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Abstract. We study the behavior of the Chern classes of graph hypersurfaces
under the operation of deletion-contraction of an edge of the corresponding graph.
We obtain an explicit formula when the edge satisfies two technical conditions, and
prove that both these conditions hold when the edge is multiple in the graph. This
leads to recursions for the Chern classes of graph hypersurfaces for graphs obtained
by adding parallel edges to a given (regular) edge.

Analogous results for the case of Grothendieck classes of graph hypersurfaces
were obtained in previous work, and both Grothendieck classes and Chern classes
were used to define ‘algebro-geometric’ Feynman rules. The results in this paper
provide further evidence that the polynomial Feynman rule defined in terms of
the Chern-Schwartz-MacPherson class of a graph hypersurface reflects closely the
combinatorics of the corresponding graph.

The key to the proof of the main result is a more general formula for the Chern-
Schwartz-MacPherson class of a transversal intersection (see §3), which may be of
independent interest.

We also describe a more geometric approach, using the apparatus of ‘Verdier
specialization’.

1. Introduction

1.1. Graph hypersurfaces are hypersurfaces of projective space associated with the
parametric formulation of Feynman integrals in scalar quantum field theories. The
study of their geometry was prompted by certain conjectures concerning the appear-
ance of multiple zeta values in the results of computation of Feynman amplitudes,
and has been the object of intense investigation (see e.g., [BK97], [Ste98], [BB03],
[BEK06], [Blo07], [Mar10], [BY11], [Dor], [BS], and many others). In this paper
we study Chern classes of graph hypersurfaces, from the point of view of deletion-
contraction and multiple-edge formulas.

1.2. ‘Algebro-geometric Feynman rules’ are invariants of graphs which only depend
on the isomorphism class of the corresponding hypersurfaces, and have controlled
behavior with respect to unions. (This definition of course captures only a very small
portion of the quantum field theory Feynman rules; it would be very interesting to
have examples of algebro-geometric Feynman rules mirroring more faithfully their
physical counterparts.) Matilde Marcolli and the author note in [AM11a] that the
classes of graph hypersurfaces in the Grothendieck ring of varieties satisfy this basic
requirement; Grothendieck classes of graph hypersurfaces have been studied rather
thoroughly, given their relevance to the conjectures mentioned above. In the same
paper we produced a different example of algebro-geometric Feynman rules, with
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values in Z[t], based on the Chern classes of graph hypersurfaces. The definition of
this polynomial invariant CΓ(t) will be recalled below; its main interest lies in the
fact that it carries intersection-theoretic information about the singularities of graph
hypersurfaces. For example, the (push-forward to projective space of the) Segre class
of the singularity subscheme of a hypersurface may be recovered from the polynomial
Feynman rules. The Milnor number of the hypersurface (in its natural generalization
to arbitrary hypersurfaces as defined by Parusiński, [Par88]) is but one piece of the
information carried by CΓ(t).

The fact that the invariant satisfies the basic requirements of algebro-geometric
Feynman rules is proved in [AM11a], Theorem 3.6, and is substantially less straightfor-
ward than the corresponding fact for Grothendieck classes. Other properties of CΓ(t)
are listed in [AM11a], Proposition 3.1.

Grothendieck classes of graph hypersurfaces also satisfy a ‘deletion-contraction’
relation: this fact has been pointed out by several authors, see e.g., [Ste98], [BEK06],
[AM11b]. The purpose of this article is to examine deletion-contraction relations
for Chern classes of graph hypersurfaces, in terms of the polynomial Feynman rules
mentioned above. As in [AM11a], it is natural to expect the situation for Chern
classes to be substantially subtler than for classes in the Grothendieck ring, and in
fact our first guess concerning a double-edge formula for Chern classes, based on
somewhat extensive evidence computed for small graphs, turns out to be incorrect as
stated in Conjecture 6.1 in [AM11b]. Nevertheless, we will be able to show here that
these invariants do satisfy the expected general structure underlying multiple-edge
formulas examined in [AM11b].

1.3. The graph hypersurface associated with a graph Γ is the zero-set of the polyno-
mial

ΨΓ =
∑
T

∏
e6∈T

te

where T ranges over the maximal spanning forests of Γ. This is a homogeneous
polynomial in variables te corresponding to the edges e of Γ, and its zero set may be
viewed in Pn−1 or An, depending on the context.

Graph hypersurfaces are singular in all but the simplest cases, and in this article
(as in [AM11a]) we employ the theory of Chern-Schwartz-MacPherson (CSM) classes.
CSM classes are defined for arbitrary varieties, and agree with the ordinary (total
homology) Chern class of the tangent bundle when evaluated on nonsingular varieties.
The reader may refer to §2.2-3 of [AM09] for a quick summary of this theory, which has
a long and well-documented history. CSM classes can be viewed as a generalization
of the topological Euler characteristic: indeed, the degree of the CSM class of a
variety is its Euler characteristic, and to some extent CSM classes maintain the same
additive and multiplicative behavior of the Euler characteristic. In this respect they
are similar in flavor to the Grothendieck class. They also offer a direct measure of
‘how singular’ a variety is, by comparison with other characteristic classes of singular
varieties, see e.g. §2.2 in [AM09] and references therein.

CSM classes are in fact defined for constructible functions on a variety ([Mac74]),
and what we call the CSM class of X is the class cSM(11X) of the constant function 11X .
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As our objects of study are hypersurfaces of projective space, we view CSM classes as
elements of the Chow group of projective space, i.e., as polynomials in the hyperplane
class. The polynomial Feynman rules mentioned above are closely related to the CSM
class of the complement of a graph hypersurface XΓ ⊆ Pn−1: if a graph Γ with n
edges is not a forest, then the polynomial Feynman rules CΓ(t) are determined by the
relation

cSM(11Pn−1rXΓ
) =

(
HnCΓ(1/H)

)
∩ [Pn−1] ,

where H denotes the hyperplane class; see Prop. 3.7 in [AM11a].

1.4. In graph theory, deletion-contraction formulas express invariants for a graph Γ
directly in terms of invariants for the ‘deletion’ graph Γr e obtained by removing an
edge e, and the ‘contraction’ graph Γ/e obtained by contracting the same edge. Tutte-
Grothendieck invariants are the most general invariants with controlled behavior with
respect to deletion-contraction; an impressive list of important graph invariants are of
this kind, ranging from chromatic polynomials to partition functions for Potts models.
In fact, these invariants may be viewed as ‘Feynman rules’ in a sense closely related
to the one adopted in [AM11a], see Prop. 2.2 in [AM11b].

