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Abstract. We study different notions of blow-up of a scheme X along a subscheme Y ,
depending on the datum of an embedding of X into an ambient scheme. The two
extremes in this theory are the ordinary blow-up, corresponding to the identity, and
the ‘quasi-symmetric blow-up’, corresponding to the embedding of X into a nonsingular
variety. We prove that this latter blow-up is intrinsic of Y and X, and is universal with
respect to the requirement of being embedded as a subscheme of the ordinary blow-up
of some ambient space along Y .

We consider these notions in the context of the theory of characteristic classes of
singular varieties. We prove that if X is a hypersurface in a nonsingular variety and
Y is its ‘singularity subscheme’, these two extremes embody respectively the conormal
and characteristic cycles of X. Consequently, the first carries the essential information
computing Chern-Mather classes, and the second is likewise a carrier for Chern-Schwartz-
MacPherson classes. In our approach, these classes are obtained from Segre class-like
invariants, in precisely the same way as other intrinsic characteristic classes such as those
proposed by Fulton, and by Fulton and Johnson.

We also identify a condition on the singularities of a hypersurface under which the
quasi-symmetric blow-up is simply the linear fiber space associated with a coherent sheaf.

1. Introduction

It is not hard to see that the conormal cycle of a hypersurface X of a nonsingular

algebraic variety M can be realized as the cycle of the blow-up of X along its singularity

subscheme (defined by the partials of an equation defining X). Our guiding question in

this paper is, what kind of ‘blow-up’ realizes similarly the much subtler characteristic

cycle of a hypersurface? We answer this question, and extract from our construction

a unified approach to different characteristic classes associated with a possibly singular

hypersurface of a nonsingular variety.

The ordinary blow-up of a scheme X along a subscheme Y —that is, the Proj of the

Rees algebra of the ideal sheaf JY,X of Y in X—has the remarkable property that it

can be recovered from the blow-up of any ambient scheme M along Y , by taking the

proper transform of X. As there are other notions of blow-up, obtained by taking the

Proj of other ‘blow-up algebras’ (such as the symmetric algebra of JY,X), it is natural

to ask whether there is a ‘largest’ blow-up of X along Y that can be embedded in some

(ordinary) blow-up of an ambient scheme M along Y .
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In the first part of this paper we construct such a blow-up: we define a new quasi-

symmetric algebra of an ideal JY,X , and show that it satisfies the universal property

summarized above. In fact, we define (Definition 2.5) a quasi-symmetric algebra for every

embedding X ⊂M , then show (Theorem 2.9) that the limit of the corresponding inverse

system of algebras equals the quasi-symmetric algebra arising for any nonsingular M

(otherwise independently of M). We name the corresponding blow-up the quasi-symmetric

blow-up of X along Y , qBlY X. We also show (Theorem 2.12) that this new blow-up can

be obtained by taking a ‘principal’ transform of X in BlY M , for any nonsingular variety

M containing X.

The ordinary Rees blow-up and the new quasi-symmetric blow-up are two extremes in

a range. In the second part of the paper we consider the case in which X is a hypersurface

in a nonsingular ambient variety M , and we take Y to be its singularity subscheme. We

find that the two extremes live naturally in the projectivized cotangent bundle of M , and

their cycles yield concrete realizations of the conormal, resp. characteristic cycles of X

(Theorems 3.1 and 3.2). As mentioned above, the first of these facts is old fare; the second

appears to be new, at least in the form given here. Every quasi-symmetric blow-up in the

range should correspond to a Lagrangian cycle in the projectivized cotangent bundle; that

is, every embedding of X in another scheme should determine a constructible function on

X by this construction. One way to summarize the main results in §3 is by saying that

our construction associates the identity X
=
↪→ X with the Euler obstruction of X, and

any inclusion X ⊂M into a nonsingular variety with the constant function 11X .

From the point of view of characteristic classes of singular hypersurfaces, this means

that ‘Rees is to Mather as quasi-symmetric is to Schwartz-MacPherson’. In the third part

of the paper we show (Theorem 4.4) how to obtain these classes rather directly from the

corresponding blow-up algebras, by a standard intersection-theoretic operation (which

is the ‘shadow’ in the title, Definition 4.1). This set-up gives a unified approach—for

hypersurfaces—for the theory of Chern-Mather and Chern-Schwartz-MacPherson classes

together with other intrinsic classes defined for singular varieties—notably the classes

defined by Fulton and Johnson in [FJ80], and those defined by Fulton in [Ful84], Exam-

ple 4.2.6.

We also discuss briefly (§3.11) an intriguing condition on the singularities of a hyper-

surface, under which the quasi-symmetric algebra of the singularity subscheme equals the

symmetric algebra; in other words, in this case the characteristic cycle of X is the linear

fiber space of the coherent sheaf JY,X , and the Chern-Schwartz-MacPherson class of X

can be computed from the ordinary Segre class of a coherent sheaf. We point out that

this condition is automatically verified in several standard situations, and mention an in-

terpretation of the condition in terms of extending vector fields along pieces of a Whitney

stratification of the hypersurface.
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One should wonder whether an intrinsic realization of the characteristic cycle can be

given for more general schemes than hypersurfaces of nonsingular varieties (as we do

here). In the end, our attention is directed to a coherent sheaf that is present regardless

of whether X is a hypersurface: the cokernel of the dual of the map on differentials

determined by the embedding in a nonsingular variety. If X is a hypersurface then a

quasi-symmetric algebra can be defined for this sheaf, and our main result shows that

this algebra leads to the Chern-Schwartz-MacPherson class of X (Theorem 4.9).

This suggests what the shape of an analogous result for arbitrary schemes might be,

but the difficulty in establishing such a general result should not be underestimated.

Indeed, the key technical fact allowing us to obtain the result for hypersurfaces in this

paper amounts to a specific result relating Fulton-Johnson’s classes and Chern-Schwartz-

MacPherson classes of hypersurfaces. This relation has now been known for the better part

of a decade, and studied intensely from many different viewpoints (cf. [Alu94], [Suw97],

[BLSS99], [Yok99], [Alu99a], [Alu99b], [Suw00], [Alu00], [PP01] and the recent [Sch01a]

to name a few), yet a generalization to arbitrary schemes has proved exceedingly elusive.

A full analog of the results in this paper to arbitrary schemes would amount to a solution

of this problem.

Our motivation in pursuing this program is twofold. First, we believe that it would be

highly worthwhile to uncover any functoriality feature of classes such as Fulton’s or Fulton-

Johnson’s. Chern-Schwartz-MacPherson’s classes owe their existence precisely to their

excellent functoriality properties; if such functoriality could be transferred to Segre classes

(via formulas such as the ones presented in this article), this would offer a new handle

on computing Segre classes, arguably one of the most basic invariants in intersection

theory. Second, formulas such as the ones obtained in this paper can be implemented into

algorithms running in symbolic computation programs such as Macaulay2 ([GS]). The

only algorithm known to us for such computations ([Alu03]) is woefully slow, and we hope

that the approach presented in this paper may lead to substantially improved algorithms.

Acknowledgments This work was performed while the author was visiting the Max-

Planck-Institut für Mathematik in Bonn, Germany; the present version is a thorough

reworking of an MPI preprint by the same title. Thanks are due to the MPI for sup-

port and for the congenial atmosphere, and to Professor Marcolli for countless insightful

discussions.

2. quasi-Symmetric algebras and blow-ups

2.1. In this section we define and discuss the new blow-up—first in strictly algebraic

terms, and next (starting in §2.5) in more geometric ones.

