LIMITS OF PGL(3)-TRANSLATES OF PLANE CURVES, I

PAOLO ALUFFI, CAREL FABER

ABSTRACT. We classify all possible limits of families of translates of a fixed, arbitrary
complex plane curve. We do this by giving a set-theoretic description of the projective
normal cone (PNC) of the base scheme of a natural rational map, determined by the curve,
from the P® of 3 x 3 matrices to the PV of plane curves of degree d. In a sequel to this
paper we determine the multiplicities of the components of the PNC. The knowledge of the
PNC as a cycle is essential in our computation of the degree of the PGL(3)-orbit closure
of an arbitrary plane curve, performed in [5].

1. INTRODUCTION

In this paper we determine the possible limits of a fixed, arbitrary complex plane curve &,
obtained by applying to it a family of translations «(t) centered at a singular transformation
of the plane. In other words, we describe the curves in the boundary of the PGL(3)-orbit
closure of a given curve %.

Our main motivation for this work comes from enumerative geometry. In [5] we have
determined the degree of the PGL(3)-orbit closure of an arbitrary (possibly singular, re-
ducible, non-reduced) plane curve; this includes as special cases the determination of several
characteristic numbers of families of plane curves, the degrees of certain maps to moduli
spaces of plane curves, and isotrivial versions of the Gromov-Witten invariants of the plane.
A description of the limits of a curve, and in fact a more refined type of information is an
essential ingredient of our approach. This information is obtained in this paper and in its
sequel [6]; the results were announced and used in [5].

The set-up is as follows. Consider the natural action of PGL(3) on the projective space of
plane curves of a fixed degree. The orbit closure of a curve % is dominated by the closure P8
of the graph of the rational map ¢ from the P® of 3 x 3 matrices to the PV of plane curves
of degree d, associating to ¢ € PGL(3) the translate of € by ¢. The boundary of the orbit
consists of limits of 4" and plays an important role in the study of the orbit closure.

Our computation of the degree of the orbit closure of %" hinges on the study of P8, and
especially of the scheme-theoretic inverse image in P® of the base scheme .# of c. Viewing
P® as the blow-up of P® along .7, this inverse image is the exceptional divisor, and may be
identified with the projective normal cone (PNC) of .# in P®. A description of the PNC
leads to a description of the limits of € the image of the PNC in P¥ is contained in the
set of limits, and the complement, if nonempty, consists of easily identified ‘stars’ (that is,
unions of concurrent lines).

This paper is devoted to a set-theoretic description of the PNC for an arbitrary curve.
This suffices for the determination of the limits, but does not suffice for the enumerative
applications in [5]; these applications require the full knowledge of the PNC as a cycle,
that is, the determination of the multiplicities of its different components. We obtain this
additional information in [6].

The final result of our analysis (including multiplicities) was announced in §2 of [5]. The
proofs of the facts stated there are given in the present article and its sequel. The main
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theorem of this paper (Theorem 2.5, in §2.5) gives a precise set-theoretic description of the
PNC, relying upon five types of families and limits identified in §2.3. In this introduction
we confine ourselves to formulating a weaker version, focusing on the determination of
limits. In [6] (Theorem 2.1), we compute the multiplicities of the corresponding five types
of components of the PNC.

The limits of a curve € are necessarily curves with small linear orbit, that is, curves with
infinite stabilizer. Such curves are classified in §1 of [4]; we reproduce the list of curves
obtained in [4] in an appendix at the end of this paper (§6). For another classification,
from a somewhat different viewpoint, we refer to [10]. For these curves, the limits can
be determined using the results in [3] (see also §5). The following statement reduces the
computation of the limits of an arbitrary curve % to the case of curves with small orbit.

Theorem 1.1. Let Z be a limit of a plane curve € of degree d, obtained by applying to it
a C((t))-valued point of PGL(3) with singular center. Then Z is in the orbit closure of a
star (reproducing projectively the d-tuple cut out on € by a line meeting it properly), or of
curves with small orbit determined by the following features of € :

I: The linear components of the support €' of € ;

II: The nonlinear components of €' ;
III: The points at which the tangent cone of € is supported on at least 3 lines;
IV: The Newton polygons of € at the singularities and inflection points of €’;
V: The Puiseuzx expansions of formal branches of € at the singularities of €”.

The limits corresponding to these features may be described as follows. In cases I and 111
they are unions of a star and a general line, that we call ‘fans’; in case 11, they are supported
on the union of a nonsingular conic and a tangent line; in case IV, they are supported on the
union of the coordinate triangle and several curves from a pencil y° = px°~2°, with b < ¢
coprime positive integers; and in case V they are supported on unions of quadritangent
conics and the distinguished tangent line. The following picture illustrates the limits in

cases IV and V:
AV V

A more precise description of the limits is given in §2.3, referring to the classification of
these curves obtained in §1 of [4] and reproduced in §6 of this paper.

The proof of Theorem 1.1 (or rather of its more precise form given in Theorem 2.5) is by
an explicit reduction process, and goes along the following lines. The stars mentioned in
the statement are obtained by families of translations a(t) (‘germs’) centered at an element
a(0) € .#. To analyze germs centered at points of ., we introduce a notion of equivalence
of germs (Definition 3.1), such that equivalent germs lead to the same limit. We then
prove that every germ centered at a point of .7 is essentially equivalent to one with matrix
representation



LIMITS OF PGL(3)-TRANSLATES OF PLANE CURVES, I 3

with 0 < b < cand ¢, r, and s polynomials. Here, coordinates are chosen so that the point
p=(1:0:0) belongs to ¥. Studying the limits obtained by applying such germs to %,
we identify five specific types of families (the marker germs listed in §2.3), reflecting the
features of € at p listed in Theorem 1.1, and with the stated kind of limit. We prove that
unless the germ is of one of these types, the corresponding limit is already accounted for
(for example, it is in the orbit closure of a star of the type mentioned in the statement).

In terms of the graph of the rational map ¢ mentioned above, we prove that every compo-
nent of the PNC is hit at a general point by the lift in P® of one of the five distinguished types
of germs. This yields our set-theoretic description of the PNC. In fact, the lifts intersect the
corresponding components transversally, and this will be important in our determination of
the multiplicities of the components in [6].

The procedure underlying the proof of Theorem 2.5 may be applied to any given plane
curve, producing a list of its limits. In practice, one needs to find the marker germs for the
curve; these determine the components of the PNC. The two examples in §2.6 illustrate this
process, and show that components of all types may already occur on curves of degree 4.
Here is a simpler example, for a curve of degree 3.

Ezxample 1.1. Consider the irreducible cubic ¥ given by the equation
ryz+y> +2° =0,

It has a node at (1 : 0 : 0) and three inflection points. According to Theorem 2.5 and
the list in §2.3, the PNC for % has one component of type II and several of type IV. The
latter correspond to the three inflection points and the node. A list of representative marker
germs for the component of type II and for the component of type IV due to the node may
be obtained by following the procedure explained in §3:

-2 —t 0 1 00 1 00
m:{1 ¢ o]; 1v:|fo ¢t 0o],|0 ¢ 0
1 0 ¢t 0 0 ¢ 0 0 t

The latter two marker germs, corresponding to the two lines in the tangent cone at the
node, have the same center and lead to projectively equivalent limits, hence they contribute
the same component of the PNC. Equations for the limits of ¥ determined by the germs
listed above are

z(xz+2y%) =0, yy?+22)=0, and z(z*+a2y)=0,

respectively: a conic with a tangent line, and a conic with a transversal line (two limits).
The inflection points also contribute components of type IV; the limits in that case are
cuspidal cubics.

According to Theorem 1.1, all limits of % (other than stars of lines) are projectively
equivalent to one of these curves, or to limits of them (cf. §5).

Necessary preliminary considerations, and the full statement of the main theorem, are
found in §2. The determination of the limits by successive reductions of a given family
of curves, proving the result, is worked out in §3 and §4. In §5 we summarize the more
straightforward situation for curves with small orbits.

Harris and Morrison ([14], p. 138) pose the flat completion problem for families of em-
bedded curves, asking for the determination of all curves in P” that can arise as flat limits
of a family of embedded stable curves over the punctured disc. The present article solves
the isotrivial form of this problem, for plane curves.
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In principle, a solution of the isotrivial flat completion problem for plane curves can
already be found in the marvelous article [12] by Aldo Ghizzetti, dating back to the 1930s.
However, Ghizzetti’s results do not lead to a description of the PNC, which is necessary for
our application in [5], and which is the main result of this paper and of its sequel.

