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Abstract. We describe an approach to the study of phase transitions in Potts mod-

els based on an estimate of the complexity of the locus of real zeros of the partition

function, computed in terms of the classes in the Grothendieck ring of the affine alge-
braic varieties defined by the vanishing of the multivariate Tutte polynomial. We give

completely explicit calculations for the examples of the chains of linked polygons and

of the graphs obtained by replacing the polygons with their dual graphs. These are
based on a deletion–contraction formula for the Grothendieck classes and on generating

functions for splitting and doubling edges.
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1. Introduction

It is well known that the partition function of a Potts model with q spin states on a
graph G is given by the value at q of the multivariate Tutte polynomial of the graph,
a famous combinatorial invariant of graphs. The problem of phase transitions in Potts
models is related to the behavior of the sets of complex zeros and real zeros of these
polynomials, see for instance [24].

In this paper we propose a new approach, based on algebraic geometry, and especially
on motivic invariants such as classes in the Grothendieck ring of varieties, to study how
the set of zeros of the partition function of a Potts model changes for a nested family of
finite graphs that grow in size to approximate an infinite graph.

We aim at estimating the “topological complexity” of the set of real zeros by computing
its Euler characteristic with compact support, which is also known to provide a lower
bound for the algorithmic complexity of the real algebraic set. In order to compute this
invariant and estimate its growth over certain explicit families of graphs, we use the fact
that the invariant is not just topological but also “motivic”, which means that it defines
a ring homomorphism from the Grothendieck ring of varieties to the integers.

Thus, we proceed first to compute explicitly the classes in the Grothendieck ring of the
varieties defined by the zeros of the Potts models partition functions, following techniques
recently developed to treat a similar problem arising in perturbative quantum field the-
ory, for algebraic varieties associated to the parametric form of Feynman integrals. The
varieties arising in quantum field theory can be viewed, up to a duality, as a limit case of
the ones arising from the Potts model partition functions.

We first prove an algebro-geometric inclusion-exclusion formula that relates the classes
for a given graph to those of the graphs obtained by deleting or contracting one edge in the
graph, and a more complicated algebro–geometric term, which is the variety defined by
the intersection of the varieties of the deletion and the contraction. This formula is similar
to an analogous result proved in [1] for the varieties arising from Feynman diagrams in
quantum field theory.

We then show that, when iterating simple operations on graphs, such as splitting an
edge or doubling an edge, the more complicated term in the algebro–geometric deletion
contraction formula can be simplified due to cancellations in the Grothendieck ring and the
resulting operation can be described completely in terms of varieties associated to purely
combinatorial data on the graph. The corresponding recursive relation leads to explicit
and remarkably simple generating functions for the classes of graphs obtained from a given
graph by multiple edge splittings or edge doublings.

We use the formulae obtained in this way to write explicitly the classes in the Grothen-
dieck ring for the loci of zeros of the partition function on Potts models over graphs given
by chains of linked polygons. This class of Potts models was already studied by different
techniques in the literature (see for instance [23] and references therein). Similarly, we
compute the Grothendieck classes explicitly for similar chains where the polygons are
replaced by their dual graphs, the banana graphs.

For these illustrative examples, we then use the expression for the Grothendieck class
to compute explicitly the Euler characteristic with compact support, and we show that it
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grows exponentially as the graphs grow in size, thus estimating the corresponding growth
in complexity of the set of real zeros of the partition function.

2. Potts models, multivariate Tutte polynomial and hypersurfaces

We recall some basic facts and terminology about Potts models that we need in the rest
of the paper. For a more detailed introduction to partition functions of Potts models and
their relation to graph combinatorics, we refer the reader to [24], see also the survey [5].

2.1. Multivariate Tutte polynomial. The multivariate Tutte polynomial of a finite
graph G is defined as follows. Let V = V (G) be the set of vertices of G and E = E(G)
the set of edges. We do not assume G to be connected. One assigns to each edge e ∈ E a
variable te and then considers the polynomial

(2.1) ZG(q, t) =
∑
G′⊆G

qk(G
′)

∏
e∈E(G′)

te,

where k(G′) = b0(G′) is the number of connected components, and the sum is over all
subgraphs G′ ⊆ G that have the same number of vertices V (G′) = V (G) of G. Each
subgraph G′ therefore corresponds to a choice of a subset A ⊆ E(G) of edges of G, so that
E(G′) = A. The variables te and the additional variable q are commuting variables.

A detailed account of the relation between the multivariate Tutte polynomial and the
physics of Potts models is given in the survey [24]. To briefly recall the main point, in
the case where q is a positive integer, one considers a q-state model on a graph G, where
each vertex carries a “spin” that can take q possible values (the case q = 2 recovers the
usual ±1 states of spin). We let A be the set of cardinality q of the possible spin states. A
state of the system is an assignment of a spin state to each vertex and the energy H of a
state is the sum over all edges of the graph of a quantity that is equal to zero if the spins
assigned to the two endpoints of the edge are different and equal to an assigned value −Je
if they are the same. With the notation te = eβJe − 1, where β is the thermodynamic
parameter (an inverse temperature up to the Boltzmann constant), one has te ≥ 0 in the
ferromagnetic case (Je ≥ 0) and −1 ≤ te ≤ 0 in the antiferromagnetic case −∞ ≤ Je ≤ 0.
The partition function of the system is then the sum over all the possible states of the
corresponding Boltzmann weight e−βH , with H the energy of that state. This gives

(2.2) ZG(q, t) =
∑

σ:V (G)→A

∏
e∈E(G)

(1 + teδσ(v),σ(w)),

where the sum is over all maps of vertices to spin states, v and w are the endpoints
∂(e) = {v, w}, and δ is the Kronecker delta.

It was shown by Fortuin–Kasteleyn [14] that (2.2) is the restriction to positive inte-
ger values of q of a polynomial function in q and that this polynomial is, in fact, the
multivariate Tutte polynomial (2.1).

2.2. Deletion–contraction relation. As in the case of the ordinary Tutte polynomial,
the multivariate Tutte polynomial (2.1) satisfies a deletion–contraction relation. Namely,
given an edge e ∈ E(G), let G r e be the graph obtained by deleting the edge e and let
G/e be the graph obtained by contracting it. One has the following formula.

Remark 2.1. The polynomial (2.1) satisfies

(2.3) ZG(q, t) = ZGre(q, t̂) + teZG/e(q, t̂),

where t̂ consists of the edge variables with te removed. The deletion–contraction relation
(2.3) covers all cases, including those where the edge e is a bridge or a looping edge.
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2.3. The problem of phase transitions. Zeros of the multivariate Tutte polynomial
are of special interest in relation to the problem of phase transitions of the statistical
mechanical system described by the Potts model. In fact, the partition function ZG(q, t)
becomes the normalization factor of the probability distribution on the set of all possible
states of the system, and zeros of ZG(q, t) would signal the presence of a phase transition
in the system, for a specific choice of parameters Je and q, and for certain values of the
inverse temperature β.

In the ferromagnetic case, the physical case of interest is where the variables te ∈ R+.
For q ≥ 1, the polynomial ZG(q, t) does not have zeros in that domain. The antiferromag-
netic case with −1 ≤ te ≤ 0 is more interesting, and various results on zero-free regions
are given in [16].

Even when there are no zeros in the region of direct physical interest, it is well known
(see [16], [24]) that studying the complex zeros of the polynomials ZG(q, t) can provide
useful information on phase transitions, not for a single graph G itself, but for a family of
finite graphs Gn, such that G∞ = ∪nGn determines an infinite graph on which one still
considers a statistical mechanical system obtained as a thermodynamic limit of the finite
systems. If loci of complex zeros of the ZG(q, t) can approach the real locus in the limit,
this will result in the presence of phase transitions for the system on G∞.

Thus, the geometric problem we concentrate on is to understand and estimate how the
loci of complex and real zeros, respectively, of the Potts model partition function change
over certain families of finite graphs {Gn} as above.

Our point of view, in this paper, is to approach this problem from an algebro–geometric
and motivic point of view, inspired by recent developments on motivic properties of the loci
of zeros of the closely related Kirchhoff graph polynomials in the setting of perturbative
quantum field theory, see [1], [2], [3], [8], [9], [19].

2.4. Potts model hypersurfaces. Studying the zeros of the polynomial ZG(q, t), means
understanding the geometry of the hypersurface defined by the equation ZG(q, t) = 0.
Since the polynomial is not homogeneous in its variables, it does not define a projective
hypersurface (unlike the case of the graph polynomials in quantum field theory), but it
does define an affine hypersurface, which we refer to as the Potts model hypersurface. In
fact, we consider two types of hypersurfaces associated to the Potts model, one where the
parameter q is treated as a variable q ∈ A along with the other edge variables te, and one
where one specializes to a fixed value of q.

Definition 2.2. Suppose given a finite graph G, with set of vertices V (G) and set of edges
E(G). Let ZG be the hypersurface in affine space A#E(G)+1 defined by

(2.4) ZG := {(q, t) ∈ A#E(G)+1 |ZG(q, t) = 0}.
For a fixed value of q ∈ A, the hypersurface ZG,q in A#E(G) is given by

(2.5) ZG,q := {t ∈ A#E(G) |ZG(q, t) = 0}.

The hypersurface ZG,q is therefore a slice of ZG with the hyperplane in A#E(G)+1 of
fixed q-coordinate. In the physically significant cases, one wants to study the complex and
the real zeros of the hypersurface ZG,q where q ∈ N is a positive integer corresponding to
the number of spin states of the Potts model.

Definition 2.3. For a finite graph G, the virtual phase transitions of the Potts model
are the real points ZG(R) of the algebraic variety ZG. For a fixed q, the virtual phase
transitions are the points of the real locus ZG,q(R) of the variety ZG,q.

We distinguish here between virtual phase transitions (all real zeros of the polynomial
ZG(q, t)) and the actual physical phase transitions, which would be constrained by the
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additional requirement that q ∈ N and the edge variables are te ≥ 0 in the ferromagnetic
case, or −1 ≤ te ≤ 0 in the antiferromagnetic case. Thus, for example, in the case of
a finite graph, even if there are no physical phase transitions in the ferromagnetic case,
there can still be a non-empty set of virtual phase transitions.

2.5. The analogy with Quantum Field Theory. In perturbative quantum field the-
ory, the parametric form of Feynman integrals for massless scalar field theories can be
expressed as a (possibly divergent) integral of an algebraic differential form on the com-
plement of an algebraic hypersurface defined by the vanishing of a polynomial associated
to the graph, the first Kirchhoff polynomial given by

(2.6) ΨG(t) =
∑
T⊆G

∏
e/∈T

te,

where t = (t1, . . . , tn) are variables assigned to the edges of the graph and T runs over
maximal spanning forests, that is, subgraphs of G with V (T ) = V (G), which are forests
with b0(T ) = b0(G). (Note, the terminology “spanning forest” is used elsewhere for what
we refer to here as “maximal spanning forests”.)

In the literature on motivic aspects of Feynman integrals [6], [25], [26], it is also common
to consider the related polynomial

(2.7) ΦG(t) =
∑
T⊆G

∏
e∈T

te,

where the sum is, as above, over the maximal spanning forests, but the product is on edges
in the forest, instead of edges in the complement.

Definition 2.4. We denote by XG ⊂ A#E(G) the affine hypersurface defined by the poly-
nomial (2.6) and by X̄G ⊂ P#E(G)−1 the corresponding projective hypersurface.