The ordinary blow-up is the Proj of the Rees algebra of an ideal, which is a close relative

of its symmetric algebra. Our first task is to introduce and study another close relative

of the symmetric algebra of an ideal. In fact, in Definition 2.1 we give a whole family



4 PAOLO ALUFFI

of such algebras, depending on the datum of a surjective homomorphism. In Lemma 2.4

we identify conditions under which different homomorphisms lead to the same algebra.

In the geometric setting, the family of algebras determines a new notion of blow-up of a

scheme X along a subscheme Y , for each embedding of X into an ambient variety M .

As a consequence of Lemma 2.4, we can prove (Theorem 2.7) that the new blow-up is

independent of the ambient M provided that M is nonsingular.

This canonically determined blow-up is the ‘quasi-symmetric blow-up’ mentioned in

the introduction (Definition 2.6). An explicit computation of the corresponding ‘quasi-

symmetric’ algebra shows (Theorem 2.12) that the quasi-symmetric blow-up can be re-

alized as a residual scheme to the exceptional divisor of the (ordinary) blow-up of the

ambient nonsingular variety. This will be the key to one of the main results of the paper

(Theorem 3.2), realizing the characteristic cycle of a hypersurface in terms of a quasi-

symmetric blow-up. In turn, filtering this result through a little intersection theory will

yield our applications to characteristic classes (Theorems 4.4 and 4.9),

2.2. Our rings will be Noetherian, commutative, with 1. Homomorphisms of algebras

endowed of a natural grading are implicitly understood to preserve the grading.

Let A be a ring, and a an ideal of A. Let R be a ring surjecting onto A, and denote by

I the inverse image of a in R. Note that the symmetric algebra SymR(I) maps to both

the Rees algebra ReesR(I) := ⊕n≥0I
n and (by functoriality of Sym) to SymA(a).

Definition 2.1. The quasi-symmetric algebra qSymR→A(a) is defined by

qSymR→A(a) := SymA(a)⊗SymR(I) ReesR(I).

A particular case of this notion will be the affine version of our main blow-up algebra,

cf. Definition 2.8 below. Note that the algebra corresponding to the identity is the ordinary

Rees algebra:

qSymA→A(a) = ReesA(a);

thus, the ordinary blow-up can be recovered in terms of the operation studied here. We

will be especially interested in the case corresponding to epimorphisms R → A with R

suitably ‘nice’; we begin by recording a few properties of the local version of the more

general notion.

First of all, the quasi-symmetric algebra is functorial in the sense that any homomor-

phism of rings R→ S compatible with epimorphisms to A induces an epimorphism

qSymR→A(a) // // qSymS→A(a) .
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Indeed, the homomorphisms R→ S → A induce the middle row in the diagram

KR

��

// KS

��
SymR(I) //

��

SymS(J) //

��

SymA(a)

ReesR(I) // ReesS(J)

where J is the inverse image of a in S, and KR, KS are the kernels of the vertical maps

to the Rees algebras. Since KRSymA(a) ⊂ KSSymA(a), there is an induced epimorphism

qSymR→A(a) = SymA(a)/KRSymA(a) // // SymA(a)/KSSymA(a) = qSymS→A(a) .

Pictorially, we have the commutative diagram:

SymR(I)

��

// SymS(J)

��

// SymA(a)

��
ReesR(I) // ReesS(J) // qSymS→A(a)

where the square on the right is cocartesian by definition. As qSymR→A(a) satisfies a

universal property (as a tensor product) there is an induced canonical homomorphism

qSymR→A(a)→ qSymS→A(a).

2.3. The functoriality is the key to most of the following remarks, whose proof is left to

the reader.

Lemma 2.2. Let R→ A, a, I be as above.

(1) The quasi-symmetric algebra bridges between the Rees algebra and the ordinary

symmetric algebra of a in A:

SymA(a) // // qSymR→A(a) // // ReesA(a) .

(2) If SymR(I) = ReesR(I), then qSymR→A(a) = SymA(a).

(3) If R→ A splits, then qSymR→A(a) = ReesA(a).

(4) There is an epimorphism ReesR(I) // // qSymR→A(a) .

Example 2.3. If I is a complete intersection in R, then qSymR→A(a) = SymA(a) by

Part 2 in Lemma 2.2 (since then the symmetric and Rees algebras of I in R coincide,

[Mic64]).

This shows that qSymR→A(a) may depend on R. For example, let A = C[x, y]/(xy),

a = (x, y), R = C[x, y]; then

qSymR→A(a) = SymA(a) 6= ReesA(a) = qSymA→A(a).

However, one of the main results of this section (Theorem 2.9) will show that qSymR→A(a)

is in fact independent of R provided that R is constrained to be regular.
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2.4. There are two important cases in which the induced epimorphism is in fact an

isomorphism.

Lemma 2.4. Let R→ S be a ring homomorphism compatible with epimorphisms R→ A

and S → A; let a be an ideal of A, and let I, J resp. be the inverse images of a in R, S.

Then the induced epimorphism

qSymR→A(a) // // qSymS→A(a)

is an isomorphism if

(1) the homomorphism R→ S splits; or

(2) S is R-flat, and J = IS.

Proof. In the first situation, if a composition R → S → R is the identity we obtain a

decomposition of the identity

qSymR(I) // // qSymS(J) // // qSymR(I)

implying that both maps are isomorphisms.

In the second situation, since S is flat over R we have ImS = S ⊗R Im for all m. Thus

ReesS(J) = ReesS(IS) =
⊕
m≥0

S ⊗R Im = S ⊗R (⊕m≥0I
m) = S ⊗R ReesR(I).

On the other hand, and again using flatness,

SymS(J) = SymS(IS) = SymS(I ⊗R S) = S ⊗R SymR(I),

by [Bou74], III §6, Proposition 7. Thus

SymS(J)⊗SymR(I) ReesR(I) =
(
S ⊗R SymR(I)

)
⊗SymR(I) ReesR(I)

= S ⊗R

(
SymR(I)⊗SymR(I) ReesR(I)

)
= S ⊗R ReesR(I)

= ReesS(J).

This shows that the square on the left in the diagram at the end of §2.2 is cocartesian,

implying the assertion. �

2.5. We now move to the geometric setting. All our schemes are of finite type over a

field k.

Let Y ⊂ X ⊂M be closed embeddings of schemes. We denote by JY,X , resp. JY,M the

ideals of Y in X and M , respectively.

Definition 2.5. The quasi-symmetric algebra qSymX⊂M(JY,X) is the graded OX-algebra

qSymX⊂M(JY,X) := SymOX
(JY,X)⊗SymOM

(JY,M ) ReesOM
(JY,M).
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In other words, qSymX⊂M(JY,X) sheafifies the local construction given by Definition 2.1.

Every commutative diagram

N

π
����

Y
� � // X

. �

j
>>}}}}}}}}

� � i // M

determines an epimorphism

qSymX⊂M(JY,X) // // qSymX⊂N(JY,X)

and we are interested in conditions guaranteeing that this map is an isomorphism.

Lemma 2.6. The induced epimorphism is an isomorphism if

(1) N = M × An; or

(2) π is flat, and j(X) is a connected component of π−1(i(X)).

Proof. These follow from Lemma 2.4. As the matter can be checked locally, we may

assume M = Spec R, N = Spec S, X = Spec A, Y is given by an ideal a in A, and we

have a commutative diagram

S

������
��

��
��

A/a Aoooo Roooo
?�

OO

Denote by K, L resp. the kernels of R → A, S → A resp.; and by I, J resp. the inverse

images of a in R, S resp.

In the first situation S = R[u1, . . . , us] is a polynomial ring, and the splitting needed

in order to apply Lemma 2.4 holds because if K is an ideal of R then any left-inverse of

the inclusion R/K ↪→ (R/K)[u1, . . . , us] lifts to a left-inverse of R ↪→ R[u1, . . . , us].