Caporaso and Sernesi use our determination of the limits in [9] (Theorem 5.2.1). Hacking
[13] and Hassett [15] study the limits of families of nonsingular plane curves of a given degree,
by methods different from ours: they allow the plane to degenerate together with the curve.
It would be interesting to compare their results to ours. However, there are fundamental
differences between the phenomena we study and those addressed in [13] and [15]; for
example, our families are constant in moduli, and our results apply to arbitrary plane
curves. By the same token, neither Hacking-stability nor GIT-stability play an important
role in our study. Consider the case of a plane curve with an analytically irreducible
singularity. The determination of the contribution of the singularity to the PNC of the
curve requires both its linear type and all its Puiseux pairs, see §5 of [5]. In general, the
stability conditions mentioned above require strictly less (cf. Kim-Lee [16]). For example, a
singularity analytically isomorphic to y? = x° on a quartic leads necessarily to a component
of type V (cf. Example 2.2), whereas on a quintic, it leads to either a component of type IV
or a component of type V, according to the order of contact with the tangent line. For
GIT-stability, see also Remark 2.4.

The enumerative problem considered in [5], as well as the question of limits of PGL-
translates, makes sense for hypersurfaces of projective space of any dimension. The case
of configurations of points in P! is treated in [1]. The degree of the orbit closure of a
configuration of planes in P? is computed in [18]. In general, these problems appear to be
very difficult. The techniques used in this paper could in principle be used in arbitrary
dimension, but the case-by-case analysis (which is already challenging for curves in P?)
would likely be unmanageable in higher dimension. By contrast, the techniques developed
in [6] should be directly applicable: once ‘marker germs’ have been determined, computing
the multiplicities of the corresponding components of the PNC should be straightforward,
using the techniques of [6].

Acknowledgments. Work on this paper was made possible by support from Mathema-
tisches Forschungsinstitut Oberwolfach, the Volkswagen Stiftung, the Max-Planck-Institut
fiir Mathematik (Bonn), Princeton University, the Géran Gustafsson foundation, the Swedish
Research Council, the Mittag-Leffler Institute, MSRI, NSA, NSF, and our home institutions.
We thank an anonymous referee of our first article on the topic of linear orbits of plane
curves, [2], for bringing the paper of Aldo Ghizzetti to our attention. We also thank the
referee of this paper and [6], for the careful reading of both papers and for comments that
led to their improvement.

2. SET-THEORETIC DESCRIPTION OF THE PNC

2.1. Limits of translates. We work over C. We choose homogeneous coordinates (z :
y : z) in P2, and identify PGL(3) with the open set of nonsingular matrices in the space
P® parametrizing 3 x 3 matrices. We consider the right action of PGL(3) on the space
PN = PHO(P?,0(d)) of degree-d plane curves; if F(z,y,2) = 0 is an equation for a plane
curve ¢, and o € PGL(3), we denote by % o « the curve with equation F(a(x,y,z)) = 0.
We will consider families of plane curves over the punctured disk, of the form € o a(t),
where «(t) is a 3 X 3 matrix with entries in C[t], such that «(0) # 0, det «(t) # 0, and
det «(0) = 0. Simple reductions show that studying these families is equivalent to studying
all families ¢ o a(t), where a(t) is a C((t))-valued point of P® such that det a(0) = 0. We
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also note that if % is a smooth curve of degree d > 4, then any family of curves of degree d
parametrized by the punctured disk and whose members are abstractly isomorphic to %,
i.e., an isotrivial family, is essentially of this type (cf. [7], p. 56).

The arcs of matrices a(t) will be called germs, and viewed as germs of curves in P®. The
flat limit limy_o € o «(t) of a family 4 o «(t) as t — 0 may be computed concretely by
clearing common powers of ¢ in the expanded expression F'(«(t)), and then setting ¢ = 0.
Our goal is the determination of all possible limits of families as above, for a given arbitrary
plane curve %.

2.2. The Projective Normal Cone. The set of all translates € o « is the linear orbit
of €, which we denote by Og: the complement of Oy in its closure Oy is the boundary
of the orbit of ¥. By the limits of € we will mean the limits of families ¢ o «a(t) with
a(0) € PGL(3).

Remark 2.1. For every curve €, the boundary is a subset of the set of limits; if dim Oy = 8
(the stabilizer of % is finite), then these two sets coincide. If dim &y < 8 (the stabilizer
is infinite, and the orbit is small, in the terminology of [3] and [4]) then there are families
with limit equal to €’; in this case, the whole orbit closure Oy consists of limits of €.

The set of limit curves is itself a union of orbits of plane curves; our goal is a description
of representative elements of these orbits; in particular, this will yield a description of the
boundary of . In this section we relate the set of limits of € to the projective normal
cone mentioned in the introduction.

Points of P®, that is, 3 x 3 matrices, may be viewed as rational maps P? --» P2. The
kernel of a singular matrix @ € P® determines a line of P? (if tka = 1) or a point (if
rk a = 2); ker a will denote this locus. Likewise, the image of « is a point of P2 if rka = 1,
or a line if rka = 2.

The action map a — % o « for a € PGL(3) defines a rational map

c:P% s PN

We denote by . the base scheme of this rational map. The closure of the graph of ¢ may
be identified with the blow-up P® of P® along .. The support of .7 consists of the matrices
a such that (with notation as above) F(a(z,y,z)) = 0; that is, matrices whose image is
contained in .

The projective normal cone (PNC) of .# in P® is the exceptional divisor E of this blow-up.
We have the following commutative diagram:

E c P8 ¢ P8 x PN
S P8 - == PV

Therefore, as a subset of P& x PV, the support of the PNC is
Bl = {(a, Z) € P’ x PV : 2 is a limit of € o a(t)
for some germ «(t) centered at o € . and not contained in .’}

Lemma 2.2. The set of limits of € consists of the image of the PNC in PN, and of limits
of families € o a(t) with o = «(0) a singular matriz whose image is not contained in €.
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In the latter case: if o has rank 1, the limit consists of a multiple line supported on ker a;
if a has rank 2, the limit consists of a star of lines through ker o, reproducing projectively
the tuple of points cut out by € on the image of a.

Proof. The PNC dominates the set of limits of families ¢ o «(t) for which «(t) is centered
at a point of indeterminacy of c¢. This gives the first statement.

To verify the second assertion, assume that «(t) is centered at a singular matrix « at
which ¢ is defined; « is then a rank-1 or rank-2 matrix such that F(a(z,y, 2)) # 0. After
a coordinate change we may assume without loss of generality that

1 00 1 00
a=[0 0 0 or =101 0
0 00 0 00

and F(z,0,0), resp. F(z,y,0) are not identically zero. These are then the forms defining
the limits of the corresponding families, and the descriptions given in the statement are
immediately verified in these cases. ([l

The second part of Lemma 2.2 may be viewed as the analogue in our context of an
observation of Pinkham (‘sweeping out the cone with hyperplane sections’, [17], p. 46).

Remark 2.3. Denote by R the proper transform in P8 of the set of singular matrices in P®.
Lemma 2.2 asserts that the set of limits of € is the image of the union of the PNC and R.
A more explicit description of the image of R has eluded us; for a smooth curve € of degree
> 5 these ‘star limits’ have two moduli. It would be interesting to obtain a classification of
curves € with smaller ‘star-moduli’.

The image of the intersection of R and the PNC will play an important role in this paper.
Curves in the image of this locus will be called ‘rank-2 limits’; we note that the set of rank-2
limits has dimension < 6.

Lemma 2.2 translates the problem of finding the limits for families of plane curves € oa(t)
into the problem of describing the PNC for the curve ¢". Each component of the PNC is
a 7-dimensional irreducible subvariety of P® c P® x PV. We will describe it by listing
representative points of the component. More precisely, note that PGL(3) acts on P® by
right multiplication, and that this action lifts to a right action of PGL(3) on P8. Each
component of the PNC is a union of orbits of this action. For each component, we will list
germs «(t) lifting on P® to germs &(t) so that the union of the orbits of the centers &(0) is
dense in that component.

2.3. Marker germs. In a coarse sense, the classification of limits into ‘types’ as in Theo-
rem 1.1 depends on the image of the center a(0) of the family: this will be a subset of €
(cf. Lemma 2.2), hence it will either be a (linear) component of ¢ (type I), or a point of €
(general for type II, singular or inflectional for types III, IV, and V).

We will now list germs determining the components of the PNC in the sense explained
above. We will call such a germ a marker germ, as the center of its lift to P® (the cor-
responding marker center) ‘marks’ a component of the PNC. The first two types depend
on global features of % its linear and nonlinear components. The latter three depend on
local features of ¢: inflection points and singularities of (the support of) . That there are
only two global types is due to the fact that the order of contact of a nonlinear component
and the tangent line at a general point equals two (in characteristic zero). The three local
types are due to linear features at singularities of € (type III), single nonlinear branches
at special points of € (type IV), and collections of several matching nonlinear branches at
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singularities of € (type V). Only type V leads to limits with additive stabilizers, and the
absence of further types is due to the fact, shown in [4], that in characteristic zero only one
kind of curves with small orbit has additive stabilizers (also cf. §6).

