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Abstract. We give a general procedure to construct “algebro-geometric Feynman

rules”, that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs
that factor through a Grothendieck ring of immersed conical varieties, via the class

of the complement of the affine graph hypersurface. In particular, this maps to the

usual Grothendieck ring of varieties, defining “motivic Feynman rules”. We also con-
struct an algebro-geometric Feynman rule with values in a polynomial ring, which

does not factor through the usual Grothendieck ring, and which is defined in terms of

characteristic classes of singular varieties. This invariant recovers, as a special value,
the Euler characteristic of the projective graph hypersurface complement. The main

result underlying the construction of this invariant is a formula for the characteristic

classes of the join of two projective varieties. We discuss the BPHZ renormalization
procedure in this algebro-geometric context and some motivic zeta functions arising

from the partition functions associated to motivic Feynman rules.

1. Introduction

In [4] we presented explicit computations of classes in the Grothendieck ring of vari-
eties, of Chern–Schwartz–MacPherson characteristic classes, and by specialization Euler
characteristics, for some particular classes of graph hypersurfaces. The latter are singular
projective hypersurfaces associated to the parametric formulation of Feynman integrals in
scalar quantum field theories and have recently been the object of extensive investigation
(see [5], [7], [10], [11], [12], [13], [14], [15], [16], [17], [22], [23], [35], [36], [37], [38]).

The purpose of the present paper is to answer a question posed to us by the referee of
[4]. We describe the problem here briefly, along with the necessary background. All this
will be discussed in more details in the body of the paper.

For us a Feynman graph Γ will be a finite graph whose set of edges consists of internal
edges Eint(Γ) and external edges Eext(Γ). Whenever we focus on invariants that only
involve internal edges, we can assume that Γ is just a graph in the ordinary sense.

Consider a graph Γ consisting of two components, Γ = Γ1 ∪ Γ2. To each component
we can associate a corresponding graph hypersurface XΓ1 ⊂ Pn1−1 and XΓ2 ⊂ Pn2−1,
where ni = #Eint(Γi) is the number of internal edges of the Feynman graph Γi. The
Feynman integral U(Γi, pi), with assigned external momenta pi = (pi)e for e ∈ Eext(Γi),
is computed in the parametric form as an integral over a simplex σni of an algebraic
differential form defined on the hypersurface complement Pni−1 rXΓi . The multiplicative
property of the Feynman rules implies that, for a graph Γ = Γ1 ∪Γ2, one correspondingly
has U(Γ, p) = U(Γ1, p1)U(Γ2, p2), so that it is customary in quantum field theory to pass
from the partition function whose asymptotic series involves all graphs to the one that
only involves connected graphs. A further simplification of the combinatorics of graphs
that takes place in quantum field theory is obtained by passing to the 1PI effective action,
which only involves graphs that are 2-edge-connected (1-particle irreducible in the physics
terminology), i.e. that cannot be disconnected by removal of a single edge.

The Connes–Kreimer theory [18], [19] (see also [20]) shows that the Feynman rules
define a character of the Connes–Kreimer Hopf algebra H of Feynman graphs. Namely,
the collection of dimensionally regularized Feynman integrals U(Γ, p) of all the 1PI graphs
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of a given scalar quantum field theory defines a homomorphism of unital commutative
algebras φ ∈ Hom(H,K), where K is the field of germs of meromorphic functions at
z = 0 ∈ C. The coproduct in the Hopf algebra is then used in [18] to obtain a recursive
formula for the Birkhoff factorization of loops in the pro-unipotent complex Lie group
G(C) = Hom(H,C). This provides the counterterms and the renormalized values of all
the Feynman integrals in the form of what is known in physics as the Bogolyubov recursion,
or BPHZ renormalization procedure.

In particular, any character of the Hopf algebra H can be thought of as a possible as-
signment of “Feynman rules” for the given field theory, and the renormalization procedure
can be applied to any such character as to the case of the Feynman integrals. In turn, the
characters need not necessarily take values in the field K of convergent Laurent series for
the BPHZ renormalization procedure to make sense.

In fact, it was shown in [24] how the same Connes–Kreimer recursive formula for the
Birkhoff factorization of loops continues to work unchanged whenever the target of the
Hopf algebra character is a Rota–Baxter algebra of weight λ = −1. In the Connes–Kreimer
case, it is the operator of projection of a Laurent series onto its divergent part that is a
Rota–Baxter operator and the Rota–Baxter identity is what is needed to show that, in
the Birkhoff factorization φ = (φ− ◦ S) ? φ+, with S the antipode and ? the product dual
to the coproduct, the two terms φ± are also algebra homomorphisms.

Of course not all such algebra homomorphisms will be “physical” Feynman rules, but
they share with the usual Feynman rules the same abstract multiplicative structure un-
derlying the Hopf theoretic approach to renormalization.

When working in the algebro-geometric world of the graph hypersurfaces XΓ, one would
like to have “motivic Feynman rules”, namely an assignment of an Euler characteristic
χnew (the class in the Grothendieck ring of varieties is a universal Euler characteristic)
to the graph hypersurface complements Pn−1 rXΓ with the property that, in the case of
graphs Γ consisting of several disjoint components Γ1 . . . ,Γk, one has

(1.1) χnew(Pn−1 rXΓ) =
∏
i

χnew(Pni−1 rXΓi),

as in the case of the Feynman integrals U(Γ, p) =
∏
i U(Γi, pi). Here the graph hypersur-

face XΓ associated to a graph Γ is defined as the hypersurface in Pn−1 (n = #Eint(Γ))
given by the vanishing of the polynomial

ΨΓ(t1, . . . , tn) =
∑
T⊂Γ

∏
e/∈T

te,

with the sum over spanning forests T of Γ, and the product of the edge variables te of the
edges e of Γ that are not in the forest T . If Γ = Γ1 ∪ Γ2 is a disjoint union, then clearly

(1.2) ΨΓ(t1, . . . , tn) = ΨΓ1(t1, . . . , tn1)ΨΓ2(tn1+1, . . . , tn1+n2).

One can see that the usual Euler characteristic does not satisfy the desired property
(1.1). In fact, if Γ is not a forest, one can see that the hypersurface complement Pn−1rXΓ is
a Gm-bundle over the product (Pn1−1rXΓ1)×(Pn2−1rXΓ2), hence its Euler characteristic
vanishes and the multiplicative property cannot be satisfied.

The question the referee of [4] asked us is whether there exists a natural modification
χnew of the usual Euler characteristic that restores the multiplicative property (1.1), thus
giving an interesting example of what we call algebro–geometric Feynman rules. The main
result of the present paper is to show that indeed such modifications of the Euler char-
acteristic exist and they can be obtained from already well known natural enhancements
of the Euler characteristic in the context of algebraic geometry. In particular, we produce
one such invariant obtained using classes in the Grothendieck ring of varieties, and one
obtained using the Chern–Schwartz–MacPherson characteristic class of singular algebraic
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varieties, [34] [40], and we show that both descend from a common invariant that lives in
a “Grothendieck ring of immersed conical varieties”.

The first case, where one considers an invariant with values in the usual Grothendieck
ring, has the advantage that it is motivic, so it indeed defines “motivic Feynman rules”,
in the terminology then suggested to us by the referee and also it is in general easier to
compute explicitly, while the second case where the invariant is constructed in terms of
characteristic classes is more difficult to compute, but it has the advantage that it takes
values in a more manageable polynomial ring. We discuss the meaning of the BPHZ
renormalization procedure in the Connes–Kreimer form for some of these invariants, using
suitable Rota–Baxter operators on polynomial algebras.

This leads us to introduce a new polynomial invariant of graphs, which we denote
CΓ(T ), and which is obtained from the Chern–Schwartz–MacPherson classes of the graph
hypersurface complement. In the subsequent work [6], and especially in the forthcoming
[3], the algebro-geometric and combinatorial graph-theoretic properties of this invariant
are further investigated. Here we prove the multiplicative property, using a formula for
the CSM classes of joins of subvarieties in projective spaces, which in turn depends on a
result on the behavior of CSM classes of blow-ups.

The paper is structured as follows. We recall briefly in §1.1 the properties of Feyn-
man integrals and Feynman rules in perturbative scalar quantum field theory, as those
serve as a model for our algebro-geometric definition. In §2 we introduce the notion of
algebro-geometric Feynman rules, by requiring that the multiplicative invariants associ-
ated to graphs depend on the data of the affine hypersurface complement, up to linear
changes of coordinates. We show in §2.1 that there is a universal algebro-geometric Feyn-
man rule that takes values in a suitably defined Grothendieck ring of immersed conical
varieties, F . We show how the values behave under simple operations on graphs, such as
bisecting and edge, connecting graphs by a vertex or an edge, etc. The existence of this
universal algebro-geometric Feynman rule is based on the multiplicative property of the
affine hypersurface complements over disjoint unions of graphs, which does not hold in the
projective setting. We then show in §2.3 that the universal Feynman rule maps to a mo-
tivic Feynman rule with values in the usual Grothendieck ring of varieties, by considering
varieties up to isomorphism instead of the more restrictive linear changes of coordinates.
We give an explicit relation between the class of the affine hypersurface complement and
the class of the projective hypersurface in the Grothendieck ring. As a consequence of
the basic properties of algebro-geometric Feynman rules, we show in Proposition 2.9 that
the stable birational equivalence class of the projective graph hypersurface of a non-1PI
graph is equal to 1. The issue of the divergences of these integrals is further discussed in
§4. In §3 we introduce a different algebro-geometric Feynman rule, that is obtained by
mapping the ring F to the polynomial ring Z[T ] via a morphism defined in terms of the
Chern–Schwartz–MacPherson (CSM) characteristic classes of singular algebraic varieties.
This morphism ICSM : F → Z[T ] does not factor through the usual Grothendieck ring of
varieties K0(Vk), as we show explicitly in Example 2.8. The main theorem showing the
multiplicative property of this polynomial invariant over disjoint unions of graphs is stated
in Theorem 3.6, and its proof is reduced in steps to a formula, given in Theorem 3.13,
for the Chern-Schwartz-MacPherson classes of joins of disjoint subvarieties of projective
space. In this same section, Proposition 3.1 lists the main properties of the polynomial
invariant, including the fact that it recovers as a special value of the derivative the usual
Euler characteristic of the projective hypersurface complements, thus effectively correcting
for its failure to satisfy the multiplicative property of Feynman rules. A way to compute
the coefficients of the polynomial invariant in terms of integrals of differential forms with
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logarithmic poles on a resolution is given in Remark 3.9. The following section, §4, dis-
cusses the BPHZ renormalization procedure, in the formulation of the Connes–Kreimer
theory in terms of Birkhoff factorization of characters of the Hopf algebra of Feynman
graphs. Using the formulation in terms of characters with values in a Rota–Baxter alge-
bra of weight −1, one can show that the BPHZ procedure can be applied to the various
cases of algebro-geometric Feynman rules considered here. In §5 we draw some analogies
between the partition functions obtained by summing over graphs the algebro-geometric
Feynman rules and the motivic zeta functions considered in the theory of motivic integra-
tion. Finally, §6 is devoted to the proof of Theorem 3.13. The main ingredients in the
proof are Kwieciński’s product formula and Yokura’s Riemann–Roch theorem for CSM
classes, together with a blow-up construction.