Similarly, we denote by YG ⊂ A#E(G) the affine hypersurface defined by the polynomial
(2.7) and by ȲG ⊂ P#E(G)−1 the corresponding projective hypersurface.

Remark 2.5. One obtains ΨG(t) from ΦG(t) by dividing by
∏
e∈E(G) te and changing

variables by the transformation te 7→ 1/te.

For a planar graph this operation relates the Kirchhoff polynomial of a graph with that
of a dual graph, see the discussion on the Cremona transformation in [3].

Remark 2.6. It is also well known (see for instance [18], [24]) that the graph polynomial
ΦG(t) of (2.7) can be recovered from the multivariate Tutte polynomial by the following
operations:

(1) Clear an overall factor of qk(G) with k(G) = b0(G) the number of connected
components, that is, consider the normalized Potts partition function

(2.8) Z̃G(q, t) = q−k(G)ZG(q, t).

(2) Take the evaluation Z̃G(q, t)|q=0. This corresponds to a sum on subgraphs G′ with
k(G′) = k(G).

(3) Of this take then the homogeneous piece with the lowest degree in the t = (te)
variables. This corresponds to the sum over maximal spanning forests, that is, to
the polynomial ΦG(t).

In the context of quantum field theory, Tutte polynomials can also occur, for example
where one considers scalar field theories on noncommutative spacetimes as in [18].
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2.6. The tangent cone. Consider an affine hypersurface X ⊂ AN given by the vanishing
X = {t ∈ AN |P (t) = 0} of a (possibly non-homogeneous) polynomial P (t) whose leading
term Pk(t) (the term of lowest order in the variables t = (ti)) is of some degree k ≥ 1.
Then the tangent cone to X at the origin, T C(X) = T C0(X) is also a hypersurface in AN ,
given by

(2.9) T C(X) = {t ∈ AN |Pk(t) = 0},
the zero locus of the homogeneous polynomial Pk. This corresponds to the normal cone
NC0(X) for the subscheme given by the origin 0 ⊂ X. The construction known as de-
formation to the normal cone provides a very useful algebro-geometric replacement of the
notion of tubular neighborhoods of embedded subvarieties (subschemes), see [15].

In the case of a closed subscheme Y ⊂ X, one blows up the locus Y ×{0} inside X×P1.
One then considers the complement

X̃Y := BlY×{0}(X × P1) rBlY (X).

One obtains in this way a fibration X̃Y → P1, whose general fiber (away from 0) is
naturally isomorphic to X, while the special fiber over zero is the tangent cone T CY (X).
This has indeed the effect of deforming X to the tangent cone T CY (X).

For a finite graph G, we denote by PG the homogeneous polynomial

(2.10) PG(q, t) = leading term of ZG(q, t),

in the variables (q, t) ∈ A#E(G)+1 and by VG the affine variety

(2.11) VG = {(q, t) ∈ A#E(G)+1 |PG(q, t) = 0}.
Since the polynomial PG is homogeneous, we can also consider the projective hypersurface
V̄G ⊂ P#E(G). We also consider the affine hypersurfaces

(2.12) VG,q = {t ∈ A#E(G) |PG(q, t) = 0},
for fixed q. These are not homogeneous, in general, except in the case q = 0.

We then have the following rephrasing of Remark 2.6.

Lemma 2.7. The variety VG is the tangent cone of the variety ZG at zero. It has a com-
ponent given by the hyperplane H = {q = 0} with multiplicity equal to k(G) = b0(G) and
another component WG, which intersects the hyperplane H along the graph hypersurface
YG.

Proof. The first statement follows directly from the definition (2.9) of the tangent cone.
The polynomial PG(q, t) as in (2.10) is the sum of terms of lowest degree in ZG(q, t).

To see what they parameterize, note that if the subgraph G′ determined by a set of edges
A ⊆ E is not a forest, then one or more of the edges may be removed from A without
affecting the number of connected components, i.e., the exponent of q; while the degree of
the product

∏
te decreases accordingly.

Further, assume that A is a forest. Then

k(A) + |A| = #V (G).

Indeed, this is clear if A = ∅; and the left-hand side does not change if we add an edge
connecting vertices without closing cycles (|A| increases by 1, k(A) decreases by 1 for each
such operation). Therefore, all contributions of forests to ZG(q, t) have degree equal to
the number of vertices of G, and this is the lowest possible degree.

Thus, the polynomial PG(q, t) collects the contribution of those terms of ZG(q, t) cor-
responding to subgraphs that are forests with V (G′) = V (G) (spanning forests),

(2.13) PG(q, t) =
∑

G′⊆G, b1(G′)=0,#V (G′)=N

qk(G
′)

∏
e∈E(G′)

te.
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The hypersurfaceWG is the locus of zeros of the polynomial QG(q, t) satisfying PG(q, t) =
qk(G)QG(q, t), where q does not divide QG(q, t).

The intersection H ∩WG is then given by the locus of zeros of the polynomial

(2.14) QG(0, t) =
∑

G′⊆G, max forest

∏
e∈E(G′)

te,

which is the polynomial ΦG(t) of (2.7). �

2.7. The Grothendieck ring of varieties and mixed Hodge structures. The alge-
braic varieties XG and YG associated to Feynman graphs have been studied extensively in
recent years in terms of their classes in the Grothendieck ring of varieties, see for instance
[6], [8], [25], [26]. We will be applying here analogous techniques to the Potts model hy-
persurfaces ZG and ZG,q and apply the results to the problem of phase transitions. Thus,
we recall here a few things about the Grothedieck ring of varieties, and a result of [1],
whose analog for Potts models hypersurfaces we prove in this paper and will be the basis
of our motivic approach to phase transitions.

The Grothendieck ring K0(VK) of varieties over a field K is generated by isomorphism
classes [X] of smooth (quasi)projective varieties with the inclusion-exclusion relation

(2.15) [X] = [Y ] + [X r Y ]

for any closed embedding of a subvariety Y ⊂ X, and with the product structure given
by [X × Y ] = [X][Y ].

In the following, we will be interested in considering the Potts model hypersurfaces
as varieties defined over C, but we will also be focusing on their real zeros, hence think-
ing of them as varieties over R. Thus, in the following we simply write K0(V) for the
Grothendieck ring, whenever the arguments do not depend on what field we work over,
and we will explicitly mention C or R when needed.

The class [X] in the Grothendieck ring is a universal Euler characteristic for algebraic
varieties (see [7]), in the sense that any invariant of isomorphism classes of algebraic
varieties that satisfies the inclusion-exclusion relation and is multiplicative on products
factors through the Grothendieck ring. These invariants are sometimes called motivic.

In particular, in the case of complex algebraic varieties and of classes in K0(VC), among
these motivic invariants that factor through the Grothendieck ring we have the topological
Euler characteristic, but also the virtual Hodge polynomials. These will be useful to us in
the following so we recall briefly the definition.

The virtual Hodge polynomial of an algebraic variety is defined as

(2.16) e(X)(x, y) =
d∑

p,q=0

ep,q(X)xpyq, with ep,q(X) =
2d∑
k=0

(−1)khp,q(Hk
c (X)),

where, for each pair of integers (p, q), the term hp,q(Hk
c (X)) is the Hodge number of the

mixed Hodge structure on the cohomology with compact support of X. If X is smooth
projective, then the virtual Hodge polynomial reduces to the Poincaré polynomial, with
ep,q(X) = (−1)p+qhp,q(X) being the classical pure Hodge numbers.

The fact that the virtual Hodge polynomial factors through the Grothendieck ring
K0(VC) of varieties means that an explicit formula for the class of a variety in the
Grothendieck ring can be used to compute the virtual Hodge polynomial and obtain some
explicit information on the Hodge numbers and the mixed Hodge structure.

2.8. Virtual Betti numbers of real algebraic varieties. As we mentioned above, in
the case of complex algebraic varieties, the (ordinary) topological Euler characteristic is
a motivic invariant. This is not true for real algebraic varieties, as the additive property
over closed embeddings need not be satisfied. However, it is known that there is a unique
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motivic invariant that agrees with the topological Euler characteristic on compact smooth
real algebraic varieties and is homeomorphism invariant (but not homotopy invariant), see
[22] and also [13], [27]. It is defined, for any real (semi)algebraic set S, as

(2.17) χc(S) =
∑
k

(−1)kbBMk (S),

where bBMk (S) are the Borel–Moore Betti numbers, namely the ranks of the relative ho-
mologies Hk(S̄,∞), where S̄ is the Alexandrov compactification. Equivalently, they are
the ranks of the cohomology with compact support H∗c (S).

We consider here, as in [20], [21], real algebraic varieties in the sense of [10] and their
Grothendieck ring K0(VR). The latter is defined in the usual way, as generated by isomor-
phism classes [X] (as real varieties) with the inclusion-exclusion relation [X] = [Y ]+[XrY ]
for closed subvarieties Y ⊂ X.

Example 2.8. Let L = [A1] be the Lefschetz motive, the class of the affine line in K0(V)
and let T = [Gm] = L − 1 be the class of the multiplicative group Gm = A1 r {0}. The
topological Euler characteristic χ : K0(VC) → Z satisfies χ(L) = 1 and χ(T) = 0, while
the Euler characteristic with compact support χc : K0(VR)→ Z satisfies χc(L) = −1 and
χc(T) = −2.

Moreover, it is shown in [20] that the Betti numbers with Z/2Z coefficients bk(X) =
dimHk(X,Z/2Z), defined in the usual way for compact smooth real algebraic varieties,
extend in a unique way to K0(VR), so that one obtains a ring homomorphism

(2.18) β : K0(VR)→ Z[t],

such that β(X, t) =
∑
k bk(X)tk for compact smooth varieties. The coefficients βk of

the ring homomorphism β are called the virtual Betti numbers. They are not topological
invariants. However, they compute the Euler characteristic (2.17), namely,

(2.19) β(X,−1) = χc(X)

for all real algebraic varieties X, with both equal to the ordinary Euler characteristic χ(X)
in the compact smooth case. Notice that, while χc(X) is the alternating sum of the ranks
of the Borel–Moore homologies, the virtual Betti numbers βk(X) are in general not equal
to the Borel–Moore Betti numbers bBMk (X) (for instance, the βk(X) can be negative),
although their alternating sums agree.

In the case of a compact smooth real algebraic variety, which is the real locus X(R)
of a smooth projective complex algebraic variety X(C), there are ways to bound the
“topological complexity” of X(R) in terms of invariants of X(C), in the form of Petrovskĭı–
Olĕınik inequalities: for example, for X(R) a smooth projective real algebraic variety of
even dimension n = 2p, one has [4], [17]

(2.20) |χ(X(R))− 1| < hp,p(Hn(X(C))).

This type of result was extended to cases with isolated singularities in [12], where one gets
(2.21)

|χ(X(R))− 1| ≤

{ ∑
0≤q≤p h

q,q(Hn
c (X(C))) n = 2p∑

0≤q≤p h
q,q(Hn

c (X(C))) + hp+1,p+1(Hp+1
c (X(C))) n = 2p+ 1.

However, more generally one does not have a Petrovskĭı–Olĕınik type inequalities to
estimate the virtual Betti numbers and the Euler characteristic χc(X) of arbitrary real
algebraic varieties in terms of the virtual Hodge polynomials of the complex variety. For
complex varieties the virtual Betti numbers can be computed in terms of the virtual Hodge
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polynomial. In fact, one can introduce the weight k Euler characteristic given by setting

wkj (X(C)) =
∑
p+q=j

hp,q(Hk
c (X(C))),

which equals bk(X) for j = k and zero otherwise in the smooth projective case, and
are otherwise equal to the ranks of the quotients of the weight filtration wkj (X(C)) =

dimCW
k
j (X)/W k

j−1(X(C)) on the cohomology with compact support Hk
c (X(C)). Then

for arbitrary complex algebraic varieties the virtual Betti numbers are given by ([20])

βj(X(C)) = (−1)j
∑
k

(−1)kwkj (X(C)).