Remark 2.4. A plane curve with small orbit is not GIT-stable. Whether it is strictly
semistable or unstable is not directly related to the questions we are considering here. For
example, the curves zyz and 22yz have similar behavior from the point of view of this
paper; yet the former is strictly semistable, the latter is unstable.

Similarly, consider the union of a general quartic and a multiple line in general position.
This has 8-dimensional orbit; it is stable in degree 5, strictly semistable in degree 6, and
unstable in higher degrees. But the multiplicity of the line does not affect the behavior
from our point of view in any substantial way.

The lesson we draw from these examples is that there is no direct relation between the
considerations in this paper and GIT. We should point out that the referee of this paper
suggests otherwise, noting that closures of orbits are of interest in both contexts, curves
with small orbits play a key role, and the mechanics of finding the limits is somewhat similar
in the two situations. The referee asks: which marker germs would be relevant in a GIT
analysis? We pass this question on to the interested reader.

The terminology employed in the following matches the one in §2 of [5]; for example, a
fan is the union of a star and a general line. In four of the five types, a = «(0) is a rank-1
matrix and the line ker a plays an important role; we will call this ‘the kernel line’.

Type I. Assume % contains a line, defined by a linear polynomial L. Write a generator
of the ideal of ¥ as

F(z,y,2) = L(z,y,2)"G(z,y, 2)

with L not a factor of G. Type I limits are obtained by germs
a(t) = a(0) + 8()

where «(0) has rank 2 and image the line defined by L.

As we are assuming (cf. §2.1) that deta(t) # 0, the image of () is not contained in
im «(0), so that the limit limy_,g L o 3(t) is a well-defined line ¢. The limit lim; o € o «(t)
consists of the m-fold line ¢, and a star of lines through the point ker «(0). This star
reproduces projectively the tuple cut out on L by the curve defined by G.

——

The limit is in general a fan, and degenerates to a star if the m-fold line ¢ contains the
point ker a(0). Fans and stars are studied in [4], and are the only kinds of curves with small
orbit that consist of lines; they are items (1) through (5) in our classification of curves with
small orbit, see §6.

For types II—V we choose coordinates so that p = (1: 0 : 0) is a point of ¢; for types
II, IV, and V we further require that z = 0 is a chosen component £ of the tangent cone to
€ at p.
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Type II. Assume that p is a nonsingular, non-inflectional point of the support ¢’ of ¢,
contained in a nonlinear component, with tangent line z = 0. Let

1 0 0
at)=10 t O
0 0 ¢

Then the ideal of limy_,g % o «(t) is generated by

2P + pr2)®

where S is the multiplicity of the component in %, and p # 0; that is, the limit consists of a
(possibly multiple) nonsingular conic tangent to the kernel line, union (possibly) a multiple
of the kernel line.

-

Such curves are items (6) and (7) in the classification reproduced in §6. The extra kernel
line is present precisely when % is not itself a multiple nonsingular conic.

Type III. Assume that p is a singular point of ¢” of multiplicity m in %, with tangent
cone supported on at least three lines. Let

0
at) = 0
t

OO =
S+ O

Then lim; .o % o a(t) is a fan consisting of a star centered at (1 : 0 : 0) and projectively
equivalent to the tangent cone to ¢ at p, and of a residual (d — m)-fold line supported on

the kernel line x = 0.
% N }&

Type IV. Assume that p is a singular or inflection point of the support of €. Germs of
type IV are determined by the choice of the line £ in the tangent cone to % at p, and by
the choice of a side of a corresponding Newton polygon, with slope strictly between —1 and
0. This procedure is explained in more detail in §2.4.

Let b < ¢ be relatively prime positive integers such that —b/c is the slope of the chosen
side. Let

1 0 O
at)=10 t 0
0 0 ¢
Then the ideal of limy_,g % o a(t) is generated by a polynomial of the form

S
xéyfze H(yc + pjmcszb) ’
j=1
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with p; # 0. The number S of ‘cuspidal’ factors in the limit curve is the number of segments
cut out by the integer lattice on the selected side of the Newton polygon.

N

The germ listed above contributes a component of the PNC unless b/c = 1/2 and the
limit curve is supported on a conic union (possibly) the kernel line. The limit curves arising
in this way are items (7) through (11) listed in §6. (In particular, the picture drawn above
does not capture the possible complexity of the situation: several cuspidal curves may
appear in the limit, as well as all lines of the basic triangle.) These limit curves are studied
enumeratively in [3]. The limit curves contributing components to the PNC in this fashion
are precisely the curves that contain nonlinear components and for which the maximal
connected subgroup of the stabilizer of the union of the curve and the kernel line is the
multiplicative group G,,

Type V. Assume p is a singular point of the support of ¥. Germs of type V are
determined by the choice of the line ¢ in the tangent cone to % at p, the choice of a
formal branch z = f(y) = 7,y + ... for € at p tangent to ¢, and the choice of a
certain ‘characteristic’ rational number C' > Ao (assuming these choices can be made). This
procedure is also explained in more detail in §2.4.

For a < b < ¢ positive integers such that £ = C and g = % + 1, let

1 0 0
aft)=| t° £t 0
fa) fant e
where - - - denotes the truncation modulo ¢¢. The integer a is chosen to be the minimal one
for Wthh all entries in this germ are polynomials. Then lim; .o % o a(t) is given by

(Mo —1 A+ C ;
2472 H <293 - 7) Taoy’ = T Ve YT — 78)1‘2> ,
2

where S and 'yC are defined in §2.4.

S

These curves consist of at least two ‘quadritangent’ conics—that is, nonsingular conics
meeting at exactly one point—and (possibly) a multiple kernel line. (Again, the picture
drawn here does not capture the subtlety of the situation: these limits may occur already
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for irreducible singularities.) These curves are item (12) in the list in §6, and are studied
enumeratively in [3], §4.1. They are precisely the curves for which the maximal connected
subgroup of the stabilizer is the additive group G,.

2.4. Details for types IV and V. Type IV: Let p = im «(0) be a singular or inflection
point of the support of €’; choose a line in the tangent cone to € at p, and choose coordinates
(z :y: z) as before, so that p = (1 : 0 : 0) and the selected line in the tangent cone has
equation z = 0. The Newton polygon for € in the chosen coordinates is the boundary of the
convex hull of the union of the positive quadrants with origin at the points (7, k) for which
the coefficient of z'y/2* in the generator F' for the ideal of € is nonzero (see [8], p. 380).
The part of the Newton polygon consisting of line segments with slope strictly between —1
and 0 does not depend on the choice of coordinates fixing the flag z =0, p = (1:0:0).

The limit curves are then obtained by choosing a side of the polygon with slope strictly
between —1 and 0, and setting to 0 the coefficients of the monomials in F' not on that side.
These curves are studied in [3]; typically, they consist of a union of cuspidal curves. The
kernel line is part of the distinguished triangle of such a curve, and in fact it must be one
of the distinguished tangents.

Here is the Newton polygon for the curve of Example 1.1, with respect to the point
(1:0:0) and the line z = 0:

Setting to zero the coefficient of 23 produces the limit y(y? + z2).

Type V: Let p = im«(0) be a singular point of the support of ¢, and let m be the
multiplicity of ¥ at p. Again choose a line in the tangent cone to ¥ at p, and choose
coordinates (z : y : z) so that p=(1:0:0) and z = 0 is the selected line.

We may describe € near p as the union of m ‘formal branches’; cf. §4.1; those that are
tangent to the line z = 0 (but not equal to it) may be written

2=fy)=>_ my

120

with \; e Q, 1< < <., and’yAO #0.

The choices made above determine a finite set of rational numbers, which we call the
‘characteristics’ for ¢ (w.r.t. p and the line z = 0): these are the numbers C for which there
exist two branches %, %' tangent to z = 0 that agree modulo y©, differ at y, and have
Ao < C. (Formal branches are called ‘pro-branches’ in [19], Chapter 4; the numbers C' are
‘exponents of contact’.)

Let S be the number of branches that agree with % (and %’') modulo y. The initial

exponents Ao and the coefficients «y,, 7x+c for these S branches agree. Let 7(01 ), . ,'yés)
2

be the coefficients of ¢y in these branches (so that at least two of these numbers are distinct,
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by the choice of C'). Then the limit is defined by

s

_ Xo(Xg — 1 Ao+ C ;

2425 | | (Zw - 70( (; )7A0y2 - 5 YA tC YT — ’Yg)$2>
i=1 2

This is a union of quadritangent conics with (possibly) a multiple of the distinguished
tangent, which must be supported on the kernel line.