In [AM11b] we show that the invariant arising from the Grothendieck class satisfies
a weak form of deletion-contraction (which involves ‘non-combinatorial’ terms); and
that enough of this structure is preserved to trigger combinatorial ‘multiple-edge’
formulas. More precisely, let U(Γ) = [An − X̂Γ] denote the Grothendieck class of the
complement of the affine graph hypersurface, and denote by Γ2e the graph obtained
by doubling the edge e in Γ. If e is neither a bridge nor a looping edge, then ([AM11b],
Proposition 5.2)

(*) U(Γ2e) = (T− 1)U(Γ) + TU(Γ r e) + (T + 1)U(Γ/e) ,

where T is the class of A1 r A0. Note that (*) holds without further requirements
on e. (Simpler formulas hold in case e is a bridge or a looping edge.)

1.5. As we will show in this paper, the situation concerning the polynomial invari-
ant CΓ(t) recalled above is somewhat different. As in the case of the Grothendieck
class, this invariant does not satisfy on the nose a deletion-contraction relation (this
was already observed in [AM11b], Prop. 3.2). Unlike in the case of the invariant U(Γ),
however, even a weaker non-combinatorial form of deletion-contraction only holds un-
der special hypotheses on the edge e. The main result of this article is the determina-
tion of conditions on a pair (Γ, e) such that a sufficiently strong deletion-contraction
relation (and corresponding consequences, such as multiple-edge formulas) holds for
the edge e of Γ. These conditions are presented in §2; somewhat surprisingly, they
appear to hold for ‘many’ graphs. One of them can be formulated as follows. Assume
that e is neither a bridge nor a looping edge of Γ. We may consider the polynomial
ΨΓre for the deletion Γ r e. The condition is then that ΨΓ belongs to the Jacobian
ideal of ΨΓre. The smallest counterexample to this requirement appears to be the
graph
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e

with respect to the vertical edge. We find it surprising that this condition is satisfied
as often as it is.

The second condition is more technical. See §2 for a discussion of both conditions.
Once a (weak) deletion-contraction formula is available, one should expect com-

binatorial multiple-edge formulas to hold. And indeed, we will prove the following
analogue of (*) for the Chern class Feynman rules:

Theorem 1.1. If the conditions on (Γ, e) mentioned above are satisfied, then

CΓ2e(t) = (2t− 1)CΓ(t)− t(t− 1)CΓre(t) + CΓ/e(t) .

This is the formula that was proposed in [AM11b], Conjecture 6.1, on the basis
of many examples computed explicitly in [Str11]. However, the additional conditions
on (Γ, e) had not been identified at the time; the formula proposed in [AM11b] for
the class of a triangle with doubled edges is incorrect, and will be corrected here in
Example 5.6.

1.6. As mentioned above, we do not have a sharp combinatorial characterization on
(Γ, e) ensuring that the technical hypotheses needed for Theorem 1.1 are satisfied.
However, there is one important case in which we are able to prove that these condi-
tions are indeed satisfied: the conditions hold if e is itself a multiple edge, i.e., if the
endpoints of e are adjacent in Γr e. Thus, Theorem 1.1 implies that the polynomial
Feynman rules satisfy essentially the same recursive structure for multiple-edge for-
mulas that is studied in general in [AM11b], §6. If e is neither a bridge nor a looping
edge of Γ, then

CΓ(m+3)(t) = (3t− 1)CΓ(m+2)(t)− (3t2 − 2t)CΓ(m+1)(t) + (t3 − t2)CΓ(m)(t) .

In a sense, this recursion is ‘nicer’ than the corresponding one for Grothendieck classes
(see the comments following Lemma 5.3).

1.7. This paper is organized as follows. In §2 we state precisely the technical con-
ditions mentioned above, in the case of graph hypersurfaces, providing a few simple
examples to illustrate them. This is also done in the hope that others may iden-
tify sharp combinatorial versions of these conditions. We prove (Lemma 2.3) that
the conditions hold for (Γ, e) if e has parallel edges in Γ, and describe one class of
examples in which the conditions do not (both) hold. In §3 we discuss a formula
for the CSM class of a transversal intersection, needed for the application to graph
hypersurfaces presented here; this section can be read independently of the rest of the
paper. In §4 we apply these formulas to the case of graph hypersurfaces, obtaining
the deletion-contraction relation (Theorem 4.7). In §5 we apply this relation to ob-
tain multiple-edge formulas as mentioned above (Theorem 5.2, Lemma 5.3). In §6 we
describe a different and more ‘geometric’ (but in practice less applicable) approach
to the main deletion-contraction formula, using Verdier’s specialization.
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2. Two technical conditions

We work over an algebraically closed field k of characteristic zero.

2.1. As in §1, Γ denotes a finite graph, with n edges; we allow looping edges as well
as parallel edges. We associate with each edge e a variable te, and we consider the
graph polynomial

ΨΓ =
∑
T

∏
e6∈T

te ,

where T ranges over the maximal spanning forests of Γ. (Note: According to this def-
inition, the polynomial for a graph is the product of the polynomials for its connected
components.)

We denote by XΓ the projective hypersurface defined by ΨΓ = 0. We present in
this section two conditions for a pair (Γ, e), where e is an edge of Γ, encoding some
geometric features of XΓ. Finding more transparent, combinatorial versions of these
conditions is an interesting problem.

We will say that an edge e of Γ is regular if e is neither a bridge nor a looping edge,
and further Γ r e is not a forest. We will essentially always assume that e is regular
on Γ; non-regular edges are easy to treat separately (see e.g., §4.7).

If e is a regular edge of Γ, then

ΨΓ = teΨΓre + ΨΓ/e ;

this is well-known, and easily checked. As ΨΓre is not a forest, deg ΨΓre > 0; in
this case a point p of XΓ is determined by setting all variables except te to 0. We

denote by X̃Γ the blow-up of XΓ at p, and by E the exceptional divisor of this blow-

up. The variety X̃Γ may be realized as a hypersurface in the blow-up of Pn−1 at p.
Denoting by D the exceptional divisor of this latter blow-up, E is the intersection

D ∩ X̃Γ. Heuristically, the conditions we will present below amount to requiring this
intersection to be sufficiently transversal.

2.2. Assume e is regular. Both XΓre and XΓ/e are hypersurfaces of a projective space
Pn−2 with homogeneous coordinates corresponding to the edges of Γ other than e. The
first condition on the pair (Γ, e) may be expressed as a relation between them:

(Condition I) ΨΓ/e ∈ (∂ΨΓre) .

