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ABSTRACT. The subring of the Grothendieck ring of varieties generated
by the graph hypersurfaces of quantum field theory maps to the monoid
ring of stable birational equivalence classes of varieties. We show that
the image of this map is the copy of Z generated by the class of a point.
This clarifies the extent to which the graph hypersurfaces ‘generate the
Grothendieck ring of varieties’: while it is known that graph hyper-
surfaces generate the Grothendieck ring over a localization of Z[L] in
which L becomes invertible, the span of the graph hypersurfaces in the
Grothendieck ring itself is nearly killed by setting the Lefschetz motive L
to zero. In particular, this shows that the graph hypersurfaces do not
generate the Grothendieck ring prior to localization. The same result
yields some information on the mixed Hodge structures of graph hyper-
surfaces, in the form of a constraint on the terms in their Deligne-Hodge
polynomials. These observations are certainly not surprising for the ex-
pert reader, but are somewhat hidden in the literature. The treatment
in this note is straightforward and self-contained.

1. INTRODUCTION

The interplay between perturbative quantum field theory and the theory
of motives of algebraic varieties has been extensively studied in recent years,
in particular in terms of the algebro-geometric and motivic properties of the
graph hypersurfaces associated with Feynman graphs of scalar quantum field
theories.

In particular, one of the central results in the field is the main theorem
of [6], which shows that graph hypersurfaces can be arbitrarily complicated
from the motivic viewpoint: their affine complements are ‘from the stand-
point of their zeta functions, the most general schemes possible’ ([6], p. 149).
In rough terms, this is proven by showing that graph hypersurfaces generate
the Grothendieck ring K (Var) of varieties.

The main purpose of this note is to clarify the extent to which this is the
case, with emphasis on a subtlety which may be missed by a hurried reading
of the literature. According to Theorem 0.6 in [6], graph hypersurfaces
generate S~'K(Var) as a module over the ring ST1Z[L], where S is the
(saturated) multiplicative subset of Z[L| generated by L™ —L for n > 1, with
L = [A'] the Lefschetz-Tate motive. This localization is in fact necessary
to the result of [6], and we give a simple geometric explanation of why this
is the case. We will point out that graph hypersurfaces do not generate
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the Grothendieck ring as a module over Z[L], and in fact they do not even
generate the localization S’ 'K (Var) as a module over S’ 'Z[L], where S’
is generated by L™ — 1 for n > 0. For example, we will show that the class of
an elliptic curve is not in the span of the graph hypersurfaces if coefficients
are taken in S’ 'Z[L]. As ST1Z|L] is the localization of this latter ring at L,
it appears that localization at L is crucial the result of [6]. In view of this
observation, we propose the following

Question. Do graph hypersurfaces generate the localized Grothendieck ring
as a module over Z[L,L™1]?

This situation illustrates a sharp dichotomy in the behavior of graph
hypersurfaces in the Grothendieck ring under the contrasting operations of
inverting L and setting IL to zero. Graph hypersurfaces are ‘as general as
possible’ after localization (at L and S’), while they are extremely special
with respect to taking the quotient modulo the ideal (IL): their span agrees
with the span of a point modulo (L). While these facts are certainly not
surprising to the expert, we feel that it is useful to lay them out in a short and
self-contained note, with clearly stated formulas and transparent proofs. As
we will point out at the end of this introduction, stronger statements can
be proven concerning the triviality modulo (L), for physically significant
graphs, but at the price of more combinatorially demanding arguments.

We quickly recall some basic notation and terminology. For a connected
finite graph G with n edges the graph polynomial (1, ...,t,) is defined

as
vt tn) = Y [[te

TCG e¢T

where T runs over the spanning trees of G and ¢, is the variable associated
with an edge e. In general, we define the graph polynomial for a (finite)
graph G to be the product of the polynomials for the connected components
of G. We denote by X the projective hypersurface defined by the homo-
geneous polynomial 1g in P"~!, by )?G C A" the affine hypersAurface, and
by Yo € A" the affine hypersurface complement Y5 = A™ \ Xg. As the
main results of [6] are expressed in terms of Y, we choose to focus on Yg
in this paper. We note that graph hypersurfaces are usually singular; also,
it is easy to see that the irreducible components of X are rational.