Andrzej Weber and Jörg Schürmann have both pointed out that the homomorphism
ICSM introduced in §3 has an interpretation in terms of equivariant (co)homology. For-
mulas for characteristic classes of joins in a similar spirit to our Theorem 3.13 were also
obtained by Jörg Schürmann in [41].

Remark. One of the referees of the present paper suggested the alternative terminology
‘multiplicative graph maps in algebraic geometry’ for what we have chosen to call ‘algebro-
geometric Feynman rules’, on the grounds that the term ‘Feynman rules’ may be more
suggestive than we can support in this paper. To quote this referee, ‘Certainly the mul-
tiplicativity of Feynman rules is important, even, in view of the Hopf-algebraic approach,
more important than a quantum field theorist might naively think. However it is a stretch
to suppose that this property is the only key property, and that any map with this prop-
erty should inherit the name.’ Of course we mean no hubris with this choice. Readers who
feel that there should be a notion more deserving of the term ‘algebro-geometric Feynman
rules’ than the one considered in this paper are invited to introduce and study such a
notion. In any case, as the present paper is already referenced in published literature,
changing the title of this paper or the name of the main object of study in this paper is
not an option.

1.1. Feynman rules in quantum field theory. The Feynman rules prescribe that,
in perturbative scalar quantum field theory, one assigns to a Feynman graph a formal
(usually divergent) integral

(1.3) U(Γ, p) = C

∫
δ(
∑n
i=1 εv,iki +

∑N
j=1 εv,jpj)

q1(k1) · · · qn(kn)
dDk1

(2π)D
· · · d

Dkn
(2π)D

,

where C =
∏
v∈V (Γ) λv(2π)D, with λv the coupling constant of the monomial in the

Lagrangian of degree equal to the valence of the vertex v. Here, n = #Eint(Γ), and
N = #Eext(Γ). The matrix εv,i is the incidence matrix of the (oriented) graph with
entries εv,i = ±1 if the edge ei is incident to the vertex v, outgoing or ingoing, and zero
otherwise. The qi(ki) are the Feynman propagators. The latter are quadratic forms, given
in Euclidean signature by

(1.4) qi(ki) = k2
i +m2,

where ki ∈ RD is the momentum variable associated to the edge ei of the graph, with
k2
i = ‖ki‖2 the Euclidean square norm in RD and m ≥ 0 the mass parameter. The integral
U(Γ, p) is a function of the external momenta p = (pe)e∈Eext(Γ), where the pe ∈ RD satisfy
the conservation law

∑
e∈Eext(Γ) pe = 0. The delta function in the numerator of (1.3)

imposes linear relations at each vertex between the momentum variables, so that momen-
tum conservation is preserved at each vertex. This reduces the number of independent
variables of integration from the number of edges to the number of loops.
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The form of the Feynman integral (1.3) immediately implies a multiplicative property.
Namely, if the Feynman graph is a disjoint union Γ = Γ1 ∪ Γ2 of two components, then
the integral satisfies

(1.5) U(Γ, p) = U(Γ1, p1)U(Γ2, p2),

where pi are the external momenta of the graphs Γi, with p = (p1, p2). This follows from
the fact that there are no linear relations between the momentum variables assigned to
edges in different connected components of the graph, so the integral splits as a product.

In quantum field theory one usually assembles the Feynman integrals of different graphs
in a formal series that gives, for fixed external momenta p = (pe) = (p1, . . . , pN ), the Green
function

(1.6) G(p) =
∑

Γ

U(Γ, p)
#Aut(Γ)

,

where Aut(Γ) are the symmetries of the graph. For a graph with several connected com-
ponents, the symmetry factor behaves like

(1.7) #Aut(Γ) =
∏
j

(nj)!
∏
j

#Aut(Γj)nj ,

where the nj are the multiplicities (i.e. there are nj connected components of Γ all isomor-
phic to the same graph Γj). Thus, one can simplify the combinatorics of graphs in quantum
field theory by considering only connected graphs and the corresponding connected Green
functions.

One can further reduce the class of graphs that need to be considered, by passing to
the 1PI effective action, where only the graphs that are “one-particle-irreducible” (1PI)
are considered. These are the two–edge–connected graphs, namely those that cannot be
disconnected by removal of a single edge. The reason why these suffice is again related
to the multiplicative properties of Feynman rules. A connected graph Γ can be described
as a tree T in which at the vertices one inserts 1PI graphs Γv with number of external
edges equal to the valence of the vertex. The corresponding Feynman integral can then
be written in the form of a product

(1.8) U(Γ, p) =
∏
v∈T

U(Γv, pv)
1

qe((pv)e)
δ((pv)e − (pv′)e),

i.e. a product of Feynman integrals for 1PI graphs and inverses of the propagators qe for
the edges of the tree, with momenta matching the external momenta of the 1PI graphs.

When one takes the dimensional regularization of the Feynman integrals, one replaces
the formal U(Γ, p) by Laurent series, while maintaining the multiplicative properties over
disjoint unions of graphs. Thus, if one defines a polynomial ring H generated by the 1PI
graphs with the product corresponding to the disjoint union, the dimensionally regular-
ized Feynman integral defines a ring homomorphism from H to the ring R of convergent
Laurent series. When the polynomial ring H on the 1PI graphs is endowed with the
Connes–Kreimer coproduct as in [18], and the ring of convergent Laurent series is endowed
with the Rota–Baxter operator T of projection onto the polar part, one can implement
the BPHZ renormalization of the Feynman integral as in the Connes–Kreimer theory [18]
as the Birkhoff factorization of the Feynman integrals U(Γ, p) into a product of ring ho-
momorphisms from H to TR and (1 − T)R, respectively defining the counterterms and
the renormalized part of the Feynman integral.

In the following section we show how to abstract this setting to define algebro–geometric
Feynman rules.
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2. Feynman rules in algebraic geometry

We give an abstract definition of Feynman rules, which is inspired by the case of Feyn-
man integrals recalled above, and that allows for algebro-geometric variants, satisfying the
same multiplicative property.

Definition 2.1. A Feynman rule is an assignment of an element U(Γ) in a commutative
ring R for each finite graph Γ, with the property that, for a disjoint union Γ = Γ1∪· · ·∪Γk
of connected graphs Γi, the function behaves multiplicatively

(2.1) U(Γ) = U(Γ1) · · ·U(Γk).

One also requires that, for a connected graph Γ described as a finite tree T with vertices
replaced by 1PI graphs Γv, the function U(Γ) satisfies

(2.2) U(Γ) = U(L)#E(T )
∏

v∈V (T )

U(Γv),

where L is the graph consisting of a single edge. Thus, a Feynman rule determines and is
determined by a ring homomorphism U : H → R, where H is the polynomial ring generated
(over Z) by the 1PI graphs and by the assignment of the inverse propagator U(L).

The definition we give here, which will suffice for our purposes, covers the original
Feynman integrals only in the case where one neglects the external momenta (or sets them
all to zero) and remains with a nontrivial propagator for external edges given only by the
mass m2. In fact, in that case, the formula (1.8) reduces to (2.2) with U(L) = 1/m2 for all
the external edges of the graphs Γv. The property (2.1) is the multiplicative property of the
Feynman rules (1.5). The dimensionally regularized Feynman integral U(Γ) is described
then in terms of a ring homomorphism U : H → K to the ring of convergent Laurent series,
by identifying a monomial Γ1 · · ·Γk in H with the disjoint union graph Γ = Γ1 ∪ · · · ∪ Γk.

We are especially interested in algebro-geometric Feynman rules associated to the para-
metric representation of Feynman integrals. In the parametric representation for a massless
theory, one reformulates the integral (1.3) in the form

(2.3) U(Γ, p1, . . . , pN ) = C
Γ(n− D`

2 )
(4π)D`/2

∫
σn

PΓ(t, p)−n+D`/2 ωn
ΨΓ(t)−n+(`+1)D/2

,

where t = (t1, . . . , tn) ∈ An with n = #Eint(Γ), integrated over the simplex σn = {t ∈
Rn+ |

∑
i ti = 1}, with volume form ωn and with ΨΓ the Kirchhoff polynomial

(2.4) ΨΓ(t) = detMΓ(t), with (MΓ(t))rk =
∑
i

tiηirηik,

where ηik is the circuit matrix of the graph (depending on a choice of orientation of the
edges ei and of a basis {`k} of H1(Γ)),

(2.5) ηik =

 +1 if edge ei ∈ loop `k, same orientation
−1 if edge ei ∈ loop `k, reverse orientation

0 if edge ei /∈ loop `k.

(This is equivalent to the definition given in the introduction.) If b1(Γ) = 0, we take
ΨΓ(t) = 1.

The function PΓ(t, p) is a homogeneus polynomial in t of degree b1(Γ) + 1, which also
has a definition in terms of the combinatorics of the graph. Notice that one can define
parametric representations in the case of massive theories m 6= 0 as well and obtain a
formulation similar to (2.3),

(2.6) U(Γ, p1, . . . , pN ) = C
Γ(n− D`

2 )
(4π)D`/2

∫
σn

VΓ(t, p)−n+D`/2 ωn
ΨΓ(t)D/2

,



ALGEBRO-GEOMETRIC FEYNMAN RULES 7

where, however, VΓ(t, p) is no longer a homogeneous polynomial in t. Our definition of
Feynman rules in Definition 2.1 is modeled on the massive case, because of the propagators
U(L) in (2.2). In both the massive and the massless case, at least for sufficiently large
spacetime dimension D, in the range where n ≤ D`/2, the integral lives naturally on the
complement in An of the affine hypersurface

(2.7) X̂Γ = {t ∈ An |ΨΓ(t) = 0}.