In general one does not have a good way to estimate the virtual Betti numbers βk(X(R))
of a real algebraic variety, nor their alternating sum χc(X(R)), in terms of the virtual
Betti numbers βk(X(C)).

Although in general one cannot estimate χc(X(R)) in terms of a suitable Petrovskĭı–
Olĕınik type inequality, we will show that in certain cases one can compute explicitly
both χc(X(R)) and the virtual Hodge numbers of X(C) as a consequence of being able to
compute explicitly the class [X] in the Grothendieck ring of varieties.

We will discuss later how these considerations relate to the problem of phase transitions
in Potts models. In particular, we will see that, by working with classes in the Grothendieck
ring, we obtain some estimates on the topological complexity of the set of virtual phase
transitions of the Potts model over certain families of finite graphs Gn approximating some
infinite graph G = ∪nGn.

2.9. Grothendieck classes of Potts model hypersurfaces. We also introduce the fol-
lowing notation for the classes in the Grothendieck ring of the Potts model hypersurfaces.

Definition 2.9. Let [ZG] be the class in the Grothendieck ring K0(V) of the Potts model
hypersurface (2.4). Also let {ZG} denote the class of the hypersurface complement,

(2.22) {ZG} = [A#E(G)+1 r ZG] = L#E(G)+1 − [ZG],

where L = [A1] is the Lefschetz motive (the class of the affine line). The classes [ZG,q]
and {ZG,q} = [A#E(G) r ZG,q] are similarly defined for the hypersurface ZG,q of (2.5).

As in the case of the graph hypersurfaces of Feynman graphs (see [1], [2], [6]), we will see
that for Potts models it is simpler to write explicit formulae for the class of hypersurface
complement {ZG} than for the class [ZG] of the hypersurface itself, though the information
is clearly equivalent due to the simple relation (2.22) between them.

2.10. The Grothendieck class for fixed q and the fibration condition. We discuss
here the relation between the classes of the hypersurface complement {ZG} and {ZG,q}
for the full Potts model hypersurface and for the one with fixed q. We identify a useful
condition, according to which the the class of {ZG} behaves as one would expect in the
case of a fibration on the locus q 6= 0, 1. We will later identify specific classes of graphs we
want to work with and check that they satisfy this condition. We do not address in this
paper the question of how general this condition actually is, nor the question of whether
the variety ZG itself really is a locally trivial fibration over the locus q 6= 0, 1, at least for
some specific families of graphs.

One can see directly from the polynomial ZG(q, t) why q = 0 and q = 1 should certainly
be special values, for the following reasons. Recall that the equation we are dealing with
is

ZG(q, t) =
∑

A⊆E(G)

qk(A)
∏
a∈A

ta.
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• For q = 0 and G nonempty, this is 0: indeed, k(A) > 0 for every subset A of edges
in that case. This just says that the hypersurface ZG(qt) = 0 has a component
along q = 0; this component can be removed (dividing ZG(q, t) by qk(G)) and
the residual hypersurface may be studied over q = 0. This is the hypersurface
QG(0, t) = 0 of (2.14), which is the dual YG of the graph hypersurface XG as in
Definition 2.4. This falls back on the case investigated in [2], [1].

• For q = 1, the polynomial becomes

(2.23) ZG(1, t) =
∑
A⊆E

∏
a∈A

ta =
∏
e∈E

(1 + te).

This is a union of normal crossing divisors, and in fact it consists of essentially n
coordinate hyperplanes in An. The complement is the set of n-tuples (t1, . . . , tn)
(n = #E(G)) with each ti + 1 6= 0, a copy of the n-torus. Thus the class of its
complement is Tn.

The condition that the class {ZG} behaves as in the case of a fibration over the locus
q 6= 0, 1 can then be formulated as the condition that

• The class {ZG,q} is independent of q for q 6= 0, 1; this class will be denoted
{ZG,q 6=0,1};

• The following holds:

(2.24) {ZG} = (T− 1){ZG,q 6=0,1}+ T#E(G).

This accounts for the fact that the complement of ZG = 0 is contained in q 6= 0, has
a torus fiber over q = 1, and (heuristically) fibers over q 6= 0, 1, a copy of T − 1, with
constant fiber class.

In particular, a necessary condition for (2.24) is that (T− 1) divides {ZG}−T#E(G) in
the Grothendieck ring, so any counterexample to this property would give examples where
the fibration condition (2.24) does not hold.

3. Deletion–contraction for classes in the Grothendieck ring

In [1] it was shown that, in the case of the graph hypersurface complements A#E(G)rXG,
the classes in the Grothendieck ring satisfy an algebro-geometric analog of a deletion–
contraction relation. More precisely, it was proved in [1] that, for a graph G with n =
#E(G) and for a given edge e ∈ E(G), the classes of the varieties XG, XG/e and XGre are
related by

(3.1) [An r XG] = L [An−1 r (XGre ∩ XG/e)]− [An−1 r XGre],

when e is neither a bridge nor a looping edge, and

[An r XG] = L [An−1 r XG/e] = L [An−1 r XGre]

when e is a bridge and

[An r XG] = (L− 1)[An−1 r XG/e] = (L− 1)[An−1 r XGre]

when e is a looping edge, where L = [A1] is the Lefschetz motive, as above.
Notice how (3.1) is not a combinatorial deletion–contraction formula: indeed, the term

involving the intersection XGre ∩ XG/e of the hypersurfaces of the deletion and the con-
traction is in general difficult to control explicitly, even if one has an explicit formula for
the classes of the deletion and the contraction separately. However, it was also shown in [1]
that, for certain families of graphs, such as chains of polygons, one obtains recursive rela-
tions in the Grothendieck ring, where the “problematic” term in the deletion–contraction
formula cancels out and one obtains an explicit generating function for the classes of the
varieties associated to the family of graphs. The result provides a way to control how the
class in the Grothendieck ring grows in complexity when the graph is enlarged through
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some simple operations, such as doubling edges or splitting edges. In the setting of quan-
tum field theory the families of graphs obtained through such simple operations, like the
chains of polygons, are typically not complex enough to capture interesting behaviors of
the associated periods, but we will argue here that analogous operations performed in the
setting of Potts models already gives rise to interesting non-trivial cases.

3.1. Algebro-geometric deletion–contraction for Potts model hypersurfaces.
We prove here an analog of the deletion-contraction formula (3.1) for the classes in the
Grothendieck ring of the Potts model hypersurfaces. We first analyze the case of the full
ZG and then the case of ZG,q with fixed q and of the tangent cone VG at zero.

We now state our main result on the deletion–contraction properties for Potts model
hypersurfaces. Notice that, in the following statement, there is no distinction between
the case of bridges or looping edges and all the other edges, just as in the combinatorial
deletion–contraction relation for the multivariate Tutte polynomials.

Theorem 3.1. Let G be a finite graph and e an edge of G. Then the class {ZG} of (2.22)
satisfies

(3.2) {ZG} = L{ZG/e ∩ ZGre} − {ZG/e}.

Proof. The result follows from the combinatorial deletion–contraction relation for the mul-
tivariate Tutte polynomials

ZG(q, t) = ZGre(q, t̂
(e)) + te ZG/e(q, t̂

(e)),

where t̂(e) is the set of variables t = (te′)e′∈E(G) with the variable te omitted. We then
check the various cases.
• If ZG/e(q, t̂

(e)) 6= 0, then ZG(q, t) is guaranteed to be 6= 0 if te does not equal

−ZGre(q, t̂
(e))/ZG/e(q, t̂

(e)). This accounts for a Gm worth of te’s for each such (q, t̂(e)),
contributing a class

(L− 1){ZG/e}.
• If ZG/e(q, t̂

(e)) = 0, then ZG(q, t) 6= 0 if and only if ZGre(q, t̂
(e)) 6= 0. This accounts

for an A1 worth of te’s for each (q, t̂(e)) such that ZG/e(q, t̂
(e)) = 0 and ZGre(q, t̂

(e)) 6= 0.
This contributes a class

L · [ZG/e r (ZG/e ∩ ZGre)].

Note that

[ZG/e]− [ZG/e ∩ ZGre] = L#E(G) − [ZG/e ∩ ZGre]− L#E(G) + [ZG/e]

= {ZG/e ∩ ZGre} − {ZG/e}.
Thus, the two contributions add up to

{ZG} = (L− 1){ZG/e}+ L
(
{ZG/e ∩ ZGre} − {ZG/e}

)
= L{ZG/e ∩ ZGre} − {ZG/e},

as claimed. �

The following properties of the classes of Potts model hypersurfaces are simple conse-
quences of the definitions, or follow easily from Theorem 3.1.

Corollary 3.2. The classes {ZG} ∈ K0(V) of (2.22) satisfy the following properties:

(1) If G consists of a single vertex and no edges, then {ZG} = L− 1.
(2) If G consists of a single edge, with either one or two vertices, then {ZG} = (L−1)2.
(3) If a graph G′ is the union G′ = G1 ∪v G2 of two graphs joined at a vertex v, and

G′′ denotes the disjoint union of the same two graphs, then {ZG′} = {ZG′′}.
(4) If G is obtained by joining G1 and G2 with a single edge from a vertex of G1 to a

vertex of G2, then {ZG} = (L− 1){ZG′}, with G′ = G1 ∪v G2 as above.
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(5) If G is obtained from a graph G by appending a single (looping or otherwise) edge
to a vertex, then {ZG} = (L− 1){ZG}.

Proof. (1) If G consists of a single vertex, then ZG = q defines a point in the affine line
A1 with coordinate q.

(2) If G is a single edge joining two distinct vertices, then ZG(q, t) = qt + q2 and
therefore {ZG} = L2 − 2L + 1 = (L− 1)2.

If G is a single looping edge, then ZG(q, t) = qt+ q and again {ZG} = (L− 1)2.
(3) If G′ consists of two graphs G1 and G2 joined at a vertex, then ZG′(q, t) = 1

qZG1ZG2 .

If G′′ consists of the disjoint union of G1 and G2, then ZG′′(q, t) = ZG1
ZG2

. It follows (if
none of the graphs is empty) that {ZG′} = {ZG′′}, and that {ZG′ ∩ ZG′′} = {ZG′}.

(4) Applying Theorem 3.1, this implies that if G is obtained by joining G1 and G2 with
a single edge from a vertex of G1 to a vertex of G2, then {ZG} = (L− 1){ZG′}.

(5) Let G′ be the disjoint union of G and of a single vertex. Then ZG′ = qZG, and
in particular {ZG′} = {ZG}, and ZG′ ∩ ZG = ZG. Applying Theorem 3.1, we see that
if G is obtained by appending a single non-looping edge to a vertex of G, then {ZG} =

(L−1){ZG}. The same conclusion is reached if G is obtained from G by adding a looping
edge. �

Notice that, unlike what happens with the graph hypersurfaces of Feynman diagrams
(see [2]), in the case of a disjoint union of graphs the class of {ZG1∪G2

} is not the product of
the classes of the hypersurface complements of the two graphs, since here the polynomials
ZG1 and ZG2 have the same variable q in common. However, if the graph G = G1 ∪G2 is
given by the disjoint union of two graphs G1 and G2, and all the graphs involved satisfy the
fibration condition (2.24), then we can obtain an explicit formula for the class {ZG1∪G2

}.

