(X) is the shadow of P(SymX(Y )).
The algebra SymX(Y ) could not care less about X being a hypersurface. So this

goes one step in the right direction. Note: P(ReesX(Y )) gives cMa(X), a further
indication that I may be on the right track.
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5.5. . . . and maybe a new Chern class. That looks promising, although there are
still a couple of problems with it: (1) I don’t understand the ‘×-condition’; (2) the
whole operation is still not really independent of the ambient variety.

Comments: (1) if a hypersurface X does not satisfy the ×-condition, then I can
construct an algebra whose shadow is cSM(X), but this algebra is not as simple-
minded as SymXY then; it ‘interpolates’ between ReesX(Y ) and SymX(Y ), with
which it agrees when Y is linearly embedded in the ambient variety. Details are in
[Alu02]. I am hoping commutative algebraists will find some use for this new ‘blow-up
algebra’.

(2) There is a subtle point about the operation: the shadow does depend on the
bundle in whose projectivization P(SymXY ) is immersed, and there are more than
one choice for this. Knowing which one to choose seems to require knowing the line
bundle of X, hence, it still relies on X being a hypersurface.

I can be a little more precise. The ideal of Y in X is generated by the components
of a section of P1

ML|X ; this realizes SymY X as a quotient of Sym(P1
ML|X)∨, hence

places the proj in P(P1
ML|X). We have already seen that it can be juggled back into

P(T ∗M), and this is where I want to cast the shadow. But to go from one to the
other I have to tensor by L∨: how to do that if I don’t have a L around?

Here is a way out. If X is any subscheme of a variety M , with ideal I, there is a
surjection Ω1

M |X → Ω1
X → 0; taking Hom(−,OX), we get a morphism

Hom(Ω1
X ,OX) → Hom(Ω1

M |X ,OX) .

What could be more natural than giving the following:
Definition. Denote by NXM the cokernel of this morphism.

What good does this do for us?
Claim. If X is a hypersurface, then Proj(SymXY ) = Proj(SymX(NXM)).

This very simple observation solves the line bundle puzzle: because NXM is defined
for every X, and it already lives in the right place (no L involved!). Putting everything
together, the main statement becomes

Theorem 5.1. If X is a hypersurface satisfying the ×-condition, then cSM(X) is
(essentially) the shadow of Proj(SymX(NXM)).

The point here is of course that the shadow of Proj(SymX(NXM)) is defined even
if X is not a hypersurface! Might this be the statement I have been looking for? Not
quite: for example, because of the qualifier ‘. . . satisfying the ×-condition’. I feel that
any advance on a statement of this sort has to wait until the ×-condition is better
understood.

But this construction raises a tantalizing point. The ‘shadow’ in the last statement
can be seen as an operation performed on Ω1

X : dominate it with the locally free
Ω1

M |X , then take kernel, then Hom(−,OX), etc. This operation can be performed
on every coherent sheaf F , and the upshot of the above considerations is that if X
is a hypersurface satisfying the ×-condition, then doing it to Ω1

X essentially yields
cSM(X).

Exercise: if F is locally free, this operation gives (essentially) the total ‘homology’
Chern class of F . So this is a new ‘Chern class’ for coherent sheaves, on possibly
singular schemes, which is closely related to Chern-Schwartz-MacPherson classes in
an interesting class of examples.

I will then end with what is now the obvious next question: what is the exact
relation between the new Chern class and the functorial Chern-Schwartz-MacPherson
class?
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