In the second situation, by hypothesis S is flat over R, and there exists an f ∈ S such

that the epimorphism S → A lifts to an epimorphism Sf → A from the localization of

S at f , with kernel KSf = LSf . A fortiori ISf = JSf is the inverse image of a in Sf .

As Sf is flat over both S and R, two applications of Part 2 from Lemma 2.4 give the

assertion. �

Theorem 2.7. If π : N →M is a smooth map compatible with closed embeddings X ⊂M ,

X ⊂ N , then for all closed subschemes Y ⊂ X the induced epimorphism

qSymX⊂M(JY,X) // // qSymX⊂N(JY,X)

is an isomorphism.

Proof. Again the matter can be checked locally, so as π is smooth we may assume that it

can be written as a composition

N
étale // M × As // M ;
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by Lemma 2.6, Part 1, we may assume that π itself is étale. In this case π−1(X)→ X is

an étale map with a section; hence the image of X in N must be a connected component

of π−1(X). As étale maps are flat, Part 2 in Lemma 2.6 concludes the proof. �

Theorem 2.7 shows that the quasi-symmetric algebras of X collect into classes detecting

specific ‘qualities’ of the embeddings X ⊂ M . For example, if X ⊂ M is a section

of a smooth projection M → X then qSymX⊂M(JY,X) = ReesOX
(JY,X) for all closed

subschemes Y ⊂ X. In fact, only the features of the embedding X ⊂ M near Y affect

the corresponding quasi-symmetric algebra.

2.6. It is time to remove the dependence on the choice of an embedding X ⊂ M . For

given Y ⊂ X, the epimorphisms on quasi-symmetric algebras induced by concatenation

of embeddings X ⊂M ⊂ N make {qSymX⊂M(JY,X)}M into an inverse system.

Definition 2.8. Let Y ⊂ X be a closed embedding of schemes. The quasi-symmetric

algebra of JY,X is defined as the inverse limit

qSymOX
(JY,X) := lim←−

M⊃X

qSymX⊂M(JY,X).

The quasi-symmetric blow-up of X along Y is defined as the Proj of the quasi-symmetric

algebra:

qBlY X := Proj(qSymOX
(JY,X)).

The quasi-symmetric blow-up carries a tautological line bundle O(−1), as do the more

conventional sBlY X = Proj(SymOX
(JY,X)) and BlY X = Proj(ReesOX

(JY,X)). Also, note

that by Lemma 2.2, Part 1, there are closed embeddings

BlY X ⊂ qBlY X ⊂ sBlY X.

Theorem 2.7 is the key to the following concrete computation of the ‘absolute’ quasi-

symmetric algebra and blow-up.

Theorem 2.9. Let Y ⊂ X ⊂ M be closed embeddings of schemes, with M nonsingular.

Then the canonical epimorphism

qSymOX
(JY,X) // // qSymX⊂M(JY,X)

is an isomorphism.

Proof. The matter is local. Since locally every scheme is embedded in a nonsingular

variety, it suffices to show that if X ⊂ M ⊂ N are closed embeddings, with M and

N nonsingular varieties, then qSymX⊂N(JY,X) → qSymX⊂M(JY,X) is an isomorphism.
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Factoring the embedding M ⊂ N through the product, we have the diagram

M ×N

�� ��;
;;

;;
;;

X
) 	

66mmmmmmmmmmmmmmm� � // M
0�

AA�������
� � // N

which induces the commutative diagram of qSym algebras

qSymX⊂M×N(JY,X)

∼

vvvvmmmmmmmmmmmm

qSymX⊂M(JY,X) qSymX⊂N(JY,X)oooo

∼
hhhhQQQQQQQQQQQQ

The diagonal arrow on the left is an isomophism because the diagonal embedding splits;

the diagonal arrow on the right is an isomorphism by Theorem 2.7. Thus the horizontal

arrow is an isomorphism, as needed. �

2.7. By Theorem 2.9, the inverse system of algebras qSymX⊂M(JY,X) stabilizes at non-

singular ambient varieties M . In fact, by Part 4 in Lemma 2.2 there is a canonical

embedding

qBlY X ⊂ BlY M

induced by the surjection ReesOM
(JY,M)→ qSymOX

(JY,X); the line bundle O(−1) is the

restriction of the line bundle of the exceptional divisor.

Theorem 2.9 implies immediately that qBlY X fulfills the promise made in the intro-

duction.

Corollary 2.10. The quasi-symmetric blow-up qBlY X is the largest subscheme of sBlY X

which admits an embedding in BlY M (compatibly with the projection to X) for some

scheme M containing X.

Proof. By Theorem 2.9, the quasi-symmetric blow-up qBlY X can be embedded in BlY M

for any nonsingular variety M containing X.

On the other hand, if S is any quotient algebra of SymOX
(JY,X) which is also a quotient

of ReesOM
(JY,M) (for some M) then there is an induced epimorphism qSymX⊂M(JY,X)→

S by the definition of qSym (as a tensor product). Hence we obtain a surjection from

qSymOX
(JY,X) to S, showing that Proj(S) ⊂ qBlY X, as needed. �

It is natural to ask whether the embedding qBlY X ⊂ BlY M (for M a nonsingular

variety containing X) can be realized concretely, just as the embedding BlY X ⊂ BlY M

can be realized as a ‘proper transform’.

Definition 2.11. Let Y ⊂ X ⊂ M be closed embeddings of schemes. The principal

transform of X in the blow-up BlY M
ρ→M of M along Y is the residual to the exceptional

divisor in ρ−1(X).
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Here, ‘residual’ is taken in the sense of [Ful84], Definition 9.2.1. Explicitly, if I and J
are respectively the ideals of the exceptional divisor and of ρ−1(X) in BlY M , then since

Y ⊂ X it follows that J = I · K for a uniquely determined ideal K. This ideal K defines

the residual scheme.

The definition of principal transform would appear to depend on M ; at any rate, ρ−1(X)

certainly depends on M as it contains the exceptional divisor of BlY M . However, the next

result claims that the principal transform is almost as intrinsic to X, Y as is the proper

transform.

Theorem 2.12. Let Y ⊂ X ⊂M be closed embeddings of schemes, with M a nonsingular

variety. Then the quasi-symmetric blow-up of X along Y equals the principal transform

of X in BlY M .

This is an easy consequence of the following computation of qSymOX
(JY,X).

Lemma 2.13. With notation as in the statement of the theorem,

qSymOX
(JY,X) =

⊕
d≥0

J d
Y,M/JX,MJ d−1

Y,M

(where we set J −1
Y,M = OM).

Proof. By Theorem 2.9 we have qSymOX
(JY,X) ∼= qSymX⊂M(JY,X); we compute the

latter. For d ≥ 1 set up the commutative diagram with exact rows

0

��
Torsd

//

��

Discd
//

��

0

JX,M · Symd−1JY,M
//

��

SymdJY,M
//

��

Symd(JY,M/JX,M) //

��

0

0 // JX,M · J d−1
Y,M

//

��

J d
Y,M

//

��

J d
Y,M/(JX,M · J d−1

Y,M ) //

��

0

0 0 0

where all Sym are over OM , JX,M denotes the image of JX,M in Sym1JY,M = JY,M , Torsd

is defined to make the central column exact, Discd is its image in Symd(JY,M/JX,M). A

diagram chase shows that the column on the right is exact. This gives

OM ⊕
⊕
d≥1

J d
Y,M/JX,MJ d−1

Y,M = SymOM
(JY,M/JX,M)⊗SymOM

JY,M
ReesOM

(JY,M).
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Tensoring by OX only affects the term of degree 0 on the left. On the other hand,

OX ⊗OM
SymOM

(JY,M/JX,M) = SymOX
(JY,X);

thus ⊕
d≥0

J d
Y,M/JX,MJ d−1

Y,M = qSymOX
(JY,X)

by the associativity of tensor products. �

2.8. For Y ⊂ X ⊂ M , and M not necessarily nonsingular, we can of course consider a

quasi-symmetric blow-up Proj(qSymX⊂M(JY,X)).