Corollary 3.3. Let G = G1 ∪ G2 be the disjoint union of two finite graphs G1 and G2,
and assume that the classes {ZG} and {ZGi} satisfy the fibration condition (2.24). Then
the class {ZG} can be expressed explicitly in terms of the classes {ZG1} and {ZG2} by
(3.3)

{ZG1∪G2
} =
{ZG1} · {ZG2} − T#E(G1) · {ZG2} − T#E(G2) · {ZG1}+ T#E(G1)+#E(G2)+1

T− 1
.

Proof. For q fixed, the remaining variables are indeed distinct for disjoint G1, G2. Thus,
the classes satisfy

(3.4) {ZG1∪G2,q} = {ZG1,q} · {ZG2,q}.
(This holds for all q, including the special values q = 0 and q = 1.) If the classes {ZGi,q}
are independent of q 6= 0, 1 and the formula (2.24) holds, then we get

{ZG1∪G2} = (T− 1){ZG1∪G2,q 6=0,1}+ T#E(G1)+#E(G2)

= (T− 1)({ZG1,q 6=0,1} · {ZG2,q 6=0,1}) + T#E(G1)+#E(G2)

= (T− 1)

(
{ZG1} − T#E(G1)

T− 1
· {ZG2

} − T#E(G2)

T− 1

)
+ T#E(G1)+#E(G2)

=
{ZG1

} · {ZG2
} − T#E(G1) · {ZG2

} − T#E(G2) · {ZG1
}+ T#E(G1)+#E(G2)+1

T− 1

�

3.2. Deletion–contraction for fixed q. Deletion–contraction works exactly as in the
case of the full Potts model hypersurface ZG.

Proposition 3.4. For a finite graph G, the class {ZG,q} for fixed q satisfies

(3.5) {ZG,q} = (T + 1){ZG/e,q ∩ ZGre,q} − {ZG/e,q}.
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The argument is identical to the one used in the proof of Theorem 3.1. (For q = 0, all
classes equal 0.) We then also have the analog of Corollary 3.2.

Corollary 3.5. For q 6= 0, the classes {ZG,q} satisfy the following properties:

(1) For G a single vertex, {ZG,q} = 1.
(2) For G a single edge joining either one or two vertices, {ZG,q} = T.
(3) If G′ consists of two graphs G1 and G2 joined at a vertex, or disjoint, then
{ZG′,q} = {ZG1,q} · {ZG2,q}.

(4) If G is obtained by joining G1 and G2 with a single edge from a vertex of G1 to a
vertex of G2, then {ZG,q} = T{ZG′,q}.

(5) Appending a single edge to a vertex of G multiplies the class {ZG,q} by T.

Proof. (1) For G a single vertex, ZG(q, t) = q 6= 0; thus ZG,q = ∅ ⊂ A0, and {ZG,q} = 1.
(2) For G a single edge joining two distinct vertices, ZG(q, t) = qt+q2 defines a point in

A1; thus {ZG,q} = T. For G a single looping edge, ZG(q, t) = qt+q and again {ZG,q} = T.
(3) This case is simpler than the case for {ZG} with indeterminate q. It follows, as in

(3.4), from the fact that the polynomials ZG1(q, t) and ZG2(q, t) have none of the variables
other than the fixed q in common.

(4) This again follows from the simpler formula for unions as in (3), and from the
computation for a single edge. The relation is the same as in the indeterminate-q case.

(5) This is again the same formula as in the free case, which here follows from (3) and
the case of a single edge. �

3.3. Deletion–contraction for the tangent cone. In the case of the tangent cone VG
at zero of the variety ZG, which, as we have seen interpolates between the Potts model and
the graph hypersurfaces considered in the quantum field theory context, it is convenient
to introduce the following notation for the classes in the Grothendieck ring.

We still denote by [VG] the class of VG and by {VG} = [A#E(G)+1 r VG] the class of
the complement. We also use the notation YG for the graph hypersurface given by the
intersection of the component WG = {QG(q, t) = 0} with the hyperplane H = {q = 0}.
Thus, YG is the locus of zeros of QG(0, t), where PG(q, t) = qk(G)QG(q, t). This gives, at
the level of the classes

(3.6) [VG] = [WG] + L#E(G) − [YG],

where L#E(G) = [H] and VG = WG ∪ H with YG = WG ∩ H. Thus, we obtain the
following.

Lemma 3.6. The class {VG} of the complement of the tangent cone VG in A#E(G)+1 is
given by the class {VG} = {WG} − {YG}.

Proof. Using (3.6) and taking complements, we obtain

L#E(G)+1 − [VG] = L#E(G)+1 − [WG]− L#E(G) + [YG] = {WG} − {YG}.
Alternatively, one may simply observe that the complement of WG is the disjoint union
of VG and cYG. �

We can then see directly that the class {VG} satisfies the following simple properties.

Lemma 3.7. The class {VG} satisfies:

(1) If G′ is obtained by attaching a looping edge to a vertex of G, then

{VG′} = (T + 1){VG}.
(2) If G′ is obtained by appending a non-looping edge to a vertex of G, then

{VG′} = T{VG}.
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(3) More generally, if G is obtained by connecting two disjoint graphs by a bridge e,
then {VG} = T{VG/e}.

(4) If G′ is obtained by attaching an edge parallel to one of the edges of G, then

{VG′} = (T + 1){VG}.
Proof. (1) The polynomial PG is only counting forests and loops are excluded from forests,
so the polynomial PG′ equals PG, but it is viewed in one dimension higher. This simply
multiplies everything by L = T + 1.

(2) Attaching an unconnected edge emultiplies PG by (q+te). The condition (t+q)PG 6=
0 implies PG 6= 0 and t+ q 6= 0. This says that the complement to PG′ = 0 fibers over the
complement to PG = 0, with T fibers.

(3) The same argument proves this assertion.
(4) Let e be the edge of G that we are doubling, and call f the new parallel edge. Then

PG′ is obtained from PG by replacing te by te + tf . This operation amounts to taking a
cylinder, hence multiplying everything by L = T + 1. �

We then look at the deletion contraction formula. In the cases of {ZG} and {ZG,q}
considered above, we did not have to make a special case for bridges and looping edges
because the combinatorial deletion–contraction formula for the multivariate Tutte poly-
nomial does not make such a distinction. However, in the case of the tangent cone, as in
the case of the graph hypersurfaces of Feynman diagrams of [1], we need to take these two
special cases into account separately.

When the edge e is neither a bridge nor a looping edge, the deletion-contraction formula
for the multivariate Tutte polynomial specializes to one for PG:

(3.7) PG(q, t) = PGre(q, t̂
(e)) + te PG/e(q, t̂

(e)).

In this case the numbers of connected components of G, Gre, G/e are all equal. Therefore,
the same formula holds for QG. It also holds once q is set to 0 in the latter.

We say that an edge is a regular edge if it is neither a bridge nor a looping edge.

Proposition 3.8. Assume e is a regular edge of G. Then

{WG} = L · [A#E(G) − (WGre ∩WG/e)]− {WG/e} ,

{YG} = L · [A#E(G)−1 − (YGre ∩ YG/e)]− {YG/e}.
and the formula for {VG} is then the difference of these.

Proof. The proof is entirely analogous to the one given for {ZG}, applied to the polyno-
mials QG and QG|q=0. �

The cases of bridges and looping edges are already dealt with in Lemma 3.7; we repeat
them here for clarity:

Proposition 3.9. If e is a looping edge of G, then

{VG} = (T + 1){VGre}.
If e is a bridge, then

{VG} = T {VG/e}.

4. Edge splitting

We now use the deletion–contraction formula of Theorem 3.1 to describe the effect of
splitting an edge in a graph.

Definition 4.1. Given a finite graph G and an edge e ∈ E(G), let 0G denote the contrac-
tion G/e; let 1G = G; and more generally let kG be the graph obtained by replacing the
edge e with a chain of k ≥ 2 edges.
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4.1. Splitting an edge. We have the following formula for the class of the hypersurface
complement of the graph 2G. Here and in the following, we denote by V (f1, . . . , fk) the
zero locus {f1 = · · · = fk = 0} of the ideal generated by (f1, . . . , fk).

Theorem 4.2. For G a finite graph and 2G the graph obtained by splitting an edge e in
G, the class {Z2G} satisfies

(4.1) {Z2G} = (T− 2){Z1G}+ (T− 1){Z0G}+ (T + 1) ({ZGre}+ {AeG}) ,
where AeG = V (q + te, ZGre − qZG/e).

The term {AeG} appears to be difficult to evaluate geometrically. Equation 4.1 gives a
relation between this term and the terms {ZmG}, which will allow us to obtain recursive
formulas for these classes which are independent of {AeG}.

Proof. First observe that the effect of attaching an edge e to a vertex of a graph G is to
multiply the polynomial ZG(q, t) by (te + q) in the case of a non-looping edge, and by
(te + 1) in the case of a looping edge. This has the effect, in both cases, of multiplying the
class {ZG} by the factor L− 1 as seen in Corollary 3.2, (5).

Applying Theorem 3.1 to the graph 2G requires handling the contraction, 1G in this
case, and the deletion, which is obtained from Gre by adding a non-looping edge. In terms
of equations, these are given respectively by the vanishing of ZG(q, t) and of ZGre(q, t̂

(e)) ·
(q + te). The most interesting term is, of course, the class of the intersection of these two
hypersurfaces, with ideal

(4.2) (ZGre(q, t̂
(e))(q + te), ZG(q, t)).

This ideal defines a subscheme of A#E(G)+1, while Z2G lives in A#E(G)+2. Deletion-
contraction applied to G gives

ZG = ZGre + teZG/e,

therefore the zero locus V (ZGre(q + te), ZG) equals

V (ZGre(q + te),ZGre + teZG/e) = V (ZGre, teZG/e) ∪ V (q + te, ZGre + teZG/e)

= V (ZGre, te) ∪ V (ZGre, ZG/e) ∪ V (q + te, ZGre − qZG/e).
To apply inclusion-exclusion, we need the double and triple intersections of these compo-
nents:

V (ZGre, te, ZGre, ZG/e) = V (te, ZGre, ZG/e)

V (ZGre, te, q + te, ZGre − qZG/e) = V (q, te, ZGre) = V (q, te)

V (ZGre, ZG/e, q + te, ZGre − qZG/e) = V (q + te, ZGre, ZG/e)

and

V (ZGre, te, ZGre, ZG/e, q + te, ZGre − qZG/e) = V (q, te, ZGre, ZG/e) = V (q, te),

where we used the fact that ZGre and ZG/e are multiples of q. This implies that the triple
intersection is in fact a double intersection, causing a useful cancellation at the level of
Grothendieck classes:

[V (ZGre(q + te), ZG)] = [V (ZGre, te)] + [V (ZGre, ZG/e)] + [V (q + te, ZGre − qZG/e)]
− [V (te, ZGre, ZG/e)]− [V (q + te, ZGre, ZG/e)].

All but one of the classes on the right-hand side have a clear interpretation:

[V (ZGre, te)] = [ZGre],

where we view ZGre as a hypersurface of A#E(G);

[V (ZGre, ZG/e)] = L · [ZGre ∩ ZG/e],
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where the intersection is again viewed in A#E(G) and the factor of L is due to the free
variable te;

[V (te, ZGre, ZG/e)] = [V (q + te, ZGre, ZG/e)] = [ZGre ∩ ZG/e],

still in A#E(G): indeed, te and q+ te may be used to eliminate te in both cases, and both
ideals define the same locus in A#E(G) (with variables (q, t̂(e))) after this projection.

