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Abstract. In light of Sen’s weak coupling limit of F-theory as a type IIB ori-
entifold, the compatibility of the tadpole conditions leads to a non-trivial identity
relating the Euler characteristics of an elliptically fibered Calabi-Yau fourfold and
of certain related surfaces.

We present the physical argument leading to the identity, and a mathematical
derivation of a Chern class identity which confirms it, after taking into account
singularities of the relevant loci. This identity of Chern classes holds in arbitrary
dimension, and for varieties that are not necessarily Calabi-Yau.

Singularities are essential in both the physics and the mathematics arguments:
the tadpole relation may be interpreted as an identity involving stringy invariants
of a singular hypersurface, and corrections for the presence of pinch-points. The
mathematical discussion is streamlined by the use of Chern-Schwartz-MacPherson
classes of singular varieties. We also show how the main identity may be obtained
by applying ‘Verdier specialization’ to suitable constructible functions.

1. Introduction

Orientifold compactifications of Type IIB string theory on a Calabi-Yau threefold
in the presence of D3 and D7 branes can be geometrically described by F-theory com-
pactified on a Calabi-Yau fourfold [45, 43]. Type IIB is defined in a ten-dimensional
Minkowski space while F-theory requires two additional dimensions, which provide a
geometric description of the axion-dilaton field of type IIB as the complex structure
of an elliptic curve (a two-torus). Solutions of type IIB at weak coupling usually have
a constant axion-dilaton field. F-theory provides a description of solutions with a
variable axion-dilaton field by allowing the elliptic curve to be non-trivially fibered
over a threefold. This construction provides a beautiful identification of S-duality in
type IIB as the modular group of the elliptic curve.

Type IIB and F-theory are both severely constrained by ‘tadpole conditions’ which
ensure that the total D-brane charges in a compact space vanish as required by Gauss’s
law. Tadpole conditions realize the physics wisdom according to which, in a compact
space, the total charge should vanish since fluxes cannot escape to infinity. From
a dynamical perspective, tadpole conditions are consistency requirements obtained
from the local equations of motion and/or the Bianchi identities by integrating them
over appropriate compact spaces. The computation of tadpole conditions requires a
detailed account of all contribution to the D-brane charges. This is closely related to
anomaly cancellations since the presence of Chern-Simons terms in the D-brane action
(needed for the cancellation of chiral and tensor anomalies) implies that a D-brane
usually carries lower brane charges. In particular, in type IIB, a seven-brane has an
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induced D3 charge proportional to the Euler characteristic of the complex surface
(a cycle of real dimension four in the Calabi-Yau threefold) on which it is wrapped.
In F-theory, the induced D3 charge is proportional to the Euler characteristic of the
Calabi-Yau fourfold. It follows that in the absence of other sources of D3 charge
(like for example non-trivial fluxes), the consistency of the F-theory/type IIB tadpole
relations leads to relations between the Euler characteristics of the F-theory fourfolds
and the surfaces wrapped by the seven-branes.

The link between type IIB orientifolds and F-theory is clearly expressed in the case
of Z2-orientifold symmetry by Sen’s weak coupling limit of F-theory [43]. When the
fourfold is realized as an elliptic fibration over a threefold, and Sen’s weak coupling
limit is used to produce the associated Calabi-Yau threefold, the relations can be
recovered, as we show in this paper, at the price of dealing with singularities of the
loci arising in the limit. In this paper we analyze one representative class of examples
of this situation, presenting both the physical argument leading to the relation (§2),
and a mathematical derivation of an identity of Chern classes which implies it (§4).
In its form arising from physical considerations, the relation has the following shape.
Let ϕ : Y → B be an E8 elliptic fibration over a nonsingular threefold B, and
assume that Y is a Calabi-Yau variety. Following Sen ([43]), we can associate with
Y a Calabi-Yau threefold X, obtained as the double cover ρ : X → B ramified
along a nonsingular surface O; at ‘weak coupling limit’, the discriminant of Y → B
determines an orientifold supported on O, and a D7-brane supported on a surface D
in X. Comparing the D3 tadpole condition as seen in F-theory and in type IIB leads
to the (tentative) relation

(†) 2χ(Y )
?
= χ(D) + 4χ(O)

among Euler characteristics (cf. §2.6). However, the surface D is singular, and sin-
gular varieties admit several possible natural notions of ‘Euler characteristic’; it is
not a priori clear which one should be employed as χ(D) in (†). By contrast Y
and O are both nonsingular, and χ(Y ), χ(O) must refer to the usual topological
Euler characteristic.

Analyzing this situation with mathematical tools, we can prove (Theorem 4.6) that
in fact the relation (†) holds at the level of total homology Chern classes, provided
that suitable correction terms are factored in to account for the singularities of D:

(‡) 2ϕ∗c(Y ) = π∗c(D) + 4 c(O)− ρ∗c(S)

implying

(†′) 2χ(Y ) = χ(D) + 4χ(O)− χ(S) .

Here, D → D is a resolution of D (in fact, its normalization), π : D → B is the
composition D → D → B, and S stands for the pinch locus of D. If dimB = 3
(the case of physical interest), χ(S) simply counts the number of pinch-points of D.
However (and surprisingly) (‡) holds in arbitrary dimension, and independently of
Calabi-Yau hypotheses. Thus, it appears that the scope of the tadpole conditions is
actually substantially more general than the context in which they arise.
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The term π∗c(D) could be interpreted as the (push-forward to B of the) stringy
Chern class of D, and the question remains of whether the corrected class π∗c(D)−
ρ∗c(S), resp. its degree χ(D)−χ(S), are mathematically ‘natural’ notions. We take a
stab at this question in §5, where a mechanism is proposed which appears to account
precisely for the needed correction term, at least in the class of examples considered
in this paper. We point out that the ingredients used to define the stringy Chern
class (as in [3]) may in fact be employed to define other notions of Chern classes and
Euler characteristics χ(m) for singular varieties, depending on a parameter m. Each
value of this parameter corresponds to a different candidate for ‘relative canonical
divisor’ of the resolution map; for the examples considered in this paper, m = 1
corresponds to the notion leading to stringy invariants, while m = 2 corresponds
to an alternative notion (leading to ‘arc’ invariants; the Ω-flavor considered in [3]).
As we will see in §5, χ(m) admits a well-defined limit as m → ∞; and this Euler
characteristic χ(∞) recovers precisely the relation (†) proposed by the string-theoretic
considerations (Theorem 5.1). Therefore, this appears to be the natural notion in the
context of this problem.

However, there is room for surprises, and it is not impossible that in more gen-
eral situations the singularities modify the tapdole relation in a different ways than
we have anticipated here. Although this will have no effect on the correctness of
the mathematical result of this paper (the physics providing just an ansatz from
the mathematical perspective) it would surely reshape the physics. To settle the is-
sue, a complete physical derivation of the tapdole conditions taking into account the
singularities would be appropriate. Tadpole conditions in string theory are usually
obtained by a loop calculation or by using the inflow mechanism. Both roads have
their shortcoming in presence of singularities1. It is therefore refreshing to know that
the point of view presented in this paper is corroborated by an analysis of different
physical aspects of the system ([7]). In particular it is shown in ([7]) that the choice
of the Euler characteristic χ(∞) is compatible with a “deconstruction” description of
the brane configuration in terms of a system of D9-anti-D9 branes with appropriate
world-volume fluxes turn on.

This paper is aimed at both physicists and mathematicians; §2 is written with the
former public in mind, and §4 with the latter. In order to enhance readability, these
sections are essentially independent of each other, and the hurried reader of one sort
may ignore the section more squarely written for the other. But the most interesting
aspect of our results lies in the interplay between the two viewpoints.