Example 2.14. Let Y ⊂ X ⊂M , with M = X ×P1 and X embedded as X ×{∞}. Then

the corresponding quasi-symmetric blow-up equals the ordinary blow-up BlY X.

This follows (for example) from Theorem 2.7 and the fact that the quasi-symmetric

algebra corresponding to the identity is the Rees algebra, cf. the comments immediately

following the proof of Theoremm 2.7.

In this case the blow-up of the ambient space M along Y is the ‘deformation to the

normal cone’ of [Ful84]. The statement of Theorem 2.12 corresponds to the description

of the fiber over ∞ of the deformation, cf. p. 87 of loc. cit.

In general, the analog of Theorem 2.12 realizes any such quasi-symmetric blow-up as

the principal transform of X in the (ordinary) blow-up of M along Y . We observe that

every Proj of a quasi-symmetric algebra is contained in the quasi-symmetric blow-up of

Definition 2.8, since any M is contained locally in a nonsingular variety. In any case, this

more general notion will not be used in the rest of this paper.

Some of the intuition regarding the quasi-symmetric blow-up of Definition 2.8 is cap-

tured by the following simple examples.

Example 2.15. Let X = a pair of distinct lines in M = A2, and Y = the point of

intersection.

Consider the blow-up ρ : BlY M → M ; the exceptional divisor is a P1. The ordinary

BlY X is the proper transform of X, and it consists of two disjoint A1. The inverse image

ρ−1(X) consists (as a divisor) of BlY X plus the exceptional divisor with multiplicity 2.

By Theorem 2.12, the quasi-symmetric blow-up qBlY X sits between these two schemes:

it consists of BlY X plus the exceptional divisor with multiplicity 1.

Example 2.16. By the same token, if X consists of the union of m distinct lines through

a point Y in a plane, then qBlY X consists of m disjoint lines union a (m− 1)-multiple P1

intersecting each of them at a point.

Example 2.17. The picture is drastically different if the lines are not coplanar. For ex-

ample, let X be the union of the coordinate axes in A3, and let Y be the origin. Then
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qBlY X consists of three disjoint lines, union a plane P2 intersecting each of them at a

point.

This is again checked by using Theorem 2.12. Using coordinates (x, y, z) in M = A3,

the ideals of Y and X are (x, y, z), (xy, xz, yz) respectively. We can choose coordinates

(x̃, ỹ, z̃) in an affine chart of the blow-up of A3 at the origin so that the blow-up map ρ is

given by 
x = x̃z̃

y = ỹz̃

z = z̃

,

with (z̃) the ideal of the exceptional divisor. The ideal of ρ−1(X) in this chart is

(x̃ỹz̃2, x̃z̃2, ỹz̃2) = (x̃z̃2, ỹz̃2).

By Theorem 2.12, qBlY X is the residual to the exceptional divisor in qBlY M ; hence it

has ideal

(x̃z̃, ỹz̃) = (x̃, ỹ) ∩ (z̃)

in this chart: that is, qBlY M meets this chart in the proper transform of the line x = y = 0,

union the exceptional divisor. The proper transforms of the other lines are contained in

the other charts covering the blow-up.

Example 2.17 shows that qBlY X may have components of higher dimension than X.

Contrast this situation with Example 2.16: the quasi-symmetric blow-up of the union of

three coplanar lines has dimension 1 (it consists of three disjoint lines union a double line

connecting them). More generally:

Corollary 2.18. If X can locally be embedded as a hypersurface in a nonsingular irre-

ducible variety, then for every Y ⊂ X the quasi-symmetric blow-up qBlY X is equidimen-

sional.

Proof. This follows from Theorem 2.12, which shows that in this case qBlY X is a Cartier

divisor in BlY M . �

Hypersurfaces of nonsingular varieties will be our main concern in the rest of the paper.

3. The conormal and characteristic cycles of a hypersurface

3.1. We now move from the generalities in §2 to our application to the theory of Chern

classes of singular varieties. In this section we will deal with the theory at the level of

Lagrangian cycles in the cotangent bundle of an ambient nonsingular variety; in the next

section we will extract the information more closely pertaining to characteristic classes.

Our main objective in this section is to show that the notion introduced in §2 gives

a concrete realization of the characteristic cycle of a hypersurface X in a nonsingular



SHADOWS OF BLOW-UP ALGEBRAS 13

ambient variety M . In a nutshell, the characteristic cycle of X is the cycle of the quasi-

symmetric blow-up of X along its singularity subscheme. This fact should be appreciated

in conjunction with the (straightforward) observation that the conormal cycle of X is the

cycle of its ordinary blow-up along the same subscheme.

Realizing the characteristic cycle allows us to give a direct computation of the Chern-

Schwartz-MacPherson classes of a hypersurface, following the same philosophy behind

other characteristic classes (specifically the classes introduced in [FJ80] and [Ful84], Ex-

ample 4.2.6). This requires a certain care in handling the appropriate tautological line

bundles; we work this out in §4.

After the preliminary work done in §2, the main result in this section follows easily

from the existing literature on characteristic classes for singular hypersurfaces.

In this section we also identify a condition under which the quasi-symmetric blow-

up needed here equals the symmetric blow-up. In this situation, the Chern-Schwartz-

MacPherson class of the hypersurface can be efficiently expressed in terms of the Chern

class of a certain coherent sheaf defined on it.

3.2. We work over an algebraically closed field of characteristic 0. Throughout the rest

of the paper M will denote a nonsingular irreducible algebraic variety, and X will be

the zero-scheme of a nonzero section F of a line bundle L on M ; we will say that X is

a hypersurface for short. For convenience we will implicitly assume that X is reduced,

although this is not an essential requirement (cf. §3.12).

The singularity locus of X has an interesting, possibly nonreduced scheme structure.

We will denote by Y this singularity subscheme of X (see §3.8 for the precise definition).

We begin by recalling several well-established notions, for the benefit of the non-expert

and in order to establish notation. The informed and impatient reader can safely skip

to §3.6.

3.3. A constructible function on a variety V is a finite linear combination∑
nW 11W

where the summation ranges over (closed, irreducible) subvarieties W ⊂ V , nW ∈ Z, and

11W denotes the function that is the constant 1 on W , and 0 outside of W . We denote

by C(V ) the group of constructible functions on V . If f : V1 → V2 is a proper map, a

push-forward C(f) : C(V1) → C(V2) is defined by setting, for W a subvariety of V1 and

p ∈ V2,

C(f)(11W )(p) = χ(f−1(p) ∩W ),

and extending by linearity. Here χ denotes the topological Euler characteristic when

working over C; see [Ken90], §3, for the extension of the theory to arbitrary algebraically

closed field of characteristic 0.



14 PAOLO ALUFFI

With this push-forward, the assignment

C : V 7→ C(V )

yields a covariant functor from algebraic varieties to abelian groups.

3.4. A fundamental result of MacPherson ([Mac74] and [Ken90]) compares this functor

to the functor

A : V 7→ A(V )

assigning to a variety its Chow group: there exists a natural transformation

c∗ : C ; A

such that, for V a nonsingular variety, the induced group homomorphism

C(V )→ A(V )

maps 11V to the total Chern class of the tangent bundle of V :

11V 7→ c(TV ) ∩ [V ].