Our main result can be stated as follows. Larsen and Lunts associate
with each variety V' (possibly singular, possibly non-compact) an element in
the monoid ring Z[SB] generated by stable birational equivalence classes of
varieties. This assignment is compatible with the relations defining K (Var),
and associates with V its own stable birational equivalence class if V' is
smooth and projective. Smooth projective rational varieties have class 1
in Z[SB], but this is in general not the case for rational varieties that are
singular or not complete: the element in Z[SB] determined by the image
of the class [V] € K(Var) of a quasi-projective or singular rational variety
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need not be in the ‘constant’ part Z C Z[SB] (cf. Example 2.4). Thus,
although irreducible graph hypersurfaces are rational, this fact alone does
not give information on their image in Z[SB]|. What we show is precisely

that the Larsen-Lunts images of graph hypersurfaces do lie in the constant
part of Z[SB].

Theorem 1.1. Affine graph hypersurface complements span Z C Z[SB].

Morally, Theorem 1.1 shows that graph hypersurfaces and their comple-
ments are rational in a very strong sense (which we will make precise in §2):
for example, the image in Z[SB] of the class of an irreducible graph hyper-
surface does equal the class of a point (Corollary 3.3). This is the reason
why they do not span the unlocalized Grothendieck ring of varieties.

In more classical terms, Theorem 1.1 provides some information on the
mixed Hodge structure of graph hypersurfaces, as it shows that the Deligne-
Hodge polynomial of a (projective) graph hypersurface X is necessarily of
the form ¢ 4+ uvP(u,v), with ¢ € Z. This shows that elliptic curves are not
in the span of graph hypersurfaces in the Grothendieck ring.

Theorem 1.1 is proven by using the realization of Z[SB] as the quotient
K(Var)/(L) (also recalled in §2). An explicit computation (Theorem 3.2)
based on a deletion-contraction formula for the Grothendieck class of a graph
hypersurface shows that for every graph G, the class of the complement Y&
modulo (L) is 0 or £1. Theorem 1.1 and the consequences mentioned above
follow immediately.

We remark that Theorem 3.2 is certainly not the strongest possible result,
although it suffices for our purposes and is extremely easy to prove, as we
show in this paper. Lemma 15 in [8] shows that for ‘physically significant’
graphs G the class of Yy is in fact 0 modulo (IL?) (see also Corollary 2.7
in [13]; this fact ultimately relies on Dodgson’s identity). For these graphs,
the Deligne-Hodge polynomial of X has the form 1 + uv + u?v?P(u,v).
‘Banana graphs’ give examples of graphs which do not satisfy this stronger
property: the class for the n-banana graph is a multiple of L, but not of L2
for n # 3 ([2], Corollary 3.13).

2. STABLE BIRATIONAL EQUIVALENCE AND THE GROTHENDIECK RING

In the following, we denote by K (Var) the Grothendieck ring of varieties.
This is generated by the isomorphism classes of irreducible quasi-projective
varieties with the inclusion—exclusion relations [X] = [X \ Y] + [Y], for
closed embeddings Y C X, and with the product [X]-[Y] = [X x Y]. The
Grothendieck ring K (Var) depends on the field of definition of the varieties.
This will be understood to be Q in the following.

A result of [12] relates the Grothendieck ring to the ring of stable bi-
rational equivalence classes of varieties. We comment here briefly on some
aspects of this result that will be useful in the discussion of the case of graph
hypersurfaces.
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Two (irreducible, complex) varieties X, Y are stably birational if X x P* is
birational to Y x P! for some k, ¢ > 0. If X is stably birational to Y, and X" is
stably birational to Y, then X x X is stably birational to Y x Y”. Thus, the
set of classes of stable birational equivalence of varieties is a multiplicative
monoid S B, with unit equal to the class of a point.

Theorem 2.1. ([12], Proposition 2.7.) Let (L) be the ideal in K (Var) gen-
erated by the Lefschetz motive L = [A']. The ring K (Var)/(LL) is isomorphic
to the monoid ring Z[SB.