We include in this introduction a few slightly more technical comments. The Chern
class identity we prove (Theorem 4.6) holds in arbitrary dimension, for varieties which

1A loop calculation requires a definition of the field theory in presence of singularities. This is
usually possible when the singularities are very mild like for example if they are of the orbifold type.
Performing an inflow calculation based on index theorems is also not free of additional assumptions
since it will require extending the usual index theorem to singular varieties. Such an extension
would depend on the choice of regularization of the singularities or in other words on the choice of
definitions for the topological invariant of a singular variety. As we have seen, several non-equivalent
choices are possible.
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are not necessarily Calabi-Yau, and generalizes in the simplest possible way the rela-
tion among Euler characteristics predicted by the tadpole condition presented in §2.6.
In fact, Theorem 4.6 is established by lifting to this level of generality the elementary
Sethi-Vafa-Witten formula (formula (2.12) in [44]) for the Euler characteristic of the
fibration Y , and comparing it with an analogous formula obtained at Sen’s weak cou-
pling limit. We view the Sethi-Vafa-Witten formula as a general statement equating
the Euler characteristic of the fibration with twice the Euler characteristic of a specific
divisor G in the base B of the fibration (Proposition 4.2). The arguments in §4 are
streamlined by using the calculus of constructible functions, which encodes the good
properties of topological Euler characteristic and (by a result of R. MacPherson) of
Chern classes. The relevant facts are recalled in §4. As a concrete example, we offer
the following instance of the situation considered in this article.

Example 1.1. A degree 24 hypersurface with equation y2 = z3 + fz + g in weighted
projective space P1,1,1,1,8,12 (with y, resp. z of degree 12, resp. 8, and f , g general
polynomials in the other variables) determines a Calabi-Yau elliptic fibration Y →
B, with B = P3. Standard methods (for example, judicious use of the adjunction
formula) easily yield χ(Y ) = 23328. Sen’s weak coupling limit leads us to consider
surfaces O, resp. D in P3 with equation h = 0, resp. η2 − 12hχ = 0, where h, η, χ
are general polynomials of degrees 8, 16, 24 respectively. Again, adjunction yields
immediately that χ(O) = 304; as for D, the presence of 8 · 16 · 24 = 3072 nodes at
the intersection S given by h = η = χ = 0 has to be taken into account, and gives
χ(D) = 28864− 3072 = 25792.

The associated Calabi-Yau threefold X at weak coupling limit is the double cover
of P3 branched over O; D is the inverse image of D in X. The orientifold and D7
brane are localized on O and D, respectively.

A simple local analysis shows that D is singular along a curve, with a set S of 3072
pinch-points corresponding to the set S of nodes on D. It also shows that D may be
resolved to a nonsingular surface D by blowing up the singular curve; the composition
π : D → D is found to be 2-to-1 everywhere except over S. In terms of constructible
functions, this says that the push-forward of the constant function 11D is

π∗(11D) = 2 · 11D − 11S :

the function which equals 2 on D r S and 1 on S. It follows then immediately that

χ(D) = 2χ(D)− χ(S) = 2 · 25792− 3072 = 48512 ;

what’s more, the same relation must hold among the total Chern classes of these loci
(cf. property (2) in §4).

We stress that more sophisticated intersection-theoretic tools are not needed in or-
der to extract this information from the blow-upD → D. These simple considerations
suffice to verify the tadpole relation with pinch-point correction in this example:

2 · χ(Y ) = 2 · 23328 = 46656 = 48512 + 4 · (−304)− 3072 = χ(D) + 4χ(O)− χ(S) .
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Note that ignoring singularities would have led us to an embarrassing tadpole
mismatch between type IIB and F-theory at weak coupling2. The proof presented
in §4 for the general case (at the level of Chern classes, in arbitrary dimension and
without Calabi-Yau hypotheses) is no harder—modulo some intersection theory—
than the proof sketched above for Example 1.1. Indeed, the key observation in the
proof of Theorem 4.6 is precisely the same formula π∗(11D) = 2 · 11D − 11S used above,
which is just as easy to prove in general as in Example 1.1. In §4 we also offer an
alternative, slightly more sophisticated viewpoint on such relations of constructible
functions (by means of Verdier specialization, see Remark 4.5) as a possible venue for
more general results.

Intersection-theoretic invariants of singular varieties, including some computations
involving blow-ups, also play a role in [9], in a comparison between the E8 × E8

heterotic string and F-theory with G-fluxes.
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2. Physics

In this section we present in some detail the physical motivation for (†). Roughly
speaking, it results from a direct comparison of the D3 brane tadpole condition in
type IIB and in F-theory in the situation where no fluxes are turned on. We will
introduce the necessary notions in a pedagogic way from (§2.1) to (§2.5); readers
familiar with Sen’s weak coupling limit of F-theory, tadpole conditions, and dualities,
could consider jumping immediately to (§2.6), without great harm. In (§2.1), we
give some basic notions on D-branes in type II string theories; in (§2.2) we review
the (S-T-U-)dualities among type IIA, type IIB and M-theory. These dualities are
important to understand the dictionary between the physics and the geometry of
F-theory and M-theory; they also provide an elegant derivation of the F-theory D3
brane tadpole condition. F-theory is introduced in (§2.3) and Sen’s weak coupling
limit is reviewed in (§2.4). Tadpoles and anomalies are discussed in (§2.5); the case

2If we consider the case of several D7 branes, one can show that there is a unique configuration
which satisfies the tadpole relation. Namely, two D7 branes wrapped around two smooth surfaces
given respectively by polynomials of degree 28 and 4 in the Calabi-Yau three-fold. However, such a
configuration is not generic in type IIB. Moreover, in F-theory, it seems not to be compatible with
Sen’s description of the weak coupling limit. We will come back to this configuration in ([7]), see
also section 3 of the present paper.
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of a Z2 orientifold of type IIB with O7-planes and D3 and D7 branes as well as the
D3 tadpole condition in F-theory are worked out in detail.

In (§2.6), we derive a general form of the relation (†) from §1 with several possible
D7 branes and O7-planes. Relation (†), with only one D7 and one O7 branes, is
the generic situation in Sen’s weak coupling limit. However, since singularities are
necessarily present in Sen’s weak coupling limit, (†) must be modified to take them
into account. Assuming that the final answer keeps the same shape, we give evidence
that the modified formula would be of type of the relation (†′). This will be confirmed
in §4, where we analyze Sen’s template situation in its natural mathematical setting,
and prove formula (‡) (which implies (†′)) for a larger class of varieties. For those
who are mostly interested in the Calabi-Yau case, we note that (†′) could be proved
just by mimicking the treatment of example 1.1, using no more than the adjunction
formula in the spirit of ([44]). While this computation is straightforward, the material
in §4 provides a deeper understanding of the geometry of the situation.

2.1. Type II string theories and D-branes. There are five consistent ten-dimen-
sional string theories. Here we will mostly be interested in type IIA and IIB string
theories. Each of these two theories admit 32 supersymmetry generators organized
into two ten-dimensional Majorana-Weyl spinors with opposite chirality in type IIA
and the same chirality in type IIB. Both theories contain in their spectrum the fol-
lowing NS-NS (Neveu-Schwarz ) fields: a graviton, an antisymmetric two-form which
couples to the fundamental string, and a scalar field φ (called the dilaton) which con-
trols the string coupling gs in each of these theories, following the relation gs ∼ e−φ.
They also contain RR (Ramond-Ramond) (p + 1)-forms C(p+1) with (p + 1) odd in
type IIA and even in type IIB. As a direct generalization of the charged particle in
Maxwell theory, a (p + 1)-form naturally couples to an object extended in p-spatial
dimension. Indeed, as it evolves in spacetime, a p-brane draws a world-volume W (p+1)

of spacetime dimension (p+1) on which the (p+1) potential C(p+1) can be evaluated
as
∫
W (p+1) C(p+1). A p-brane charged under a (p + 1)-form admits a magnetic dual

which is a (d−p−4)-brane, where d is the spacetime dimension of the ambient space
in which the brane lives. They are related by Hodge-conjugation ∗F(p+2) = Fd−p−2

acting on their field strengths Fp+2 = dC(p+1).
The objects that carry the RR charges are not seen in perturbative string theory. It

was realized by Polchinski ([37]) that p-branes are actually naturally present in string
theory as loci on which open strings can end. For that reasons, they are usually called
Dirichlet p-branes or (Dp-branes) since fixing the location of the ends of open strings
is realized by imposing Dirichlet boundary conditions. D-branes are half-BPS objects,
which means they preserve only half of the total amount supersymmetry. A string
with its two ends on the same D-brane defines a U(1) gauge field (a U(1) bundle
with a connection) on the world-volume of the brane. This is the Chan-Paton bundle.
Note that since it is defined from an open string, the Chan-Paton gauge field defined
on the world-volume of a D-brane is a NS-NS field.