Here, (∂ΨΓre) denotes the ideal of partial derivatives of ΨΓre, defining the singular-
ity subscheme ∂XΓre of XΓre. The condition essentially (that is, up to saturating
(∂ΨΓre)) amounts to requiring ∂XΓre to be a subscheme of XΓ/e.

It is of course easy to verify whether this condition holds on any given graph, by
employing a symbolic manipulation package such as Macaulay2 ([GS]). The following
examples illustrate a few cases, showing in particular that the condition depends on
global features of the graph.



6 PAOLO ALUFFI

Example 2.1. For the graph

condition I is satisfied with respect to all edges. For the wheel

condition I is satisfied with respect to the spokes, and it is not satisfied with respect
to the rim edges.

Condition I is satisfied with respect to all edges for the graph

and with respect to all edges except e for the graph

e

This is the ‘smallest’ example not satisfying condition I. y

2.3. The second condition we will consider is more technical than condition I. Let e
be a regular edge on Γ, and consider the blow-up introduced in §2.1. For any point

q of E ∩ ∂X̃Γ, let I be the ideal of ∂X̃ at q, and denote by u an equation for E at q.
The second condition we must consider on the pair (Γ, e) is

(Condition II) For all q ∈ E ∩ ∂X̃Γ, u is a non-zero-divisor modulo Ij for j � 0 .

Again, checking this condition on any given graph is possible with a tool such
as Macaulay2, although computing power will limit the size of graphs that can be
analyzed in practice. (Note that, by Artin-Rees, only finitely many j need be checked.)

Example 2.2. Condition II is verified for the graph
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with respect to all edges, while it does not hold for

e

with respect to e. (Both assertions may be verified with Macaulay2; also, see §2.6 for
a generalization.) y

2.4. We would be interested in purely combinatorial interpretations in terms of Γ
and e of the conditions presented in §2.2 and §2.3; it is not even clear to us that such
sharp characterizations exist. However, we can provide one combinatorial situation in
which both conditions are satisfied, and this situation is at the root of the application
to multiple-edge formulas in §5.

Lemma 2.3. Let Γ be a graph, and let e be a regular edge that has parallel edges in Γ.
Then both conditions I and II are verified for (Γ, e).

Proof. Let f be an edge parallel to e. We first assume that f is not a bridge in Γr e.
Then

ΨΓ = teΨΓre + ΨΓ/e = te(tfΨΓ′ + ΨΓ′′) + tfΨΓ′′

where Γ′ = (Γ r e) r f and Γ′′ = (Γ/e)/f .

Γ Γ

e f

Γ

Condition I. Among the partials of ΨΓre is ΨΓ′ = ∂ΨΓre

∂tf
. Since ΨΓre is homogeneous

(and we are in characteristic zero), it is in the ideal of partials (∂ΨΓre). It follows
that so is ΨΓ′′ , and as a consequence ΨΓ/e = tfΨΓ′′ ∈ (∂ΨΓre) as needed.

Condition II. Since the condition only depends on the part of X̃Γ over p, it is
unaffected by analytic changes of coordinates at p. First, we can center an affine
chart at p by setting te = 1, and the equation of XΓ in this chart is

tfΨΓ′ + (1 + tf )ΨΓ′′ = 0 .

Next, we can set tf = τ
1−τ , i.e., τ =

tf
1+tf

; this does not affect the geometry of XΓ

near p (where tf = 0). In coordinates τ, tei , the equation for XΓ is

τΨΓ′ + ΨΓ′′ = 0 .

This equation is homogeneous, so XΓ is a cone with vertex at p in these coordinates.

It is then clear that condition II holds: the equations of X̃Γ in the standard charts do

not depend on the variable u defining the exceptional divisor, so at each q ∈ E ∩∂X̃Γ
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the ideal I has a set of generators independent of u, and it follows that u is a non-
zero-divisor modulo Ij for all j.

This concludes the proof in the case in which f is not a bridge in Γ r e. If f is a
bridge in Γ r e, then ΨΓ′ = ΨΓ′′ , and one verifies easily that

ΨΓ = (te + tf )ΨΓ′ .

Since ΨΓre = ΨΓ′ in this case, it is immediate that ΨΓ ∈ (∂ΨΓre). Further, XΓ has
equation

ΨΓ′ = 0

in the affine chart te = 1, and near p. Again this is a cone with vertex at p, so
condition II holds by the same argument used above. �

2.5. We now discuss more in detail the geometric meaning of the two conditions
presented above. This will also clarify the sense in which the two conditions may be
interpreted as transversality statements.

Claim 2.4. If Condition I is satisfied, then ∂E = E ∩ ∂X̃Γ.

Proof. Recall that X̃ denotes the blow-up of X at the point p obtained by setting te
to 1 and all other coordinates t1, . . . , tn−1 to 0 (where n is the number of edges of Γ,
and e is assumed to be a regular edge). Working in the affine chart An−1 centered at
p, X has equation

ΨΓre + ΨΓ/e = 0 ,

where the summands are homogeneous polynomials of degree d−1 and d respectively,
with d = b1(Γ). We can cover the blow-up of An−1 at p with standard coordinate
patches; in one of them we have coordinates (u1, . . . , un−2, u) so that the blow-up map
is given by 

t1 = uu1

. . .

tn−2 = uun−2

tn−1 = u .

The equation of X̃ in this chart is then

ΨΓre(u1, . . . , un−2, 1) + uΨΓ/e(u1, . . . , un−2, 1) = 0 ,

and u = 0 is the equation of the exceptional divisor in this chart; thus, E has ideal

(u,ΨΓre(u1, . . . , un−2, 1))

in this chart. Note that the exceptional divisorD of the blow-up of An−1 is a projective
space Pn−2. The above computation (together to the same in the other patches) shows
that E ∼= XΓre, a hypersurface in D ∼= Pn−2.

This computation also shows that ∂E = ∂XΓre has ideal (∂ΨΓre). In the repre-
sentative patch chosen above, this is

(†)
(
u, ΨΓre,

∂ΨΓre

∂ui

)
i=1,...,n−2

.
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On the other hand, in the same patch, ∂X̃Γ has ideal(
ΨΓre + uΨΓ/e, ΨΓ/e,

∂ΨΓre

∂ui
+ u

∂ΨΓ/e

∂ui

)
i=1,...,n−2

and hence E ∩ ∂X̃Γ has ideal

(‡)
(
u, ΨΓre, ΨΓ/e,

∂ΨΓre

∂ui

)
i=1,...,n−2

.