The remaining term is

[V (q + te, ZGre − qZG/e)] = [V (ZGre − qZG/e)],
where again we use q+ te = 0 to eliminate te, and view the right-hand side as the class of
a locus in A#E(G), with variables (q, t̂(e)).

Let AeG denote the locus determined by this ideal, as a subset of A#E(G). We have
obtained that

[V (ZGre(q + te), ZG)] = (L− 2) · [ZGre ∩ ZG/e] + [ZGre] + [AeG].

This can be equivalently stated in terms of classes of hypersurface complements as

(4.3) {V (ZGre(q + te), ZG)} = (L− 2) · {ZGre ∩ ZG/e}+ {ZGre}+ {AeG}.
Indeed, we have

{V (ZGre(q + te), ZG)} = L|E|+1 − [V (ZGre(q + te), ZG)] ,

while the complements of the other loci are taken in A|E|. Thus,

{V (ZGre(q + te), ZG)} = L#E(G)+1 −
(
(L− 2) · [ZGre ∩ ZG/e] + [ZGre] + [AeG]

)
= L(L#E(G)− [ZGre∩ZG/e])−2(L#E(G)− [ZGre∩ZG/e])+2L#E(G)−([ZGre]+[AeG])

with the stated result (4.3).
Thus, we have obtained in this way an explicit calculation of the intersection term

needed to apply Theorem 3.1 to the graph 2G obtained by splitting an edge of G into two.
We obtain

(4.4) {Z2G} = L
(
(L− 2){ZGre ∩ ZG/e}+ {ZGre}+ {AeG}

)
− {Z1G} .

We then apply again Theorem 3.1 to G to provide an alternative expression for the
intersection term {ZGre ∩ ZG/e} and we obtain

(4.5) L · {ZGre ∩ ZG/e} = {ZG/e}+ {ZG} = {Z0G}+ {Z1G}.
�

The locus AeG determined by the ideal (q + te, ZGre − qZG/e) has an interpretation in
terms of the combinatorics of the graph G. Let Z ′ denote the sum

(4.6)
∑
A⊆E

qk(A)
∏
a∈A

ta

where the sum is restricted to the subgraphs not including e and connecting the endpoints
of e; and let Z ′′ denote the same expression, where the sum is restricted to the subgraphs
not including e and not connecting the endpoints of e. Notice that there is a bijection
between the monomial of ZG/e and the monomials of ZGre; in fact,

(4.7) ZGre = Z ′ + Z ′′ , ZG/e = Z ′ +
Z ′′

q
.

Indeed, the graphs in Z ′′ lose one connected component when e is contracted.

Lemma 4.3. The locus AeG may be described as V (q+te, (1+te)Z
′), where the polynomial

(1 + te)Z
′ is the sum over all subgraphs of G (including e or not) which connect the

endpoints of e in some way other than through e.
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Proof. By (4.7),

ZGre − qZG/e = (1− q)Z ′.
Modulo q + te this equals (1 + te)Z

′, and this term has the interpretation detailed in the
statement. �

4.2. Multiple splittings. We can now formulate the result for multiple splittings of an
edge e in a graph G, that is, for all the classes {ZmG}.

Lemma 4.4. For all m ≥ 1, the classes {Zm+1G} satisfy

(4.8) {Zm+1G} = (T− 2){ZmG}+ (T− 1){Zm−1G}+ (T + 1)Tm−1 ({ZGre}+ {AeG}) .

Proof. If a polynomial is multiplied by t + q, where t is a new indeterminate, then the
effect on the class {·} of the variety defined by that polynomial is to multiply it by
L − 1 = T = [Gm] (cf. Corollary 3.2, (5)). Applying this observation to ZGre and AeG
shows that

{ZmGre}+ {AemG} = Tm−1({ZGre}+ {AeG}).
where e denotes the last edge added in the splitting mG. Indeed, ZmGre is obtained from
ZGre by attaching a chain of m− 1 edges to Gr e:

e

5G ee

e

G

and this has the effect of multiplying ZGre by a term
∏m−1
i=1 (ti+q), where t1, . . . , tm−1 are

the variables corresponding to the edges in the chain. Therefore, {ZmGre} = Tm−1{ZGre}.
The effect on AeG is precisely the same. Indeed, recall that, by Lemma 4.3, the equation
for AeG in the hyperplane te = −q is (1 − q)Z ′, where Z ′ is the sum corresponding to
subgraphs of Gre which connect the endpoints of e. From this description it is clear that
the equation for AemG in {te = −q} is (1 − q)Z ′

∏m−1
i=1 (ti + q), and again it follows that

{AemG} = Tm−1{AeG}. �

Combining Theorem 4.2 and Lemma 4.4 allows us to obtain a ‘combinatorial’ expression
for the class {AeG}. We then have the following recursive formula for the classes {ZmG}.

Theorem 4.5. For all m ≥ 0:

(4.9) {Zm+3G} = (2T− 2){Zm+2G} − (T2 − 3T + 1){Zm+1G} − T(T− 1){ZmG}.

Proof. Starting with (4.8), Theorem 4.2 allows us to express the term {ZGre}+ {AeG} in
terms of splittings:

(4.10) (T + 1)({ZGre}+ {AeG}) = {Z2G} − (T− 2){Z1G} − (T− 1){Z0G}.

Using the case m = 2 in Lemma 4.4 we then get

{Z3G} = (T− 2){Z2G}+ (T− 1){Z1G}+ T({Z2G} − (T− 2){Z1G} − (T− 1){Z0G}),

that is,

{Z3G} = (2T− 2){Z2G} − (T2 − 3T + 1){Z1G} − T(T− 1){Z0G}.
Then applying this formula to m+1G rather than 1G one obtains the recursion (4.9). �

One can then write a generating function for the classes {ZmG}, in a way similar to the
corresponding result given in [1] for the graph hypersurfaces of Feynman graphs.
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Theorem 4.6. The generating function of the classes {ZmG} is given by

(4.11)
∑
m≥0

{ZmG}
sm

m!
=

(
e(T−1)s − (T− 1) · e

Ts − e−s

T + 1

)
{Z0G}

+

(
(T− 1) · e

(T−1)s − e−s

T
− (T− 2) · e

Ts − e−s

T + 1

)
{Z1G}

+

(
−e

(T−1)s − e−s

T
+
eTs − e−s

T + 1

)
{Z2G}.

Proof. Putting

(4.12) Ge(s) :=
∑
m≥0

{ZmG}
sm

m!
,

the recursion formula (4.9) translates into the differential equation

(4.13) G′′′e (s) = (2T− 2)G′′e (s)− (T2 − 3T + 1)G′e(s)− T(T− 1)Ge(s),

with solution

(4.14) Ge(s) = Ae−s +B eTs + C e(T−1)s.

We can impose that this series begins with three undetermined coefficients, and solving
for A, B, C gives

A = {Z0G}+
{Z2G}+ {Z1G}

T
− {Z

2G}+ 3{Z1G}+ 2{Z0G}
T + 1

B = −{Z1G} − {Z0G}+
{Z2G}+ 3{Z1G}+ 2{Z0G}

T + 1

C = {Z1G}+ {Z0G} −
{Z2G}+ {Z1G}

T
This then gives the form (4.11) for the generating function Ge(s). �

One can also write (4.11) in a form that involves explicitly the term AeG, with slightly
simpler form of the coefficients, as follows.

Corollary 4.7. The generating function (4.11) can be equivalently written as

(4.15)
∑
m≥0

{ZmG}
sm

m!
= e−s

((
1 +

eTs − 1

T

)
{Z0G}+

eTs − 1

T
{Z1G}

+

(
e(T+1)s − eTs − eTs − 1

T

)
({ZGre}+ {AeG})

)
.

Proof. This follows directly from (4.11) and (4.10). �

4.3. Edge splitting for fixed q. The discussion is entirely parallel to the one given
above for the class {ZG} with variable q. One has the analog of Theorem 4.2 in the case
with fixed q, given by the following.

Theorem 4.8. Let 2G be the graph obtained by splitting an edge e in a graph G. Then
the class {Z2G,q} satisfies

(4.16) {Z2G,q} = (T− 2){Z1G,q}+ (T− 1){Z0G,q}+ (T + 1)
(
{ZGre,q}+ {AeG,q}

)
.

Proof. As in the proof of Theorem 4.2, the main point is the computation of the class of
V (ZGre(q + te), ZG).
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Lemma 4.9. With q 6= 0 fixed, the class of the locus V (ZGre(q + te), ZG) is given by

{V (ZGre(q + te), ZG)} = (T− 1) · {ZGre,q ∩ ZG/e,q}+ {ZGre,q}+ {AeG,q},

where AeG,q ⊆ A#E(G)−1 is the zero locus of the polynomial ZGre − qZG/e = (1 − q)Z ′,
with fixed q, with Z ′ as in (4.6) (with fixed q).

Proof. The argument here parallels closely the computation in the proof of Theorem 4.2.
In that computation (for variable q) there is a key cancellation of a class [V (q, te)] due to
inclusion-exclusion; for fixed q 6= 0 this locus is empty. All other classes admit the same
interpretation for fixed q as for variable q.

In particular, the term AeG,q is the zero locus of (1−q)Z ′ with Z ′ as in Lemma 4.3 (and

q is now a fixed nonzero number). Note that this is 0 when q = 1; in this case the last
summand in the formula in Lemma 4.9 is 0. In general, arguing as in Lemma 4.3, one sees
that Z ′ is given by the sum (4.6), over the range specified there. �

Implementing deletion-contraction gives then the same formula as in the case with
variable q, so that one obtains the following.

Corollary 4.10. Let 2G be the graph obtained by splitting an edge e in a graph G. Then
the class {Z2G,q} satisfies

(4.17) {Z2G,q} = L
(
(L− 2){ZGre,q ∩ ZG/e,q}+ {ZGre,q}+ {AeG,q}

)
− {Z1G,q}.

Note again that the term {AeG,q} would be missing in the case q = 1.

Next, use Proposition 3.4 to get a different expression for {ZGre∩ZG/e}, and this gives
a perfect parallel to Theorem 4.2, and completes the proof of Theorem 4.8. �

We can now pass to the case of multiple splittings, which again is analogous to the case
with variable q.

Theorem 4.11. Let mG be the graph obtained by multiple splitting on an edge e in G.
Then, for all m ≥ 0, the classes for fixed q satisfy

{Zm+1G,q} = (T− 2){ZmG,q}+ (T− 1){Zm−1G,q}+ (T + 1)Tm−1
(
{ZGre,q}+ {AeG,q}

)
,

which then gives the recursive relation

(4.18) {Zm+3G,q} = (2T− 2){Zm+2G,q} − (T2 − 3T + 1){Zm+1G,q} − T(T− 1){ZmG,q},

Proof. The argument is completely analogous to the case with variable q. The key step is
the relation

{AemG,q} = Tm−1{AeG,q},
that one can see continues to hold in this case by the same argument used before. Then
(4.18) is proved by using Theorem 4.8 to solve for the class ({ZGre,q}+ {AeG,q}). �

The bottom line is that the same recursion holds for any fixed q 6= 0 as for the free q
case. What will change are the seeds of this recursion, that is, the values of {ZmG,q} for
m = 0, 1, 2; these will naturally be different for fixed q.