For arbitrarily singular V , one may then define a (total) ‘Chern class’ in the Chow group

of V , by setting

cSM(V ) := c∗(11V );

thus cSM(V ) = c(TV ) ∩ [V ] if V is nonsingular. Brasselet and Schwartz later discovered

that this class defined by MacPherson is in fact Alexander dual to a class previously

defined by Schwartz ([Sch65a], [Sch65b]; and [BS81]); nowadays, cSM(V ) is commonly

named the Chern-Schwartz-MacPherson class of V .

3.5. In MacPherson’s approach, the natural transformation c∗ is defined directly by

requiring that

c∗(EuV ) = cMa(V )

for all varieties V . Here cMa(V ) stands for the Chern-Mather class of V , and EuV is

the local Euler obstruction, a measure of the singularities of V . Both these notions were

defined in [Mac74], and have been the subject of intense study since; again we refer the

reader to [Ken90] for a very readable treatment and for the extension of the theory to

arbitrary algebraically closed fields of characteristic 0.

A different approach to the definition of c∗ emerged in the work of Sabbah ([Sab85],

[Ken90], and [PP01], §1). The natural transformation c∗ can be obtained (up to taking a

harmless dual) as the composite of two transformations

C ; L; A,

where L denotes the functor assigning to a variety V the group L(V ) of Lagrangian

cycles over V , with a suitably defined push-forward. If V ⊂ M is an embedding of V

into a nonsingular variety M , the Lagrangian cycles over V are the Lagrangian cycles in
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the restriction P(T ∗M)|V of the projectivized cotangent bundle of M . As is well known

([Ken90], Lemma 3), every Lagrangian subvariety over V is in fact the projective conormal

space P(T ∗W M) of a closed subvariety W ⊂ V . Hence L(V ) is the free abelian group on

the set of subvarieties of V ; the realization of L(V ) as a group of cycles in P(T ∗M)|V , for

some nonsingular M containing V , yields a good notion of push-forward of elements of

L(V ) (see p. 2829-31 in [Ken90] for details).

The second step L ; A in the above decomposition can be expressed in terms of

standard intersection theory, and will be recalled in §4.3. The first step, C ; L, is

considerably subtler. It is determined by the requirement that, for all (closed, irreducible)

subvarieties W ⊂ V , the local Euler obstruction of W correspond (up to sign) to the

conormal cycle of W in M :

(−1)dim W EuW 7→ [P(T ∗W M)]

For every constructible function ϕ ∈ C(V ) we obtain then a characteristic cycle

Ch(ϕ) ∈ L(V ).

The cycle Ch(11V ) (realized as above, that is, in terms of an embedding V ⊂ M) is

called the characteristic cycle of V (in M).

3.6. Summarizing, there are two important cycles associated to a variety V in the projec-

tivized cotangent bundle P(T ∗M) = Proj(SymM((Ω1
M)∨)) (here and elsewhere, ∨ denotes

‘dual’ in the ordinary sense of locally free sheaves, as in [Har77], p. 123) of any nonsingular

variety M in which V is embedded:

• the conormal cycle [P(T ∗V M)], corresponding (up to sign) to the local Euler ob-

struction of V , and to the Chern-Mather class of V ; and

• the characteristic cycle Ch(V ) of V , likewise corresponding to the constant func-

tion 11V and to the Chern-Schwartz-MacPherson class of V .

Explicitly realizing Ch(V ) ‘from the definition’ requires finding subvarieties W of V and

integers eW such that 11V =
∑

W eW EuW . This information is extremely subtle. ‘Index

formulas’ (cf. [BDK81]) provide an approach to extracting this information, but we do

not know of any computationally effective method to implement such formulas.

Our goal here is the construction of a scheme whose cycle is the characteristic cycle

of a hypersurface X of a nonsingular variety M . In principle this construction can be

performed by symbolic computation programs such as Macaulay2. An entirely analo-

gous realization of the conormal cycle is more readily available, and will be recalled in a

moment.

The theory recalled above applies to varieties, and in particular requires V to be reduced.

Because of this, we will assume that our hypersurfaces are reduced in what follows (but

see 3.12 below).
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3.7. According to the framework recalled above, the conormal and characteristic cycles

arise as cycles in the (projectivized) cotangent bundle of an ambient nonsingular variety.

It is our opinion that these cycles have a right to exist freely, independent of an ambient

variety; but we will wait until §4 to fully make this point. For the time being we will

house the cycles in the usual place, which amounts to finding an appropriate ambient for

the blow-ups considered in §2.

The section F of L defining X determines a section s of the bundle P1
ML of principal

parts of L:

s : OM → P1
ML;

(see [EGA], 16.7, for the definition of P1; we recommend the appendix of [Per95] for a

thorough but concise treatment). We let Y denote the zero-scheme of s in M , and we call

Y the ‘singularity subscheme’ of X. Composing s with the projection to L recovers F :

OM s
//

F

))P1
ML // L ;

hence s induces a section of Ω1
M ⊗ L on X, which is natural to name dF :

dF : OX −→ (Ω1
M ⊗ L)|X ;

the subscheme Y is the zero-scheme of dF on X. It is easily checked that, locally, dF

is given by the partial derivatives of F with respect to a set of local parameters for M ;

hence Y is supported on the singular locus of X, justifying its name. Locally, we can

write (abusing notation):

JY,M =

(
F,

∂F

∂x1

, . . . ,
∂F

∂xn

)
for the ideal or Y in M . We will write (F ) for the ideal of X in M , as this is given by

the vanishing of the section F of L.

Dualizing s : OM → P1
ML we get an epimorphism

(P1
ML)∨ // // JY,M

and from this, Lemma 2.2, and Theorem 2.9 the epimorphisms

SymOM
((P1

ML)∨) // // ReesOM
(JY,M) // // qSymOX

(JY,X) .

Since qSymOX
(JY,X) is an OX-module, tensoring by OX gives an epimorphism

SymOM
((P1

ML)∨|X) // // qSymOX
(JY,X) .

Finally, composing with L∨ ↪→ (P1
ML)∨ gives the zero-map over X, showing that there is

a surjection

Sym((Ω1
M ⊗ L)∨|X) // // qSymOX

(JY,X) .
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Since qSymOX
(JY,X) dominates all quasi-symmetric algebras of JY,X , and in particular

the Rees algebra, this shows (taking Proj) that there are closed embeddings

BlY X ⊂ qBlY X ⊂ Proj(Sym((Ω1
M ⊗ L)∨|X)) = P(T ∗M ⊗ L|X) ∼= P(T ∗M |X).

3.8. The following statement is only one step away from the definitions, but it is excellent

preparation for the main result of the section, Theorem 3.2 below.

Theorem 3.1. The conormal cycle [P(T ∗XM)] of X in M equals

[BlY X] = [Proj(qSymX⊂X(JY,X))].

Proof. Recall that we are assuming that X is reduced. The conormal space T ∗XM of X in

M is the closure in T ∗M of the kernels of the projection

(T ∗M)x −→ (T ∗X)x −→ 0

over nonsingular points x of X. In other words, the projectivized conormal space of X is

the closure of the image of the section

Xreg −→ P(T ∗M)|X = P(T ∗M ⊗ L)|X

induced on the set Xreg of regular points of X by the section dF determined above.

Chasing the morphisms collected above shows that this is precisely how BlY X is embedded

in P(T ∗M |X) over regular points of X. Hence BlY X and the projectivized conormal space

agree over regular points of X, and it follows that they agree everywhere, as needed.

Finally, recall that the quasi-symmetric algebra corresponding to the identity X
id
↪→ X

equals the Rees algebra. �

3.9. The next result is our main application of the construction developed in §2; it does

for the characteristic cycle precisely what Theorem 3.1 does for the conormal cycle.