Comparing (†) and (‡) (and the analogous ideals in all patches covering the blow-up),
we see that the ideals agree if ΨΓ/e ∈ (∂ΨΓre), that is, if Condition I holds. This
verifies Claim 2.4. �

Remark 2.5. The picture we have in mind is that of the nonsingular exceptional divisor

D ∼= Pn−2 intersecting X̃ along E. According to Claim 2.4, Condition I implies that

the intersection E = D ∩ X̃Γ is only singular along the intersection of D with the

singularity subscheme of X̃Γ, as would be expected if D met X̃Γ transversally. y

In order to interpret Condition II, we have to introduce the blow-up µ : X̂Γ → X̃Γ

of X̃Γ along its singularity subscheme ∂X̃Γ. In this blow-up we may consider two

subschemes: the proper transform Ê (isomorphic to the blow-up of E along E ∩ ∂X̃)
and the inverse image µ−1(E).

Claim 2.6. If Condition II holds, then Ê = µ−1(E).

Proof. Indeed, assume Condition II holds. Then letting I, J denote respectively the

ideal sheaves of ∂X̃Γ and E in X̃Γ, Condition II implies J ∩ Ij = J · Ij for j � 0,
and hence the natural morphism

Ij

J · Ij
→ I

j + J
J

is an isomorphism for j � 0. It follows that the natural inclusion

ProjO
X̃

(⊕
j

Ij + J
J

)
= B`E∩∂X̃E ⊆ µ−1(E) = ProjO

X̃

(⊕
j

Ij

J · Ij

)
is an equality, verifying Claim 2.6. �

Remark 2.7. By the same token, the proper transform of the divisor D equals its

inverse image in the blow-up along ∂X̃Γ. This is the behavior expected if the (non-
singular) hypersurface D meets the center of a blow-up transversally, so Condition II,
like Condition I, appears to express a measure of transversality of the intersection of

D with X̃. y

Remark 2.8. The two conditions differ: for example, Condition II does not hold for
the second graph displayed in Example 2.2 with respect to edge e, while Condition I
does hold in this case.

However, we do not know of examples of graphs for which Condition II holds and
Condition I does not. It is conceivable that such examples exist (cf. §3.3). y
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2.6. Finally, we discuss one case in which conditions I and II do not both hold. If a
graph is obtained by taking the union of two graphs Γ′, Γ′′, joined at a vertex, then
its graph polynomial equals the product ΨΓ′ ·ΨΓ′′ . If neither Γ′ nor Γ′′ is a forest, we
say that the graph is ‘disjoinable’; note that the graph hypersurface of a disjoinable
graph is singular in codimension 1 (We do not know whether the converse holds.)

Claim 2.9. Let Γ be a graph such that XΓ is nonsingular in codimension 1. Let e be
an edge such that Γ r e is disjoinable. Then at least one of conditions I and II fails
for (Γ, e).

For example, the second graph drawn in Example 2.2 is of this type, with respect
to the bottom edge. (The first is not, since while removing the bottom edge does
produce the join of two graphs, one of these is a tree.)

Proof. If condition I does not hold, we are done; so we may assume that condition I
holds, and we will show that condition II does not hold in this case.

We use notation as in the discussion following the statement of Claim 2.4. After
setting te to 1, we have

ΨΓ = ΨΓ′ ·ΨΓ′′ + ΨΓ/e

by assumption, where ΨΓ′ and ΨΓ′′ are graph polynomials of degree ≥ 1. In the chart

of Ãn−1 with coordinates (u1, . . . , un−2, u), the equation of X̃ is

ΨΓ′(u1, . . . , un−2, 1) ·ΨΓ′′(u1, . . . , un−2, 1) + uΨΓ/e(u1, . . . , un−2, 1) = 0 ,

and E has ideal

(u,ΨΓ′(u1, . . . , un−2, 1) ·ΨΓ′′(u1, . . . , un−2, 1)) .

In particular, the singularity subscheme ∂E of E contains the locus Z with ideal
(u,ΨΓ′(u1, . . . , un−2, 1),ΨΓ′′(u1, . . . , un−2, 1)). As we are assuming that condition I

holds, we have that ∂E = E ∩ ∂X̃ (cf. Claim 2.4); in particular, Z ⊆ ∂X̃. On the

other hand, note that Z has codimension 1 in E, hence codimension 2 in X̃; since
X is nonsingular in codimension 1 and Z ⊆ E, Z must consist of a collection of

components of ∂X̃. But then E contains components of ∂X̃, and it follows that the
condition in Claim 2.6 is not verified. Hence (Γ, e) does not satisfy condition II. �

3. CSM classes of transversal intersections

3.1. In this section we discuss a formula expressing the Chern-Schwartz-MacPherson
class of the intersection of a variety X with a hypersurface D, in terms of cSM(X) and
of the class of D. This section can be read independently of the rest of the paper.

Our template is the transversal intersection of nonsingular varieties. Let V be a
nonsingular variety, and let D, X be nonsingular subvarieties of V . Assume that
D is a hypersurface, and that D and X meet transversally. In this case D ∩ X is
a nonsingular hypersurface of X, and OX(D ∩ X) = OV (D)|X , hence (harmlessly
abusing notation)

c(T (D ∩X)) ∩ [D ∩X] =
c(TX)

c(NDV )
∩ [D ∩X] =

D

1 +D
∩ c(TX) ∩ [X] ,
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i.e.,

cSM(D ∩X) =
D

1 +D
∩ cSM(X) .

(This equality holds in A∗X.) We are interested in generalizing this formula to the
case in which X is possibly singular.

3.2. The key question is, of course, what ‘transversal’ should mean in the singular
case. The conditions presented in §2 are precisely concocted to make this requirement
precise.

We assume V is a nonsingular variety, D and X are reduced hypersurfaces of V ,
and D is nonsingular. We denote by ∂X the singularity subscheme of X, defined by

the ideal of partial derivatives of a local equation. We denote by ρ : Ṽ → V the

blow-up along ∂X. Further, D̃ denotes the proper transform of D in Ṽ .

Theorem 3.1. Assume that

(1) ∂(D ∩X) = D ∩ ∂X;

(2) D̃ = ρ−1D.

Then

cSM(D ∩X) =
D

1 +D
∩ cSM(X)

in A∗X.

In this proof we will make use of the following notation: for a class α = ⊕iαi
indexed by codimension in A∗V , and a line bundle L , we let

α∨ =
∑
i

(−1)iαi and α⊗V L =
∑
i

αi

c(L )i
.

Basic properties of this notation are listed in [Alu99], §1.4.