Nothing in the proof of the recursion excludes the case q = 1, and indeed {ZmG,q=1} =

T#E(G)+m−1 is a solution of the recursion

(2T− 2)T#E(G)+m+1 − (T2 − 3T + 1)T#E(G)+m − T(T− 1)T#E(G)+m−1 = T#E(G)+m+2.

With respect to the question of when the fibration condition (2.24) relating {ZG} to
the {ZG,q} holds, notice that, although the recursion is the same for all fixed q (all being
the same as for the case of variable q), one does not a priori know whether the seeds of
the recursions are independent of q.
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4.4. Edge splitting and the tangent cone. Again we consider first the operation of
splitting one edge in two and then the case of multiple splittings. In the case of the tangent
cone, we need to distinguish regular edges from bridges and looping edges.

Lemma 4.12. If the edge e of G is either a bridge or a looping edge and mG denotes the
graph obtained by iterated splitting of the edge e, then for m ≥ 1 the class of the tangent
cone complement satisfies {Vm+1G} = Tm{VG}.

Proof. If e is a bridge, then splitting e amounts to inserting a new bridge; by the deletion-
contraction formulas for bridges (Proposition 3.9)

{V2G} = T · {VG}.

Thus, in the case of a bridge one also already sees that splitting the edge multiple times
just has the effect of multiplying {VG} by a power of T.

If e is a looping edge, adding a loop to a graph G′ multiplies the class {VG′} by T + 1
as seen in Lemma 3.7. Attaching a split loop amounts to multiplying ZG′ (and hence PG′)
by (q + te + tf ), where te and tf are the variables corresponding to the two new edges;
this is simply because q2 + teq + tfq is the Z-polynomial for a 2-banana. Here G′ is the
graph obtained from G by removing the loop. From

P2G = PG′ (q + te + tf )

we see that P2G 6= 0 implies PG′ 6= 0 and te 6= −(q + tf ).
Therefore, for any point (q, t) for which PG′ 6= 0 we have an A1 worth of choices for tf

and an A1 rA0 worth of choices for te. So we can conclude that

{W2G} = L(L− 1) · {WG′} = T · {WG}.

The same analysis goes through after setting q to 0, and hence

{Y2G} = L(L− 1) · {YG′} = T · {YG}.

The conclusion is that

{V2G} = T · {VG}.
Thus, splitting a loop once has again the effect of multiplying the corresponding {VG} by
T, as for bridges. �

We then check the more interesting case of regular edges.

Theorem 4.13. Let e be a regular edge of G, and let 2G be the graph obtained by intro-
ducing a 2-valent vertex in e, thereby splitting it. With other notation as above,

{V2G} = (T− 2){VG}+ (T− 1){VG/e}+ (T + 1)({VGre}+ {V (QGre − q QG/e)}).

Proof. Let e be a regular edge, and call e (again) and f the two edges created in the
process. The polynomial for W2G is found easily by applying deletion-contraction:

Q2G = QG\e · (q + te) + tf ·QG.

Indeed, deleting f leaves the graph G\e with a dangling edge e attached, and attaching an
edge e to a vertex has the effect of multiplying the corresponding polynomial by (q + te);
contracting f gives G back. By Proposition 3.8, therefore we have

(4.19) {W2G} = L · [A#E(G)+1 −W∩]− {WG},

whereW∩ is the intersection in A#E(G)+1 of the hypersurfaceWG, with equation QG = 0,
and the hypersurface with equation QGre(q + te) = 0.
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Set theoretically, the locus W∩ is given by

W∩ = V (QGre(q + te), QG) = V (QGre(q + te), QGre + teQG/e)

= V (QGre, teQG/e) ∪ V (q + te, QGre + teQG/e)

= V (QGre, QG/e) ∪ V (te, QGre) ∪ V (q + te, QGre − qQG/e),

where all ideals are viewed in A#E(G)+1, with coordinates q and ta, a ∈ E(G). Inclusion–
exclusion then gives [W∩] as the sum of the three loci indicated here, minus the sum of the
three pairwise intersections, plus the triple intersection. The three pairwise intersections
are

V (te, QGre, QG/e)

V (q + te, QGre, QG/e)

V (q, te, QGre)

and the triple intersection is
V (q, te, QGre, QG/e) .

This is very similar to the situation we have seen for the case of ZG. We find

[V (QGre, QG/e)] = L · [WGre ∩WG/e]

as Gr e and G/e have E(G) r {e} as index set, while

[V (te, QGre, QG/e)] = [V (q + te, QGre, QG/e)] = [WGre ∩WG/e].

In both cases, the first equation eliminates te, doing nothing to the rest since the rest does
not depend on te. We also have

[V (te, QGre)] = [WGre] , [V (q, te, QGre)] = [YGre],

and
[V (q, te, QGre, QG/e)] = [YGre ∩ YG/e].

That leaves us with
V (q + te, QGre − qQG/e) ⊆ A#E(G)+1,

or simply

V (QGre − qQG/e) ⊆ A#E(G),

since the only effect of the first equation is to eliminate te.
Applying then inclusion–exclusion we obtain

[W∩] = (L− 2)[WGre ∩WG/e] + [WGre] + [V (QGre − q QG/e)]− [YGre] + [YGre ∩YG/e].
Passing to the classes of the complements and implementing the resulting expression for
2G then gives

{W2G} = (L− 2)L(L#E(G) − [WGre ∩WG/e]) + L{WGre}

+ L{V (QGre − q QG/e)} − L{YGre}+ L(L#E(G)−1 − [YGre ∩ YG/e])− {WG}.
Using Proposition 3.8 and computing the difference {VG} = {WG} − {YG} one gets

{V2G} = {W2G} − {Y2G}
= (L− 3){WG}+ (L− 2){WG/e}+ L({WGre} − {YGre}) + {YG}

+ {YG/e}+ L{V (QGre − q QG/e)} − (L− 2){YG} − (L− 1){YG/e} − L{YGre}
= (L− 3)({WG} − {YG}) + (L− 2)({WGre} − {YGre})

+ L({WGre} − {YGre}) + L({V (QGre − q QG/e)} − {YGre})
= (L− 3){VG}+ (L− 2){VG/e}+ L{VGre}+ L{V (QGre − q QG/e)}.

�
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As in the case of ZG and ZG,q, the polynomial QGre − q QG/e can be given a combi-
natorial interpretation as

QGre − q QG/e =
∑

A ⊆ E r {e} forest connecting endpoints of e

qk(A)−k(C)
∏
a∈A

ta.

We then can proceed as in the case of ZG and ZG,q and obtain the following recursions.

Proposition 4.14. With notation as above, and assuming e is not a looping edge,

{Ym+3G} = (2T− 1){Ym+2G} − T(T− 2){Ym+1G} − T2{YmG}

for all m ≥ 0. The generating function

GYe (s) :=
∑
m≥0

{YmG}
sm

m!

for the classes {YmG} is then of the form

GYe (s) = Ae−s +B s eTs + C eTs,

with the constants A, B, and C satisfying

A = {Y0G} − 2
{Y1G}+ {Y0G}

T + 1
+
{Y2G}+ 2{Y1G}+ {Y0G}

(T + 1)2

B = −{Y1G} − {Y0G}+
{Y2G}+ 2{Y1G}+ {Y0G}

T + 1

C = 2
{Y1G}+ {Y0G}

T + 1
− {Y

2G}+ 2{Y1G}+ {Y0G}
(T + 1)2

Similarly,

{Vm+3G} = (2T− 2){Vm+2G} − (T2 − 3T + 1){Vm+1G} − T(T− 1){VmG},

for all m ≥ 0, with generating function

GVe (s) :=
∑
m≥0

{VmG}
sm

m!

given by

GVe (s) = Ae−s +B eTs + C e(T−1)s

with the terms A, B and C satisfying

A = {V0G}+
{V2G}+ {V1G}

T
− {V

2G}+ 3{V1G}+ 2{V0G}
T + 1

B = −{V1G} − {V0G}+
{V2G}+ 3{V1G}+ 2{V0G}

T + 1

C = {V1G}+ {V0G} −
{V2G}+ {V1G}

T
.

The argument is essentially analogous to the cases of ZG and ZG,q analyzed before and
we do not reproduce it explicitly here.

The generating function for YmG is ‘dual’ to the one for XmG given in [1]: the effect of
splitting edges on the class {YmG} is analogous to the effect of multiplying edges on the
class {XmG}.
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5. Polygons and linked polygons

We now focus on a particularly simple class of graphs for which we can compute ev-
erything explicitly. These will be polygons and graphs constructed out of chains of linked
polygons. We will later focus especially on this class of graphs to provide an explicit ex-
ample of how to apply these motivic techniques to analyze (virtual) phase transitions in
the corresponding Potts models.

We start by using the formulae for edge splittings obtained in the previous section to
compute explicitly the classes {ZG} for polygon graphs.

Proposition 5.1. Let mG be an (m+1)-sided polygon. Then the classes {ZmG} are given
explicitly by the formula

(5.1) {ZmG} = Tm+2 + T(T− 1)(Tm − (T− 1)m) + (T− 1)
(T− 1)m − (−1)m

T
.

Proof. Let us check directly the initial cases that are needed to use the recursive formula
for edge splittings. The first graphs are 0G a single loop, 1G a 2-banana (two vertices with
two parallel edges between them), 2G a triangle. The equations ZG(q, t) = 0 are of the
form

0G : q + qt = 0 (in A1+1)

1G : q2 + (t1 + t2 + t1t2)q = 0 (in A2+1)

2G : q3 + (t1 + t2 + t3)q2 + (t1t2 + t1t3 + t2t3 + t1t2t3)q = 0 (in A3+1)

The corresponding classes {ZG} can then be computed directly in these cases by applying
the basic facts listed in Corollary 3.2 and Theorem 4.2. One obtains

{Z0G} = T2

{Z1G} = T3 + T2 − 1

{Z2G} = T4 + 2T3 − 2T2 − 2T + 2.

The expression (5.1) is then m! times the coefficient of sm in the expansion of the right-
hand side of the generating function (4.11), with these initial conditions. �

5.1. Polygons at fixed q. We will also need in the following the classes of the polygon
graphs for a fixed value of q. These are obtained as follows.

Proposition 5.2. Let mG be an (m + 1)-sided polygon. Then the classes {ZmG,q} for
fixed q 6= 0, 1 are given explicitly by the formula

(5.2) {ZmG,q} = Tm+1 + T(Tm − (T− 1)m) +
(T− 1)m − (−1)m

T
.

The polygon graphs mG satisfy the fibration condition (2.24).

Proof. As above, the seeds of the recursion are a single loop, a 2-banana, and a triangle.
The single loop has class T from Corollary 3.5.
The 2-banana hypersurface has equation qt1t2 + qt1 + qt2 + q2 = 0. Factoring out a q

(assumed to be nonzero to begin with) this is equivalent to

(t1 + 1)(t2 + 1) = 1− q.
We are assuming that q 6= 1, so up to a variable change this equation is

u1u2 = r 6= 0.

This forces u1 6= 0, and determines u2 once u1 is fixed; thus the class of this locus in the
Grothendieck group is L− 1; its complement in A2 has class

L2 − L + 1 = T2 + T + 1.
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This is independent of q 6= 0, 1.
The triangle hypersurface has equation

q(t1t2t3 + t1t2 + t1t3 + t2t3 + q(t1 + t2 + t3) + q2) = 0.

Changing variables: ui = ti+ 1, r = q−1, and keeping in mind q 6= 0, this is equivalent to

(5.3) u1u2u3 + (u1 + u2 + u3)r = r(1− r).