Type IIA admits only Dp-branes with p even while p is odd in type IIB. More
precisely, in type IIA we have a D0 brane (also called the D-particle) and a D2 brane,
their magnetic duals are respectively the D6 and the D4 brane. There is also a D8
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brane, which does not admits a magnetic dual. In type IIB there are a D(-1) (or
D-instanton), D1 (or D-string), D3, D5, D7 and D9 branes. The D7 and the D5 are
the magnetic duals of the D-instanton and the D-string. The D9 does not admit a
magnetic dual in ten dimensions. The fundamental string which is present both in
type IIA and type IIB is usually called the F-string, and couples electrically to the
NS-NS two-form. The magnetic dual of the F-string is a 5-brane (the NS5 brane)
which is present both in type IIA and type IIB.

2.2. Dualities and M-theory. The five ten-dimensional string theories are related
by a web of dualities which also include eleven-dimensional supergravity. The latter
is the supersymmetric field theory of gravity with the highest possible spacetime
dimension for the usual Minkowski signature. We shall review quickly some of these
dualities in order to understand the origin of F-theory.

T-duality identifies the physics of type IIA compactified on a circle of radius rA

and type IIB compactified on a circle of radius rB provided that these two radii are
inverse of each other when measured in string units. A p-brane wrapped around the
T-duality circle is T-dual to a (p− 1)-brane not intersecting the T-duality circle and
vice versa.

S-duality is a symmetry which relates the weak coupling regime of one theory to
the strong coupling regime of another one. It opens a perturbative window in the
strong coupling regime of a theory. Type IIB is its own S-dual. More precisely,
the S-duality group in type IIB is a SL(2,Z) group of type IIB [27]. The S-dual
theory of type IIA is an eleven-dimensional theory. The radius of the additional
eleventh dimension grows as the coupling constant of type IIA increases. This eleven-
dimensional theory is called M-theory and at low energy it is described by eleven-
dimensional supergravity. The latter admits a three-form potential A(3) which can
naturally couple to a membrane. This is the M2-brane in M-theory and its magnetic
dual is 5-brane called the M5-brane.

U-duality relates type IIB and M-theory by using a combination of type IIA/IIB
T-duality and type IIA/M-theory S-duality. More precisely, it provides a duality
between type IIB string theory compactified on a circle S1 and M-theory compactified
on a torus T 2 = S1 × S1, where the first circle is type IIA T-duality circle (of inverse
radius than the type IIB radius) and the second one is the M-theory circle that
controls the string coupling of type IIA. Type IIB on a circle is dual to M-theory
compactified on a torus whose area is shrinking to zero. The modular group of this
torus precisely corresponds to the SL(2,Z) S-duality group of type IIB theory. This
geometrization of S-duality is the main interest of F-theory.

2.3. F-theory. We consider type IIB compactified on a Calabi-Yau threefold with
D3 and D7-branes. All the branes are taken to be spacetime filling: they fill all
the four-dimensional spacetime and are wrapped around a cycle of the Calabi-Yau
threefold. A D3-brane will be point-like in the extra six dimensions and a 7-brane will
wrap around a complex surface of the compact space while filling the four-dimensional
spacetime. In type IIB we have two type of strings: the D-string has a RR charge
while the F-string has a NS-NS charge. More generally, a (p, q)-string is the bound
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state of p F-strings and q D-strings [48] with p, q relatively prime [41]; a (p, q)-brane is
a brane on which (p, q)-strings can end [20, 24]. The usual D-brane is a (1, 0)-brane.

The two real scalar-fields of type IIB are organized into a complex axion-dilaton
field

τ = C(0) + ie−φ,

where the axion is the RR-scalar C(0), and φ is the dilaton coming from the NS-NS
sector; we recall that eφ is the string coupling constant. The SL(2,Z) symmetry of
type IIB acts on the axion-dilaton field as a modular transformation:

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z).

The (p, q)-strings are the SL(2,Z) images of the fundamental string [41, 20]. The
existence of the SL(2,Z) symmetry of type IIB forces us to contemplate the occurrence
of (p, q)-branes for any relatively prime (p, q). However, this would require going above
the usual weak coupling limit of type IIB, since the axion-dilaton field also changes
under SL(2,Z) without preserving the scale of the string coupling constant: strong
and weak coupling can be mapped into each other.

F-theory is a description of type IIB string theory in the presence of (p, q) 7-
branes. These branes are non-perturbative objects which require a non-constant
axion-dilation field. Since the axion-dilaton field τ is subject to modular transfor-
mations, Vafa [45] has proposed to describe it as the complex structure of an elliptic
curve. It is conjectured that F-theory on an elliptically fibered Calabi-Yau fourfold
with a section and a base B is equivalent to type IIB on the base B with (p, q) 7-
branes at the singular loci of the elliptic fibration. The 7-branes are wrapped around
divisors of the base B.

The modular group in F-theory is also the same as the modular group of the torus
used to define U-duality between type IIB and M-theory. It follows that F-theory on
an elliptically fibered Calabi-Yau is dual to M-theory on the same manifold in the
limit where the fiber has a vanishing area. The three-form A(3) of M-theory reduces
to the NS-NS and RR two-forms of type IIA under S-duality. These two-forms under
T-duality give the NS-NS two-form of type IIB and the RR one-form of type IIB.
We can then conclude that U-duality between type IIB and M-theory implies that an
M2 brane wrapping the two torus defined by the T-duality circle of type IIA and the
S-duality circle of M-theory will give rise to (p, q)-strings in F-theory.

2.4. The weak coupling limit of F-theory with E8 fibrations. An E8 elliptic
fibration ϕ : Y → B has a Weierstrass normal equation

xy2 − (z3 + fzx2 + gx3) = 0,

written in a P2 bundle φ : P(E ) → B. Here, f and g are respectively sections of powers
L 4, L 6 of a line bundle L on the base B (cf. §4.1). The variety Y is a Calabi-Yau
(KY = 0) if c1(L ) = c1(TB). For every point of the base, the Weierstrass equation
of the elliptic fibration defines an elliptic curve with (Klein’s) modular function

j(q) = 4 · (24f)3

∆
.
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The function j is the generator of modular functions of weight one, and ∆ is the
discriminant of the elliptic curve:

∆ = 4f 3 + 27g2.

F-theory on the elliptically fibered Calabi-Yau fourfold Y is (conjecturally) equivalent
to type IIB on the base B with q = e2πiτ . Since =(τ) = e−φ = 1

gs
is the inverse of the

string coupling constant, it follows that weak coupling (gs � 1) corresponds to small q
and therefore to large j since in the limit of small q we have j ≈ q−1. The 7-branes are
located at points of the base manifold B where the elliptic fiber is singular ([43]); this
is where j(τ) becomes infinite. These surfaces correspond to the vanishing locus of
the discriminant ∆. A priori, the discriminant locus may have several components ∆i

which correspond to several D7-brane worldvolumes. Perturbative string theory on
IIB background has two Z2 symmetries: the world sheet parity inversion Ω and the
left-moving fermion number (−1)FL . Given a Calabi-Yau threefold X admitting an
involution σ, we can mod out the spectrum of type IIB by the orientifold projection

Ω · (−1)FL · σ∗,
where σ acts on the type IIB field via its pulback σ∗. In order to have only D3 and D7
branes, the involution σ is required to be holomorphic with the additional property
σ∗Ω3,0 = −Ω3,0, where Ω3,0 is the holomorphic three-form of the Calabi-Yau three-
form X. Under the action of σ, the fixed locus is made of complex surfaces and/or
isolated points. They correspond respectively to orientifold 7-planes (O7 planes) and
O3 planes.

Following Sen ([43]) we set

f = −3h2 + cη,

g = −2h3 + chη + c2χ,

where c is a constant and h, η, χ are respectively general sections of line bundles L 2,
L 4, L 6 where L is the anticanonical bundle of B, as above. We recall that large j
corresponds to large =(τ) and therefore to weak coupling. The limit c → 0 is called
the weak coupling limit since then j(τ) is large at every point of the base except in
sectors where |h|2 ∼ |c|. Since in the weak coupling limit we have

∆ ≈ −9c2h2(η2 + 12hχ),

the zeroes of the dominant term of ∆ are supported on h = 0. Sen shows ([43]) that
h = 0 determines the locations of the O7-planes, while the surface D with equation
η2 + 12hχ = 0 determines the locations of the D7-branes.