2.5. The main theorem, and the structure of its proof. Simple dimension counts
show that, for each type as listed in §2.3, the union of the orbits of the marker centers is a
set of dimension 7 in P® C P8 x PV; hence it is a dense set in a component of the PNC. In
fact, marker centers of type I, III, IV, and V have 7-dimensional orbit, so the corresponding
components of the PNC are the orbit closures of these points.

Type II marker centers are points (o, 2°) € P8 x PV, where « is a rank-1 matrix whose
image is a general point of a nonlinear component of €. The support of Z contains a
conic tangent to the kernel line; this gives a 1-parameter family of 6-dimensional orbits in
P® x PV, accounting for a component of the PNC.

We can now formulate a more precise version of Theorem 1.1:

Theorem 2.5 (Main theorem). Let ¢’ C P% be an arbitrary plane curve. The marker germs
listed in §2.8 determine components of the PNC' for €, as explained above. Conversely, all
components of the PNC are determined by the marker germs of type I-V listed in §2.5.

By the considerations in §2.2; this statement implies Theorem 1.1.

The first part of Theorem 2.5 has been established above. In order to prove the second
part, we will define a simple notion of ‘equivalence’ of germs (Definition 3.1), such that, in
particular, equivalent germs «(t) lead to the same component of the PNC. We will show
that any given germ «a(t) centered at a point of . either is equivalent (after a parameter
change, if necessary) to one of the marker germs, or its lift in P8 meets the PNC at a point
of R (cf. Remark 2.3) or of the boundary of the orbit of a marker center. In the latter
cases, the center of the lift varies in a locus of dimension < 7, hence such germs do not
contribute components to the PNC. The following lemma allows us to identify easily limits
in the intersection of R and the PNC.

Lemma 2.6. Assume that a(0) has rank 1. If limy_0% o a(t) is a star with center on
ker «(0), then it is a rank-2 limit.

Proof. Assume 2~ = lim;_0% o a(t) is a star with center on ker «(0). We may choose
coordinates so that x = 0 is the kernel line, and the generator for the ideal of £ is a
polynomial in z,y only. If

an(t) alg(t) alg(t)
a(t) = | an(t) an(t) ast)]
azi(t) as(t) ass(t)

then 2" = lim;_,o € o ((t) for

aill (t) ai19 (t) 0
ﬂ(t) = agl(t) ago (t) 0
asl (t) aso (t) 0
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Since «(0) has rank 1 and kernel line x = 0,

CLH(O) 0 0
a(0) = | a21(0) 0 0| =p(0)
asi (O) 0 0
Now f(t) is contained in the rank-2 locus, verifying the assertion. O

A limit limy—,0 % o a(t) as in this lemma will be called a ‘kernel star’.

Sections 3 and 4 contain the successive reductions bringing a given germ «(t) centered at
a point of . into one of the forms given in §2.3, or establishing that it does not contribute
a component of the PNC. This analysis will conclude the proof of Theorem 2.5.

2.6. Two examples. The two examples that follow illustrate the main result, and show
that components of all types may already occur on curves of degree 4. Simple translations
are used to bring the marker germs provided by §2.3 into the form given here.

Ezxample 2.1. Consider the reducible quartic 47 given by the equation
(y+ 2)(xy” + ayz + 22 + Y’z +y2°) = 0.

It consists of an irreducible cubic with a node at (1: 0 : 0) and a line through the node and
the inflection point (0 : 1 : —1). The other inflection points are (0:1:0) and (0: 0 : 1).
According to Theorem 2.5 and the list in §2.3, the PNC for %) has one component of type
I, one component of type II, one component of type III, corresponding to the triple point
(1:0:0), and four components of type IV: one for each of the inflection points (0 : 1 : 0)
and (0 : 0 : 1), one for the node (0 : 1: —1) and the tangent line z = y + z to the cubic
at that point, and one for the triple point (1 : 0 : 0) and the two lines in the tangent cone
y? + yz + 22 = 0 to the cubic at that point. Here is a schematic drawing of the curve,
with features marked by the corresponding types (four points are marked as IV;, since four
different points are responsible for the presence of type IV components):

A list of representative marker germs is as follows:

1 0 0 2 0 0 1 00
I:10 1 0}); II:{-3 ¢t O0}|; II:10 ¢t 0];
0 —1 t 6 0 t 00 t
and, for type IV:
t 0 0 t 0 0 t 0 0 1 0 0 1 0 0
0 10}, (-t ¢ o], (o 1 of, [0 pt 0], [0 p* O
—t 0 ¢ 0 0 1 t —1 3 0 t ¢t 0 t ¢t
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(where p is a primitive third root of unity). The latter two marker germs have the same
center and lead to projectively equivalent limits, hence they contribute the same component
of the PNC. The corresponding limits of %) are given by

w28y —932), wly+ )yt yPz+ad), sy +ad),

2(y?z — %), (P — (p+2)zz), and y*(y* - (p° +2)z2),
respectively: a triangle with one line doubled, a conic with a double tangent line, a fan
with star centered at (1 : 0 : 0), a cuspidal cubic with its cuspidal tangent (two limits), a
cuspidal cubic with the line through the cusp and the inflection point, and finally a conic
with a double transversal line (two limits). Schematically, the limits may be represented as
follows:

ALAZRYE

According to Theorem 1.1, all limits of %) (other than stars of lines) are projectively equiv-
alent to one of these curves, or to limits of them (cf. §5). O

Ezxample 2.2. Consider the irreducible quartic %> given by the equation

(4 — 22 =y

It has a ramphoid cusp at (1 : 0 : 0), an ordinary cusp at (0 : 0 : 1), and an ordinary
inflection point at (335:—2632:—212); there are no other singular or inflection points. The
PNC for %, has one component of type II, two components of type IV, corresponding to
the inflection point and the ordinary cusp, and one component of type V, corresponding
to the ramphoid cusp. (Note that there is no component of type IV corresponding to the
ramphoid cusp.) Representative marker germs for the latter two components are

0 t3 0 1 0 0
IV: |t 0 0 and V:[t* ¢ 0
0 0 1 8 2¢9 10

and the corresponding limits of %3 are given by

2 2

2(y%z — %) and  (y? — a2+ 2?)(y? —xz — 2?),

respectively: a cuspidal cubic with its inflectional tangent and a pair of quadritangent
conics. The connected component of the stabilizer of the latter limit is the additive group.
The germ with entries 1, ¢, and t? on the diagonal and zeroes elsewhere leads to the limit
(y? —2)?, a double conic; its orbit is too small to produce an additional component of type
1V. O

3. PROOF OF THE MAIN THEOREM: KEY REDUCTIONS AND COMPONENTS OF TYPE I-1IV

3.1. Outline. In this section we show that, for a given curve ¢, any germ «(t) contributing
to the PNC is ‘equivalent’ (up to a coordinate and parameter change, if necessary) to a
marker germ as listed in §2.3. As follows from §2.1 and Lemma 2.2, we may assume that
det a(t) # 0 and that the image of a(0) is contained in %.



14 PAOLO ALUFFI, CAREL FABER

Observe that if the center «(0) has rank 2 and is a point of ., then «(t) is already of
the form given in §2.3, Type I; it is easy to verify that the limit is then as stated there.
This determines completely the components of type I. Thus, we will assume in most of what
follows that «(0) has rank 1, and its image is a point of %

3.1.1. Equivalence of germs.

Definition 3.1. Two germs a(t), (t) are equivalent if 5(tv(t)) = a(t) o m(t), with v(t) a
unit in C[[¢]], and m(t) a germ such that m(0) = I (the identity).

For example: if n(t) is a C[[t]]-valued point of PGL(3), then «(t) o n(t) is equivalent to
a(t) on(0). We will frequently encounter this situation.

Lemma 3.2. Let € be any plane curve, with defining homogeneous ideal (F(x,y,z)). If
a(t), B(t) are equivalent germs, then the initial terms in F o a(t), F o B(t) coincide up to
a nonzero multiplicative constant; in particular, the limits limy_,0 % o «(t), limy_,0 % o 5(t)
are equal. O

If @ and (3 are equivalent germs, note that a(0) = (0); by Lemma 3.2 it follows that,
for every curve €, a and f3 lift to germs in P® centered at the same point.