This result is obtained by defining a homomorphism K (Var) — Z[SB],
sending [V] to the stable birational equivalence class [V]gp of V for ev-
ery irreducible smooth, projective variety V. The main technical step is to
show that this homomorphism is well-defined; this may be proven by using
Bittner’s alternative description ([5]) of the Grothendieck ring of varieties
K (Var) with generators that are smooth projective varieties and relations

[X] - [Y] = [Bly (X)] - [E],

for a smooth closed subvariety Y C X, with Bfy(X) the blowup of X
along Y and E the exceptional divisor. This relation replaces the usual
inclusion-exclusion relation [X] = [X \ Y] + [Y], which requires the non-
compact X \Y. Bittner’s characterization depends on the weak factorization
theorem of [1], which shows that any proper birational map between smooth
irreducible varieties over a field of characteristic zero can be factored into a
sequence of blow-ups and blow-downs with smooth centers.

Theorem 2.1 is stated over C in [12], but holds over Q as well since so
does the weak factorization theorem (Remark 2 after Theorem 0.3.1 of [1]);
this is also observed explicitly in [11], p. 28.

Remark 2.2. Stable birational equivalence makes sense for every variety V,
so every variety (whether or not smooth and projective) has a class [V]gp
in Z[SB]. It is important to keep in mind that in general this class agrees
with the image of [V] € K(Var) via the Larsen-Lunts homomorphism only
if V is smooth and projective. In other cases the image of [V] in Z[SB]
may be determined by expressing [V] as a combination of classes of smooth
projective varieties, and then reproducing that combination in Z[SB].

For example, the image of L = [A!] is 0 in Z[SB] because [A!] = [P!] —
[P°] in K(Var), and P°, P! are trivially stably birationally equivalent to
each other. Likewise, the image of (the class of) an irreducible nodal plane
cubic C'in Z[SB] is 0 # 1 even though [C]sp = [PY]sB, since [C] = [P!]—[P]
in K(Var).

To make this point more explicit, we introduce a notion of ‘L-equivalence’.

Definition 2.3. Two irreducible quasi-projective varieties X, Y are L-
equivalent if their classes in Z[SB] via the Larsen-Lunts isomorphism coin-
cide, that is, if [X] = [Y]| mod (L) in K(Var). A variety is L-rational if it
is L-equivalent to P*, for some k > 0.
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If X and Y are irreducible smooth projective and stably birational, then
they are also IL-equivalent; however, this is not necessarily the case if X,
Y are not smooth and/or not complete. For example, as observed above,
an irreducible nodal cubic in P? is complete and birational to P' but not
L-rational.

In fact, the following example shows that rational (singular, projective)
varieties may be very far from being IL-rational.

Example 2.4. There exists a complete rational surface X whose Larsen-
Lunts image in Z[SB] is 2 — [C]sp, where C is an elliptic curve.

Indeed, by Theorem 3.3 of [10], there exist projective rational surfaces X
with one isolated singular point p such that the exceptional divisor in the
minimal resolution X of X is an elliptic curve C. Using Bittner’s relations,
[X] = [X] — [C] + [p] in K (Var), and since all varieties on the right-hand
side are smooth and projective, and X is rational, then the image of [X] in

Z[SB] equals [X|sp — [Clss + [plsB =2 — [ClsB.

These caveats apply to graph hypersurfaces. As recalled in the intro-
duction, irreducible (projective) graph hypersurfaces X are easily seen to
be rational, and are complete, but are in general singular. Affine graph
hypersurface complements Y are trivially rational, but non-complete. As
observed above, these naive considerations do not suffice to determine the
Larsen-Lunts images of these varieties in Z[SB].

3. GRAPH HYPERSURFACES AND STABLE BIRATIONAL EQUIVALENCE

In [4] we proved a deletion-contraction formula for the classes in the
Grothendieck ring of the graph hypersurfaces. We recall here the result,
giving a short and self-contained proof for completeness, since the conclu-
sion we derive on the stable birational equivalence classes will be a direct
consequence of this formula. The result is also implicit in the literature pre-
ceding [4], e.g. [14], [7]. However, the formula given for [Xt] in [7] (8.8) ap-
pears to be incorrect as stated, as simple examples show (for instance, <=>).
The isomorphism given in (8.2) of loc. cit. is correct, and does imply the
formula given in the following theorem.