One can define a type IIB orientifold equivalent to the weak coupling limit of F-
theory starting with a Calabi-Yau threefold X which is the double cover of the base
B branched along h = 0 ([43]):

x2
0 = h,

where x0 is a section of the line bundle L . The Z2-isometry that is gauged to describe
the orientifold is x0 → −x0. The fixed points under this symmetry correspond to the
hypersurface h = 0. The variety X has vanishing first Chern class, and is therefore a
Calabi-Yau manifold.
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2.5. Tadpole conditions. It is natural to consider the surface D ⊂ X obtained as
inverse image of D ⊂ B. In order to analyze D7-branes localized on D, we study the
following general set-up.

We consider a D-brane wrapped around a cycle D of a Calabi-Yau manifold X.
Open strings with both end points on the D-brane define the Chan-Paton bundle
E → D. The charge of the D-brane will depend on the embedding f : D ↪→ X
and the topology of the Chan-Paton bundle E. This charge can be computed by
an anomaly inflow argument ([32]). An anomaly is a violation of a symmetry of
the Lagrangian by quantum effects; the anomaly of a gauge symmetry indicates an
inconsistency of the theory and must vanish. The anomaly inflow mechanism [15, 16]
consists of introducing an anomalous term in the Lagrangian to cancel the anomalous
contribution of another term. The two terms will be anomalous when considered
separately, but together they give an anomaly free theory.

Since string theory is anomaly free, self-consistency requires that for each possible
anomaly there is a contribution in the Lagrangian that maintains the theory anomaly
free. In other words, identifying a possible anomaly is an opportunity to discover a
new sector of the Lagrangian of the theory. The new terms coming from anomaly
inflow have been recovered by direct string theory calculations [17, 18, 34, 42]. In
the case of D-brane configurations, an anomaly can be generated by massless chiral
fermions or self-dual tensor fields located on the intersection of two branes. The
cancellation of this chiral anomaly requires the presence of an anomalous term, usually
called a Chern-Simons term or a Wess-Zumino term. The chiral anomaly is first
computed using an index theorem. The Chern-Simons term is then deduced by a
descent procedure. All these steps are purely algebraic and are by now well understood
[8, 42]. Since the Chern-Simons term is linear in the RR potential, it gives a charge
to the RR fields.

The Lagrangian for a RR field C(p+1) is of the type

L = −1

4
F ∧ ∗F + J · C(p+1),

where C(p+1) is a (p+ 1)-form and F = dC(p+1) is its field strength and ∗F its Hodge
dual; J is called the current. The equation of motion of C is

d(∗F ) = J.

Using Gauss’s law, the charge is the integral of the current. If we are in a compact
space, the equations of motion tell us that the total charge should vanish:

QTotal =

∫
J =

∫
d(∗F ) = 0.

This necessary condition is usually called a tadpole condition. See [38] for a pedagogic
introduction.

2.5.1. Tadpoles in Type IIB. The Chern-Simons term for a D-brane wrapping a cycle
D (admitting a Spinc structure3) embedded in a Calabi-Yau threefold X (f : D ↪→ X)

3See section 4.3 of ([49]) or §3 of ([10]).
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with a Chan-Paton bundle E is given by4 ([32]):∫
X

QD(f∗E) ∧ C =

∫
D

ch(E ′) ∧

√
Â(TD)

Â(ND)
∧ f ∗C, E ′ = E ⊗K

− 1
2

D ,

where C = C0 + C2 + C4 + C6 + C8 ∈ Heven(X) is the total RR potential and f ∗C

its pullback to D; Â is the total A-roof genus ([26]); TD is the tangent bundle to D
and ND is its normal bundle; ch(E ′) is the total Chern character of twisted sheaf

E′ = E ⊗K
− 1

2
D where KD is the canonical bundle of D. The appearance of the term

K
− 1

2
D is related to the Freed-Witten anomaly [22, 28]. When the cycle wrapped by

the D-brane is not a Spin but a Spinc manifold, spinors are not section of the spin
bundle Spin(D): such a bundle will suffer from a Z2 ambiguity. This ambiguity is

cancelled by taking the tensor product with K
− 1

2
D since the latter admits the same

ambiguity (KD is always odd for a Spinc manifold). This amounts to replacing E

with the twisted bundle E′ = E ⊗ K
− 1

2
D . Spinors are then sections not of Spin(D)

but of the well-defined bundle Spin(D)⊗ E ′. In presence of Z2-torsion in H2(D,Z),
the canonical bundle KD will admit more than one square root, and therefore there
would be many possible Spinc structure on D ([22]). Moreover, given a line bundle
M , one can also replace KD by KD ⊗M 2 so that E ′ becomes E ′ ⊗M . This reflects
the freedom to choose different Chan-Paton bundles on a D-branes ([49]). In partic-
ular, when the manifold is Spin, one can choose M 2 = KD so that the charge formula
depends only on E. In this paper, when computing charges, we will always refer to

the canonical Spinc lift E′ = E ⊗K
− 1

2
D , even when D is Spin-manifold.

There is also a Chern-Simons term for an orientifold plane wrapped around a cycle
O embedded in X as i : O ↪→ X (see for example [42, 13]):∫

X

QO ∧ C = −2p−4

∫
O

√
L̂(TO/4)

L̂(NO/4)
∧ i∗C,

where L̂(S) is the Hirzebruch polynomial5 of S and i∗C is the pullback of total RR
potential C to O.

The Chern-Simons term of a Dp-brane or an Op-plane involves the total RR po-
tential. It follows that a given p-brane has not only a p-brane charge but induces as
well lower brane charges. The charge induced by the Chern-Simons term defines an
element of H∗(X,Z) called the Mukai vector . In the previous formulae QD and QO

are respectively the Mukai vector of a D-brane and and O-plane wrapped respectively
around a complex surface D and O. In type IIB with spacetime filling branes, the
component of the Mukai vector of degree n represent the induced D(9 − n) brane
charge.

4We consider the case where the NS-NS two-form vanishes and its field-strength has no discrete
torsion.

5For any d, L̂(dE) is defined as
∑

k dk L̂k(E) where L̂k(E) is the term of degree k in the
expansion L̂(E) =

∑
j L̂j(E).
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For a D7 with a trivial Chan-Paton bundle E ′ and an O7 brane wrapped respec-
tively around a complex surface D and O of a Calabi-Yau threefold X, we get the
following Mukai vectors:

QD = [D] +
χ(D)

24
ω,

QO = −8[O] +
χ(O)

6
ω.

where ω is the unit volume element of X. We have used
∫

S
c2(S) = χ(S) and

Â(S) = 1− 1

24
(c21 − 2c2), L̂(S) = 1 +

1

3
(c21 − 2c2), ci = ci(S).

For a single D3 brane, we have

QD3 = −ω,
where ω is the volume density of the Calabi-Yau three-fold X (with

∫
X
ω = 1) dual

to a point; the conventional minus sign ensures that the D3 tadpole can be solved by
introducing D3 branes of positive charge [7]. In a Z2 orientifold configuration without
fluxes with ND3 D3-branes, D7-branes wrapping divisors Di with trivial Chan-Paton
vector bundle, and O7-planes wrapping around divisors Oj, the tadpole condition
(cancellation of charges) reads:

D7 tadpole :
∑

i

[Di]− 8
∑

j

[Oj] = 0,

D3 tadpole : ND3 =
1

2

(∑
i

χ(Di)

24
+ 4

∑
j

χ(Oj)

24

)
,

where the indices i and j label respectively the D7-branes and the O7-planes. The
factor of 1

2
in the D3 tadpole takes into account the double counting of D3 charge

in the cover space of a Z2 Calabi-Yau orientifold. Note also that the conventional
minus sign in the charge of a single D3 brane (Q3 = −ω) ensures that the induced
D3 charge coming from the curvature of the 7-branes is cancelled by ND3 D3-branes
and not by ND3-anti-D3 branes.