Solving for u3 gives

u3 =
r(1− r − u1 − u2)

u1u2 + r
.

Thus, the variety contains an open subvariety isomorphic to

A2 r V (u1u2 + r) ;

this locus has class L2 − L + 1, as we just computed above, since r 6= 0 (as q 6= 1). If
u1u2 = −r, then (5.3) is equivalent to

u1 + u2 = 1− r,

implying easily that (u1, u2) equals (1, r) or (r, 1), while u3 is free in this case. That is,
the complement in (5.3) of the open subvariety determined above consists of the loci

{(1,−r, u3)} ∼= A1 , {(−r, 1, u3)} ∼= A1.

These lines are distinct, since r 6= −1 (as q 6= 0). The conclusion is that the class of (5.3)
equals

L2 − L + 1 + 2L = L2 + L + 1 ,

and hence its complement in A3 has class

L3 − L2 − L− 1 = T3 + 2T2 − 2 .

Again this is independent of q.
These cases are compatible with the fibration condition (2.24). For instance, in the

triangle case, we get

(T− 1)(T3 + 2T2 − 2) + T3 = T4 + 2T3 − 2T2 − 2T + 2

in agreement with the class for a triangle in the free q case, used in Proposition 5.1.
The recursion then gives the classes (5.2),

{ZmG,q} =
Tm+2 + T(T− 1)(Tm − (T− 1)m) + (T− 1) (T−1)m−(−1)m

T − Tm+1

T− 1

= Tm+1 + T(Tm − (T− 1)m) +
(T− 1)m − (−1)m

T
.

One can verify explicitly the compatibility of (5.2) and (5.1) with the fibration condition
(2.24): the polynomial

{ZmG} = Tm+2 + T(T− 1)(Tm − (T− 1)m) + (T− 1)
(T− 1)m − (−1)m

T

factors exactly as predicted by (2.24) in terms of the classes (5.2). �
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5.2. Polygons and the class of the tangent cone. The explicit formula for the classes
{VG} of the complement of the tangent cone of the Potts model hypersurface for polygons
is obtained as follows.

Proposition 5.3. Let mG be the polygon with m+ 1 edges. Then

{VmG} = (T− 1)(−1)m + 2Tm+2 − (T + 1)(T− 1)m+1.

Proof. For the seed of the recursion we have in this case

0G : q = 0 (in A1+1)

1G : q2 + (t1 + t2)q = 0 (in A2+1)

2G : q3 + (t1 + t2 + t3)q2 + (t1t2 + t1t3 + t2t3)q = 0 (in A3+1)

for which we then get

{V0G} = L2 − L1 = T(T + 1)

{V1G} = L3 − 2L2 + L1 = T2(T + 1)

{V2G} = T4 + 2T3 − T = T(T + 1)(T2 + T− 1).

The first two expressions are immediate; for the third, note that V2G is a cone over a
nonsingular quadric in P3; the computation is then straightforward. We then have

GVe (s) = e−s
((

1 +
eTs − 1

T

)
T(T + 1) +

eTs − 1

T
T2(T + 1)

+

(
e(T+1)s − eTs − eTs − 1

T

)
· 2T2

)
.

that is

GVe (s) = (T− 1)e−s + 2T2eTs − (T2 − 1)e(T−1)s .

Reading off the coefficient of sm/m! then gives the result. �

5.3. Chains of linked polygons. A class of graphs that have been extensively studied
from the point of view of the statistical mechanics of Potts models is the case of chains of
linked polygons. These are graphs consisting of N equal polygons mG, each with m + 1
edges, attached to one another by chains of k ≥ 0 edges. The case k = 0 corresponds to
polygons joined at vertices. The corresponding Potts models were studied, from the point
of view of the properties of ground state entropy, in [23]: see also the references therein
for several other results on this class of Potts models.

Definition 5.4. Let (m,k)GN denote the graph obtained by joining N polygons, each with
m+ 1 sides, with every two nearby polygons connected by a chain of k ≥ 0 edges.

This family of graphs has three parameters m, k, and N , each of which can be inde-
pendently sent to∞ to create an infinite graph. Thus, we will use this family as our main
example on which to analyze the topological complexity of the corresponding set of virtual
phase transitions.

The classes {ZG,q} can be computed explicitly for this family from the result for poly-
gons in Proposition 5.2 and the other basic properties of Corollary 3.5.
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Proposition 5.5. For (m,k)GN as in Definition 5.4, the classes {ZG,q} with fixed q 6= 0, 1
are given by

(5.4)

(
Tm+1 + T(Tm − (T− 1)m) +

(T− 1)m − (−1)m

T

)N
Tk(N−1).

Proof. By (3) and (4) of Corollary 3.5, we have

{Z(m,k)GN ,q} = {ZmG,q}N Tk(N−1).

The result then follows from (5.2). �

In this case, since the graphs involved satisfy the fibration condition (2.24), one can
also obtain an explicit formula for the classes {Z(m,k)GN } with variable q, from (3.3) of
Corollary 3.3.

6. Multiple edge formula

The operation of doubling edges is dual to splitting edges. However, while in the case
of the graph hypersurfaces of Feynman graphs analyzed in [1] the corresponding operation
on the hypersurface complement classes in the Grothendieck ring is very simple, this is
not the case when one considers the Potts model hypersurface.

In fact, the combinatorial deletion–contraction formula for the multivariate Tutte poly-
nomial shows that the polynomial for the graph obtained from G by doubling an edge e
is of the form

(6.1) ZGre + (te + tf + tetf )ZG/e,

and it is the presence of the extra term tetf here that complicates the matter.

6.1. Edge doubling. We derive here a formula for the class {ZG} under the operation of
doubling an edge, and then we obtain a recursive formula for the iteration of this operation.

Theorem 6.1. Let G′ be the graph obtained by doubling the edge e in a graph G. Then

(6.2) {ZG′} = T · {ZG}+ (T + 1) · {BeG},

where BeG is the locus of zeros of ZGre − ZG/e.

Proof. It is convenient to change variables, letting ue = 1 + te, uf = 1 + tf . Then the
class (6.1) for the double edged graph is given by

(6.3) ZGre + (ueuf − 1)ZG/e 6= 0.

If ZG/e = 0, then necessarily ZGre 6= 0; ue and uf are free, so this accounts for a class

(T + 1)2 · [ZG/e r (ZGre ∩ ZG/e)].

If ZG/e 6= 0, then the condition amounts to

ueuf 6= 1− ZGre

ZG/e
.

This in turn leads to to two possibilities:

• Either ZGre

ZG/e
= 1, and then ueuf 6= 0; this accounts for L2 − 2L + 1 = T2;

• Or ZGre

ZG/e
6= 1, and then ueuf 6= c for some c 6= 0. For c 6= 0, ueuf = c necessarily

gives uf 6= 0, ue = c/uf ; this accounts for L − 1. Thus the class of ueuf 6= c is
L2 − L + 1 = T2 + T + 1.
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In total, the class of the complement for the double-edged graph is

(T + 1)2 · [ZG/e r (ZGre ∩ ZG/e)] + T2[(A|E| r ZG/e) ∩ V (ZGre − ZG/e)]

+ (T2 + T + 1)[(A|E| r ZG/e) r V (ZGre − ZG/e)].

This expression can be further simplified in the following way:

(T + 1)2 · [ZG/e r (ZGre ∩ ZG/e)] + (T2 + T + 1)[A#E(G) r ZG/e]

− (T + 1)[(A#E(G) r ZG/e) ∩ V (ZGre − ZG/e)]

= (T2 + 2T + 1) · [ZG/e]− (T + 1)2[ZGre ∩ ZG/e] + (T2 + T + 1)[A#E(G) r ZG/e]

− (T + 1)[(A#E(G) r ZG/e) ∩ V (ZGre − ZG/e)]

= T · [ZG/e]− (T + 1)2[ZGre ∩ ZG/e] + (T2 + T + 1)L#E(G)

− (T + 1)[(A#E(G) r ZG/e) ∩ V (ZGre − ZG/e)]

= (T + 1)2(L#E(G) − [ZGre ∩ ZG/e])− T(L#E(G) − [ZG/e])

− (T + 1)[(A#E(G) r ZG/e) ∩ V (ZGre − ZG/e)].

We then use Theorem 3.1 to express {ZGre ∩ ZG/e}, obtaining

(T + 1)({ZG}+ {ZG/e})− T({ZG/e})− (T + 1)[(A#E(G) r ZG/e) ∩ V (ZGre − ZG/e)]

and hence simply

(T + 1){ZG}+ {ZG/e} − (T + 1)[(A#E(G) r ZG/e) ∩ V (ZGre − ZG/e)].

Now

(A#E(G) r ZG/e) ∩ V (ZGre − ZG/e) = V (ZGre − ZG/e) r (ZGre ∩ ZG/e),

and again using Theorem 3.1 we get that the class of the complement for the double-edged
graph is

T · {ZG} − (T + 1) · {V (ZGre − ZG/e)}.
�

As in the case of the term AeG in the formula for edge splitting, the term BeG here also
has an interpretation in terms of the combinatorics of the graph.

Lemma 6.2. The locus BeG of zeros of ZGre − ZG/e is equivalently the locus of zeros of

a polynomial (q − 1)Z
′′
, where Z ′′ is the sum of the monomials

∏
e∈A te corresponding to

subgraphs A of G/e that acquire an additional connected component when they are viewed

in Gr e, and Z
′′

= Z ′′/q.

Proof. Recall from (4.7) that

ZGre = Z ′ + Z ′′ , ZG/e = Z ′ +
Z ′′

q
.

and hence

ZGre − ZG/e = (q − 1)Z
′′

,

where Z
′′

= Z ′′/q is indeed the sum of the standard monomials over the subgraphs of G/e
which acquire an additional connected component when they are viewed in Gr e. �
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Thus, the description of BeG is somewhat complementary to that of AeG: both are (q−1)
times a sum of terms having to do with subgraphs of G/e. For A, one looks at graphs
for which the number of connected components is the same when the subgraph is viewed
in G r e; for B, one looks at the graphs for which the number of connected components
increases.

Example 6.3. When e is a looping edge, then BeG = 0: indeed, Gr e = G/e in this case.
Thus {BeG} = 0, and the formulas simplifies to {ZG′} = T · {ZG}, which recovers the case
(5) of Corollary 3.2, namely attaching a new looping edge to G.

6.2. Multiple edge formulas. We now consider the case where the operation of doubling
an edge is iterated, that is, where an edge e in a graph is replaced by m parallel edges,
between the same endpoints. This can be seen also as replacing an edge e with the m-th
banana graph (see [3]).

Theorem 6.4. Let G(m) denote the graph obtained by adding m edges parallel to e in G.
(So G = G(0), G′ = G(1).) Then, for m ≥ 0, the classes {ZG(m)} satisfy

(6.4) {ZG(m+2)} = (2T + 1){ZG(m+1)} − T(T + 1){ZG(m)}.

Proof. The key case to consider is that in which we triple a given edge of G: let G′ denote
(as in Theorem 6.1) the graph obtained from G by doubling e, and let G′′ be the graph
obtained from G′ by doubling e again. Applying Theorem 6.1 yields

{ZG′′} = T · {ZG′}+ (T + 1) · {BeG′}.
Thus, we have to understand {BeG′}. According to Lemma 6.2, this hypersurface has

equation (q−1)Z
′′
, where Z

′′
collects monomial according to the subgraphs of G′/e which

acquire a component when viewed in G′ r e. The new edge in G′ parallel to e cannot
be part of any such subgraphs, since it does join the endpoints of e, so it prevents a new

component from forming as we remove e. Therefore, the Z
′′

for G′ actually equals on the

nose the Z
′′

for G; the only difference between BeG and BeG′ is that the latter is contained
in a space of dimension one higher, and it may be described as a cylinder on BeG.