In the massless case where both ΨΓ and PΓ(t, p) in (2.3) are homogeneous polynomials,
one usually reformulates the Feynman integral in terms of projective varieties and considers
the complement Pn−1 rXΓ of the projective hypersurface

(2.8) XΓ = {t = (t1 : · · · : tn) ∈ Pn−1 |ΨΓ(t) = 0},

of which X̂Γ is the affine cone. Although working in the projective setting is very natural
(see [10], [12]), the discussion above indicates that, if one wants to accommodate both
massless and massive theories, it is more natural to work in the affine setting. Moreover,
we will see here that working with the affine hypersurfaces is better also from the point of
view of having motivic Feynman rules.

Definition 2.2. An algebro–geometric Feynman rule is an invariant U(Γ) = U(Anr X̂Γ)
of the graph hypersurface complement, with values in a commutative ring R, with the
following properties.

• For a disjoint union of graphs Γ = Γ1 ∪ Γ2, it satisfies U(Γ) = U(Γ1)U(Γ2).
• For a connected graph Γ obtained from a finite tree T and 1PI graphs Γv at the

vertices v ∈ V (T ), it satisfies U(Γ) = U(L)#E(T )
∏
v∈V (T ) U(Γv), where U(L) is

the value on the line L, i.e. on the graph consisting of a single edge.
An algebro–geometric Feynman rule is motivic if the invariant U(Γ) only depends on the
class [An r X̂Γ] of the hypersurface complement in the Grothendieck ring of varieties
K0(VQ).

By this definition, in particular, an algebro-geometric Feynman rule defines a ring
homomorphism U : H → R as in Definition 2.1, by interpreting a monomial Γ1 · · ·Γk
as the disjoint union Γ = Γ1 ∪ · · · ∪ Γk. In the motivic case this homomorphism factors
through the commutative ring K0(VQ).

The dependence U(Γ) = U(An r X̂Γ) of an algebro-geometric Feynman rule on the
affine hypersurface complement should be understood here as a dependence on the variety
An r X̂Γ considered modulo linear changes of coordinates in An. This will be explained
more in detail in §2.1 below. It will be then be clear from Lemma 2.3 that, unlike the
case of general Feynman rules, the second property U(Γ) = U(L)#E(T )

∏
v∈V (T ) U(Γv) in

Definition 2.2 will in fact be a consequence of the multiplicativity U(Γ) = U(Γ1)U(Γ2)
over disjoint unions Γ = Γ1∪Γ2, together with the fact that the hypersurface complement
does not distinguish between the case of the disjoint union Γ = Γ1∪Γ2 and the case where
the graphs Γ1 and Γ2 are joined at a single vertex.

Notice, moreover, that there are examples of combinatorially inequivalent connected
1PI graphs that have the same graph hypersurface, so that one can construct Feynman
rules that are not algebro-geometric or motivic, by assigning different invariants to such
graphs, so that the resulting ring homomorphism H → R does not factor through K0(Vk)
or through the ring F described in §2.1 below.

2.1. A universal algebro–geometric Feynman rule. We show that algebro–geometric
Feynman rules, in the sense of Definition 2.2, correspond to ring homomorphisms from
a universal ring F to a given commutative ring. In particular, this defines a universal
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algebro–geometric Feynman rule obtained by assigning U(Γ) as the class of the hypersur-
face complement An r X̂Γ in the ring F . A motivic Feynman rule is then obtained by
mapping F to the Grothendieck ring K0(VQ).

We begin by the following simple observation, which explains why it is more convenient
to work in the affine rather than the projective setting.

Lemma 2.3. For every graph Γ, let XΓ ⊂ Pn−1 be the projective hypersurface (2.8) and
X̂Γ ⊂ An be its affine cone (2.7), with n = #Eint(Γ), as above.

Let Γ = Γ1 ∪ Γ2 be the union of two disjoint graphs. Then

(2.9) An1+n2 r X̂Γ = (An1 r X̂Γ1)× (An2 r X̂Γ2),

where ni = #Eint(Γi).
If neither Γ1 nor Γ2 is a forest, then the projective hypersurface complement Pn1+n2−1r

XΓ is a Gm-bundle over the product (Pn1−1 r XΓ1) × (Pn2−1 r XΓ2) of the hypersurface
complements of Γ1 and Γ2.

The same formulas hold if Γ is obtained by attaching two disjoint graphs Γ1, Γ2 at a
vertex.

Proof. It is clear from both the combinatorial definition recalled in the introduction, and
from the definition (2.4) in terms of Kirchoff matrices MΓ(t), that if Γ = Γ1 ∪ Γ2 is a
disjoint union (or if Γ is obtained by attaching Γ1 and Γ2 at a vertex), then

ΨΓ(t1, . . . , tn) = ΨΓ1(t1, . . . , tn1)ΨΓ2(tn1+1, . . . , tn1+n2).

This says that X̂Γ1∪Γ2 is the hypersurface in An1+n2 obtained as the union

(X̂Γ1 × An2) ∪ (An1 × X̂Γ2),

and formula (2.9) for the hypersurface complement An1+n2 r X̂Γ follows immediately.
In projective terms, XΓ is given by the union of the cones Cn2(XΓ1), Cn1(XΓ2) in

Pn1+n2−1 over XΓ1 and XΓ2 , with vertices Pn2−1 and Pn1−1, respectively. Here one views
the Pni−1 containing XΓi as skew subspaces in Pn1+n2−1. A point in the complement of
XΓ1∪Γ2 in Pn1+n2−1 is of the form

(t1 : · · · : tn1+n2), where ΨΓ1(t1, · · · , tn1) 6= 0 and ΨΓ2(tn1+1, · · · , tn1+n2) 6= 0.

Note that if ΨΓ1 6≡ 1 and ΨΓ2 6≡ 1, then ΨΓ1(t1 : · · · : tn1) 6= 0 only if (t1 : · · · : tn1) 6= 0,
and ΨΓ2(tn1+1 : · · · : tn1+n2) 6= 0 only if (tn1+1 : · · · : tn1+n2) 6= 0. This says that if neither
Γ1 nor Γ2 is a forest, then we have a regular map

(2.10) (Pn1+n2−1 rXΓ1∪Γ2)→ (Pn1−1 rXΓ1)× (Pn2−1 rXΓ2)

given by

(t1 : · · · : tn1 : tn1+1 : · · · : tn1+n2) 7→ ((t1 : · · · : tn1), (tn1+1 : · · · : tn1+n2)) .

This map is evidently surjective, and the fiber over ((t1 : · · · : tn1), (tn1+1 : · · · : tn1+n2))
consists of the points

(ut1 : · · · : utn1 : vtn1+1 : · · · : vtn1+n2)

with (u : v) ∈ P1, uv 6= 0. These fibers are tori Gm(k) = k∗, completing the proof.
If either Γ1 or Γ2 is a forest, the corresponding hypersurface XΓi is empty; the map

(2.10) is not defined everywhere in this case. �

The observation above implies that, if we want to construct a Feynman rule U(Γ) in
terms of the hypersurface complements, then by working in the affine setting it suffices
to have an invariant of affine varieties that is multiplicative on products and behaves in
the natural way with respect to complements, that is, it satisfies an inclusion–exclusion
property. This indicates that the natural target of algebro-geometric Feynman rules should
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be a ring reminiscent of the Grothendieck ring of varieties K0(Vk). However, it will be
advantageous to work in a ring with a more rigid equivalence relation than in the definition
of K0(Vk): this will be a ring mapping to K0(Vk), but also carrying enough information to
allow us to define Feynman rules by means of characteristic classes of immersed varieties.
The natural receptacle of our algebro-geometric Feynman rules will be the Grothendieck
ring of immersed conical varieties, which we define as follows.

Definition 2.4. Let F be the ring whose elements are formal finite integer linear com-
binations of equivalence classes of closed conical (that is, defined by homogeneous ideals)
reduced algebraic sets V of A∞, such that V ⊆ AN for some finite N , modulo the equiva-
lence relation given by linear changes of coordinates, and with the further relation dictating
‘inclusion-exclusion’:

(2.11) [V ∪W ] = [V ] + [W ]− [V ∩W ] .

The ring structure is given by the product induced by

(2.12) [V ] · [W ] = [V ×W ] .

This is an embedded version of the Grothendieck ring, and it maps to the Grothendieck
ring since varieties differing by a linear change of coordinates are isomorphic. It will also
map to polynomial rings, via characteristic classes of complements, as we will explain
in §3.

If U is a locally closed set, defined as the complement V r W of two closed conical
subsets, we can define a class

[U ] := [V ]− [W ]

in F ; the inclusion–exclusion property guarantees that this assignment is independent of
the specific representation of U , and that the product formula (2.12) extends to locally
closed sets. This implies that ring homomorphisms F → R of the Grothendieck ring of im-
mersed conical varieties to arbitrary commutative rings define algebro-geometric Feynman
rules:

Proposition 2.5. Let I : F → R be a ring homomorphism to a commutative ring R. For
every graph Γ with n = #Eint(Γ), define U(Γ) ∈ R by

(2.13) U(Γ) := I([An])− I([X̂Γ]) = I([An r X̂Γ]) .

Then U is multiplicative under disjoint unions: if Γ1, Γ2 are disjoint graphs, then U(Γ1 ∪
Γ2) = U(Γ1) · U(Γ2).

The same formula holds if Γ1, Γ2 share a single vertex. Moreover, if Γ is obtained by
connecting two disjoint graphs Γ1, Γ2 by an edge, then the invariant satisfies

(2.14) U(Γ) = U(Γ1)U(L)U(Γ2),

where U(L) is the invariant associated to the graph L consisting of a single edge. This is
given by U(L) = I([A1]) =: L, the value of I on the class of the affine line.