2.5.2. Tadpole in F-theory. F-theory compactified on an elliptically fibered Calabi-
Yau four-fold Y admits a D3-tadpole condition which is obtained by a sequence
of string dualities [44]. D3-branes are the only branes in type IIB invariant under
SL(2,Z). Therefore, in contrast to (p, q) 7-branes, D3 branes in F theory are essen-
tially the same D3 branes seen in type IIB. In a sense, D3 branes play the same role
as M2-branes in M-theory and fundamental strings in type IIA string theory. When
an M2-brane is wrapped around the eleventh dimension used to relate M-theory and
type IIA, it reduces to the F-string of type IIA, while an M2 brane that does not
intersect the eleventh dimension of M-theory will give a D2-brane in type IIA. More
precisely, the three-form of M-theory reduces to the NS-NS two-form that couples to
the F-string of type IIA while the transverse part of A(3) reduces to the RR-three form
C(3) that couples to the D2-brane. Moreover, under T-duality, a D3-brane wrapped
around the T-duality circle will give a D2-brane in type IIB, under S-duality this D2
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brane corresponds to a M2 brane transverse to the S-duality circle of M-theory. The
determination of the F-theory tadpole can be simply deduced by reading the following
sequence of dualities:

IIA
S−duality−→ M theory

U−duality−→ Type IIB
F-string M2-brane D3 brane∫

M2×Y
B(2) ∧ Y8

∫
M3×Y

A(3) ∧ Y8

∫
M4×Y

C(4) ∧ Y8

where Y8 is a characteristic class for the four-fold Y such that
∫

Y
Y8 = χ(Y )

24
when Y is a

Calabi-Yau6 ([11]) and Md represents the d-dimensional spacetime. Compactification
of type IIA string theory on a Calabi-Yau four-fold Y to two dimensions leads to a
tadpole term for the NS-NS two-form B(2) that couples to the fundamental string [46].
This tadpole is proportional to the Euler characteristic of Y . Since the corresponding
type IIA interaction

∫
B(2)∧Y8 does not depend on the dilaton, it can be lifted to M-

theory using S-duality, but the NS-NS two-form should be replaced by the three-form
A(3) which couples to the M2 brane ([11, 21]). This new interaction

∫
A(3) ∧ Y8 can

be seen as a quantum correction to the classical Chern-Simons term
∫
A(3) ∧ dA(3) ∧

dA(3) of eleven-dimensional supergravity. If we assume that there are no fluxes, the

vanishing of the tadpole requires the presence of NM2 M2 branes, so that NM2 = χ(Y )
24

(see chapter 10 of [12]). Finally, using U-duality between M-theory and F-theory,
there is a similar tadpole for F-theory compactified on the Calabi-Yau four-fold Y ,
but this time for the four-form C(4) which couples to the D3 brane. The tadpole in
type IIA is cancelled by the presence of NS-NS charge, in M theory it is cancelled
by the presence of M2-branes charge while in F-theory compactified on an elliptically
fibered Calabi-Yau four-fold Y , the tadpole is cancelled by D3 brane charge. If the
latter is solely coming from ND3 D3 branes, it gives ([44]):

ND3 =
χ(Y )

24
.

2.6. Matching F-theory and type IIB tadpole conditions. Consistency be-
tween type IIB and the F-theory D3 tadpole implies that

2χ(Y ) =
∑

i

χ(Di) + 4
∑

j

χ(Oj),

by simply equating the expressions obtained for the number of D3 branes (ND3)
required in these two theories to satisfy the D3-tadpole condition. It is interesting to
note that the two sides of this equality involve objects defined in different regimes. The
elliptically fibered Calabi-Yau four-fold Y is introduced to describe regimes in which
the string coupling can be strong in presence of possible (p, q) 7-branes; on the other
hand, the l.h.s. of the equality involves solely O-planes and (1, 0) D7 branes which are
only well-defined at weak coupling. This is well illustrated for example in ([43]), where
an O7-plane is shown to correspond in strong coupling to a system of (p, q) 7-branes

6More precisely, we have Y8 = − 1
192 (c4

1− 4c2
1c2 +8c1c3− 8c4), where here the Chern classes ci are

those of Y . When Y is a Calabi-Yau, c1 = 0 and Y8 = c4
24 .
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that coincide when the coupling becomes weak enough. The usual monodromy of the
axion-dilaton field around such an O7-plane is reproduced as the total monodromy
around the corresponding system of (p, q) 7-branes at strong coupling. It is therefore
natural to consider the previous relation in a weak coupling limit of F-theory.

In Sen’s weak coupling limit for E8 elliptic fibrations, and for general choices of
h, η, χ (and hence of f , g), we have a unique orientifold plane O and a unique D7
brane D in type IIB. Arguing as above, consistency between type IIB and F-theory
D3 tadpole would give the equality presented in the introduction:

(†) 2χ(Y )
?
= χ(D) + 4χ(O) .

However, equation (†) should be parsed carefully. The general arguments in §2.5
assume implicitly that all cycles under exam are nonsingular (for example, the ex-
pression of the Chern-Simons term assumes that the tangent bundle TD exists), while
this is not the case for the surface D supporting the D7 brane in Sen’s weak cou-
pling limit. In the base B, the D7-brane is on the surface D defined by the equation
η2+12hχ = 0. In the the Calabi-Yau threefold X, the inverse image D of D is defined
by the equation

η2 + 12x2
0χ = 0.

This surface is singular along the double curve η = x0 = 0, and has pinch points
(cf. [25], p. 617) at η = x0 = χ = 0.

There are in general several ‘natural’ definitions of Euler characteristic (or Chern
class) of a singular variety, all giving the ordinary topological notions when applied to
a nonsingular variety (see for example the appendix of [7]). The Euler characteristics
of the Calabi-Yau fourfold Y and of the orientifold O are unambiguously defined,
since these varieties are assumed to be nonsingular; but it is not clear how the term
χ(D) should be interpreted in equation (†). Turning things around, we could consider
equation (†) as giving a ‘prediction’ for χ(D). It is then natural to ask if this prediction
matches a natural definition of Euler characteristic for a more general singular variety.

We will formulate some more concrete speculations along these lines in §5.
Another viewpoint on this situation is that, for more conventional Euler charac-

teristics, the relation (†) should only be satisfied modulo a contribution from the
singularities of D, which would vanish in the smooth case. The task amounts then to
evaluating this correction term precisely.

This is accomplished in §4, with the result stated in the introduction: adopting
the Euler characteristic of the normalization D of D as the natural notion of Euler
characteristic for the singular surface D, we will find that the correction term needed
in order to recover the tadpole relation (†) is evaluated by the number of pinch-points
of D. Note that D is nonsingular, and that it can be identified as the blow-up of D
along its singular locus.

Example 1.1 shows this phenomenon at work in a concrete instance, and the reader
should have no difficulties adapting the proof given there to analyze the general
case considered in §2.4, reaching the same conclusion. The physics underlying this
particular example is analyzed in detail in ([7]).
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3. Entr’act

Now that we have set the stage, we can address one doubt that may be lingering in
the mind of the reader: is it truly necessary to invoke the presence of singularities in
order to verify the tadpole condition? Might there not exist simpler configurations,
consisting of D-branes supported on nonsingular surfaces, and simply satisfying the
Euler characteristic constraints imposed by the tadpole condition?

In general (but with one notable exception, see below) this appears not to be the
case: the relations are known not to hold when applied to examples where all loci are
assumed to be smooth ([7]).

In F-theory, the seven-branes only wrap surfaces over which the elliptic fibration
is singular. This restricts seriously the allowed configurations. For example, if we
restrict ourself to Z2-orientifolds, in type IIB, the typical D7 configuration is composed
of an O7-plane and a D7-brane; they wrap two complex surfaces that intersect along a
curve. The D7 tadpole condition defines a linear relation among the homology cycles
of these two surfaces.

In the case at hand, the O7 is supported on a smooth surface of class c1(L ) in the
Calabi-Yau threefold X; the D7 tadpole condition forces the D7 to be supported on
a surface or an union of surfaces of total class c1(L 8).