Thus, we have
{ZG′′} = T · {ZG′}+ (T + 1) · {BeG′}

and {W e
G′} = (T + 1){W e

G}. By Theorem 6.1,

(T + 1){W e
G} = {ZG′} − T{ZG}.

Thus, we obtain

{ZG′′} = T{ZG′}+ (T + 1)({ZG′} − T{ZG})
= (2T + 1){ZG′} − T(T + 1){ZG}.

The stated formula follows by applying this formula to G(m) instead of G. �

We can form a generating function for the classes of graphs with multiple edges.

Theorem 6.5. The generating function of the classes {ZG(m)} is given by

(6.5)
∑
m≥0

{ZG(m)}
sm

m!
= ((T + 1){ZG} − {ZG′}) eTs + ({ZG′} − T{ZG}) e(T+1)s.

Proof. The recurrence relation (6.4) of Theorem 6.4 translates into the differential equation

(6.6) g′′(s) = (2T + 1)g′(s)− T(T + 1)g(s)

for the generating function

(6.7) g(s) =
∑
{ZG(m)}

sm

m!
,
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solving which reveals that ∑
m≥0

{ZG(m)}
sm

m!
= AeTs +Be(T+1)s.

Solving for the constants A, B in terms of {ZG} and {ZG′} gives (6.5). �

Example 6.6. The m-th banana graph is a graph with two vertices and m parallel edges
between them. To compute the class for bananas, we can start with G a single non-looping
edge, for which {ZG} = T2, and G′ a 2-banana, for which {ZG′} = T3 + T2 − 1. Then
from (6.5) we have ∑

m≥0

{ZG(m)}
sm

m!
= eTs + (T2 − 1)e(T+1)s ,

from which we obtain

(6.8) {ZG(m)} = Tm + (T− 1)(T + 1)m+1

for the class of the m-th banana graph. A generating function for the analogous class for
graph hypersurfaces XG is given in [1].

6.3. Multiple edges for fixed q. Again the argument for variable q carries over almost
identically to cover the case with fixed q 6= 0, 1. We obtain the following results.

Proposition 6.7. Let G′ be the graph obtained by doubling the edge e in a graph G. Then

{ZG′,q} = T · {ZG,q}+ (T + 1) · {W e
G,q},

where the locus W e
G,q ⊂ A#E(G)−1, for q 6= 0, 1, is given by the vanishing of the polynomial

Z ′′ adding monomials over the subgraphs of G/e which acquire an additional connected
component when they are viewed in Gr e.

Corollary 6.8. Let G(m) denote the graph obtained by adding m edges parallel to e in G.
(So G = G(0), G′ = G(1).) Then for m ≥ 0

{ZG(m+2),q} = (2T + 1){ZG(m+1),q} − T(T + 1){ZG(m),q}.

The general solution of this recursion also matches the one for free-q:∑
m≥0

{ZG(m),q}
sm

m!
= ((T + 1){ZG,q} − {ZG′,q}) eTs + ({ZG′,q} − T{ZG,q}) e(T+1)s.

Example 6.9. Consider the case of the banana graphs. The seeds for bananas are a single
non-looping edge, with class T and the 2-banana, with class T2+T+1, as computed above.
Plugging into the last formula, we get the generating function for the classes of Potts model
complements of banana graphs for fixed q:∑

m≥0

{ZG(m),q}
sm

m!
= (T + 1)e(T+1)s − eTs ;

extracting the term of degree m gives the very simple class for the (m+ 1)-banana:

(6.9) (T + 1)m+1 − Tm

in agreement with the fibration condition (2.24) for (6.8), and in particular independent
of q 6= 0, 1.
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6.4. Chains of linked banana graphs. By analogy to the example of the chains of
linked polygon graphs considered in §5.3, we consider here a similar family but with the
polygons replaced by banana graphs.

Definition 6.10. The graphs kG(m),N are obtained by connecting N banana graphs G(m),
each with m parallel edges, each connected to the next by a chain of k ≥ 0 edges (connected
by joining vertices in the case k = 0).

We can compute the classes {ZG,q} for this family of graphs using the explicit formula
(6.9) for the banana graphs.

Proposition 6.11. Let kG(m),N be the graphs of Definition 6.10. Then the corresponding
classes are given by

(6.10) {ZkG(m),N ,q} = ((T + 1)m+1 − Tm)NTk(N−1).

Proof. The result follows immediately by applying (3) and (4) of Corollary 3.5 to the
explicit formula (6.9) in Example 6.9. �

6.5. Polygon chains. A class of graphs that can be obtained by alternating edge splitting
and edge doubling operations in different orders are the chains of polygons of various sizes
joined along edges.

In the case of the graph hypersurfaces of Feynman graphs, explicit formulae for the
Grothendieck classes of the hypersurface complements for this type of graphs were obtained
in [1]. However, in the case of the Potts model hypersurfaces, the recursion relation
becomes more complicated: if one combines the formula for doubling an edge with the
formula for splitting it, the resulting class becomes of the form

(T2 − T + 1){ZG}+ (T− 1)T{ZG/e}+ (T + 1){CeG}+ (T− 2)(T + 1){De
G},

where the term CeG is obtained combinatorially from the subgraphs of G that connect the
endpoints of e, and De

G is obtained from paths in Gre which do not connect the endpoints
of e. There is then no obvious recursive procedure of the type used for either the splitting
or the doubling alone, which takes care of eliminating both of these additional terms. This
remains an interesting case of graphs to investigate.
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7. Estimating topological complexity of virtual phase transitions

We show here, in the concrete example of the chains of linked polygon graphs (m,k)GN

and in the simpler example of the banana graphs, how one can use our calculations of
classes in the Grothendieck ring to estimate how the topological complexity of the set of
virtual phase transition grows as the graphs grow in size within the given family.

Good indicators of topological complexity are homologies and cohomologies and the
associated Euler characteristics. In the case of the real algebraic varieties ZG,q(R), which
can in general be singular and non-compact, therefore, we can take as a good indicator the
Euler characteristic with compact support χc(ZG,q(R)), which is known to give a lower
bound for the complexity. As we discussed in §2.8, this is the unique invariant of real
algebraic varieties that is both a topological invariant and a motivic invariant. Using the
fact that it factors through the Grothendieck ring K0(VR), we obtain the following results.

Proposition 7.1. Let (m,k)GN be the chain of linked polygons graphs of Definition 5.4.
Then the Euler characteristic with compact support χc(Z(m,k)GN ,q(R)) of the set of virtual
phase transitions Z(m,k)GN ,q(R) of the Potts model is given by

(7.1) (−1)mN+kN−k
(

(−1)N − 2kN−k−N
(
3m+1 + 1− 2m+3

)N)
.

Proof. As we have seen in Example 2.8, for real varieties χc(T) = χc(Gm(R)) = −2. Using
the fact that χc is a ring homomorphism χc : K0(VR) → Z we then obtain from (5.4) of
Proposition 5.5,

(−1)mN+kN−k 2kN−k−N
(
3m+1 + 1− 2m+3

)N
.

We then use additivity again to obtain

χc(Z(m,k)GN ,q(R)) = χc(A#E((m,k)GN ))− χc({Z(m,k)GN ,q}),

where #E((m,k)GN ) = N(m+ 1) +k(N −1) and χc(A1) = χc(R) = −1, so that we obtain
(7.1). �

We obtain a similar result for the class of graphs kG(m),N of Definition 6.10, obtained
by chains of linked banana graphs.

Proposition 7.2. Let kG(m),N be the graphs of Definition 6.10. Then the Euler charac-
teristic with compact support χc(ZkG(m),N (R)) of the set of virtual phase transitions in the
model is given by

(7.2) (−1)mN+kN+N−k
(

1− 2k(N−1) (2m + 1)
N
)
.

Proof. The argument is exactly as in the previous case, using the expression (6.10) for the
classes in the Grothendieck ring. �

Even in the absence of Petrovskĭı-Olĕınik inequalities comparing the Euler characteristic
of the locus of real zeros and the Hodge numbers of the locus of complex zeros, using
the explicit form of the class in the Grothendieck ring and the motivic nature of the
invariants, one can also compute for these same examples the virtual Hodge polynomials
of the complex variety ZG,q(C). In the two cases analyzed above one obtains the following.

Proposition 7.3. Let (m,k)GN be the chain of linked polygons graphs of Definition 5.4.
Then the virtual Hodge polynomial e(Z(m,k)GN ,q)(C) is given by
(7.3)

e(Z(m,k)GN ,q)(C)(x, y) = (xy − 1)k(N−1)
(

2(xy − 1)m+1 − (−1)m + (xy − 2)m+1xy

xy − 1

)N
.
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Let kG(m),N be the graphs of Definition 6.10. Then the virtual Hodge polynomial is given
by

(7.4) e(ZkG(m),N (C))(x, y) = (xy − 1)k(N−1)(xym+1 − (xy − 1)m)N .

Proof. Using the explicit form of the classes (5.4) and (6.10) in the Grothendieck, the fact
that the virtual Hodge polynomial is a ring homomorphism e : K0(VC)→ Z[x, y] and that
e(L) = xy, we obtain the result. �

7.1. Decision complexity and topological complexity. There is, in fact, a more
technical sense, from the point of view of complexity theory, according to which the Euler
characteristic χc(ZG,q(R)) really gives a lower bound for the complexity of the real alge-
braic variety ZG,q(R) of virtual phase transitions of the Potts model over the graph G.
We describe it briefly following the survey [11].

An algebraic circuit over R is an acyclic directed graph where each node has in-degree
either 0 or 1, or 2. The nodes of in-degree 0 are the input nodes and they are labelled
by real variables; the nodes of in-degree 1 are either output nodes (out-degree equal to
zero) or sign nodes: these are nodes that, to an input x assign output 1 if x ≥ 0 and zero
otherwise; and the nodes of in-degree 2 are labelled by an operation +, −, ×, or / and are
called arithmetic nodes. The size σ(C) of an algebraic circuit C is the number of nodes. To
an algebraic circuit C with n input nodes and m output nodes one can associate a function
ϕC : Rn → Rm, the function computed by the circuit. A decision circuit is an algebraic
circuit with only one output node returning values of 0 or 1. To each decision circuit
one can associate a real (semi)algebraic set SC = {x ∈ Rn |ϕC(x) = 1} and, conversely,
it is known that each (semi)algebraic set in Rn is realized by some decision circuit. The
decision complexity of a real (semi)algebraic set S is defined as

(7.5) C(S) = min{σ(C) |SC = S}.

It is known by [28] that there is a lower bound on the decision complexity of a (semi)algebraic
set S of the form

(7.6) C(S) ≥ 1

3
(log3 χc(S)− n− 4),

in terms of the Euler characteristic with compact support. A similar, more refined estimate
exists in terms of the sum of the Borel–Moore Betti numbers.

Instead of considering the real algebraic varieties of virtual phase transitions ZG,q(R),
one can look at the actual physical phase transitions. For a finite graph G, this means
considering, in the antiferromagnetic case, the semialgebraic set given by the intersection
of ZG,q(R) with the semialgebraic set S = {t ∈ A#E(G) | − 1 ≤ te ≤ 0}.
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