Theorem 3.1. ([4], Theorem 3.8) Let G be a graph with n edges, and let
e be an edge of G. Denote by G \ e the graph obtained by removing e, and
by G/e the graph obtained by contracting e. Let Y denote the affine graph
hypersurface complement in A™.

o Ifeis a bridge in G, then [Yg] =L - [Ya.l;

e If e is a looping edge in G, then [Yg] = (L — 1) - [Ya.l;

e Ife is a neither a bridge nor a looping edge in G, then

Yol =L - [A"1 N Z] — [You

where Z is the intersection of the affine graph hypersurfaces for G~e,
G/e in A" 1.

)
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Proof. We give a quick proof for completeness; for more details, see [4]. Let
t; be the variable corresponding to the i-th edge e;, and assume that e = e,
is not a bridge or a looping edge. In terms of graph polynomials:

Pg(tl, - ,tn) = tnPG\e(th R atn—l) + Pg/e(tl, - ,tn_l)

The complement Yy is the set of n-tuples (¢1, ..., t,) such that Pg(t1,...,t,)
does not vanish; thus, such that

tnPG\e(tla o 7tn—1) 7é _PG/e(th cee 7tn—1)
Over Yg.. (that is, if Pg.. # 0), this condition holds if and only if ¢, #
—Pg/e/Pg\e, that is, for t, € A"~ A°. Over the rest of the complement
of Z (that is, if Pg.e # 0 but Pg/. = 0), the condition is satisfied for all ¢,

hence for ¢, € A'. Over Z (that is, if Pg. = Pgje = 0), the condition is
not satisfied for any choice of ¢,,. Therefore,

Yol = (L—1) Yoo +L-[(A"' N 2) N Yoo

and this is equivalent to third equality stated above. The other cases are
analogous. O

The deletion-contraction formula yields the following computation of the
Larsen-Lunts image of Y in Z[SB] = K(Var)/(L).

Theorem 3.2.

Vo] = 0 mod (L) if G has edges that are not looping edges
¢l = (=)™ mod (L) if G has n > 0 looping edges, and no other edge.

Proof. Reading the result of Theorem 3.1 above modulo (L) gives:

e If e is a bridge in G, then [Yg] =0 mod (L);

e If e is not a bridge G, then [Yg] = —[Yge] mod (L).
If now G has any edge that is not a looping edge, then removing all but
one such edge leaves a graph with a bridge, and hence [Yz] =0 mod (L) in
this case. If all n edges of G are looping edges, then repeated application
of the second formula shows that [Yg] = (—1)" - [Yg| mod (L), where G
is the graph obtained by removing all edges from G. Clearly Y5 = A%, so
[Yo] = (—1)" mod (L) in this case, as stated. O

In terms of projective graph hypersurfaces:

Corollary 3.3. Let G be a graph that is not a forest, and with at least one
non-looping edge. Then the projective graph hypersurface X¢a is L-rational.

Proof. Note that G must have at least 2 edges. Since G is not a forest, )?G
is not empty; and by Theorem 3.2, since G has non-looping edges, _then the
class [Yg] is in the ideal (IL). The affine complement Yo = A" \ X fibers
over the projective complement P! \ X, with fibers A! \. AY. Therefore

(L-1)- [P\ Xgl € (L) |
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and hence [P"~! \ X¢] € (LL); thus
[Xg] = [P*'] mod (L)
showing that X¢ is L-equivalent to P*~ 1. O

Again we remark that if Xg is irreducible, then it is easily seen to be
rational, but examples such as Example 2.4 show that this does not suffice
in itself to draw the conclusion stated in Corollary 3.3.