Now, if we assume that the D7 is supported on a single, smooth surface, then
adjunction shows immediately that the tadpole matching condition of IIB and F-
theory will simply not be satisfied. From a type IIB perspective, without any input
from Sen’s sharp description of the orientifold limit of F-theory, this would have
been the typical configuration and would have not satisfied the tadpole matching
condition of IIB and F-theory. However, this mismatch can be attributed to a naive
identification of the typical configuration.

Assuming that the D7 is wrapped on a union of general smooth surfaces of varying
classes equal to multiples of c1(L ), one can verify (again using adjunction) that
the matching is obtained for precisely one configuration: the O7-plane and two D7
branes wrapped around surfaces of classes c1(L ), c1(L 7), respectively. However, this
configuration does not seem to be compatible with Sen’s description of the orientifold
limit of F-theory. Thus, singularities in the support of the D7 brane do appear to
be a necessary feature of the situation, at least from the point of view of Sen’s limit.
As we have illustrated in Example 1.1, and as we are going to verify in general in
§4, it is possible to satisfy the tadpole conditions within Sen’s description, if we take
seriously the presence of singularities.

The identity we will obtain by doing so will in fact realize the tadpole conditions
at the level of Chern classes, and in arbitrary dimension. The configuration of two
smooth surfaces mentioned above does not appear to generalize in the same fashion.
This is further evidence that the configuration cannot be produced by a geometric
construction analogous to Sen’s description.

4. Mathematics

4.1. We consider the following situation, extending the set-up of §2.4. Let B be a
nonsingular compact complex algebraic variety of any dimension, and let ϕ : Y → B
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be an elliptic fibration, realized by a Weierstrass normal equation

(*) y2x− (z3 + f zx2 + g x3) = 0

in a P2-bundle7 φ : P(E ) → B. Here (as in §2.4) f , resp. g are sections of powers L 4,
resp. L 6 of a line bundle L on B. We can take E = O⊕L 3⊕L 2; the left-hand-side
of (*) realizes Y as the zero-scheme of a section of OP(E )(3)⊗ φ∗L 6 in P(E ).

We assume that the base loci of the linear systems |L 4|, |L 6| are disjoint, and
that f , g are general. We let ∆ ⊂ B denote the discriminant hypersurface, given by

4 f 3 + 27 g2 = 0 ;

∆ is the zero-locus of a section of L 12. The following is observed in [31], 1.5 (cf. [33],
Proposition 2.1; and [35] for Weierstrass models):

Lemma 4.1. With notation and assumptions as above:

• Y is nonsingular and ϕ is flat;
• for p 6∈ ∆, the fiber ϕ−1(p) is a smooth elliptic curve;
• for p ∈ ∆, f(p) 6= 0, the fiber ϕ−1(p) is a nodal cubic;
• for p ∈ ∆, f(p) = g(p) = 0, the fiber ϕ−1(p) is a cuspidal cubic.

We will denote by F , resp. G the hypersurfaces determined by f , g, and we will
assume that F and G are nonsingular and intersect transversally. We also assume
that ∆ is nonsingular away from the codimension 2 locus

C : f = g = 0 ,

which is a nonsingular variety by the transversality hypothesis. All these assumptions
are satisfied (by Bertini) if e.g., L is very ample.

∆

C

As noted in §2.4, Y is a Calabi-Yau variety if and only if L is the anticanonical
bundle of B ([31], 1.5 (i)). However, this hypothesis will not be needed for the main
results in this section.

4.2. Sethi-Vafa-Witten formula. Our first task is to extend the Sethi-Vafa-Witten
formula (cf. §1) to the situation described above. We interpret this formula as a com-
parison between the total Chern class of the elliptic fibration Y and the total Chern
class of the hypersurface G.

Proposition 4.2. Let ϕ : Y → B be an elliptic fibration, as above. Then

ϕ∗ c(Y ) = 2 ι∗c(G) ,

where ι : G→ B is the embedding of G.

7We use the projective bundle of lines in E .
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Here and in the following, we denote by c(X) = c(TX) ∩ [X] the total ‘homology’
Chern class of the tangent bundle of X, if X is a nonsingular variety.

For the proof of Proposition 4.2, we rely on the calculus of constructible functions
and Chern-Schwartz-MacPherson (CSM) classes on (possibly) singular varieties. We
recall that a constructible function on a (complex, compact, possibly singular) va-
riety X is a Z-linear combination of characteristic functions of closed subvarieties
of X. Constructible functions on X form an abelian group F (X), which is covari-
antly functorial: if ψ : X → Y is a proper morphism of varieties, then ψ induces
a homomorphism ψ∗ : F (X) → F (Y ) uniquely defined by the requirement that if
Z ⊂ X is a closed subvariety, then

ψ∗(11Z)(p) = χ(ψ−1(p) ∩ Z) ,

where 11Z is the characteristic function of Z, and χ denotes topological Euler charac-
teristic. To each constructible function α ∈ F (X) we can associate a CSM class in
the Chow group of X:

cSM(α) ∈ A∗(X) ,

such that

(1) if X is nonsingular, then cSM(11X) equals the total Chern class of X:

cSM(11X) = c(X) ;

(2) the assignment of CSM classes is functorial, in the sense that if ψ : X → Y is
a proper morphism then ∀α ∈ F (X)

ψ∗(cSM(α)) = cSM(ψ∗(α)) .

In view of (1), one defines the Chern-Schwartz-MacPherson class of a (possibly sin-
gular) variety X as

cSM(X) := cSM(11X) ∈ A∗(X) :

thus, cSM(X) = c(X) if X is nonsingular, but cSM(X) is defined for arbitrary vari-
eties X. It easily follows from (2) that the degree of the zero-dimensional component
of X is the topological Euler characteristic χ(X) of X.

In these definitions, the reader may replace the Chow group with ordinary in-
tegral homology. This topological setting was the context of the original result
of MacPherson ([30]) and of earlier, independent work of Marie-Hélène Schwartz
([39, 40]); MacPherson’s and Schwartz’s very different definitions are known to lead
to the same class ([14, 6]). For a rapid review of the definition of cSM see [23], §19.1.7.
An alternative is given in [4], Definition 3.2.

Although the statement of Proposition 4.2 only involves nonsingular varieties, its
proof is considerably streamlined by using the notions we just recalled, which were
introduced for the study of singular spaces.

Proof of Proposition 4.2. By Lemma 4.1 and the definition of push-forward of con-
structible functions recalled above, we have

ϕ∗(11Y ) = 11∆ + 11C ;

by the properties of CSM classes recalled above,

ϕ∗c(Y ) = ι∆∗cSM(∆) + ιC∗c(C) ,
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where ι∆, ιC denote the corresponding embeddings (note that C is nonsingular).
The class cSM(∆) may be computed by using Theorem I.4 from [2]:

(**) cSM(∆) = c(TB) ∩
(

[∆]

1 + ∆
+

1

1 + ∆
(s(∆s, B)∨ ⊗ O(∆))

)
,

where ∆s denotes the singularity subscheme of ∆ (defined locally by the ideal of
partial derivatives of an equation for ∆), s(∆s, B) is its Segre class in B (cf. [23],
Chapter 4), and O(∆) is the line bundle of which ∆ is a section. By the assumptions
detailed at the beginning of the section, ∆s is supported on C. The differential of
the (local) equation for ∆ is 12f 2 df + 54g dg; the differentials df , dg are linearly
independent in a neighborhood of C, and it follows that ∆s has ideal

(f 2, g) ,

that is, it is the complete intersection of G and the ‘double’ 2F of F . Since the
complete intersection of F and G is C, we conclude

s(∆s, B) =
2[C]

(1 + 2F )(1 +G)
.

Applying (**) we get8:

cSM(∆) = c(TB) ∩
(

[∆]

1 + ∆
+

1

1 + ∆

2[C]

(1− 2F )(1−G)
⊗ O(∆)

)
= c(TB) ∩

(
[∆]

1 + ∆
+

1

1 + ∆

2[C]

(1 + ∆− 2F )(1 + ∆−G)

)
Since ∆ = 3F = 2G as divisor classes, and [C] = F · [G], this shows

cSM(∆) = c(TB) ∩
(

[∆]

1 + ∆
+

1

1 + ∆

2[C]

(1 + F )(1 +G)

)
= c(TB) ∩ (2 + F ) · [G]

(1 + F )(1 +G)
.