Theorem 3.2. The characteristic cycle [Ch(X)] of X in M equals

(−1)dim X [qBlY X] = (−1)dim X [Proj(qSymX⊂M(JY,X))].

The annoying sign is due to established (thus unavoidable) conventions, and reflects

the fact that the Lagrangian point of view is best suited to build a cotangent theory of

characteristic classes.

Modulo the work done in §2, the statement is an easy consequence of results in the

literature on characteristic classes for singular varieties.

Proof. By Theorem 2.12, [qBlY M ] equals the principal transform of X in BlY M , so the

claim is that the latter computes Ch(X), with due attention to the sign. Over C, this

statement is Corollary 2.4 in [PP01]; for arbitrary algebraically closed fields of character-

istic 0, it can be obtained from Claim 2.1 in [Alu00]. �
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3.10. We will now identify a technical condition under which the algebra qSymX(Y )

is nothing but the symmetric algebra of JY,X . As a consequence of Theorem 3.2, the

characteristic cycle of hypersurfaces satisfying this condition is (up to sign) the cycle

of the symmetric blow-up of their singularity subschemes. This both simplifies matters

computationally (since packages such as Macaulay2 have built-in functions for computing

symmetric algebras) and is philosphically intriguing: in this case, the characteristic cycle

is realized as the ‘linear fiber space’ (Linearer Faserraum, cf. [Fis67]) corresponding to

the ideal sheaf JY,X . While the fibers of the characteristic cycle are always linear, we do

not know if every characteristic cycle can be realized as a linear fiber space.

As above, F denotes the section of the line bundle L on M whose zero-scheme is the

hypersurface X. For the purpose of this discussion, a homogeneous, degree d differential

operator satisfied by F is a local section of Symd(P1
ML)∨ mapping to 0 in J d

Y,M via the

map induced by the surjection (P1
ML)∨ → JY,M whose existence we pointed out in §3.7.

In terms of local parameters x1, . . . , xn on M , this object is nothing but a homogeneous

polynomial

P (T0, . . . , Tn)

with coefficients (local) functions on M , such that

P

(
F,

∂F

∂x1

, . . . ,
∂F

∂xn

)
≡ 0;

we will express the condition in this slightly imprecise but more vivid language, leaving

to the reader the task of translating it into a global, coordinate-free formulation.

The simplest way to manufacture homogeneous differential operators of degree d satis-

fied by F is as a sum

P = P0 · T0 + P1 · T1 + · · ·+ Pn · Tn,

where the Pi are homogeneous polynomials of degree d− 1 in T0, . . . , Tn, and

P0 · F + P1 ·
∂F

∂x1

+ · · ·+ Pn ·
∂F

∂xn

= 0.

We say that such operators are trivially satisfied by F . The ×-condition on X is a

softening of this requirement, on operators of sufficiently high degree satisfied by F .

Definition 3.3. A hypersurface X in M satisfies the ×-condition if there exists a d0 such

that every homogeneous differential operator P of degree d ≥ d0 and satisfied by F can

be written as

P = P0 · T0 + P1 · T1 + · · ·+ Pn · Tn,

where the Pi are homogeneous polynomials of degree d− 1 in T0, . . . , Tn, and

P1 ·
∂F

∂x1

+ · · ·+ Pn ·
∂F

∂xn

∈ (F ).
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Proposition 3.4. A hypersurface X satisfies the ×-condition if and only if

Symd
X(Y ) ∼= qSymd

X(Y )

for d� 0.

Proof. In the hypersurface case, we can complete the diagram in the proof of Theorem 2.12

so that all rows and columns are exact:

0

��

0

��

0

��
0 // T0 · Torsd−1

//

��

Torsd
//

��

Discd
//

��

0

0 // T0 · Symd−1JY,M
//

��

SymdJY,M
//

��

Symd(JY,M/(F )) //

��

0

0 // F · J d−1
Y,M

//

��

J d
Y,M

//

��

J d
Y,M/(F )J d−1

Y,M
//

��

0

0 0 0

(the leftmost column is exact as F is a non-zero-divisor, and it follows that the top row

is exact). We have to verify that Discd = 0 for d � 0 if and only if X satisfies the

×-condition.

Now (cf. for example [Vas94], Chapter 2) Torsd can be described as the space of degree-d

homogeneous operators satisfied by F , modulo those trivially satisfied by F . Hence

Discd = Torsd/T0 · Torsd−1

is 0 if and only if every degree-d homogeneous operator satisfied by F is equivalent to a

multiple of T0 modulo trivial ones. That is, if and only if for every homogeneous P of

degree d such that

P

(
F,

∂F

∂x1

, . . . ,
∂F

∂xn

)
≡ 0

there exists a Q, homogeneous of degree d− 1 and such that

P − T0 ·Q = P0 · T0 + P1 · T1 + · · ·+ Pn · Tn

with

P0 · F + P1 ·
∂F

∂x1

+ · · ·+ Pn ·
∂F

∂xn

= 0.

It is straightforward to verify that this latter condition is satisfied for d � 0 if and only

if X satisfies the ×-condition. �

Corollary 3.5. If X satisfies the ×-condition, then the characteristic cycle of X in M

equals (−1)dim X [Proj(SymOX
(JY,X))].



20 PAOLO ALUFFI

Proof. Immediate consequence of Theorem 3.2: if X satisfies the ×-condition, then by

Proposition 3.4 the algebras SymOX
(JY,X) and qSymOX

(JY,X) are isomorphic in high

degree, so they have the same Proj. �

3.11. The ×-files. The ‘×’ in ×-condition has been chosen as it reminds us of the proto-

typical singularities satisfying it: the conic xy = 0 in the plane is (i) a hypersurface with

a nonsingular singularity subscheme; (ii) a hypersurface with quasi-homogeneous isolated

singularities; and (iii) a divisor with normal crossing divisor. Each of these classes of

hypersurfaces satisfies the ×-condition. In fact, as the interested reader may verify, in

each of these cases the embedding of the singularity subscheme in the ambient space is

‘linear’.

Recall ([Kee93]) that an embedding of schemes S ⊂ T is linear if the Rees algebra

and the symmetric algebra of the ideal of S in T are isomorphic; it is weakly linear if

the Rees algebra and the symmetric algebra are isomorphic in high degree, that is, if

Proj(SymT (S)) is isomorphic to the (Rees) blow-up of T along S. These conditions have

been studied extensively, see for example [Mic64], [Hun80], [Val80].

Proposition 3.6. Let X be a hypersurface in a nonsingular variety M , with singularity

subscheme Y . If the embedding of Y in M is weakly linear, then X satisfies the ×-

condition.

Proof. With the notation in the proof of Proposition 3.4, the embedding of Y in M is

weakly linear if and only if Torsd = 0 for d� 0. This implies Discd = 0 for d� 0, which

is equivalent to the ×-condition, as observed in that proof. �

For example, this implies immediately the ×-condition for the first case listed above:

if Y is nonsingular, then its embedding in M is regular, hence linear, hence weakly-

linear. However, we should remind the reader that the requirement that the singularity

subscheme of a hypersurface be nonsingular is very strong; substantially stronger, for

example, than the requirement that the singularity locus be nonsingular. Some constraints

on this situation are studied in [Alu95], §3. Hypersurfaces whose singularity subscheme

is nonsingular are in particular nice in the sense of [AB03].

Example 3.7. The plane curve x4 +x3y2 + y6 = 0 has an isolated singularity at the origin;

the embedding of its singularity subscheme in the plane is not linear.

This is checked by explicit calculations, which we performed with Macaulay2.