3.1.2. Summary of the argument. The general plan for the rest of this section is as follows:
we will show that every contributing «(t) centered at a rank-1 matrix is equivalent (in
suitable coordinates, and possibly up to a parameter change) to one of the form

1 0 0 1 0 0
at)y=10 t* 0 or to tb 0 ,
0 0 t° ft)  frane e

where b < ¢ resp. a < b < ¢ are positive integers, z = f(y) is a formal branch for € at
(1:0:0), and : - - denotes the truncation modulo ¢ (cf. §2.3 and §2.4).

The main theorem will follow from further analyses of these forms, identifying which do
not contribute components to the PNC, and leading to the restrictions explained in §2.3
and §2.4. Specifically, the germs on the left lead to components of type II, III, and IV
(83.3); those on the right lead to components of type V. The latter germs require a subtle
study, performed in §4, leading to the definition of ‘characteristics’ and to the description

given in §2.4 (cf. Proposition 4.14).
3.2. Linear algebra.
3.2.1. This subsection is devoted to the proof of the following result.

Proposition 3.3. Fvery germ as specified in §3.1 is equivalent to one which, up to a
parameter change, has matriz representation

1 0 0
qit) t* 0
r(t) s(t)td e
in suitable coordinates, with 1 < b < ¢ and q,r, s polynomials such that deg(q) < b, deg(r) <
¢, deg(s) < ¢ —b, and q(0) = r(0) = s(0) = 0.

A refined version of this statement is given in Lemma 3.6.

We will deal with 3 x 3 matrices with entries in C[[¢]], that is, C[[t]]-valued points of
Hom(V, W), for V., W 3-dimensional complex vector spaces with chosen bases. Every such
matrix «(t) determines a germ in P8. A generator F' of the ideal of € will be viewed as
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an element of Sym?W*, for d = deg%’; the composition F o a(t), a C[[t]]-valued point of
SyméV*, generates the ideal of € o a(t).
We will call matrices of the form

0 0
At)=10 t 0
0 0 t°

‘1-PS’, as they correspond to 1-parameter subgroups of PGL(3).

We will say that two matrices a(t), 5(t) are equivalent if the corresponding germs are
equivalent in the sense of Definition 3.1. The following lemma will allow us to simplify
matrix expressions of germs up to equivalence. Define the degree of the zero polynomial to
be —oo0.

Lemma 3.4. Let

(5] b1 C1
h1 (t) = as U C9
a3 by us

be a matriz with entries in C[[t]], such that hi(0) = I, and let a < b < ¢ be integers. Then
hi(t) can be written as a product hi(t) = h(t) - j(t), with

1 00 v er fi
h(t)=1{q 1 0 , Jjt)=|d2 v2 fo
r s 1 ds e3 wv3

where q, T, s are polynomials, satisfying
(1) h(0) =j(0) =I;
(2) deg(q) < b—a, deg(r) < ¢ —a, deg(s) < c—b;
(3) d2 =0 (mod t*=%), d3 =0 (mod t~%), e3 =0 (mod 7).

Proof. Necessarily v1 = ui,e; = by and f; = ¢;. Use division with remainder to write
vflag = Dyt’™ 4 ¢ with deg(q) < b—a, and let dy = v1 Dot?™® (so that qu; +ds = as). This
defines ¢ and d2, and uniquely determines vo and fo. (Note that ¢(0) = d2(0) = f2(0) =0
and that v2(0) = 1.)

Similarly, we let r be the remainder of (vivy — e1da)~!(veaz — dab3z) after division by
t=? and s be the remainder of (vivs — eyda) ™! (v1bs — eja3) after division by t“~?. Then
deg(r) < ¢ —a, deg(s) < ¢ — b and r(0) = s(0) = 0; moreover, we have

vir +des = ag  (mod t“%), eir +ves = by (mod tc_b),

so we take d3 = az — vir — dos and e3 = by — e1r — vgs. This defines r, s, d3 and e3, and
uniquely determines vs. O

Corollary 3.5. Let hi(t) be a matriz with entries in C[[t]], such that hi(0) = I, and let
a < b < c be integers. Then there exists a constant invertible matrix L such that the product

t* 0 0
hi(t)- {0 t 0
0 0 ¢t
s equivalent to
100 t* 0 0
g 10 0 t o L
r s 1 0 0 t°



16 PAOLO ALUFFI, CAREL FABER

where q, r, s are polynomials such that deg(q) < b — a, deg(r) < ¢ — a, deg(s) < c¢—b, and
q(0) =(0) = s(0) = 0.

Proof. With notation as in Lemma 3.4 we have

t* 0 0 vit® et fit¢ t* 0 0
J) -0 2 0 =(dat® watt fotc] =10 b 0] L1 ,
0 0 ¢t° dst® egtb v3t€ 0 0 t°

with
o 61tbfa fltcfa
E(t) = dgta_b () thC_b
dst®—¢ €3tb—c U3
By (3) in Lemma 3.4, ¢(t) has entries in C[[t]] and is invertible; in fact, L = £(0) is lower
triangular, with 1’s on the diagonal. Therefore Lemma 3.4 gives

t* 0 0 1 00 t* 0 0
hit)-{0 t* 0)l=[qg 1 0)-10 ¢t 0] -2t |,
0 0 ¢t° r s 1 0 0 ¢t
from which the statement follows. OJ

The gist of this result is that, up to equivalence, matrices ‘to the left of a 1-PS’ and
centered at the identity may be assumed to be lower triangular, and to have polynomial
entries, with controlled degrees.

3.2.2. We denote by v the order of vanishing at 0 of a polynomial or power series; we define
v(0) to be +oo. The following statement is a refined version of Proposition 3.3.

Lemma 3.6. Let a(t) be a 3 X 3 matriz with entries in C[[t]], such that «(0) # 0 and
det a(t) # 0. Then there exist constant invertible matrices H, M such that a(t) is equivalent
to

1 00 1 00
pty=H-{q 1 0]-[0 t o] - M |
r s 1 0 0 ¢t

with

e b < ¢ nonnegative integers, q,r, s polynomials;

o deg(q) < b, deg(r) < ¢, deg(s) < c—b;

e ¢(0) =7(0) =s(0) =0.
If, further, b = c and q, r are not both zero, then we may assume that v(q) < v(r).

Finally, if q(t) #Z 0 then we may choose q(t) = t*, with a = v(q) < b (and thus a < v(r)

ifb=c).
Proof. By standard diagonalization of matrices over Euclidean domains, every a(t) as in
the statement can be written as a product

1 0 0
ho(t)- |0 t° 0] -k(t)
0 0 t

where b < ¢ are nonnegative integers, and ho(t), k(t) are invertible (over C[[t]]). Letting
H = ho(0), h1(t) = H™' - ho(t), and K = k(0), this shows that a(t) is equivalent to
1 0 0
H-hi(t)- {0 t* 0] K
0 0 t°
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with h1(0) = I, and K constant and invertible. By Corollary 3.5, this matrix is equivalent
to

with L invertible, and ¢, r, s polynomials satisfying the needed conditions. Letting M =
L - K gives the statement in the case b < c.
If b = ¢, then the condition that degs < ¢ —b = 0 forces s = 0. When ¢ and r are not
both 0, the inequality v(¢) < v(r) may be obtained by conjugating with a constant matrix.
If ¢(t) # 0 and v(q) = a, then we can extract its a-th root as a power series. It follows
that there exists a unit v(t) € C[[t]] such that g(tv(t)) = t*. Therefore,

1 0 0 1 0 0 1 0 0
B(tv(t)) = H - to 1 0o]-10 ¢ o)-l0 v@)® 0 | -M
r(tv(t)) s(tv(t)) 1 0 0 ¢t 0 0 v

Another application of Corollary 3.5 allows us to truncate the power series r(tv(t)) and
s(tv(t)) to obtain polynomials r, s satisfying the same conditions as r, s, at the price of
multiplying to the right of the 1-PS by a constant invertible matrix K: that is, G(tv(t))
(and hence «(t)) is equivalent to

1 00 1 0 0 1 0 0
H-{t* 1 0]- (0o ¢ of-[K-[0 v0* 0 | M
r s 1 0 0 t° 0 0 v(0)°

Renaming r = r, s = s, and absorbing the factors on the right into M completes the proof
of Lemma 3.6. O

The matrices H, M appearing in Lemma 3.6 may be omitted by changing the bases of
W and V accordingly. Further, we may assume that b > 0, since we are already reduced to
the case in which «(0) is a rank-1 matrix. This concludes the proof of Proposition 3.3. In
what follows, we will assume that « is a germ in the standard form given above.