Proof. Our main tool is Theorem I.4 in [Alu99], which relates the Chern-Schwartz-
MacPherson class of a hypersurface with the Segre class of its singularity subscheme.
Viewing D ∩X as a hypersurface in D, this result yields

cSM(D ∩X) = c(TD)∩
(
s(D ∩X,D) + c(O(X))−1 ∩ (s(∂(D ∩X), D)∨ ⊗D O(X))

)
;

by the same token,

cSM(X) = c(TV ) ∩
(
s(X, V ) + c(O(X))−1 ∩ (s(∂X, V )∨ ⊗V O(X))

)
.

It follows that
D

1 +D
∩ cSM(X) = c(TD) ∩ (s(D ∩X,D) +D · c(O(X))−1 ∩ (s(∂X, V )∨ ⊗V O(X)) .

Therefore, the formula stated in Theorem 3.1 would follow from the equality

D · c(O(X))−1 ∩ (s(∂X, V )∨ ⊗V O(X)) = c(O(X))−1 ∩ (s(∂(D ∩X), D)∨ ⊗D O(X)) ,

and hence from

(D · s(∂X, V ))∨ ⊗D O(X)) = s(∂(D ∩X), D)∨ ⊗D O(X) ,

and finally from
D · s(∂X, V ) = s(∂(D ∩X), D)
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(in A∗X). This reduces the proof of Theorem 3.1 to the following claim:

Claim 3.2. Under hypotheses (1) and (2) from the statement of Theorem 3.1,

s(∂(D ∩X), D) = D · s(∂X, V )

in A∗(D ∩X).

To prove this, consider the blow-up of V along ∂X, with exceptional divisor F ; the
proper transform of D may be viewed as the blow-up of the latter along D ∩ ∂X:

F

σ

� � // Ṽ

ρ

��

D̃ ∩ F

σ′

��

� � //
/�

??

��

D̃

��

/�

??

∂X �
� // V

D ∩ ∂X � � //
/�

??

D
/�

??

By the birational invariance of Segre classes,

s(∂X, V ) = σ∗s(F, Ṽ ) = σ∗

(
F

1 + F
∩ [Ṽ ]

)
s(D ∩ ∂X,D) = σ′∗s(D̃ ∩ F, D̃) = σ′∗

(
F

1 + F
∩ [D̃]

)
.

By hypothesis (2), ρ−1D = D̃, hence c1(σ∗O(D)|∂X) is represented by D̃∩F . There-
fore, by the projection formula ([Ful84], Proposition 2.3 (c))

σ′∗

(
F

1 + F
∩ [D̃]

)
= σ′∗

(
[D̃ ∩ F ]

1 + F

)
= σ′∗

(
σ∗D · F

1 + F
∩ [Ṽ ]

)
= D · s(∂X, V ) .

Thus,

s(D ∩ ∂X,D) = D · s(∂X, V ) .

Finally, D∩∂X = ∂(D∩X) by hypothesis (1), and the claim follows. This concludes
the proof of Theorem 3.1. �

3.3. Theorem 3.1 is sharp, in the sense that both hypotheses are necessary for the
stated formula to hold.

To see that the first hypothesis is needed, let X be a nonsingular quadric in P3,
and let D be a hyperplane tangent to X.

D

X

XD

U
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Then D ∩X is singular, while ∂X = ∅; in particular, (1) is not satisfied. Working in
the ambient [P3] for convenience, we have

cSM(D ∩X) = 2[P1] + 3[P0]

and
D

1 +D
∩ cSM(X) =

H

1 +H
∩ (2[P2] + 4[P1] + 4[P0]) = 2[P1] + 2[P0]

(where H is the hyperplane class). Therefore, the stated formula does not hold. Note
that the second hypothesis holds (trivially) in this case, since ∂X = ∅.

To see that the second hypothesis is also necessary, let X ⊆ P3 be a quadric cone,
and let D be a general hyperplane through the vertex.

X

DXD

U

Then (2) fails as D contains ∂X. Again working in P3, we have

cSM(D ∩X) = 2[P1] + 3[P0]

and
D

1 +D
∩ cSM(X) =

H

1 +H
∩ (2[P2] + 4[P1] + 3[P0]) = 2[P1] + 2[P0]

as before. (The coefficient of [P0] in cSM(X) is in fact irrelevant to this computation.)
Note that ∂(D ∩X) = ∂X = the vertex of the cone, and in particular ∂(D ∩X) =
D ∩ ∂X, so that the first hypothesis does hold in this case.

4. Deletion-contraction for Chern classes of graph hypersurfaces

4.1. Now we return to the case of graph hypersurfaces. Recall that Γ denotes a
graph with n edges; e denotes a regular edge of Γ; XΓ ⊆ Pn−1 is the corresponding
hypersurface. As Γ r e is not a forest, then the point p obtained by setting all
coordinates except te to zero is a point of XΓ. We will also implicitly assume that Γ
is not disjoinable, and hence that XΓ is irreducible. This may be done without loss
of generality, since CΓ is multiplicative with respect to joining graphs ([AM11a]).

We consider the blow-up P̃n−1 → Pn−1 at p, and the blow-up X̃Γ of XΓ at p realized

as the proper transform of XΓ in P̃n−1. We denote D the exceptional divisor in P̃n−1,

so that E = D ∩ X̃Γ is the exceptional divisor in X̃Γ. Applying Theorem 3.1 to this
situation yields:

Corollary 4.1. Assume conditions I and II from §2 hold for (Γ, e). Then

cSM(E) =
D

1 +D
∩ cSM(X̃Γ) .
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Indeed, as observed in §2.5, conditions I and II imply the hypotheses of Theo-
rem 3.1.

4.2. We are ready to prove a deletion-contraction formula for Chern classes of graph
hypersurfaces, subject to the conditions presented in §2.

We can view the blow-up P̃n−1 as the graph of the projection Pn−1 99K Pn−2 centered
at p:

P̃n−1

�� ��
Pn−1 // Pn−2

and likewise for X̃Γ:

X̃Γ

ν

��

π

��
XΓ

// Pn−2

This situation was briefly described in [AM11b], end of §4: ν is the blow-up of XΓ

at p, while π realizes X̃Γ as the blow-up of Pn−2 along XΓre ∩ XΓ/e; the fibers of
π are points away from XΓre ∩ XΓ/e, and P1 over over points of XΓre ∩ XΓ/e. The
exceptional divisor E of ν is a copy of XΓre in D ∼= Pn−2 (as was verified in §2.5).

The restriction of P̃n−1 → Pn−2 to D gives an isomorphism D → Pn−2.
We are aiming for formulas involving the polynomial ‘Feynman rules’ CΓ(t) carrying

the information of the CSM class of XΓ. Denote by H the hyperplane class in Pn−1.
Our main objective is essentially a formula for the polynomial∑

i≥0

ti
∫
H i ∩ cSM(XΓ)

encoding the degrees of the terms in cSM(XΓ); CΓ(t) may be computed easily from
this polynomial.