Using this, and again the fact that C is the complete intersection of F and G,

ϕ∗c(Y ) = c(TB) ∩
(

(2 + F ) · [G]

(1 + F )(1 +G)
+

[F ][G]

(1 + F )(1 +G)

)
= c(TB) ∩ 2 [G]

1 +G
= 2 ι∗c(G) ,

giving the statement. �

8Here we use the simple calculus of the operations ⊗, ∨, see §2 in [1]. The expression 2[C]
(1+2F )(1+G)

is viewed as c(A )−1 ∩ a, where A is a vector bundle with roots 2F , G, and a is the homology class
2[C]. Now, for all vector bundles A :

(c(A )−1 ∩ a)∨ = c(A ∨)−1 ∩ a∨ ,

and for all line bundles M

(c(A )−1 ∩ a)⊗M = c(M )rk A c(A ⊗M )−1 ∩ (a⊗M ) .

The classes a∨ and a⊗M are both linear in a. For a pure-dimensional a, they equal (−1)codim aa,
c(M )− codim a ∩ a, respectively.
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Since the Euler characteristic agrees with the degree of the top Chern class, we
obtain the following statement (in terms of the class of the line bundle L introduced
at the beginning of the section):

Corollary 4.3. Let Y be an elliptic fibration on a nonsingular compact variety B,
as above. Let ` = c1(L ), and ci = ci(TB), and let b = dimB. Then

χ(Y ) = 12 `
(
cb−1 − 6 ` cb−2 + 62 `2 cb−3 + · · ·+ (−6)b−1 `b−1

)
.

Proof. Since G has class 6`,

ι∗c(G) = c(TB)
6`

1 + 6`
∩ [B] .

Applying Proposition 4.2, and reading off the term of dimension 0, yields the state-
ment. �

Proposition 4.2 and Corollary 4.3 hold regardless of any Calabi-Yau hypothesis.
As observed above, Y is a Calabi-Yau variety if and only if ` = c1; in this case,
Corollary 4.3 reproduces Proposition 2 in §8 of [29]. Some values for χ(Y ) are given
in the table below. The third line in the table (that is, Corollary 4.3 for dimB = 3

dim B χ(Y ) for Y a Calabi-Yau (` = c1):

1 12 ` 12 c1

2 12 `(c1 − 6 `) 12 c1(−5 c1)

3 12 `(c2 − 6 `c1 + 62`2) 12 c1(30 c2
1 + c2)

4 12 `(c3 − 6 `c2 + 62 `2c1 − 63`3) 12 c1(−180 c3
1 − 6 c1c2 + c3)

5 12 `(c4 − 6 `c3 + 62 `2c2 − 63 `3c1 + 64`4) 12 c1(1080 c4
1 + 36 c2

1c2 − 6 c1c3 + c4)

Euler characteristic of E8 elliptic fibrations

and ` = c1) reproduces formula (2.12) in [44]. In this sense, Proposition 4.2 should
be viewed as a generalization of the Sethi-Vafa-Witten formula—holding in arbitrary
dimension, for E8 elliptic fibrations that are not necessarily Calabi-Yau varieties, and
at the level of total Chern classes.

4.3. Tadpole relation. Our next goal is to analyze the tadpole relation of §2.6 in
the context of the situation presented in §4.1: that is, to obtain a precise relation for
the Euler characteristics, holding in arbitrary dimension, and bypassing the Calabi-
Yau hypothesis. We first obtain a Chern class relation involving the discriminant
determined in §4.1 and the discriminant at weak coupling limit; then we interpret the
result in terms akin to those presented in §2.6.

Recall that the weak coupling limit is obtained by viewing the defining equation (*)

y2x− (z3 + f zx2 + g x3) = 0

as a perturbation of the degenerate fibration

y2x− (z3 + (−3h2) zx2 + (−2h3)x3) = 0 ,
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where h is a general section of L 2. More precisely, we let{
f = −3h2 + c η

g = −2h3 + c hη + c2 χ

where c is a scalar, and η, resp. χ are general sections of L 4, resp. L 6. For general c,
we are in the situation presented in §4.1; the weak coupling limit is obtained by letting
c→ 0. The resulting family of discriminants has flat limit

h2(η2 + 12hχ)

for c = 0. The corresponding hypersurface ∆ is the union of a (double) nonsingular
component O with equation h = 0, and the singular hypersurface D given by η2 +
12hχ = 0. Under our standing generality assumptions, the only singularities of D
are along the (transversal) intersection h = η = χ = 0, a nonsingular subvariety S of
codimension 3 in B. In fact, as d(η2 +12hχ) = 2η dη+12h dχ+12χdh and dη, dχ, dh
are independent along S, it follows that the singularity subscheme Ds of D coincides
with S.

We now consider the problem of expressing ϕ∗(c(Y )) in terms of this limiting dis-
criminant, analogously to Proposition 4.2. The following should be viewed as a ‘lim-
iting Sethi-Vafa-Witten formula’:

Lemma 4.4. With notation as above,

ϕ∗c(Y ) = cSM(11D + 2 11O − 11S) .

Proof. Since O and S are nonsingular,

cSM(O) = c(TB) ∩ [O]

1 +O
, cSM(S) = c(TB) ∩ [S]

(1 +O)(1 + F )(1 +G)

by the normalization property (1) of CSM classes, and noting that η, resp. χ are
sections of L 4 ∼= O(F ), resp. L 6 ∼= O(G).

The class cSM(D) is evaluated by again applying Theorem I.4 from [2]:

cSM(D) = c(TB) ∩
(

[D]

1 +D
+

1

1 +D
(s(Ds, B)∨ ⊗ O(D))

)
.

We have already observed that this scheme is in fact S, hence

s(Ds, B) = s(S,B) =
[S]

(1 +O)(1 + F )(1 +G)
.

Applying the ‘calculus’ recalled in footnote 8:

cSM(D) = c(TB) ∩
(

[D]

1 +D
− 1

1 +D

[S]

(1 +O)(1 + F )(1 +G)

)
.

Using that [D] = 2[F ] = [O] + [G], [G] = [O] + [F ], and [S] = [O][F ][G], it follows
that

cSM(D) + 2cSM(O)− cSM(S) = c(TB) ∩ 2[G]

1 +G
= 2 ι∗c(G) .

The statement follows then immediately from Proposition 4.2. �
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Remark 4.5 (Verdier specialization). According to Lemma 4.4, the two constructible
functions

11∆ + 11C and 11D + 211O − 11S

have the same CSM class in A∗(B). It is natural to ask for ‘systematic’ ways to pro-
duce such identities. One possibility consists of studying the Verdier specialization
σX of the constant function 1 from the total space of a smoothing family for a hyper-
surface X. For an efficient summary of this notion, introduced in [47], we recommend
§5 of [36]; the function σX is essentially defined by taking Euler characteristics of
nearby fibers. In the case at hand, the reader can verify that

σ∆ = 11∆ − 2 11C + 2 11C′

and

σ∆ = 11D + 211O − 611Q + 311S − 11O′ + 511Q′ − 311S′ ,

where Q = O ∩ D, and primed letters denote the intersection of the corresponding
locus with a general element of the linear system of the hypersurface (use [36], Propo-
sition 5.1). Now, it is easy to see that the CSM class of the specialization function
σX only depends on the divisor class of X (in fact, it reproduces the Chern class of
the virtual tangent bundle of X); hence

cSM(σ∆) = cSM(σ∆) .

Further, one can verify directly that

cSM(611Q − 311C + 11O′ − 411S − 511Q′ + 211C′ + 311S′) = 0 :

this is straightforward since every locus appearing on the l.h.s. is a nonsingular com-
plete intersection. Combining these identities yields precisely that

cSM(11∆ + 11C) = cSM(11D + 211O − 11S) .

This gives an alternative argument for Lemma 4.4, bypassing the use of [2] and
shedding some light on the reason why such an identity should hold in the first place.

Next, we consider (as in §2.4) the double cover ρ : X → B ramified along the
smooth hypersurface O. Note that X has vanishing canonical class when [O] =
2 c1(TB) ∩ [B]; it follows that X is a Calabi-Yau if Y is a Calabi-Yau. However,
again we point out that this hypothesis is not necessary for the considerations in this
section.