It can also be shown that if the ×-condition implies that every vector tangent at a point

x to a stratum in a Whitney stratification of X extends to fiberwise linear functions on

P1
MO(X), tangent to nearby ‘level hypersurfaces’. In this sense, the ×-condition may be

viewed as a strong regularity requirement on extensions of tangent vectors near strata of

a Whitney stratification of X. It is known that tangent vectors to strata of a Whitney
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stratification of X are suitably ‘close’ to the tangent spaces of nearby level hypersurfaces

(the so-called wf -condition of Thom). This suggests that the techniques in [Par93] or

[BMM94] may be apt to characterizing hypersurfaces satisfying the ×-condition.

3.12. For simplicity we have assumed that the hypersurface X is reduced in the preceding

subsections. It should be noted, however, that the quasi-symmetric blow-up is defined,

and determines a cycle in P(T ∗M), regardless of whether X is reduced or not. The

arguments given above can be traced in this case, and show that this cycle is nothing

but the characteristic cycle of the support Xred. This rather remarkable fact implies

that simply setting cSM(X) := cSM(Xred) leads to a consistent theory of Chern-Schwartz-

MacPherson classes, at least when X is a hypersurface.

We leave the details to the interested reader (cf. §2.1 in [Alu99a]).

4. Shadows of blow-up algebras

4.1. Theorems 3.1 and 3.2 give intrinsic constructions of the two key cycles associated

with X. We would like to deal with the corresponding schemes BlY X, qBlY X as stand-

alone entities, and determine precisely what type of information they carry in relation

with the ambient nonsingular variety M .

With this in mind, we first discuss the transformation L; A mentioned in §3.5, which

produces the Chern-Mather, resp. Chern-Schwartz-MacPherson classes from the conor-

mal, resp. characteristic cycle; then we separate the rôle of the ambient variety in this

computation from that of the blow-ups themselves, and find that the blow-ups carry ‘nor-

mal data’ regarding the embedding X ⊂ M . This point of view unifies the computation

of the Chern-Mather and Chern-Schwartz-MacPherson classes with the approach yielding

the classes defined by Fulton and Fulton-Johnson ([Ful84], [FJ80], and cf. §4.6 below).

4.2. If E is a locally free sheaf of rank e + 1 on a scheme S, there is a precise structure

theorem for the Chow group of the projective bundle

P(E) := Proj(SymE∨) ε // S

([Ful84], §3.3): every class C ∈ ArP(E) can be written uniquely as

C =
e∑

j=0

c1(O(1))j ∩ ε∗(Cr−e+j)

where O(1) denotes the tautological line bundle on P(E), and Cr−e+j ∈ Ar−e+jS.

Therefore, knowledge of C is equivalent to knowledge of the collection of e + 1 classes

Cr−e, . . . , Cr on S.

Definition 4.1. We say that the class Cr−e + · · ·+Cr ∈ AS is the shadow of the class C.
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As its real world namesake, the shadow neglects some of the information carried by the

object that casts it. For example, c1(O(1))j · [P(E)] has shadow [S] for all j = 0, . . . , e.

However, a pure-dimensional class C can be reconstructed from its shadow if its dimension

is known, as follows immediately from the structure theorem recalled above.

It will be convenient to have a direct way to obtain the shadow of a given class.

Lemma 4.2. The shadow of C is the class

c(E) ∩ ε∗
(
c(O(−1))−1 ∩ C

)
Proof. Writing C as above, we have

c(E) ∩ ε∗
(
c(O(−1))−1 ∩ C

)
= c(E) ∩ ε∗

(
c(O(−1))−1 ∩

e∑
j=0

c1(O(1))j ∩ ε∗(Cr−e+j)

)

=
e∑

j=0

c(E) ∩ ε∗

(∑
k≥j

c1(O(1))k ∩ ε∗(Cr−e+j)

)
.

Since c1(O(1))k ∩ ε∗α = 0 for 0 ≤ k < e and any α ∈ A∗S, this says

c(E) ∩ ε∗
(
c(O(−1))−1 ∩ C

)
=

e∑
j=0

c(E) ∩ ε∗
(
c(O(−1))−1 ∩ ε∗(Cr−e+j)

)
.

Finally, this equals
∑e

j=0 Cr−e+j by [Ful84], Example 3.3.3. �

4.3. As recalled in §3.5, MacPherson’s natural transformation c∗ can be expressed by

a two-step procedure: (C ; L) taking the characteristic cycle Ch(ϕ) of a constructibile

function ϕ, and (L ; A) extracting a rational equivalence class from the characteristic

cycle. As the natural habitat of Lagrangian cycles is the projectivized cotangent bundle

P(T ∗M), we find it convenient to arrange things so as to obtain a class č∗(ϕ) differing

from c∗(ϕ) by the sign of the components of odd dimension:

{č∗(ϕ)}r = (−1)r{c∗(ϕ)}r

in dimension r. For example,

č∗(11M) = (−1)dim Mc(T ∗M) ∩ [M ]

for the nonsingular ambient M .

Lemma 4.3. The class č∗(ϕ) is the shadow of the characteristic cycle Ch(ϕ).

Proof. This is formula (12) on p. 67 of [PP01], filtered through Lemma 4.2. As observed

in [PP01], this is in agreement with [Mac74]. �

The statement of Lemma 4.3, while implicit in the existing literature, is mysteriously

absent in this explicit form relating the transformation L; A to the structure theorem of

the Chow group of projective bundles. This interpretation streamlines the proof that L;
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A is a natural transformation; Schürmann has independently made the same observation

[Sch01b].

4.4. We are ready to justify the title of this article. Denote by čMa(X), čSM(X) resp. the

classes obtained by changing the sign of the components of odd dimension in cMa(X),

cSM(X).

Theorem 4.4. Let X be a hypersurface of a nonsingular variety M , and let Y be its

singularity subscheme. Then

• the shadow of [BlY X] is (−1)dim X čMa(X);

• the shadow of [qBlY X] is (−1)dim X čSM(X).

Proof. This now follows from Theorems 3.1 and 3.2, and Lemma 4.3. �

4.5. The next step in our program consists of carefully distinguishing the rôle of the

ambient space and of the blow-ups in the statement of Theorem 4.4. There is an interesting

twist to this story, which highlights the need for a subtle change of perspective.

We have so far focused on the ideal JY,X as the most natural source of information

concerning the singularities of X; and indeed we have defined our main notions in §2
starting from the data of an ideal sheaf in OX . We are now going to shift the attention

to a different coherent sheaf, defined for any subscheme X of a nonsingular variety M ; it

will be easy to relate this sheaf to JY,X when X is a hypersurface, and this will naturally

extend quasi-symmetric blow-up algebras to this coherent sheaf. To summarize what we

will find, these new algebras agree locally with the algebras obtained for JY,X ; in fact,

their Proj will be isomorphic as schemes to the quasi-symmetric blow-ups of JY,X . But

the algebras carry more information than the schemes: the grading determines a line

bundle on the blow-ups, and this information will turn out to be essential.

The new blow-up algebras will thus determine a Segre-class type of invariant, and we

will show that using this invariant yields the Mather and Schwartz-MacPherson classes

in essentially the same way as ordinary Segre classes of coherent sheaves, resp. of cones

lead to Fulton-Johnson, resp. Fulton classes.

4.6. Here is a quick reminder concerning these latter two classes, in order to clarify the

context underlining our motivation.

If Z is any scheme embedded in a nonsingular variety M (of dimension > dim Z for

convenience), there are several ways to obtain ‘normal data’ relating to the embedding.