4.3. We let H, resp. h, denote the class in Pn−1, resp. Pn−2. The Chow group of X̃Γ

is generated by π∗(h) and the class E of the exceptional divisor.

Lemma 4.2. With notation as above,∑
i≥0

ti
∫
H i ∩ cSM(XΓ) = 1− χ(XΓre) +

∫
1 + tE

1− t π∗h
∩ cSM(X̃Γ) .

Proof. By the functoriality property of CSM classes,

ν∗(cSM(X̃Γ)) = ν∗(cSM(11X̃Γ
)) = cSM(ν∗11X̃Γ

) = cSM(11XΓ
+ (χ(E)− 1)11p)

= cSM(XΓ) + (χ(E)− 1)[p] .
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Using that E ∼= XΓre, and applying the projection formula, this gives∑
i≥0

ti
∫
H i ∩ cSM(XΓ) = 1− χ(XΓre) +

∑
i≥0

ν∗

(
ti
∫

(ν∗H)i ∩ cSM(X̃Γ)

)
= 1− χ(XΓre) +

∫
1

1− t ν∗H
∩ cSM(X̃Γ) ,

with the last equality due to the fact that push-forwards preserve degrees, and con-
densing the summation into a rational function for notational convenience.

Now I claim that ν∗H = E + π∗h: indeed, this may be verified by realizing H as
the class of a general hyperplane containing p. Also, note that E · ν∗H = 0: realize
H as the class of a hyperplane not containing p to verify this. Therefore,

1

1− t ν∗H
− 1 + tE

1− t π∗h
=

t2E · ν∗H
(1− t ν∗H)(1− t π∗h)

= 0 .

The statement follows. �

Lemma 4.3.∫
1

1− t π∗h
∩ cSM(X̃Γ) =

(1 + t)n−1 − 1

t
+
∑
i≥0

ti
∫
hi ∩ cSM(XΓre ∩XΓ/e) .

Proof. By the projection formula, and since push-forwards preserve degree,∫
1

1− t π∗h
∩ cSM(X̃Γ) =

∑
i≥0

ti
∫
hi ∩ π∗(cSM(X̃Γ)) .

Applying the functoriality of CSM classes:

π∗(cSM(X̃Γ)) = π∗(cSM(11X̃Γ
)) = cSM(π∗11X̃Γ

) = cSM(11Pn−2 + 11XΓre∩XΓ/e
)

= c(TPn−2) ∩ [Pn−2] + cSM(XΓre ∩XΓ/e) ,

where we have used the description of the fibers of π recalled in §4.2. As c(TPn−2) =
(1 + h)n−1 − hn−1, the statement follows. �

4.4. Combining Lemma 4.2 and 4.3, we obtain that if e is a regular edge on Γ, then∑
i≥0

ti
∫
H i ∩ cSM(XΓ) = 1− χ(XΓre) +

(1 + t)n−1 − 1

t

+
∑
i≥0

ti
∫
hi ∩ cSM(XΓre ∩XΓ/e) +

∫
t E

1− t π∗h
∩ cSM(X̃Γ) ,

The more technical conditions I and II presented in §2 play no role in this statement.
They become relevant in evaluating the last term,∫

t E

1− t π∗h
∩ cSM(X̃Γ) =

∫
tD

1− t h
∩ cSM(X̃Γ) .

here we have replaced E by D (since E = D∩ X̃, and in particular D restricts to the

class of E on X̃Γ), and π∗h with the corresponding hyperplane class h on D ∼= Pn−2.
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The class D∩ cSM(X̃Γ) is supported on E ∼= XΓre. Without further information on
e and Γ, it does not seem possible to express this class in more intelligible terms.

Lemma 4.4. Assume (Γ, e) satisfies conditions I and II. Then∫
tD

1− t h
∩ cSM(X̃Γ) = χ(XΓre) + (t− 1)

∑
i≥0

ti
∫
hi ∩ cSM(XΓre)

Proof. By Corollary 4.1,

D ∩ cSM(X̃Γ) = (1 +D) ∩ cSM(E) = (1− h) ∩ cSM(XΓre) :

here we have identified E ⊆ D with XΓre ⊆ Pn−2, and used the fact that the class of
the exceptional divisor D restricts to O(−1). The statement is obtained by applying
mindless manipulations (and noting

∫
cSM(XΓre) = χ(XΓre)):∫

tD

1− t h
∩ cSM(X̃Γ) =

∫
t(1− h)

1− t h
∩ cSM(XΓre) =

∫ (
1 +

(t− 1)

1− t h

)
∩ cSM(XΓre)

= χ(XΓre) + (t− 1)

∫
1

1− t h
∩ cSM(XΓre)

with the stated result. �

4.5. Collecting what we have proved at this point:

Proposition 4.5. Let Γ be a graph with n edges, and let e be a regular edge of Γ.
Assume (Γ, e) satisfies the conditions given in §2. Then∑

i≥0

ti
∫
H i ∩ cSM(XΓ) =

(1 + t)n−1 + (t− 1)

t

+
∑
i≥0

ti
∫
hi ∩ cSM(XΓre ∩XΓ/e) + (t− 1)

∑
i≥0

ti
∫
hi ∩ cSM(XΓre)

This statement improves considerably once it is expressed in terms of the ‘polyno-
mial Feynman rules’ introduced in [AM11a], §3; we take this as a further indication
that the polynomial captures interesting information about Γ. The polynomial essen-
tially evaluates the CSM class of the complement of XΓ in projective space. We will
denote the polynomial corresponding to Γ by CXΓ

(t), since it depends directly on the
graph hypersurface (this makes it an algebro-geometric Feynman rule), and since it
can be defined for any subset of projective space.

Lemma 4.6. If Γ is not a forest and has n edges, then

CXΓ
(t) = (1 + t)n − 1−

∑
i≥0

ti+1

∫
H i ∩ cSM(XΓ) .

This is obtained from Proposition 3.7 of [AM11a], by applying simple manipula-
tions. If Γ is a forest, then XΓ is empty, and the corresponding polynomial is a power
of (t+ 1), cf. Proposition 3.1 in [AM11a].
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Consistently with the expression in Lemma 4.6, we set

CZ(t) = (1 + t)n−1 − 1−
∑
i≥0

ti+1

∫
hi ∩ cSM(Z)

for every nonempty subscheme Z ⊆ Pn−2, where h denotes the hyperplane class. Note
that CZ(t) depends on the dimension of the space containing Z; this is always clear
from the context. If Z ⊂ Pn−1 is empty, we set CZ(t) = (1 + t)n−1.