3.3. Components of type II, ITI, and IV. It will now be convenient to switch to affine
coordinates centered at the point (1:0:0). We write

F(lyz):Fm(y,z)—l—FmH(y,z)—{——I—Fd(y,z) )

with d = deg ¥, F; homogeneous of degree i, and F,, # 0. Thus, F,,(y, z) generates the
ideal of the tangent cone of € at p.
We first consider the case in which ¢ = r = s = 0, that is, in which «(t) is itself a 1-PS:

1 0 0
at)=10 t* 0
0 0 t°

with 1 < b < ¢. Also, we may assume that b and ¢ are coprime: this only amounts to a
reparametrization of the germ by ¢ — ¢1/9¢4(b:); the new germ is not equivalent to the old
one in terms of Definition 3.1, but clearly achieves the same limit.

Germs with b = ¢ (= 1) lead to components of type III, cf. §2.3 (also cf. [5], §2, Fact 4(i)):

Proposition 3.7. If g =r = s =0 and b = ¢, then lim;_,0 € o «(t) is a fan consisting of
a star projectively equivalent to the tangent cone to € at p, and of a residual (d —m)-fold
line supported on ker a.
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Proof. The composition F o a(t) is
Fla sty 92) = a0 Fy (g, ) + 220 Dgd= D B o) ARy )
By definition of limit, lim;_.q % o a(t) has ideal (z?~™F,,(y, z)), proving the assertion. [

The case b < ¢ corresponds to the germs of type II and type IV in §2.3. We have to prove
that contributing germs of this type are precisely those satisfying the further restrictions
specified there: specifically, —b/c must be a slope of one of the Newton polygons for € at
the point. We first show that z = 0 must be a component of the tangent cone:

Lemma 3.8. If g=r=s5=0 and b < ¢, and z = 0 is not contained in the tangent cone
to € at p, then lim;_o %€ o a(t) is a rank-2 limit.

Proof. The condition regarding z = 0 translates into F,,(1,0) # 0. Applying a(t) to F, we
find:

F(x . tby . tcz) _ tbml‘d_mFm(y, tc—bz) + tb(m+1)$d—(m+1)Fm+1(y, tc—bz) 4.

Since Fy,(1,0) # 0, the dominant term on the right-hand-side is z%~™y™. This proves the
assertion, by Lemma 2.6. g

Components of the PNC that arise due to 1-PS with b < ¢ may be described in terms of
the Newton polygon for € at (0,0) relative to the line z = 0, which we may now assume to
be part of the tangent cone to % at p. The Newton polygon for % in the chosen coordinates
is the boundary of the convex hull of the union of the positive quadrants with origin at
the points (j, k) for which the coefficient of z%y72z* in the equation for € is nonzero (see
[8], p- 380). The part of the Newton polygon consisting of line segments with slope strictly
between —1 and 0 does not depend on the choice of coordinates fixing the flag z = 0,

p=(0,0).
Proposition 3.9. Assumeg=r=s=0and b < c.

e If —b/c is not a slope of the Newton polygon for €, then the limit limy_o % o a(t)
is supported on (at most) three lines; these curves do not contribute components to
the PNC.

o If —b/c is a slope of a side of the Newton polygon for €, then the ideal of the limit
limy_,0 €oa(t) is generated by the polynomial obtained by setting to O the coefficients
of the monomials in F' not on that side. Such polynomials are of the form

S
G =%yl 2 [ [(v° + pjac"2")
j=1

Proof. For the first assertion, simply note that under the stated hypotheses only one mono-
mial in F'is dominant in Foa(t); hence, the limit is supported on the union of the coordinate
axes. A simple dimension count shows that such limits may span at most a 6-dimensional
locus in P® x PV, and it follows that such germs do not contribute a component to the PNC.

For the second assertion, note that the dominant terms in F o «(t) are precisely those on
the side of the Newton polygon with slope equal to —b/c. It is immediate that the resulting
polynomial can be factored as stated. O

If the point p = (1 : 0 : 0) is a singular or an inflection point of the support of ¢, and
b/c # 1/2, we find the type IV germs of §2.3; also cf. [5], §2, Fact 4(ii). The number S
of ‘cuspidal’ factors in G is the number of segments cut out by the integer lattice on the
selected side of the Newton polygon. If b/c = 1/2, then a dimension count shows that
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the corresponding limit will contribute a component to the PNC (of type IV) unless it is
supported on a conic union (possibly) the kernel line.

If p is a nonsingular, non-inflectional point of the support of %, then the Newton polygon
consists of a single side with slope —1/2; these are the type II germs of §2.3. Also cf. [5],
Fact 2(ii).

4. COMPONENTS OF TYPE V

Having dealt with the 1-PS case in the previous section, we may now assume that

1 0 0

(1) at)=|qt) t* 0
r(t) s(t)td e

with the conditions listed in Lemma 3.6, and further such that q,r, and s do not all vanish
identically.

Our task is to show that contributing germs of this kind must in fact be of the form
specified in §2.3 and §2.4. We will show that a germ «(t) as above leads to a rank-2 limit
(and hence does not contribute a component to the PNC) unless a(t) and certain formal
branches (cf. [8] and [11], Chapter 6 and 7) of the curve are closely related. More precisely,
we will prove the following result.

Proposition 4.1. Let «(t) be as specified above, and assume that limy—,oC o «(t) is not
a rank-2 limit. Then € has a formal branch z = f(y), tangent to z = 0, such that « is
equivalent to a germ
1 0 0
ta t0 0
) pune

with a < b < c positive integers. Further, it is necessary that ¢ < Ao + 2(% — 1), where
Ao > 1 is the (fractional) order of the branch.

For a power series g(t) with fractional exponents, we write here g(t) for its truncation
modulo ¢¢. (The truncations appearing in the statement are in fact polynomials.)

The proof of the proposition requires the analysis of several cases. We will first show
that under the hypothesis that lim; 0% o «(t) is not a rank-2 limit we may assume that
q(t) # 0, and this will allow us to replace it with a power of ¢; next, we will deal with the
b = ¢ case; and finally we will see that if b < ¢ and «(t) is not in the stated form, then the
limit of every irreducible branch of € is a star with center (0 : 0 : 1). This will imply that
the limit of € is a kernel star in this case, proving the assertion by Lemma 2.6.

This analysis is carried out in §4.1-4.4. In §4.5 we determine germs of the form given in
Proposition 4.1 that can lead to components of type V, obtaining the description given in
§2.3. In §4.6 we complete the proof of Theorem 2.5, recovering the description given in §2.4
of the limits obtained along these germs.

4.1. Limits of formal branches. In this subsection we recall the notion of formal branches
and define the ‘limit’ of a formal branch. The limit of a curve ¥ will be expressed in terms
of the limits of its formal branches.

Choose affine coordinates (y,z) = (1:y: z) so that p = (0,0), and let ®(y,2) = F(1:y:
z) be the generator for the ideal of ¢ in these coordinates. Decompose ®(y, z) in C[[y, z]]:

q)(:% Z) = q)l(yvz) T q)'l‘(yuz)
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with ®;(y, z) irreducible power series. These define the irreducible branches of € at p. Each
®; has a unique tangent line at p; if this tangent line is not y = 0, by the Weierstrass
preparation theorem we may write (up to a unit in C[[y, z]]) ®; as a monic polynomial in z
with coefficients in Cl[y]], of degree equal to the multiplicity m; of the branch at p (cf. for
example [11], §6.7). If ®; is tangent to y = 0, we may likewise write it as a polynomial in
y with coefficients in C[[z]]; mutatis mutandis, the discussion which follows applies to this
case as well.
Concentrating on the first case, let

Dy, 2) € Cllyl][=]

be a monic polynomial of degree m;, defining an irreducible branch of € at p, not tangent
to y = 0. Then ®; splits (uniquely) as a product of linear factors over the ring Cl[y*]] of
power series with rational nonnegative exponents:

m;

Oi(y,2) =[Gz )

j=1
with each fi;(y) of the form

FW) =>_ mu™

k>0

with A, € Q, 1 < Ao < A1 <..., and vy, # 0. We call each such z = f(y) a formal branch
of € at p. The branch is tangent to z = 0 if the dominating exponent Ag is > 1. The terms
z — fi;(y) in this decomposition are the Puiseux series for ¢ at p.

We will need to determine lim; .o € o a(t) as a union of ‘limits’ of the individual formal
branches at p. The difficulty here resides in the fact that we cannot perform an arbitrary
change of variable in a power series with fractional exponents. In the case in which we will
need to do this, however, a(t) will have the following special form:

1 0 0
aty=|(t 0
r(t) st)td t°

with a < b < ¢ positive integers and r(t), s(t) polynomials (satisfying certain restrictions,
which are immaterial here). The difficulty we mentioned may be circumvented by the
following ad hoc definition.

Definition 4.2. The limit of a formal branch z = f(y), along a germ «(t) as above, is
defined by the dominant term in

(1(0)+ s()y +152) = F(1%) = Py — (e

where f'(y) = >y, Ayt ete.