For example, such data is carried by the conormal sheaf NZM = JZ,M ⊗OM
OZ , and can

be effectively encoded in the Segre class of this coherent sheaf, defined by

s(NZM) := p∗
∑

c(O(1))i ∩ [Proj(SymOZ
(NZM))]

where p is the structure morphism on Proj.
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Definition 4.5. The Fulton-Johnson class of Z is the class

c(TM) ∩ s(NZM)

in the Chow group of Z.

It can be shown that this class is independent of the ambient variety M , and agrees

with the total Chern class of the tangent bundle of Z when Z is nonsingular (cf. [FJ80]

or [Ful84], Example 4.2.6 (c)).

A different way to access normal data amounts to taking a Rees point of view rather

than a Sym point of view. Replacing

SymOZ
(NZM) = SymOM

(JZ,M)⊗OM
OZ

by

ReesOM
(JZ,M)⊗OM

OZ

defines the normal cone of Z in M , whose Segre class (again defined by pushing forward

powers of the first Chern class of O(1)) is properly called the Segre class of Z in M ,

s(Z,M).

Applying the same principle as above leads to the following notion.

Definition 4.6. The Fulton class of Z is the class

c(TM) ∩ s(Z,M)

in the Chow group of Z.

Again, it can be shown that this class is independent of the ambient nonsingular vari-

ety M (cf. [Ful84], Example 4.2.6), and agrees with the total Chern class of the tangent

bundle of Z when Z is nonsingular.

The formulas in Definitions 4.5 and 4.6 should be compared with the formulas for

the Chern-Mather and Chern-Schwartz-MacPherson classes that we will obtain in Theo-

rem 4.9.

4.7. How else can one extract normal data from an embedding Z ⊂M of a scheme in a

nonsingular variety? Again we assume that dim M > dim Z. There is a surjection

Ω1
M |Z −→ Ω1

Z −→ 0,

from which we obtain the exact sequence

0 −→ Hom(Ω1
Z ,OZ) −→ Hom(Ω1

M |Z ,OZ) −→ TZM −→ 0,

defining the coherent sheaf TZM on Z. If Z is nonsingular then TZM is locally free, and

in fact it is the sheaf of sections of the normal bundle of Z in M .

Now our idea consists of following the same guiding principle which rules in §4.6, but

employing Segre classes obtained from quasi-symmetric algebras associated with TZM .
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As things stand now, we only have defined such objects for ideals, and this limits the

scope of our aim. However, in the case we have considered in §3 and in Theorem 4.4 the

day is saved by a special form taken by TZM .

Lemma 4.7. If Z = X is a hypersurface in a nonsingular variety M , with line bundle L
and singularity subscheme Y , then TXM = JY,X ⊗OX

L.

Proof. Let J = JX,M denote the ideal of X in M . Taking Hom(−,OX) in the exact

sequence of differential gives the exact sequence

0 −→ Hom(Ω1
X ,OX) −→ Hom(Ω1

M |X ,OX) −→ Hom(J /J 2,OX).

A local computation determines the image of the rightmost map as the subsheaf of OX-

morphisms J /J 2 −→ OX factoring through JY,X . In other words, if X is a hypersurface

in M then

TXM = Hom(J /J 2,JY,X) = L|X ⊗OX
JY,X ,

as claimed. �

By virtue of Lemma 4.7 we can make sense of quasi-symmetric algebras of TXM if X

is a hypersurface in M . The two extremes in the range of quasi-symmetric algebras are

the following two definitions:

qSymX⊂X(TXM) := ReesOX
(JY,X)⊗OX

L

qSymX⊂M(TXM) := qSymOX
(JY,X)⊗OX

L

and the corresponding Segre class-like notions:

šMa(X, M) := p∗
∑

c(O(1))i ∩ [Proj(qSymX⊂X(TXM))]

šSM(X, M) := p∗
∑

c(O(1))i ∩ [Proj(qSymX⊂M(TXM))]

where p denotes the projection from the corresponding Proj, and O(1) is the tautological

line bundle. We remark that the two Proj equal BlY X, qBlY X as schemes—only the

tautological bundles are affected upon tensoring by L.

We have defined a ‘checked’ notion of Segre class in view of artificially taking a dual

that brings us back to the tangent world. So we set

sMa(X, M) := (−1)dim X
∑
r≥0

(−1)ršMa(X,M)r

sSM(X, M) := (−1)dim X
∑
r≥0

(−1)ršSM(X, M)r

where subscripts mark dimensions; that is, we change the sign of components in the

checked Segre classes of every other codimension in X.

Example 4.8. If X is a nonsingular hypersurface, then all notions of Segre class coincide:

s(NXM) = s(X, M) = sMa(X, M) = sSM(X, M) = c(L)−1 ∩ [X]. If X may be singular,

but satisfies the ×-condition (see §3.10), then sSM(X, M) = s(JY,X ⊗ L).
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4.8. Summarizing, we have extracted normal data from our hypersurface X in M by

defining a coherent sheaf TXM in a rather simple-minded way from the exact sequence of

differentials of X; adapting to TXM the construction of §2; and defining from the resulting

blow-up algebra a notion of Segre class. These classes achieve precisely what we set out

to do, that is, they yield the Chern-Mather and Chern-Schwartz-MacPherson classes by

the same method behind the classes of Fulton and Fulton-Johnson (cf. Definitions 4.5

and 4.6). That is:

Theorem 4.9. Let X be a hypersurface in a nonsingular variety M . Then

• cMa(X) = c(TM) ∩ sMa(X, M);

• cSM(X) = c(TM) ∩ sSM(X, M).

Proof. We will give the argument for the second equality; the first is treated similarly.

Tensoring by L the epimorphism

Sym((Ω1
M ⊗ L)∨|X) // // qSymOX

(JY,X)

from §3.7 we obtain

Sym((Ω1
M)∨|X) // // qSymX⊂M(TXM),

inducing the embedding

qBlY X ↪→ P(T ∗M)

realizing the characteristic cycle of X (by Theorem 3.2), and showing that the restric-

tion of O(−1) to qBlY X is the universal bundle O(−1) of Proj(qSymX⊂M(TXM)). By

Lemma 4.2, the shadow of the blow-up algebra qBlY X is computed by

c(T ∗M) ∩ (c(O(−1))−1 ∩ [qBlY X]) = c(T ∗M) ∩ šSM(X, M).

This equals (−1)dim X čSM(X), by Theorem 4.4. The equality for cSM(X) follows by chang-

ing the sign of the components of every other codimension. �

4.9. At this point it is only too natural to pose the problem of defining quasi-symmetric

algebras for coherent sheaves so as to validate Theorem 4.9 for more general schemes X,

following the same strategy (that is, by obtaining Segre classes from the quasi-symmetric

algebras of TXM). The advantage in formulas such as those in Theorem 4.9 is not only

theoretical: these formulas can be implemented in procedures for symbolic computation

programs such as Macaulay2. At present a routine is implemented that computes Chern-

Schwartz-MacPherson classes of projective schemes ([Alu03]), exploiting the hypersurface

case in order to compute classes in the general case, by a computationally expensive

‘inclusion-exclusion’ procedure.

An upgrade of Theorem 4.9 to more general schemes would bring about a drastic

improvement in the speed of such routines.
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Regarding a possible definition of quasi-symmetric algebras for coherent sheaves, this

would presumably pivot on a good notion of Rees algebra of a module; such notions have

been introduced and studied by several authors—for example Micali, [Mic64]. Even in the

simpler case of ideals treated here, it would be quite interesting to relate our construction

with the ideals defined by Micali in loc. cit., interpolating between the symmetric and the

Rees algebras.
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[Sch01b] J. Schürmann, Private communication, 2001.
[Suw97] T. Suwa, Classes de Chern des intersections complètes locales, C. R. Acad. Sci. Paris Sér. I
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