Theorem 4.7 (Deletion-contraction). Let e be a regular edge of Γ. Assume (Γ, e)
satisfies both conditions I and II given in §2. Then

CXΓ
(t) = CXΓre∩XΓ/e

(t) + (t− 1)CXΓre
(t) .

This is the form taken by the formula in Proposition 4.5, once it is written using
the notation recalled above. On the right-hand side, both XΓre and XΓre ∩XΓ/e are
viewed as subschemes of Pn−2.

The deletion-contraction formula of Theorem 4.7 holds also if Γ r e is a forest,
provided that CXΓre∩XΓ/e

(t) and CXΓre
(t) are both taken to equal (t+ 1)n−1.

Remark 4.8. Differentiating the formula in Theorem 4.5 and setting t to 0 gives

C ′XΓ
(0) = C ′XΓre∩XΓ/e

(0) + CXΓre
(0)− C ′XΓre

(0) .

The value of the derivative at 0 equals the Euler characteristic of the complement
([AM11a], Proposition 3.1); and as Γ r e is not a forest, then CXΓre

(0) = 0. In this
case,

n− χ(XΓ) = n− 1− χ(XΓre ∩XΓ/e)− n+ 1 + χ(XΓre) ,

i.e.,
χ(XΓ) = n+ χ(XΓre ∩XΓ/e)− χ(XΓre) .

Remarkably, this formula holds as soon as e is a regular edge on Γ, as verified in
[AM11b], (3.20). In fact ([AM11b], Theorem 3.8) this formula follows from an analo-
gous formula at the level of Grothendieck classes which holds if e is a regular edge on Γ,
regardless of whether conditions I and II are verified. We find it very mysterious that
these conditions should affect the CSM classes involved in the deletion-contraction
formula, but not affect their zero-dimensional terms. y

4.6. While the argument proving the deletion-contraction formula requires the tech-
nical conditions I and II to hold for (Γ, e), there could be a legitimate doubt that
the formula itself may hold for more general edges; after all, deletion-contraction for
Grothendieck classes does hold in a more general situation (cf. Remark 4.8). The
example that follows shows that the formula does not necessarily hold if the second
condition fails.

Example 4.9. Condition II fails for the graph

1

t2 t3

t4

t5

t
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with respect to the bottom edge e (Example 2.2; also cf. §2.6). Labeling the edges
by coordinates as indicated, the graph polynomial is

ΨΓ = t5(t1 + t2)(t3 + t4) + (t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4) .

The corresponding hypersurface XΓ is singular along two nonsingular conics meeting

at the point p = (0 : 0 : 0 : 0 : 1). The blow-up X̃Γ is singular along the proper
transforms of these two conics, and along a curve contained in the exceptional divisor.

As the exceptional divisor contains a component of ∂X̃Γ, it is clear that condition II
is not satisfied, cf. Claim 2.6. It is equally straightforward to verify that condition I
is satisfied in this case.

Since XΓ is nonsingular in codimension 1, its codimension-0 and 1 terms must agree
with the Chern class of its virtual tangent bundle, i.e., with the class for a nonsingular
hypersurface of degree 3 in P4:

cSM(XΓ) = 3[P3] + 6[P2] + . . . .

This observation suffices to determine

CXΓ
(t) = t5 + 2 t4 + 4 t3 + l.o.t. .

Deletion and contraction:

1

t2 t3

t4
t1 t2 t3 t4

t

have polynomials

ΨΓre = (t1 + t2)(t3 + t4)

ΨΓ/e = t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 .

We have

CXΓre
(t) = t2(t+ 1)2 :

this is easy to obtain directly, as XΓre consists of the union of two planes in P3; and
it also follows from the formularium in Proposition 3.1 and Theorem 3.6 of [AM11a].
As for XΓre ∩ XΓ/e, this is easily checked to consist of three lines in P3, meeting at
two points.

X
Γ e

Γ
X

e

U

X
Γ e

It follows that cSM(XΓre ∩XΓ/e) = 3([P1] + 2[P0])− 2[P0] = 3[P1] + 4[P0], and hence

CXΓre∩XΓ/e
(t) = t4 + 4 t3 + 3 t2 .
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Thus, we see that

CXΓre∩XΓ/e
(t) + (t− 1)CXΓre

(t) = t5 + 2 t4 + 3 t3 + 2 t2 6= CXΓ
(t) ,

verifying that the formula in Theorem 4.7 need not hold if condition II fails.
A more thorough analysis shows that CXΓ

(t) = t5 + 2 t4 + 4 t3 + 2 t2, so that the
underlined coefficient is the only discrepancy. In fact, this may be checked by using
Theorem 4.7, using deletion-contraction with respect to a diagonal edge e′; both
conditions I and II hold in this case by Lemma 2.3. Deletion and contraction are:

The reader can check that the graph hypersurface for the deletion is a quadric cone
in P3, and hence cSM(XΓre′) = 2[P2] + 4[P1] + 3[P0]. The intersection XΓre′ ∩ XΓ/e′

consists of the union of a nonsingular conic and a line meeting at a point, hence
cSM(XΓre′ ∩XΓ/e′) = 3[P1] + 3[P0]. This yields

CXΓre′
(t) = t4 + 2 t3 + 2 t2 + t , CXΓre′∩XΓ/e′

(t) = t4 + 4 t3 + 3 t2 + t

and hence

CXΓ
(t) = (t4 + 4 t3 + 3 t2 + t) + (t− 1)(t4 + 2 t3 + 2 t2 + t) = t5 + 2 t4 + 4 t3 + 2 t2

as claimed, by Theorem 4.7. y

As pointed out in Remark 2.8, we do not know an example for which the first
condition fails while the second one holds. We list the relevant classes in an example
for which both conditions fail.

Example 4.10. Condition I fails for the graph

3

t5 t6
t7

t2

t1

t4t

with respect to the vertical edge e (Example 2.1). Labeling the edges by coordinates
as indicated, the graph polynomial is

ΨΓ = t7t6t4t2 + t7t6t4t1 + t7t6t3t2 + t7t6t3t1 + t7t6t1t2 + t7t5t4t2 + t7t5t4t1 + t7t5t3t2

+ t7t5t3t1 + t7t5t1t2 + t7t4t1t2 + t7t1t2t3 + t6t5t4t2 + t6t5t4t1 + t6t5t3t2 + t6t5t3t1

+ t6t5t1t2 + t6t4t3t2 + t6t4t3t1 + t6t1t2t3 + t5t4t3t2 + t5t4t3t1 + t5t4t1t2 + t1t2t3t4 ,

and the corresponding XΓ is a hypersurface of degree 4 in P6. The computation of the
terms needed to verify the formula in Theorem 4.7 for this case is more involved than
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in Example 4.9, and we omit the details. (The Macaulay2 procedure accompanying
[Alu03] was used for these computations.) We obtain:

cSM(XΓ) = 4[P5] + 12[P4] + 26[P3] + 29[P2] + 21[P1] + 7[P0] ,

yielding

CXΓ
(t) = t7 + 3 t6 + 9 t5 + 9 t4 + 6 t3 .