Proof. The claims are all preserved under homomorphisms, so it suffices to prove them
for the invariant U with values in F defined by

U(Γ) := [An r X̂Γ] ∈ F

for a graph Γ with n internal edges. The multiplicativity under disjoint unions, and under
the operation of attaching graphs at a single vertex, follows then immediately from formula
(2.9) in Lemma 2.3. In turn, formula (2.14) follows from the multiplicativity. To see that
U(L) = [A1], simply recall that the graph hypersurface corresponding to a single edge (or
to any forest) is ∅. �
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We denote here by L the value I([A1]), as this will map to the Lefschetz motive L
in the Grothendieck group. Note that we then have I([An]) = Ln; by definition, this
is the invariant associated with any forest with n edges, since the graph polynomial of
a forest is 1 (and hence the corresponding graph hypersurface is empty). In particular,
1 = I([A0]) = U(?) is the invariant of the trivial graph ? consisting of one vertex and no
edges.

We have given in Definition 2.1 an equivalent characterization of Feynman rules in
terms of a ring homomorphism U : H → R together with an “inverse propagator” U(L).
An algebro-geometric Feynman rule defined as above by a ring homomorphism I : F → R
corresponds, in these terms, to the homomorphism U : H → R obtained by precomposition
with the ring homomorphism

H → F , Γ 7→ [An]− [X̂Γ],

for all connected 1PI graphs Γ, and with the inverse propagator [A1] ∈ F .

[An]− [X̂Γ]
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I([An])− I([X̂Γ])

By Proposition 2.5, we have a ‘universal’ algebro-geometric Feynman rule given by the
identity homomorphism I : F → F . Again, this corresponds to the ring homomorphism
H → F that assigns [An] − [X̂Γ] to a connected 1PI graph with n = #Eint(Γ) and with
inverse propagator [A1] ∈ F .

2.2. Operations on graphs and Feynman rules. The universal algebro–geometric
Feynman rule defined by [An]− [X̂Γ] in F satisfies the following properties for elementary
geometric operations on a graph. These properties are inherited by any other algebro-
geometric Feynman rule.

• Let Γ′ be obtained from Γ by attaching an edge to a vertex of Γ. Then

U(Γ′) = [A1] · U(Γ) .

• Let Γ be a graph that is not 1PI. Then U(Γ) is of the form

U(Γ) = [A1] ·B

for some class B ∈ F .
• Let Γ′ be obtained from Γ by splitting an edge. Then

U(Γ′) = [A1] · U(Γ) .

• Let Γ′ be obtained from Γ by attaching a looping edge to a vertex. Then

U(Γ′) = ([A1]− 1) · U(Γ) .

• Let Γ be an n-side polygon. Then

U(Γ) = [An]− [An−1] .
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All these properties follow very easily from the definition of U(Γ). For instance, the
property for non-1PI graphs follows directly from (2.14), while attaching a looping edge
amounts to multiplying the equation of the graph hypersurface by a new variable, and
viewing the result in a space of dimension 1 higher. In affine space, and in terms of the
complement, this is clearly the same as taking a product by A1 r A0.

2.3. Motivic Feynman rules. The ring F maps to the Grothendieck ring of varieties
K0(Vk) by mapping the equivalence class [X] ∈ F under linear coordinate changes to the
isomorphism class [X] ∈ K0(Vk). It is a ring homomorphism since the product is in both
cases defined by the class of the product of manifolds. Thus, one obtains in this way a
motivic Feynman rule defined by Γ 7→ [An r X̂Γ] ∈ K0(Vk). This corresponds to the ring
homomorphism U : H → K0(Vk) that maps the monomial Γ1 · · ·Γk, where the Γi are 1PI
graphs, to the class

(2.15) U(Γ1 · · ·Γk) = [An r X̂Γ] = [An1 r X̂Γ1 ] · · · [Ank r X̂Γk ],

where Γ = Γ1 ∪ · · · ∪ Γk is the disjoint union and n =
∑
i ni. The inverse propagator is

U(L) = L = [A1], the Lefschetz motive, i.e. the class of the affine line in K0(Vk).
This means that one can think of the “propagator” as being the formal inverse L−1 of

the Lefschetz motive. This corresponds to the Tate motive Q(1) when one maps in the
natural way (see [27]) the Grothendieck ring of varieties K0(Vk) to the Grothendieck ring
of motives K0(Mk).

The relation between the motivic Feynman rule (2.15) and the hypersurface complement
in projective space is described as follows.

Lemma 2.6. If Γ is not a forest, the hypersurface complements An r X̂Γ and Pn−1 rXΓ

are related in the Grothendieck ring K0(Vk) by

(2.16) [An r X̂Γ] = (L− 1) [Pn−1 rXΓ].

Proof. We have

(2.17) [X̂Γ] = (L− 1)[XΓ] + 1,

since X̂Γ is the affine cone in An over XΓ. Thus, we obtain

[An r X̂Γ] = Ln − 1− (L− 1)[XΓ]

= (L− 1)(Ln−1 + · · ·+ L + 1− [XΓ])

= (L− 1)([Pn−1]− [XΓ]).

�

Thus, we see that the factor (L − 1) restores the multiplicative property of Feynman
rules that is not satisfied at the level of the projective hypersurface complements.

Example 2.7. The graph hypersurfaces corresponding to the so-called banana graphs are
studied in [4]. Lemma 2.6 and formula (3.13) in [4] yield that

[An r X̂Γn ] = (L− 1)
(L− 1)n − (−1)n

L
+ n(L− 1)n−1 ,

where Γn denotes the n-th banana graph (n parallel edges joining two vertices).

Given the motivic Feynman rule determined by the ring homomorphism U : H →
K0(Vk), with U(Γ) = [An r X̂Γ] and inverse propagator L, one can obtain other motivic
Feynman rules with values in commutative rings R using motivic measures. Recall that a
motivic measure is by definition a ring homomorphism µ : K0(Vk) → R (see for instance
[33], §1.3), so that the composite µ ◦ U defines an R-valued motivic Feynman rule.
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Notice that, in particular, when one considers the ring homomorphism from K0(Vk) to Z
given by the ordinary topological Euler characteristic, the image of the classes [AnrX̂Γ] is
zero if Γ is not a forest, as one can see from the presence of the torus factor [Gm] = L− 1
in (2.16), while if one computes the Euler characteristic of the projective hypersurface
complements [Pn−1 r XΓ] this will in general be non-zero (see for instance the examples
computed in [4]) but the multiplicative property of Feynman rules is no longer satisfied.
We show in §3 below how one can define an algebro-geometric Feynman rule that assigns a
polynomial invariant in Z[T ] to the class in F of each hypersurface complement An r X̂Γ,
in such a way that the value at zero of the derivative of the polynomial recovers the Euler
characteristic of the complement of the projective hypersurface XΓ. This invariant will
be our best answer to the question of a generalization of the ordinary Euler characteristic
that satisfies the multiplicative property of Feynman rules and from which the usual Euler
characteristic can be recovered as a special value. This invariant is not obtained from a
homomorphism K0(Vk)→ Z[T ] as the following example shows.

Example 2.8. The two graphs

have the same motivic invariant [A3]− [A2], but different polynomial invariants: T (T +1)2

and T (T 2 +T + 1), respectively. (The two graphs also happen to have the same Feynman
period, though see the comment in §2.4 below.)

It is proved in [33] that the quotient of the Grothendieck ring K0(VC) by the ideal
generated by L = [A1] is isomorphic as a ring to Z[SB], the ring of the multiplicative
monoid SB of stable birational equivalence classes of varieties in VC. Recall that two
(irreducible, nonsingular) varieties X and Y are stably birationally equivalent if X × Pn
and Y ×Pm are birationally equivalent for some n,m ≥ 0. The observations of §2.2 above
then give the following.

Proposition 2.9. Let Γ be a graph that is not 1PI. Then the stable birational equivalence
class of the projective graph hypersurface satisfies [XΓ]sb = 1 in Z[SB].

Proof. We know by Lemma 2.6 that, in the Grothendieck ringK0(VC), we have [AnrX̂Γ] =
Ln−1− (L−1)[XΓ]. Moreover, by the observation made in §2.2 we know that for a graph
Γ that is not 1PI the class [An r X̂Γ] = L · [An−1 r X̂Γ′ ], where Γ′ is the graph obtained
from Γ by removing a disconnecting edge L and L = [A1] = U(L). Then we use the
fact that Z[SB] = K0(VC)/(L) as in [33], and we obtain that [An r X̂Γ]sb = 0 ∈ Z[SB],
while Ln − 1 − (L − 1)[XΓ] ∈ K0(VC) becomes −1 + [XΓ]sb ∈ Z[SB], so that we obtain
[XΓ]sb − 1 = 0 ∈ Z[SB]. �

A variant of the motivic Feynman rule (2.15) is obtained by setting

(2.18) U(Γ) =
[An r X̂Γ]

Ln
,

with values in the ring K0(Vk)[L−1], where one inverts the Lefschetz motive. Dividing by
Ln has the effect of normalizing the “Feynman integral” U(Γ) by the value it would have
if Γ were a forest on the same number of edges. For the original Feynman integrals this
would measure the amount of linear dependence between the edge momentum variables
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created by the presence of the interaction vertices. We will discuss in §4 some advantages
of using the motivic Feynman rule (2.18) as opposed to (2.15).

2.4. A comment on periods. Modulo the important problem of divergences of the Feyn-
man integral, which needs to be treated via a suitable regularization and renormalization
procedure, which in the algebro-geometric setting often involves blowups of the divergence
locus (see [12]), one would like to think of the original Feynman rule given by the paramet-
ric Feynman integral as an “algebro-geometric Feynman rule” with values in the algebra
P of periods. Recall that conjecturally (see [31]) the algebra P of periods is generated over
Q by equivalence classes of the form [(X,D, ω, σ)], where X is a smooth affine variety over
Q, D ⊂ X is a normal crossings divisor, ω ∈ Ωdim(X)(X) is an algebraic differential form,
and σ ∈ Hdim(X)(X(C), D(C); Q) is a relative homology class. The equivalence relation
is taken modulo the change of variables formula and the Stokes formula for integrals (see
[31] for more details). In the setting that we are considering, where in Feynman integrals
we set the external momenta equal to zero and keep a non-zero mass, so that the Feyn-
man rules satisfy (2.1) and (2.2), the function VΓ(t, p) in the numerator of the parametric
Feynman integral (2.6) is reduced to V (t, p)|p=0 = m2. This follows from the fact that, in
general, VΓ(t, p) is of the form

VΓ(t, p) = p†RΓ(t)p+m2,

where RΓ(t) is another matrix associated to the graph Γ defined in terms of cut-sets, whose
explicit expression we do not need here (the interested reader can see for instance [28] or
[9]). Thus, for the massive case with zero external momenta, the parametric Feynman
integral is, up to a multiplicative constant and a possibly divergent Γ-factor, of the form

(2.19)
∫
σn

ωn
ΨΓ(t)D/2

.