In view of the result of [12] recalled in Theorem 2.1 above, Theorem 3.2
has the following immediate consequence:

Corollary 3.4. Let R be the subring of K(Var) spanned by the classes [Yg].
Then the image of R in Z[SB] via the Larsen-Lunts homomorphism is the
subring 7, generated by the stable birational equivalence class of a point.

Proof. The image of R in Z[SB] is the quotient R/(L). By Theorem 3.2,
R/(L) = Z. O

Remark 3.5. With our conventions, the product of two classes [Yg, ], [Yo,]
is itself the class [Yg,116,] of the affine complement of a graph hypersurface
(the class of the affine hypersurface complement is a ‘motivic Feynman rule’,
see Proposition 2.5 in [3]). Further, the Lefschetz motive L equals [Yg] for
the graph G consisting of a single edge joining two distinct vertices. Thus,
the ring R generated by the classes [Y] agrees with the Z[L]-module gen-
erated by the classes [Yg]. Therefore, the following immediate consequence
of Corollary 3.4 formalizes the first ‘non-spanning’ result mentioned in the
Introduction.

Theorem 3.6. The classes [Yg| of the affine graph hypersurface comple-
ments do not span the Grothendieck ring K (Var) over Z[L].

Proof. In view of Corollary 3.4, it suffices to notice that Z[SB] # Z. This
is clear since there are polynomial invariants of smooth projective varieties
that are invariant under stable birational equivalence, and are not always
constant. One example is given in [12], Definition 3.4 in terms of Hodge
polynomials. O

As mentioned in the Introduction, this observation can be sharpened, in
a way that relates well to the result of [6].

Corollary 3.7. Let S’ be the saturated multiplicative subset of Z[L] gener-
ated by the elements L™ —1, forn > 0. Then the classes [Yg] do not generate
S K (Var) over ' 'Z[L).

Proof. Localization commutes with taking quotients: the quotient
(8" K (Var))/ (L)

equals the localization S'~ (K (Var)/(L)). Since all elements of S are in-
vertible modulo (LL), this latter equals K (Var)/(L); and the action of L on
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this module is 0. Since the classes [Yz]| do not span this quotient, they
cannot span S’ 'K (Var) over S' ' Z[L]. O

Corollary 3.7 should be compared with Theorem 0.6 in [6], which states
that the classes [Yg] do generate the localization S~ K (Varz) over S™1Z[L],
where S is the multiplicative system generated by L” — L forn > 1. A
fortiori, the classes [Y] generate S~1K (Varg). Localizing at S amounts to
localizing at S’ and at IL; Corollary 3.7 shows that the localization at L is
crucial to the mentioned result in [6]. This suggests that the classes [Y] may
possibly span the Grothendieck ring over the simpler localization Z[L~!, L.

We end by observing that the results stated above have a straightforward
Hodge-theoretic formulation. Every smooth complex projective variety X
carries Hodge numbers h?4(X). The Hodge polynomial of X is the poly-
nomial ) (—1)PT4hP4(X)uPv?. Now, the Hodge polynomial determines a
ring homomorphism K (Var) — Z[u,v], see e.g. §2.11 in [15]; this homomor-
phism maps L to uv. Indeed, the Hodge polynomial may be consistently de-
fined for all varieties and satisfies the relations in K (Var), as observed in [9)].
This (‘Deligne-Hodge’) polynomial of an arbitrary complex variety X records
information about the mixed Hodge structure on the cohomology H*(X, Q)
of X with compact support: it may be defined as >, = e”?(X)uPv?, where

() = (-1 HPHEK, )
k

Corollary 3.8. Let X be any complex projective variety whose class [X] is
in the subring R of K(Varc) generated by the classes [Yg], as G ranges over
all graphs. Then the Deligne-Hodge polynomial of X is of the form

(3.1) c+uwP(u,v)
with ¢ € Z.
Proof. The Hodge polynomial induces a homomorphism
K (Var)/(L) — Zlu, v]/(uv).
The image of R/(L) = Z in Z[u,v]/(uv) is Z, and the statement follows. [

For example, h%?(X) # 0 for e.g., a smooth elliptic curve. Therefore,
Corollary 3.8 shows that classes of elliptic curves are not in the span of the
classes [Yg].
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