By ‘dominant term’ we mean the coefficient of the lowest power of ¢ after cancellations.
This coefficient is a polynomial in y and z, giving the limit of the branch according to our
definition.

This definition behaves as expected: that is, the limit of % is the union of the limits of
its individual formal branches. This fact will be used several times in the rest of the paper,
and may be formalized as follows.
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Lemma 4.3. Let ®(y, z) € C[[y]][z] be a monic polynomial,

oy, z) = [[ (= fi(w))

)

a decomposition over Cly*]], and let a(t) have the special form above. Then the dominant
term in ® o a(t) is the product of the limits of the formal branches z = f;(y) along «, as in
Definition 4.2. (|

Let m be the multiplicity of € at p = (0,0). For simplicity, we assume that no branches
of € are tangent to the line y = 0, leaving to the reader the necessary adjustments in the
presence of such branches. We write the generator F' for the ideal of ¥ as a product of
formal branches F' = [~ (z— fi(y)). We will focus on the formal branches that are tangent
to the line z = 0, which may be written explicitly as

2=fy) =D
k>0
with A\ € Q, 1 < Ao < A1 <...,and vy, #0.
Now we begin the proof of Proposition 4.1.

4.2. Reduction to g # 0. The first remark is that, under the assumptions that ¢, r, and
s do not all vanish, we may in fact assume that ¢(¢) is not identically zero.

Lemma 4.4. If a(t) is as in (1), and ¢ = 0, then lim;_,0C o a(t) is a rank-2 limit.

Proof. (Sketch.) Assume ¢ = 0, and study the action of a(t) on individual monomials
z4yB2¢ in an equation for €:

mapc = 2y (r(t)z + s(t)tby + t¢2) P8

There are various possibilities for the vanishing of r and s, but the dominant terms in m4pc
are always kernel stars, which are rank-2 limits by Lemma 2.6. (|

4.3. Reduction to b < c. By Lemma 4.4 and the last part of Lemma 3.6 we may replace
a(t) with an equivalent germ
1 0 0
et 0
r(t) st)td t°
with a < b < ¢, and r(t), s(t) polynomials of degree < ¢, < (¢—b) respectively and vanishing
at t = 0.
Next, we have to show that if lim;_,o % o «(t) is not a rank-2 limit then b < ¢ and r(t),
s(t) are as stated in Proposition 4.1.

Lemma 4.5. Let a(t) be as above. If b = ¢, then lim_o € o a(t) is a rank-2 limit.

Proof. Decompose F(1 : y : z) in C[[y, z]]: write F(1 : y : 2) = G(y,2) - H(y, 2), where
G(y, z) collects the branches that are not tangent to z = 0. If b = ¢, then necessarily s = 0:

1 0 0
at)=1| t* t* 0 :
r(t) 0

and further @ < v(r) (cf. Lemma 3.6). The reader can verify that the limits of the branches
collected in G are supported on the kernel line = 0. The limit of each (formal) branch
collected in H(y, z) may be computed as in Definition 4.2, and is found to be given by a
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homogeneous equation in x and z only: that is, a (0 : 1 : 0)-star. It follows that the limit
of ¥ is again a kernel star, hence a rank-2 limit by Lemma 2.6. (|

4.4. End of the proof of Proposition 4.1. By Lemma 4.5, we may now assume that «
is given by
1 0 0
at)y=t* t* 0
r(t) st)td t°
with the usual conditions on r(t) and s(t), and further a < b < c.
The limit of ¥ under « is analyzed by studying limits of formal branches.

Lemma 4.6. The limits of formal branches that are not tangent to the line z = 0 are
necessarily (0 : 0 : 1)-stars. Further, if a < v(r), then the limit of such a branch is the
kernel line x = 0. g

Lemma 4.7. The limit of a formal branch z = f(y) tangent to the line z =01is a (0:0: 1)-
star unless

o r(t) = f(t*) (mod t%);

e s5(t) = f/(t*) (mod t¢7?).

Proof. The limit of the branch is given by the dominant terms in
r(t) + s(t)tPy + t°2 = f(tY) + f ¢ty + ...

If r(t) £ f(t*) (mod t°), then the weight of the branch is necessarily < ¢, so the ideal of
the limit is generated by a polynomial in x and y, as needed. The same reasoning applies
if s(t) #Z f'(t*) (mod t¢7?). O

To verify the condition on £ stated in Proposition 4.1, note that the limit of the formal
branch z = f(y) is now given by the dominant term in

N f//(ta)thy2
2

the dominant weight will be less than ¢ (causing the limit to be a (0 : 0 : 1)-star) if
¢ >2b+v(f"(t*) = 2b+ a(Ao — 2). The stated condition follows at once, completing the
proof of Proposition 4.1.

r(t) + sty + 12 = [t + [ (19t b

4.5. Characterization of type V germs. In the following, we will replace ¢t by a root of
t in the germ obtained in Proposition 4.1, if necessary, in order to ensure that the exponents
appearing in its expression are relatively prime integers; the resulting germ determines the
same component of the PNC.

In order to complete the characterization of type V germs given in §2.3, we need to
determine the possible triples a < b < ¢ yielding germs contributing components of the
PNC. This determination is best performed in terms of B = g and C' = ¢. Let

2=fy) =Y oyt
k>0

with Ay € Q, 1 <X < A < ..., and ), # 0, be a formal branch tangent to z = 0. Every
choice of such a branch and of a rational number C' = £ > 1 determines a truncation

o =Y ™

A <C
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The choice of a rational number B = g satisfying 1 < B < C and B > % +1
determines now a germ as prescribed by Proposition 4.1:

1 0 0
alt)y=| t° t 0
f@) franed

(choosing the smallest positive integer a for which the entries of this matrix have integer
exponents). Observe that the truncation f(t*) = f()(t?) is identically 0 if and only if

C < Ao. Also observe that f/(t*)t® is determined by fio)(t?), as it equals the truncation to
t¢ of (f(c)) ()",
Proposition 4.8. If C < Ay or B # CEAO + 1, then limy_,0 € o a(t) is a rank-2 limit.

We deal with the different cases separately.
Lemma 4.9. If C < \g, then limy_,0% o a(t) is a (0:1:0)-star.
Proof. If C'= £ < Ao, then fic)(y) =0, so

1 00
at)y=t* t* 0
0 0 t°

The statement follows by computing the limit of individual formal branches, using Defini-
tion 4.2. O

By Lemma 2.6, the limits obtained in Lemma 4.9 are rank-2 limits, so the first part of
Proposition 4.8 is proved. As for the second part, the limit of a branch tangent to z = 0
depends on whether the branch truncates to f()(y) or not. These cases are studied in the

next two lemmas. Recall that, by our choice, B > % + 1.

Lemma 4.10. Assume C > Ao, and let z = g(y) be a formal branch tangent to z = 0, such
that g«cy(y) # fic)(y). Then the limit of the branch is supported on a kernel line.

Proof. The limit of the branch is determined by the dominant terms in
FOE) + f()y + 12 = g(t9) + ¢/ ()t y + ...

As the truncations gy and f(y do not agree, the dominant term is independent of z. Under
our hypotheses on B and (), it is found to be independent of y as well, as needed. O

Lemma 4.11. Assume C > X\, and let z = g(y) be a formal branch tangent to z = 0, such
that g.cy(y) = fic)(y). Denote by 'y(cg) the coefficient of y© in g(y).
e If B> 0_2’\0 + 1, then the limit of the branch z = g(y) by «(t) is the line

2= (C~B+1yc_py+1

o If B= C_2>‘° + 1, then the limit of the branch z = g(y) by «(t) is the conic

Mo(Ag —1 A +C
z= (Q)’YAOZUQ + = Yaezey + 7)

Proof. Rewrite the expansion whose dominant terms give the limit of the branch as:

o2 = (g(t") — £ + (o) — £y + D g
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The dominant term has weight ¢ = C'a by our choices; if B > % + 1 then the weight of
the coefficient of y? exceeds ¢, so it does not survive the limiting process, and the limit is
a line. If B = C;/\O + 1, the term in y? is dominant, and the limit is a conic. The explicit
expressions given in the statement are obtained by reading the coefficients of the dominant
terms. O

We can now complete the proof of Proposition 4.8:

Lemma 4.12. Assume C > X\g. If B > % +1, then the limit lim;_o € o a(t) is a rank-2
limit.
Proof. We will show that the limit is necessarily a kernel star, which gives the statement

by Lemma 2.6.
As B > 1, the coefficient y¢—p41 is determined by the truncation fcy, and in particular

it is the same for all formal branches with that truncation. Since B > % + 1, by
Lemma 4.11 the branches considered there contribute lines through the fixed point (0 : 1 :
(C — B+ 1)yc—pB+1)- We are done if we check that all other branches contribute a kernel
line z = 0: and this is implied by Lemma 4.6 for branches that are not tangent to z = 0
(note a < v(r) for the germs we are considering), and by Lemma 4.10 for formal branches
z = g(y) tangent to z = 0 but whose truncation g(¢) does not agree with f(c. O

4.6. Quadritangent conics. We are ready to complete the proof of Theorem 2.5, by
determining the limits of the last contributing germs. These have been reduced to the form
listed as type V in §2.3 (up to a coordinate change, and replacing ¢ by a root of ¢):

1 0 0
alt)y=| t t 0
fa) frane

for some branch z = f(y) = yA,y° + ... of € tangent to z = 0 at p = (0,0), and further
satisfying C > A\g and B = % + 1 for B = g, C = . Type V components of the PNC
will arise depending on the limit lim; ¢ € o «(t), which we now determine.