Modulo the important issue of divergences coming from the nontrivial intersections σn ∩
X̂Γ, we can then think of the original Feynman rule as a morphism to the algebra of
periods P that assigns

(2.20) U(Γ) = [(An r X̂Γ, Σ̂n,Ψ
−D/2
Γ ωn, σn)],

where Σ̂n = {t ∈ An |
∏
i ti = 0}.

However, one should keep in mind that, while the periods certainly depend on the
algebro-geometric properties of the hypersurface complement, they should not be expected
to factor through the Grothendieck ring, nor through its refinement considered here.

A possible way to handle the divergences in terms of “integrating around the singular-
ities” using Leray coboundaries was proposed in [35]. We discuss briefly in §4 how this
might fit with Feynman rules of the form (2.20).

3. Characteristic classes and Feynman rules

In this section we define a ring homomorphism

ICSM : F → Z[T ] ,

and hence (by Proposition 2.5) obtain a polynomial valued Feynman rule. We will denote
by CΓ(T ) the invariant corresponding to ICSM for a graph Γ: that is,

CΓ(T ) := ICSM (An)− ICSM (X̂Γ) ,

if Γ has n (internal) edges.
This invariant will carry information related to the Chern-Schwartz-MacPherson (CSM)

class of the graph hypersurface of a given graph Γ. The reader is addressed to §2.2 of [4]
for a quick review of the definition and basic properties of these classes.
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Before defining ICSM , we highlight a few features of the invariant.

Proposition 3.1. Let Γ be a graph with n edges.
• CΓ(T ) is a monic polynomial of degree n.
• If Γ is a forest, then CΓ(T ) = (T + 1)n. In particular, the inverse propagator

corresponds to T + 1.
• If Γ is not a forest, then CΓ(T ) is a multiple of T .
• The coefficient of Tn−1 in CΓ(T ) equals n− b1(Γ).
• The value C ′Γ(0) of the derivative of CΓ(T ) at 0 equals the Euler characteristic of

the complement Pn rXΓ.

The proof of this lemma will follow the statement of Theorem 3.6.
Of course, the invariant will also satisfy the properties listed in §2.2. These take the

following form:
• Let Γ′ be obtained from Γ by attaching an edge to a vertex of Γ, or by splitting

an edge of Γ. Then

CΓ′(T ) = (T + 1) · CΓ(T ) .

• Let Γ′ be obtained from Γ by attaching a looping edge to a vertex. Then

CΓ′(T ) = T · CΓ(T ) .

• Let Γ be a graph that is not 1PI. Then CΓ(−1) = 0.
• Let Γ be an n-side polygon. Then

CΓ(T ) = T (T + 1)n−1 .

Remark 3.2. The parallel between the motivic invariant introduced in §2.3 is even more
apparent if one changes the variable T to L = T + 1. We choose T because it has
a compelling geometric interpretation: T k corresponds to the class [Pk] in the ambient
space which we use to define the invariant. Ultimately, this is due to the fact that the
CSM class of a torus Tk embedded in Pk as the complement of the ‘algebraic simplex’
is [Pk], cf. Theorem 4.2 in [1].

In order to define ICSM , it suffices to define it on a set of generators of F , and verify
that the definition preserves the relations defining F .

Generators for F consist of conical subvarieties X̂ ⊆ AN . View X̂ as a locally closed
subset of PN ; as such, it determines a CSM class in the Chow group A(PN ) of PN :

c∗(11X̂) = a0[P0] + · · ·+ aN [PN ] .

(Here 11 denotes the constant function 1 on the specified locus; we denote by c∗ MacPher-
son’s natural transformation relating constructible functions and classes in the Chow
group.)

Definition 3.3. We define

GX̂(T ) := a0 + a1T + · · ·+ aNT
N .

Example 3.4. For X̂ = AN :

GAN (T ) := (T + 1)N .

Indeed, viewing AN as the complement of PN−1 in PN gives

c∗(11AN ) = c∗(11PN )−c∗(11PN−1) = ((1+H)N+1−H(1+H)N )∩ [PN ] = (1+H)N ∩ [PN ] ,

where H denotes the hyperplane class in PN . The coefficient of [Pk] in this class is
(
N
k

)
,

with the stated result.

Remark 3.5. Here are a few comments on the definition of GX̂(T ).
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• The definition does not depend on the dimension of the ambient affine space AN :
the largest i for which ai 6= 0 is the dimension of X̂.

• If X̂ and X̂ ′ differ by a coordinate change, then clearly GX̂(T ) = GX̂′(T ).
• If X̂, Ŷ ⊆ AN , then

GX̂∪Ŷ (T ) = GX̂(T ) +GŶ (T )−GX̂∩Ŷ (T ) :

this follows from the inclusion-exclusion property of CSM classes.
• By the previous two points, the definition goes through the equivalence relation

defining F . Thus, we can define a map ICSM : F → Z[T ] by setting

ICSM ([X̂]) := GX̂(T ) ,

and extending by linearity. This map is clearly a group homomorphism.

We claim that:

Theorem 3.6. ICSM is a homomorphism of rings.

Once Theorem 3.6 is established, Proposition 2.5 will show that setting

CΓ(T ) = UCSM (Γ) := ICSM ([An])− ICSM ([X̂Γ]) = GAn(T )−GX̂Γ
(T ) ,

where n = the number of edges of Γ, defines a multiplicative graph invariant. The poly-
nomial CΓ(t) satisfies all the properties listed at the beginning of this subsection:

Proof of Proposition 3.1. Since X̂Γ is properly contained in An, the dominant term in the
difference GAn(T )−GX̂Γ

(T ) is Tn: this proves the first point.
If Γ is a forest, then X̂Γ = ∅. Thus CΓ(T ) = GAn(T ) = (T +1)n (Example 3.4), proving

the second point.
If Γ is not a forest, X̂Γ 6= ∅, and the Euler characteristic of X̂Γ is 1 (X̂Γ is an affine

cone). Therefore the constant term of GAn(T ) − GX̂Γ
(T ) is 1 − 1 = 0: this proves that

CΓ(T ) is a multiple of T in this case, as claimed.
As to the fourth point: if Γ is a forest, then b1(Γ) = 0 and the formula is verified. Thus,

assume Γ is not a forest. The coefficient of Tn−1 in GAn(T ) = (T + 1)n is n, while the
coefficient of Tn−1 in GX̂Γ

(T ) equals the coefficient of the top-dimensional term [Pn−1] in
c∗(X̂Γ). This equals the degree of the hypersurface XΓ, which is b1(Γ), and the formula
follows.

Finally, C ′Γ(0) equals the coefficient of T in CΓ(T ). If Γ is a forest, then CΓ(T ) =
(T + 1)n, so this coefficient is n, and equals the Euler characteristic of Pn−1 r ∅. If Γ is
not a forest, then the coefficient of T in CΓ(T ) equals the coefficient of [P0] in the Chern-
Schwartz-MacPherson class of Pn−1 r XΓ (see Proposition 3.7, below). This equals the
Euler characteristic of Pn−1 r XΓ, by general properties of Chern-Schwartz-MacPherson
classes (see for example [4], §2.2). �

As in the motivic case, the invariant CΓ(T ) can be expressed in terms of the complement
of the projective graph hypersurface. The analog of Lemma 2.6 is:

Proposition 3.7. If Γ is not a forest, and has n edges, then

c∗(11Pn−1rXΓ) = HnCΓ(1/H) ∩ [Pn−1] ,

where H is the hyperplane class in Pn−1. Equivalently: if Γ is not a forest, and c∗(11Pn−1rXΓ)
equals

∑
k≥0 ak[Pk], then CΓ(T ) =

∑
k≥0 akT

k+1.
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Proof. Indeed, if c∗(X) = f(H) ∩ [Pn−1], then

(3.1) c∗(11AnrX̂Γ
) = c∗(An)− c∗(X̂Γ) = ((1 +H)n − f(H)−Hn) ∩ [Pn] :

this follows from a straightforward computation, using the formula for the CSM class of a
cone (Proposition 5.2 in [4]). Formula (3.1) says that HnCΓ(1/H) = (1+H)n−f(H)−Hn.
On the other hand, the polynomial (1 + H)n −Hn − f(H) corresponds to c∗(11Pn−1rXΓ)
in Pn−1; this is precisely the statement. �

Example 3.8. For Γn = the n-edge banana graph,

CΓ(T ) = T (T − 1)n−1 + nTn−1 .

Indeed, Remark 4.11 in [4] gives

c∗(11Pn−1rXΓ) = ((1−H)n−1 + nH) ∩ [Pn−1] .

By Proposition 3.7, therefore,

HnCΓ(1/H) = (1−H)n−1 + nH

and the result follows at once.

Remark 3.9. Let Γ be a graph with n edges, that is not a forest, and suppose

CΓ(T ) = Tn + an−2T
n−1 + · · ·+ a0T .

Let π : P̃n−1 → Pn−1 be a proper birational map such that D := π−1(XΓ) is a divisor
with normal crossings and nonsingular components. Then

ak =
∫

(π∗H)k · c(TePn−1(− logD)) ∩ [P̃n−1] ,

where TePn−1(− logD) denotes the dual of the bundle Ω1ePn−1(logD) of differential forms
with logarithmic poles along D, and

∫
α stands for the degree of the class α, in the sense

of [25], Definition 1.4.
This follows immediately from Proposition 3.7 and the expression of c∗(11Pn−1rX̂Γ

) in
terms of Chern classes of logarithmic forms (cf. [4], §2.3).

In the rest of this section we reduce the proof of Theorem 3.6 to a statement (Theo-
rem 3.13) concerning Chern-Schwartz-MacPherson classes of joins of disjoint subvarieties
of projective space. The proof of this statement will be deferred to §6.

In order to prove Theorem 3.6, it suffices to prove that

GX̂×Ŷ (T ) = GX̂(T ) ·GŶ (T )

for all conical affine varieties X̂ ⊆ Am, Ŷ ⊆ An. If X̂ = ∅ or Ŷ = ∅, this is immediate, as
this identity is 0 = 0 in this case. If X̂ or Ŷ is a point (that is, the origin of the ambient
affine space), the identity is also immediate. Indeed, GA0(T ) = 1.