We denote by D the inverse image of D in X. The local analysis summarized in
§2.6 goes through unchanged in the situation considered in this section. Explicitly: X
may be realized (as in §2.6) by putting h = x2

0; we may use η, χ, x0, x1, . . . , xr as local
coordinates inX, andD is then defined (locally) by η2+12x2

0χ = 0. This hypersurface
is singular along η = x0 = 0, corresponding to the inverse image of Q = O ∩D, and
‘pinched’ along η = χ = x0 = 0, that is, the inverse image S = ρ−1(S). Note that ρ
restricts to an isomorphism S → S. We consider the resolution D of D obtained by
blowing up η = x0 = 0: locally, the blow-up of X is covered by two charts, and we
may choose local coordinates in one of these charts as follows:

η̃, χ, x̃0, x1, . . . , xr
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so that the blow-up map is given by

(η̃, χ, x̃0, x1, . . . , xr) 7→ (η̃x̃0, χ, x̃0, x1, . . . , xr) .

In these coordinates, the inverse image of D is given by the equation x̃2
0(η̃

2+12χ) = 0;
therefore the blow-up D of D has equation

η̃2 + 12χ = 0 ,

and in particular it is nonsingular in this chart. The situation on the other local chart
of the blow-up can be analyzed similarly, with the same conclusion: blowing up the
singular locus of D resolves its singularities9.

Note that the map D → D → D is generically 2-to-1, and 1-to-1 precisely over S.
We denote by

π : D → B

the composition D � D � D ↪→ B.

Theorem 4.6. With notation as above,

2ϕ∗c(Y ) = π∗c(D) + 4 c(O)− ρ∗c(S)

in A∗(B).

Proof. The map π is 2-to-1 onto the complement of S inD, and 1-to-1 over the singular
locus S of D. Therefore, by definition of push-forward of constructible functions,

π∗(11D) = 2 11D − 11S .

It follows that

π∗(11D) + 4 11O − ρ∗(11S) = 2 11D + 4 11O − 2 11S ,

and hence, by Lemma 4.4,

cSM(π∗(11D) + 4 11O − ρ∗11S) = 2 cSM(11D + 2 11O − 11S) = 2ϕ∗c(Y ) .

The formula given in the statement follows from this by the properties (1), (2) of
CSM classes recalled in §4.2. �

Considering only the term of dimension 0 in Theorem 4.6 gives

Corollary 4.7.

2χ(Y ) = χ(D) + 4χ(O)− χ(S) .

If dimB = 3, so that S consists of a discrete set of points, then χ(S) simply equals
the number of pinch-points of the surface D. This relation is the corrected version
of the tadpole relation (†) promised in §2.6. It is generalized to arbitrary dimension,
and emancipated from the Calabi-Yau hypothesis.

9If D is a surface, as in §2.6, this is of course the standard resolution of the Whitney umbrella
obtained by blowing up along the singular curve.
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5. Speculation

The Euler characteristic χ(D) appearing in Corollary 4.7 could be interpreted as
the stringy Euler characteristic of D, although D is not normal: the blow-up D → D
is ‘crepant’ in the sense that its differential is regular in codimension 1. By the same
token, the push forward of c(D) should be interpreted as the stringy Chern class of
the singular hypersurface D ⊂ B, cf. [3] and [19].

In fact, the machinery of [3] produces other ‘natural’ notions of Chern class (and,
in particular, of Euler characteristic) for singular varieties, depending on how the
relative canonical divisor of a resolution is handled. For a review of these notions, the
reader is addressed to [5]. Briefly: if ν : Z → Z is a resolution of a singular variety Z,
the ‘celestial integral’ ∫

Z

11(Kν) dcZ

determines a class in (A∗Z)Q, which may be taken as defining a ‘total Chern class’
for Z. Here, Kν denotes the chosen notion of relative canonical divisor of ν, which in
turns depends on how ωZ is defined:

• Taking ∧dim ZΩ1
Z leads to the arc Chern class10 of Z, carc(Z);

• Taking the double-dual of ∧dim ZΩ1
Z leads to the stringy Chern class cstr(Z).

This notion was independently defined and studied in [19].

The degree of the Chern class recovers the corresponding notion of Euler characteris-
tic. If Z is nonsingular to begin with, all these notions coincide and simply reproduce
the usual Chern class and (topological) Euler characteristic of Z.

For the situation considered in §4, we have the resolution

ν : D → D

obtained by blowing up a codimension 1 locus in D. A computation in local coordi-
nates shows that Ωdim D

D|D is supported on the inverse image S = ν−1(S) of the pinch

locus of D; this is a codimension 2 locus, and it follows that the relative canonical
divisor in the ‘stringy’ sense vanishes; therefore, cstr(D) is evaluated by (the ‘identity
manifestation’ of) ∫

D

11(0) dcD .

The resolution D is not adequate to compute carc(D), since Ωdim D
D|D is not invertible

(that is, D does not ‘resolve’ the data in the sense of [3], §3.3). In order to obtain a

resolution satisfying this condition, we blow up D further along S: let D̂ be this blow-

up, and denote by E the exceptional divisor; and let ν̂ : D̂ → D be the composition
of the two blow-ups. Then the stringy relative canonical divisor is E, while Ωdim DbD|D

∼=
O(2E).

This prompts us to propose the following (speculative) definition: for every non-
negative integer m, we can let c(m)(D) be the class in (A∗D)Q corresponding to the

10This is called ‘Ω flavor’ in [3] and [5], as opposed to the (stringy) ‘ω flavor’.
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celestial integral ∫
D̂

11(mE) dc bD ,

so that c(1)(D) = cstr(D) and c(2)(D) = carc(D). As we will see in a moment, the
class c(m)(D) has a well-defined ‘limit as m→∞’, which we will denote c(∞)(D); the
corresponding degrees will be denoted χ(m)(D), χ(∞)(D).

Theorem 5.1. With notation as in above and as in §3:

2ϕ∗c(Y ) = c(∞)(D) + 4 c(O) .

This statement is proved by computing c(m) explicitly; the following lemma does
this, and gives a meaning to the limit of the class c(m) as m→∞.

Lemma 5.2. With notation as above,

c(m)(D) = π∗c(D)− c(S) +
2

1 +m
c(S) .

Proof. By definition of the integral (see [5], §7) we get

c(m)(D) := ν̂∗

(
c(TD̂)
(1 + E)

(
1 +

E

1 + m

)
∩ [D̂]

)
= ν̂∗

(
c(TD̂) ∩ [D̂]− m

1 + mE
c(TE) ∩ [E]

)
= ν̂∗cSM

(
11 bD − m

1 + m
11E

)
.

Since S is nonsingular and of codimension 2 in D, the exceptional divisor E is a
P1-bundle over S. As S maps isomorphically to S, we have

ν̂∗(11E) = 2 · 11S .

By the same token,

ν̂∗(11 bD) = π∗(11D) + 11S .

Thus

ν̂∗

(
11 bD − m

1 +m
11E

)
= π∗(11D)− 11S +

2

1 +m
11S ,

and the statement follows by applying cSM and using its properties (1), (2) listed
in §4. �

The theorem follows immediately from Lemma 5.2 and Theorem 4.6.
Theorem 5.1 recovers the tadpole relation of §2.6 ‘without correction terms’:

2χ(Y ) = χ(∞)(D) + 4χ(O) ,

in full alignment with the string theory prediction obtained in §2.6. However, it is
of course unclear at this point whether this is due to a lucky accident, or whether
the formalism leading to the definition of c(∞)(D) can really account for the relevant
information at a good level of generality.
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ume 82 of Astérisque, pages 149–159. Soc. Math. France, Paris, 1981.
[48] E. Witten. Bound states of strings and p-branes. Nuclear Phys. B, 460(2):335–350, 1996.

arXiv:hep-th/9510135.
[49] E. Witten. D-branes and K-theory. J. High Energy Phys., (12):Paper 19, 41 pp. (electronic),

1998. arXiv:hep-th/9810188.

Mathematics Department, Florida State University, Tallahassee FL 32306, U.S.A.
E-mail address: aluffi@math.fsu.edu

Afdeling Theoretische Fysica, Celesijnenlaan 200D, 3001 Heverlee, Belgium
E-mail address: Mboyo.Esole@fys.kuleuven.be