Lemma 4.13. If C' > Xy and B = % + 1, then the limit lim;_o € o a(t) consists of
a union of quadritangent conics, with distinguished tangent equal to the kernel line x = 0,
and of a multiple of the distinguished tangent line.

Proof. Both vy, and yx+c are determined by the truncation f(¢) (since C' > Xg); hence

2
the equations of the conics

Ao(ho — 1 Ao+ C
2270(; e+ S

contributed (according to Lemma 4.11) by different branches with truncation f(cy may only
differ in the coefficient ~¢.

It is immediately verified that all such conics are tangent to the kernel line x = 0, at the
point (0 : 0 : 1), and that any two distinct such conics meet only at the point (0 : 0 : 1);
thus they are necessarily quadritangent.

Finally, the branches that do not truncate to f()(y) must contribute kernel lines, by
Lemmas 4.6 and 4.10. g

"Y)\o;c y+c

The degenerate case in which only one conic arises corresponds to germs not contributing
components of the projective normal cone, by dimension considerations. A component is
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present as soon as there are two or more conics, that is, as soon as two branches contribute
distinct conics to the limit.

This leads to the description given in §2.3. We say that a rational number C is ‘char-
acteristic’ for € (with respect to z = 0) if at least two formal branches of ¢ (tangent to
z = 0) have the same nonzero truncation, but different coefficients for y¢.

Proposition 4.14. The set of characteristic rationals is finite.
The limit lim;_,o € o a(t) obtained in Lemma 4.13 determines a component of the projec-
tive normal cone precisely when C is characteristic.

Proof. If C > 0, then branches with the same truncation must in fact be identical, hence
they cannot differ at y©, hence C is not characteristic. Since the set of exponents of any
branch is discrete, the first assertion follows.

The second assertion follows from Lemma 4.13: if C > A\g and B = % + 1, then the
limit is a union of a multiple kernel line and conics with equation

)\0()\0 — 1) 9 X+ C

z = #%\oy + 9

these conics are different precisely when the coefficients ¢ are different, and the statement
follows. O

’YM;C y+ e

Proposition 4.14 leads to the procedure giving components of type V explained in §2.4
(also cf. [5], §2, Fact 5), concluding the proof of Theorem 2.5.

5. BOUNDARIES OF ORBITS

We have now completed the set-theoretic description of the PNC determined by an arbi-
trary plane curve 4. As we have argued in §2, this yields in particular a description of the
boundary of Oy. In this section we include a few remarks aimed at making this description
more explicit.

If dim 04 = 8, then the boundary of &4 consists of the image of the union of the PNC
and of the proper transform R of the complement of PGL(3) in P® (cf. Remark 2.3). Curves
in the image of R are stars (Lemma 2.2). Curves in the image of the components of the
PNC belong to the orbit closures of the limits of the marker germs listed in §2.3. We
have proved that this list is exhaustive; therefore, the boundary of a given curve ¥ may be
determined (up to stars) by identifying the marker germs for %, and taking the union of
the orbit closures of the (finitely many) corresponding limits.

This reduces the determination of the curves in the boundary of the orbit of a given curve
to the determination for curves with small orbit (i.e., of dimension < 7). We note that, for
a curve € with small orbit, some components of the PNC will in fact dominate @: indeed,
in this case ¢ has positive dimensional stabilizer in PGL(3); the limit of a germ centered
at a singular matrix and otherwise contained in the stabilizer is ¥ itself. This germ can
be chosen to be equivalent to a marker germ, identifying a component of the PNC which
dominates the orbit closure.

As mentioned in the introduction, the boundary for a curve with small orbit may be
determined by a direct method. Indeed, for such a curve we have constructed in [3] explicit
sequences of blow-ups at nonsingular centers which resolve the indeterminacies of the basic
rational map, and hence dominate the corresponding graph P8. The boundary of the curve
may be determined by studying the image in PV of the various exceptional divisors of these
blow-ups.
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>
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% ;\ ﬁ »\% ;\ >< N /

The result may be summarized by indicating which types of curves with small orbits are
in the boundary of a given curve with small orbit. Figure 1 expresses part of this relation
in terms of the representative pictures for curves with small orbit shown in §6. The five
columns represent curves with orbits of dimension 7, 6, 5, 4, 2 respectively. Arrows indicate
specialization: for example, the figure indicates that the boundary of the orbit of the union
of a conic and a tangent line contains stars, but not single conics. Stars with more than three
lines are not displayed, to avoid cluttering the picture; the three kinds of curves displayed
in the leftmost column all degenerate to such stars, the only exceptions being the special
cases of the second picture given by the union of a conic and a transversal line, and by a
single cuspidal cubic.

The situation illustrated here is precisely what one would expect from naive considera-
tions; it is confirmed by the study of the blow-ups mentioned above. Slightly more refined
phenomena (for example, involving multiplicities of the components) are not represented in
this figure; in general, they can be easily established by applying the results of this paper
or by analyzing the blow-ups of [3].

We close by pointing out one such phenomenon. In general, the union of a set of quadri-
tangent conics and a tangent line can specialize to the union of a conic and a tangent line
in two ways: (i) by type II germs aimed at a general point of one of the conic components,
and (ii) by a suitable type IV germ aimed at the tangency point. The multiplicity of the
conic in the limit is then the multiplicity of the selected component in case (i), and the
sum of the multiplicities of all conic components in case (ii). If the curve consists solely of
quadritangent conics, it degenerates to a multiple conic in case (ii). This possibility occurs
in the boundary of the orbit of the quartic curve from Example 2.2, represented in Figure 2.
We have omitted the set of stars of four distinct lines also in this figure; in this case, it is a
6-dimensional union of 5-dimensional orbits.

6. APPENDIX: CURVES WITH SMALL LINEAR ORBITS

For the convenience of the reader, we reproduce here the description of plane curves with
small linear orbits given in [4]. That reference contains a proof that this list is exhaustive,
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FIGURE 2

and details on the stabilizer of each type of curve (as well as enumerative results for orbits
of curves consisting of unions of lines, items (1)—(5) in the following list).

Let € be a curve with small linear orbit. We list all possibilities for %, together with the
dimension of the orbit Oy of ¥. The irreducible components of the curves described here
may appear with arbitrary multiplicities.

(1) € consists of a single line; dim Oy = 2.
(2) € consists of 2 (distinct) lines; dim Oy = 4.
(3) € consists of 3 or more concurrent lines; dim 0y = 5. (We call this configuration a
star.)
(4) ¥ is a triangle (consisting of 3 lines in general position); dim O = 6.
(5) € consists of 3 or more concurrent lines, together with 1 other (non-concurrent)
line; dim Oy = 7. (We call this configuration a fan.)
(6) ¢ consists of a single conic; dim 0y = 5.
(7) € consists of a conic and a tangent line; dim 0y = 6.
(8) ¥ consists of a conic and 2 (distinct) tangent lines; dim Oy = 7.
(9) € consists of a conic and a transversal line and may contain either one of the tangent
lines at the 2 points of intersection or both of them; dim fy = 7.
(10) € consists of 2 or more bitangent conics (conics in the pencil y? + Arz) and may
contain the line y through the two points of intersection as well as the lines = and /or
z, tangent lines to the conics at the points of intersection; again, dim Oy = 7.
(11) € consists of 1 or more (irreducible) curves from the pencil 3+ 2%2*~% with b > 3,
and may contain the lines z and/or y and/or z; dim Oy = 7.
(12) € contains 2 or more conics from a pencil through a conic and a double tangent
line; it may also contain that tangent line. In this case, dim Oy = 7.

The last case is the only one in which the maximal connected subgroup of the stabilizer is
the additive group Gg; this fact was mentioned in §2.3. The following picture represents
schematically the curves described above.
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