Therefore:

Lemma 3.10. In order to prove Theorem 3.6, it suffices to prove that if X̂ ⊆ Am,
resp. Ŷ ⊆ An are affine cones over projective algebraic sets X ⊆ Pm−1, resp. Y ⊆ Pn−1,
then

GX̂×Ŷ (T ) = GX̂(T ) ·GŶ (T ) .

What is a little surprising now is that this is not obvious. There is a ‘product formula
for CSM classes’, due to Kwieciński ([32], [1]); but it relates classes in Pm, Pn to classes in
Pm × Pn, while the polynomial G(T ) refers to a class in Pm+n. While Pm × Pn and Pm+n

can be related in a straightforward way by blow-ups and blow-downs, tracking the fate
of CSM classes across blow-up operations is in itself a nontrivial (and worthy) task. One
might optimistically think that if a locally closed set avoids the center of a blow-up, then
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the CSM class of its preimage ought to be the pull-back of its CSM class; this is not true
in general, as simple examples show. The fact that it is true in certain cases is what we
prove in [4], Corollary 4.4, and this result is crucial for the computation of CSM classes
of graph hypersurfaces of banana graphs. We know of no general result of the same type
handling the present situation, so we have to provide a rather ad-hoc argument to prove
the formula in Lemma 3.10. Kwieciński’s product formula will be an ingredient in our
proof.

By Lemma 3.10, we are reduced to dealing with affine cones over (nonempty) projective
varieties X ⊆ Pm−1. We begin by relating GX̂(T ) to the CSM class of X.

Lemma 3.11. Let X ⊆ Pm−1 be a nonempty subvariety, and let f(h) be the polynomial
of degree < m in the hyperplane class h of Pm−1, such that

c∗(11X) = f(h) ∩ [Pm−1] .

Then
hmGX̂(1/h) = f(h) + hm .

Proof. Consider the cone C(X) of X ⊆ Pm−1 in Pm. By Proposition 5.2 in [4],

c∗(11C(X)) = ((1 + h)f(h) + hm) ∩ [Pm] ,

where h denotes the hyperplane class in Pm. Since X̂ ⊆ Am may be realized as the
complement of X in C(X),

c∗(11X̂) = ((1 + h)f(h) + hm − hf(h)) ∩ [Pm] = (f(h) + hm) ∩ [Pm] .

Since hk ∩ [Pm−k] corresponds to Tm−k in Definition 3.3,

f(h) + hm = hmGX̂(1/h) ,

as stated. �

Next, we relate the affine product of varieties to the projective join. View Pm−1, Pn−1

as disjoint subspaces of Pm+n−1. For X ⊆ Pm−1, Y ⊆ Pn−1, we will denote by J(X,Y )
(the ‘join’ of X and Y ) the union of all lines connecting points of X to points of Y
in Pm+n−1.

Lemma 3.12. The product X̂ × Ŷ ⊆ Am+n is the affine cone over the join J(X,Y ) ⊆
Pm+n−1.

Proof. Denote by (x1 : . . . : xm : y1 : . . . : yn) the points of Pm+n−1; identify Pm−1

with the set of points (x1 : . . . : xm : 0 : . . . : 0) and Pn−1 with the set of points
(0 : . . . : 0 : y1 : . . . : yn). If (x1 : . . . : xm) ∈ X and (y1 : . . . : yn) ∈ Y , the points of the
line in Pm+n−1 joining these two points are all and only the points

(sx1 : . . . : sxm : ty1 : . . . : tyn)

as (s : t) varies in P1. It follows that a point (x1 : . . . : xm : y1 : . . . : yn) is a point of
J(X,Y ) if (x1 : . . . : xm) satisfies the homogeneous ideal of X in Pm−1 and (y1 : . . . : yn)
satisfies the homogeneous ideal of Y in Pn−1. This is the case if and only if

(x1, . . . , xm, y1, . . . , yn) ∈ X̂ × Ŷ ⊆ Am+n ,

and this shows that the affine cone over J(X,Y ) is X̂ × Ŷ . �

By Lemma 3.12, the sought-for formula in Lemma 3.10 may be rewritten as

G ̂J(X,Y )
(T ) = GX̂(T ) ·GŶ (T ) ;

or, equivalently (after a change of variable and harmless manipulations):

(3.2) Hm+nG ̂J(X,Y )
(1/H)−Hm+n = HmGX̂(1/H) ·HnGŶ (1/H)−Hm+n
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for all nonempty X ⊆ Pm−1, Y ⊆ Pn−1. Here H is simply a variable; but the two sides of
the identity are polynomials of degree < (m + n) in H, so formula (3.2) may be verified
by interpreting H as the hyperplane class in Pm+n−1. This formulation and Lemma 3.11
reduce the proof of Theorem 3.6 to the following computation of the CSM class of a join:

Theorem 3.13. Let Pm−1, Pn−1 be disjoint subspaces of Pm+n−1, and let X ⊆ Pm−1,
Y ⊆ Pn−1 be nonempty subvarieties. Let f(H), resp. g(H) be polynomials such that

c∗(11X) = Hnf(H) ∩ [Pm+n−1] , c∗(11Y ) = Hmg(H) ∩ [Pm+n−1] .

Then
c∗(11J(X,Y )) =

(
(f(H) +Hm)(g(H) +Hn)−Hm+n

)
∩ [Pm+n−1] .

This is a result of independent interest, and its proof is deferred to §6. As argued in this
section, Theorem 3.13 establishes Theorem 3.6, concluding the proof that CΓ(T ) satisfies
the Feynman rules and the other properties listed in this section.

4. Renormalization for algebro-geometric Feynman rules

The Connes–Kreimer theory [18] (see also a detailed account in §1 of [20]) shows that the
BPHZ procedure of renormalization of dimensionally regularized Feynman integrals can
be formulated as a Birkhoff factorization in the affine group scheme dual to the Connes–
Kreimer Hopf algebra of Feynman graphs. The explicit recursive formula for the Birkhoff
factorization proved by Connes and Kreimer in [18] gives a multiplicative splitting of an
algebra homomorphism U : H → K, with K the field of convergent Laurent series, as

(4.1) U = (U− ◦ S) ? U+

where S is the antipode in the Connes–Kreimer Hopf algebra H and U± : H → K± are
algebra homomorphisms with values, respectively, in the algebra of convergent power series
K+ and the polynomial algebra K− = C[z−1]. The product ? is dual to the coproduct ∆
of H by (U1 ? U2)(X) = (U1 ⊗ U2)(∆(X)).

The proof that the U±, given in [18] by a recursive formula, are algebra homomorphisms
uses the Rota–Baxter identity satisfied by the operator of projection of a Laurent series
onto its polar part. The argument of Connes–Kreimer can therefore be easily generalized,
in essentially the same form (see [24]), to the case of algebra homomorphisms U : H → R,
with H a polynomial ring in the 1PI graphs and R a Rota–Baxter ring of weight −1. We
recall briefly how the renormalization procedure works.

A Rota–Baxter ring of weight λ is a commutative ringR endowed with a linear operator
T : R → R satisfying the Rota–Baxter identity

(4.2) T(x)T(y) = T(xT(y)) + T(T(x)y) + λT(xy).

Such an operator is called a Rota–Baxter operator of weight λ.
Let H denote the polynomial ring generated over Z by the 1PI graphs, endowed with

the coproduct

(4.3) ∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑
γ⊂Γ

γ ⊗ Γ/γ.

Here the proper subgraphs γ ⊂ Γ are possibly multiconnected, with components that are
1PI. This is just slightly different from the Connes–Kreimer coproduct in as we are not
fixing a Lagrangian for a scalar field theory, hence we do not restrict only to subgraphs
such that Γ/γ is still a Feynman graph of the given theory. In this sense, it is similar
to the Hopf algebras of graphs considered in [29] [39]. The ring H = ⊕n≥0Hn is graded
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by the number n = #Eint(Γ) of internal edges of the graph and the antipode is defined
inductively as

S(Γ) = −Γ−
∑
γ⊂Γ

S(γ) Γ/γ.

We then have the following result of Connes–Kreimer [18] (see also [24] for the formu-
lation in Rota–Baxter terms).

Proposition 4.1. Suppose given a ring homomorphism U : H → R, with H as above and
R a Rota–Baxter ring of weight −1. Let R− denote the ring obtained by adjoining a unit
to the ring TR and let R+ be the ring R+ = (1− T)R. Then the recursive formulae

(4.4) U−(Γ) = −T

U(Γ) +
∑
γ⊂Γ

U−(γ)U(Γ/γ)



(4.5) U+(Γ) = (1− T)

U(Γ) +
∑
γ⊂Γ

U−(γ)U(Γ/γ)


determine a Birkhoff factorization (4.1) into algebra homomorphisms U± : H → R±.
There is a unique such factorization satisfying the normalization condition ε− ◦ U− = ε,
where ε− : R− → Z is the augmentation and ε is the counit of H, defined by ε(X) = 0 for
deg(X) > 0.

In the case of the dimensionally regularized Feynman integrals, the U− gives the coun-
terterms and the evaluation of the convergent power series U+(Γ),

(4.6) U+(Γ)|z=0,

gives the renormalized value of the Feynman integral U(Γ).
We can apply the same procedure to the algebro–geometric Feynman rules, using suit-

able Rota–Baxter operators on the target ring. This will give new multiplicative invariants
of graphs obtained by following the same BPHZ procedure that governs the renormaliza-
tion of divergent Feynman integrals.

For example, consider the motivic Feynman rule U(Γ) = [AnrX̂Γ] L−n in K0(VC)[L−1].
In the ring K0(VC)[L−1] we can still consider the Rota–Baxter operator of projection onto
the polar part (in the variable L). The renormalized Feynman rule U+(Γ) defined as in
(4.5) defines a class in K0(VC) and the “renormalized value of the Feynman integral” (4.6)
defines a class in Z[SB],

(4.7) U+(Γ)|L=0 = (1− T)

U(Γ) +
∑
γ⊂Γ

U−(γ)U(Γ/γ)

 |L=0 ∈ Z[SB] = K0(VC)/(L).

Notice that the parts of [An r X̂Γ], [An1 r X̂γ ] and [An2 r X̂Γ/γ ] that are contained in the
ideal (L) ⊂ K0(V0) contribute cancellations to the Ln in the denominator. It is possible
that this invariant and the Birkhoff factorization of U(Γ) may help to detect the presence
of non-mixed-Tate strata in the graph hypersurface XΓ coming from the contributions of
hypersurfaces of smaller graphs γ ⊂ Γ or quotient graphs Γ/γ.

For invariants like CΓ(T ) that take values in polynomial rings, one can consider different
kinds of Rota–Baxter operators. For example, consider the basis of Q[T ] as a Q-vector
space, given by the polynomials

πn(T ) =
T (T + 1) · · · (T + n− 1)

n!
, ∀n ≥ 1, π0(T ) = 1.
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The linear operator T(πn) = πn+1 is a non-trivial Rota–Baxter operator of weight −1 on
the polynomial ring Q[T ] (see [26]). One can then apply the BPHZ procedure with respect
to this or other interesting Rota–Baxter operators to have a Birkhoff factorization of the
given invariant with respect to an assigned Rota–Baxter structure. We do not pursue
further in this paper the meaning of BPHZ with respect to different possible Rota–Baxter
operators, but we only remark that algebro–geometric Feynman rules provide a supply
of examples where one can abstractly study the properties of the BPHZ renormalization
procedure. For example, the question of whether the Grothendieck ring of varieties K0(Vk)
or our Grothendieck ring of immersed conical varieties F admit a Rota–Baxter structure
of weight −1 appears to be a problem of independent interest.

Finally, we can consider again the possible definition (2.20) of Feynman rules with
values in the algebra P of periods and the problem of the divergences caused by the
nontrivial intersections of the domain of integration σn with the hypersurface X̂Γ. In [35]
a regularization for Feynman integrals of the form (2.19) was proposed based on replacing
the part of the integral that takes place in a neighborhood of the hypersurface X̂Γ of the
form Dε(X̂Γ) = ∪s∈∆∗ε

X̂Γ(s), given by the level sets X̂Γ(s) = {t ∈ An |ΨΓ(t) = s} for
s ∈ ∆∗ε a small punctured disk of radius ε > 0, with an integral on a Leray coboundary
Lε(σn) = π−1(σn ∩ Xε), for πε : ∂Dε(X̂Γ) → X̂Γ(ε) the circle bundle projection. This
has the effect of replacing the (divergent) integration on the locus σn ∩ X̂Γ with one on
circles around the singular locus. By the results of [8] Part III, §10.2 and Theorem 4.4
of [35], the resulting integral U(Γ)(ε) extends to a meromorphic function of ε in a small
neighborhood of ε = 0, with a pole at ε = 0. One can then apply the BPHZ renormalization
procedure, with T the projection onto the polar part of the Laurent series in ε and obtain
a renormalized U+(Γ).

5. The partition function and Tate motives

In quantum field theory it is customary to consider the full partition function of the
theory, arranged in an asymptotic series by loop number or another suitable grading of the
Hopf algebra of Feynman graphs, instead of looking only at the contribution of individual
Feynman graphs. Besides the loop number ` = b1(Γ), other suitable gradings δ(Γ) are given
by the number n = #Eint(Γ) of internal edges, or by #Eint(Γ)− b1(Γ) = #V (Γ)− b0(Γ),
the number of vertices minus the number of connected components (cf. [20] p.77).

When one considers motivic Feynman rules, these partition functions appear to be
interesting analogs of the motivic zeta functions considered in [30], [33]. For instance, one
can consider a partition function given by the formal series

(5.1) Z(t) =
∑
N≥0

∑
δ(Γ)=N

U(Γ)
#Aut(Γ)

tN ,

where δ(Γ) is any one of the gradings on the Hopf algebra of Feynman graphs described
above and where U(Γ) = [An r X̂Γ] ∈ K0(Vk). Given a motivic measure µ : K0(Vk)→ R,
this gives a zeta function with values in R[[t]] of the form

ZR(t) =
∑
N≥0

∑
δ(Γ)=N

µ(U(Γ))
#Aut(Γ)

tN .

Of particular interest, in view of the recent results of [11], is the case where one restricts
the class of graphs to connected graphs without looping edges and without multiple edges
and takes the grading δ(Γ) = #V (Γ) − b0(Γ). In this case, one is considering the zeta
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function

(5.2) Z(t) =
∑
N≥1

tN

N !

∑
#V (Γ)=N

U(Γ)
N !

#Aut(Γ)
.

The result of [11] shows that

(5.3) SN =
∑

#V (Γ)=N

[XΓ]
N !

#Aut(Γ)

is in the Tate part of the Grothendieck ring, SN ∈ Z[L]. It then follows that the zeta
function Z(t) above takes values in Z[L][[t]].

One can investigate the behaviour of these “motivic zeta functions” by the same tech-
niques used in [33] to study the original motivic zeta function defined by Kapranov in [30].

6. The formula for CSM classes of joins

This section is devoted to the proof of Theorem 3.13. We first recall the statement.
Let X ⊆ Pm−1, Y ⊆ Pn−1 be nonempty subvarieties, and view Pm−1, Pn−1 as disjoint

subspaces of Pm+n−1. The task is to compute the push-forward to Pm+n−1 of the Chern-
Schwartz-MacPherson class of the join J(X,Y ), defined as the union of the lines in Pm+n−1

connecting all points of X to all points of Y . The class will be expressed as a polynomial
in the class H of a hyperplane in Pm+m−1, obtained in terms of the polynomials similarly
giving the Chern-Schwartz-MacPherson classes of X in Pm−1, Y in Pn−1.

We will denote by h the hyperplane class in Pm−1, and by k the hyperplane class
in Pn−1. Let f(h), g(k) be polynomials of degree < m, resp. < n, such that

c∗(11X) = f(h) ∩ [Pm−1] ,

c∗(11Y ) = g(k) ∩ [Pn−1] .

Theorem 3.13 states the following result:

(6.1) c∗(11J(X,Y )) =
(
(f(H) +Hm)(g(H) +Hn)−Hm+n

)
∩ [Pm+n−1] .

The rest of this section is devoted to the proof of this formula.

Example 6.1. If Y = Pn−1, then J(X,Y ) is the cone Cn(X) on X, with vertex Pn−1.
Since c(TPn−1) = (1 +H)n −Hn, (6.1) gives

c∗(Cn(X)) =
(
(1 +H)n(f(H) +Hm)−Hm+n

)
∩ [Pm+n−1] .

where a push-forward is understood. In particular, for n − 1 = 0 (so C1(X) = C(X) is
just an ‘ordinary’ cone in projective space) this agrees with the formula for cones given in
Proposition 5.2 of [4].

Example 6.2. For X = Pm−1, Y = Pn−1, the join J(X,Y ) is the whole of Pm+n−1.
Theorem 3.13 gives

c∗(Pm+n−1) =
(
(1 +H)m(1 +H)n −Hm+n

)
∩ [Pm+n−1] ,

as it should.

We will realize the join of X and Y as a projection of a P1-bundle over X×Y . Consider
the rational map

Pm+n−1 99K Pm−1 × Pn−1

given by
(x1 : . . . : xm : y1 : . . . : yn) 7→ ((x1 : . . . : xm), (y1 : . . . : yn)) ;

this is well-defined away from the union Pm−1 ∪ Pn−1 consisting of points where either

y1 = · · · = yn = 0
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or
x1 = · · · = xm = 0 .

Letting B` be the blow-up of Pm+n−1 along these two linear subspaces, we obtain a
diagram

B`

π

~~~~~~~~~~
ρ

##GGGGGGGGG

Pm+n−1 //____ Pm−1 × Pn−1

resolving the given rational map, and realizing B` as a P1-bundle over Pm−1 × Pn−1.
Concretely, ρ−1(p, q) may be identified with the (proper transform of the) line in Pm+n−1

joining p ∈ Pm−1 to q ∈ Pn−1.
Summary of the argument: we will use Kwieciński’s product formula ([32]) and Yokura’s

Riemann-Roch for Chern-Schwartz-MacPherson classes ([42]) to compute the class of the
inverse image of X × Y in B`. The formula for the class of J(X,Y ) will follow from this
and the basic functoriality property of CSM classes.

We first collect the necessary ingredients.
As noted above, h and k denote respectively the hyperplane classes in Pm−1, Pn−1; we

use the same letters to denote their pull-backs to the product Pm−1 × Pn−1, and to B`.

Lemma 6.3. With notation as above,

c∗(11X×Y ) = f(h)g(k) ∩ [Pm−1 × Pn−1] .

Proof. There is a natural map A∗X ⊗A∗Y → A∗(X ×Y ) (§1.10 in [25]). By Kwieciński’s
theorem in [32] (cf. also Theorem 4.1 in [1]), this map sends c∗(X)⊗ c∗(Y ) to c∗(X × Y ).
Pushing forward to the ambient product of projective spaces, this says that c∗(11X×Y ) is
the image of (f(h) ∩ [Pm−1])⊗ (g(k) ∩ [Pn−1]); this is the statement. �

Viewing B` as the blow-up of Pm+n−1 along the skew Pm−1 and Pn−1, let E be the
component of the exceptional divisor over Pm−1, and F the component over Pn−1. Denote
by H the hyperplane class in Pm+n−1, as well as its pull-back to B`.

The classes H, h, k, E, F in B` are not independent:

Lemma 6.4. h = H − F , and k = H − E.

Proof. The projection Pm+n−1 99K Pm−1 is resolved by the blow-up P̃m+n−1 of Pm+n−1

along Pn−1. It is clear that (the pull-back of) h agrees with H −F in this blow-up, where
F denotes the exceptional divisor over Pn−1. This relation pulls back to the same relation
in B`, which may be realized as the pull-back of P̃m+n−1 along the inverse image of Pm−1.

This proves the first relation. The second relation is obtained similarly. �

By Lemma 6.3 and 6.4, the pull-back of c∗(11X×Y ) to B` is given by

f(H − F )g(H − E) ∩ [B`] .

The CSM class of ρ−1(X × Y ) may be obtained from this by applying a result of Shoji
Yokura. For this, we note that B` is smooth over Pm−1 × Pn−1, and more precisely B`
may be realized as the projectivization of O(−h)⊕O(−k). With this choice, the pull-back
of O(H) agrees with the tautological bundle O(1) on B` ∼= P(O(−h)⊕O(−k)).

Lemma 6.5.

(6.2) c∗(11ρ−1(X×Y )) = (1 + F )f(H − F )(1 + E)g(H − E) ∩ [B`] .
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Proof. Write E = O(−h) ⊕ O(−k), so B` ∼= P(E). By Theorem 2.2 in [42], CSM classes
behave like ordinary Chern classes through smooth morphisms: thus,

c∗(11ρ−1(X×Y )) = c(TB`|(Pm−1×Pn−1)) ∩ ρ∗(c∗(11X×Y )) .

The pull-back ρ∗(c∗(11X×Y )) = f(H − F )g(H − E) ∩ [B`] was computed above. The
relative tangent bundle TB`|(Pm−1×Pn−1) is computed by means of the Euler exact sequence
(cf. [25], B.5.8)

0 // O // ρ∗E ⊗ O(H) // TB`|(Pm−1×Pn−1) // 0

and gives (as E = O(−h)⊕O(−k))

c(TB`|(Pm−1×Pn−1)) = c(ρ∗E ⊗ O(H)) = (1− h+H)(1− k +H) .

The statement follows from this and Lemma 6.4. �

Example 6.6. For X = Pm−1, Y = Pn−1, we have ρ−1(X × Y ) = B`, and f(h) =
(1 + h)m − hm, g(k) = (1 + k)n − kn. Noting that hm = 0, kn = 0, formula (6.2) gives

c(TB`) ∩ [B`] = (1 + F )(1 +H − F )m(1 + E)(1 +H − E)n ∩ [B`] .

This may also be obtained by two applications of Lemma 1.3 in [2], since Pm−1 and Pn−1

are disjoint complete intersections in Pm+n−1.

These preliminary considerations yield the following statement.

Lemma 6.7. Let π : B` → Pm+n−1 be the blow-up along two disjoint centers Pm−1,
Pn−1; let E, resp. F be the exceptional divisors over these two centers; and let H denote
the hyperplane class in Pm+n−1, as well as its pull-back to B`. For X ⊆ Pm−1, Y ⊆ Pn−1

nonempty subvarieties, let f(H), resp. g(H) be polynomial expressions of degrees < m,
resp. < n in H, such that

c∗(11X) = f(H) ∩ [Pm−1] , c∗(11Y ) = g(H) ∩ [Pn−1]

as classes in Pm+n−1. Finally, let J(X,Y ) ↪→ Pm+n−1 be the join of X and Y in Pm+n−1.
Then

c∗(11J(X,Y )) = π∗ ((1 + F )(1 + E)f(H − F )g(H − E) ∩ [B`])

− (χ(Y )− 1)f(H) ∩ [Pm−1]− (χ(X)− 1)f(H) ∩ [Pn−1] .

In this statement, χ(X) and χ(Y ) denote the Euler characteristics of X and Y , respec-
tively.

Proof. Realize the join J(X,Y ) as the image of ρ−1(X × Y ) in Pm+n−1. Denote by
π : ρ−1(X × Y ) → J(X,Y ) the restriction of π. Then π is proper and birational, and
contracts

E ∩ ρ−1(X × Y ) to X ⊆ Pm−1 ,

F ∩ ρ−1(X × Y ) to Y ⊆ Pn−1 .

Now, E ∩ ρ−1(X × Y ) ∼= X × Y , and the contraction corresponds to the projection
X × Y → X. Similarly, the contraction F ∩ ρ−1(X × Y ) to Y corresponds to the
projection X × Y → Y . Therefore, the fibers of π may be described as follows:

p 6∈ X ∪ Y =⇒ π−1(p) = a point

p ∈ X =⇒ π−1(p) ∼= Y

p ∈ Y =⇒ π−1(p) ∼= X
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In terms of constructible functions, this says

π∗(11ρ−1(X×Y )) = 11J(X,Y )r(X∪Y ) + χ(Y )11X + χ(X)11Y
= 11J(X,Y ) + (χ(Y )− 1)11X + (χ(X)− 1)11Y .

By the functoriality property of Chern-Schwartz-MacPherson classes, it follows that

π∗c∗(11ρ−1(X×Y )) = c∗(J(X,Y )) + (χ(Y )− 1)c∗(X) + (χ(X)− 1)c∗(Y ) .

The statement follows immediately from this, together with Lemma 6.5. �

The challenge now is to evaluate the push-forward

π∗((1 + F )(1 + E)f(H − F )g(H − E) ∩ [B`]) .

Since f and g are polynomials, this is a sum of terms

π∗((1 + F )(1 + E)(H − F )i(H − E)j ∩ [B`]) .

This push-forward can be executed in two steps, since π may be viewed as a composition
π = π2 ◦ π1 of the blow-up π1 of Pm+n−1 along Pm−1, followed by the blow-up π2 of
the resulting variety along (a locus isomorphic to) Pn−1. Both steps match the following
template:

Lemma 6.8. Let p : Ṽ → V be the blow-up of a scheme V along a subscheme W of
codimension r. Assume W has class Hr, where H is a divisor class in V . Denote by the
same letter H the pull-back of this divisor class to Ṽ , and let D be the exceptional divisor.
Then

p∗((H −D)j) =

{
Hj 0 ≤ j < r

0 j ≥ r
, p∗(D(H −D)j) =

{
Hr j = r − 1

0 j 6= r − 1
.

Proof. By the birational invariance of Segre classes (Proposition 4.2(a) in [25]),

p∗

(
D

1 +D
∩ [Ṽ ]

)
= s(W,V ) =

Hr

(1 +H)r
∩ [V ] ,

and hence

p∗

(
1

1 +D
∩ [Ṽ ]

)
=
(

1− Hr

(1 +H)r

)
∩ [V ] .

Introducing a bookkeeping variable v, we have

p∗

(
1

1 + vD
∩ [Ṽ ]

)
=
(

1− (vH)r

(1 + vH)r

)
∩ [V ] :

indeed, multiplying D by v on the left has the effect of multiplying every term of codi-
mension j by vj , and this is the same effect obtained by multiplying H by v on the right.
By the projection formula, v may be replaced by any expression in H on the right and by
its pull-back on the left, still yielding a correct identity. Apply this observation to

∑
j≥0

(H −D)j =
1

1 +D −H
=

1
1−H

1 + D
1−H

,
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with v = 1
1−H :

p∗

∑
j≥0

(H −D)j ∩ [Ṽ ]

 =
1

1−H
· p∗

(
1

1 + 1
1−HD

∩ [Ṽ ]

)

=
1

1−H
·

(
1−

( 1
1−HH)r

(1 + 1
1−HH)r

)
∩ [V ]

=
1

1−H
· (1−Hr) ∩ [V ]

= (1 +H + · · ·+Hr−1) ∩ [V ] .

This establishes the first formula. The second formula follows immediately from this, by
observing that

D(H −D)j = H(H −D)j − (H −D)j+1 .

�

Returning to our analysis of intersections in B`, Lemma 6.8 gives

Lemma 6.9.

π∗
(
(H − F )i(H − E)j ∩ [B`]

)
=

{
Hi+j ∩ [Pm+n−1] if 0 ≤ i < m and 0 ≤ j < n

0 otherwise

π∗
(
E(H − F )i(H − E)j ∩ [B`]

)
=

{
Hi+n ∩ [Pm+n−1] if 0 ≤ i < m and j = n− 1

0 otherwise

π∗
(
F (H − F )i(H − E)j ∩ [B`]

)
=

{
Hj+m ∩ [Pm+n−1] if 0 ≤ j < n and i = m− 1

0 otherwise

π∗
(
EF (H − F )i(H − E)j ∩ [B`]

)
= 0.

Proof. The last formula follows from the fact that EF = 0 (the two exceptional divisors
are disjoint). The others are each obtained by applying Lemma 6.8 twice. For example,
note that

π∗
(
(H − F )i(H − E)j ∩ [B`]

)
= π1∗

(
(H − E)j · π2∗

(
(H − F )i ∩ [B`]

))
by the projection formula, since H, E are pull-backs from the first blow-up. Hence,
Lemma 6.8 evaluates this class to

π1∗
(
(H − E)j ·Hi

)
if 0 ≤ i < m (m = the codimension of Pn−1) and 0 otherwise; and another application of
Lemma 6.8 evaluates this to Hi+j if both 0 ≤ i < m and 0 ≤ j < n, and 0 otherwise. The
remaining two formulas are handled similarly. �

We are finally ready to prove Theorem 3.13.

Proof of Theorem 3.13. We have to evaluate

π∗ ((1 + F )(1 + E)f(H − F )g(H − E) ∩ [B`]) .

Let f(x) =
∑m−1
i=0 aix

j and g(x) =
∑n−1
j=0 bjx

i. Then

π∗ ((1 + F )(1 + E)f(H − F )g(H − E) ∩ [B`])

= π∗ (f(H − F )g(H − F ) + Ef(H − F )g(H − E) + Ff(H − F )g(H − E))
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=
m−1∑
i=0

n−1∑
j=0

aibjπ∗
(
(H − F )i(H − E)j ∩ [B`]

)
+
m−1∑
i=0

n−1∑
j=0

aibjπ∗
(
E(H − F )i(H − E)j ∩ [B`]

)
+
m−1∑
i=0

n−1∑
j=0

aibjπ∗
(
F (H − F )i(H − E)j ∩ [B`]

)

=
m−1∑
i=0

n−1∑
j=0

aibjH
i+j +

m−1∑
i=0

aibn−1H
i+n +

n−1∑
j=0

am−1bjH
j+m

= f(H)g(H) + χ(Y )f(H)Hn + χ(X)g(H)Hm ,

using Lemma 6.9, and the fact that χ(X) =
∫
c∗(X) = am−1, χ(Y ) =

∫
c∗(Y ) = bn−1.

By Lemma 6.7, then,

c∗(11J(X,Y )) = (f(H)g(H) + χ(Y )f(H)Hn + χ(X)g(H)Hm) ∩ [Pm+n−1]

− (χ(Y )− 1)f(H) ∩ [Pm−1]− (χ(X)− 1)f(H) ∩ [Pn−1]

= (f(H)g(H) + f(H)Hn + g(H)Hm) ∩ [Pm+n−1]

=
(
(f(H) +Hm)(g(H) +Hn)−Hm+n

)
∩ [Pm+n−1] .

This establishes formula (6.1), and concludes the proof of Theorem 3.13. �
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