As for deletion and contraction:

cSM(XΓre) = 3[P4] + 9[P3] + 14[P2] + 14[P1] + 7[P0]

cSM(XΓre ∩XΓ/e) = 6[P3] + 10[P2] + 13[P1] + 7[P0]

from which

CXΓre
(t) = t6 + 3 t5 + 6 t4 + 6 t3 + t2 − t

CXΓre∩XΓ/e
(t) = t6 + 6 t5 + 9 t4 + 10 t3 + 2 t2 − t

and therefore

CXΓre∩XΓ/e
(t) + (t− 1)CXΓre

(t) = t7 + 3 t6 + 9 t5 + 9 t4 + 5 t3 .

This differs from C(XΓ) by t3, and shows that the formula in Theorem 4.7 need not
hold if condition I is not satisfied. (But note that Condition II also fails in this
example.) y

4.7. If e is not a regular edge of Γ, then the corresponding deletion-contraction for-
mulas are trivial consequences of properties of CXΓ

(t) listed in [AM11a], §3 (especially
Proposition 3.1).

• If e is a bridge in Γ, then

CXΓ
(t) = (t+ 1)CXΓre

(t) .

• If e is a looping edge in Γ, then

CXΓ
(t) = t CXΓre

(t) .

If e is a looping edge, then Γr e = Γ/e, and hence XΓre ∩XΓ/e = XΓre. Thus, the
formula given above matches the formula obtained by applying Theorem 4.7. The
formula in Theorem 4.7 is also trivially satisfied if Γ r e is a forest.

The formula for bridges has a transparent geometric explanation. If e is a bridge,
then ΨΓ = ΨΓre; thus XΓ is a cone over XΓre, and the formula given above follows
easily from this fact.
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5. Multiple-edge formulas

5.1. Deletion-contraction formulas may be used to obtain formulas for the operation
of ‘multiplying edges’, i.e., inserting edges parallel to a given edge of a graph. If e is an
edge of a graph Γ and m ≥ 1, we will denote by Γme the graph obtained by replacing e
with m edges connecting the same vertices. (In particular, Γ = Γe.) Multiple-edge
formulas are obtained in [AM11b], §5, for the case of the Grothendieck class. As
in Theorem 4.7, the deletion-contraction formula involves a ‘non-combinatorial’ term
(the Grothendieck class of the intersection XΓre ∩ XΓ/e). By virtue of a propitious
cancellation, the resulting formula for doubling an edge only relies on combinatorial
data:

U(Γ2e) = (T− 1)U(Γ) + TU(Γ r e) + (T + 1)U(Γ/e) .

([AM11b], Proposition 5.2), provided e is a regular edge on Γ.
In this section we show that a similar situation occurs for the CSM invariant.

Again, the deletion-contraction formula (Theorem 4.7) involves a summand which we
are not able to interpret directly in combinatorial terms (that is, CXΓre∩XΓ/e

(t)); and
again a fortunate cancellation leads to a purely combinatorial formula for doubling
edges. We will prove:

Theorem 5.1. Let Γ be a graph, and let e be a regular edge of Γ such that (Γ, e)
satisfies conditions I and II of §2. Then

CΓ2e(t) = (2t− 1)CΓ(t)− t(t− 1)CΓre(t) + CΓ/e(t)

(Here we write CΓ(t) for CXΓ
(t), etc.)

By Lemma 2.3, this formula applies, in particular, if e is already multiple in Γ.
This fact will be used in the proof of Theorem 5.1, and will lead to multiple-edge
formulas in §5.3.

The formula also holds if e is a looping edge, interpreting CΓ/e(t) to be 0 in this
case (cf. §4.7).

5.2. Proof of Theorem 5.1. By Theorem 4.7, under the hypothesis of the theorem,
we have

CXΓ
(t) = CXΓre∩XΓ/e

(t) + (t− 1)CXΓre
(t) ,

CXΓ2e
(t) = CXΓ∩XΓ2e/e

′ (t) + (t− 1)CXΓ
(t) ,

where e′ denotes the edge parallel to e in Γ2e. Indeed, the first formula holds as
(Γ, e) satisfies conditions I and II by hypothesis, and the second formula holds since
(Γ2e, e

′) satisfies conditions I and II by Lemma 2.3; note that Γ2e r e′ = Γ. The
theorem will be obtained by comparing the two intersections XΓre∩XΓ/e ⊆ Pn−2 and
XΓ ∩XΓ2e/e′ ⊆ Pn−1 (where n = number of edges of Γ).

Let te, te′ be the variables corresponding to the two parallel edges e, e′ in Γ2e, and
let t1, . . . , tn−1 be the variables corresponding to the other edges. We have

ΨΓ2e = te′ΨΓ + ΨΓ2e/e′ .

The graph Γ2e/e
′ may be obtained by attaching a looping edge marked e at the vertex

obtained by contracting e in Γ:
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/2Γ
e2Γ

e

e

e

e

e

As a consequence,

ΨXΓ2e/e
′ = teΨXΓ/e

,

and XΓre ∩XΓ/e, XΓ ∩XΓ2e/e′ have ideals(
ΨΓre,ΨΓ/e

)
,
(
ΨΓ, teΨΓ/e

)
respectively. The first should be viewed as an ideal in k[t1, . . . , tn−1], and the second
as an ideal in k[t1, . . . , tn−1, te]. Denoting by V (f1, f2, . . . ) the locus f1 = f2 = · · · = 0,
we have

V (ΨΓ, teΨΓ/e) = V (ΨΓ, te) ∪ V (ΨΓ,ΨΓ/e) = V (ΨΓ/e, te) ∪ V (teΨΓre,ΨΓ/e)

using the fact that ΨΓ = teΨΓre + ΨΓ/e,

= V (ΨΓ/e, te) ∪ V (ΨΓre,ΨΓ/e) .

This shows that XΓ∩XΓ2e/e′ is the union of a copy of XΓ/e ⊆ Pn−2 and a cone in Pn−1

over XΓre ∩XΓ/e ⊆ Pn−2. The intersection of these two loci is V (ΨΓre,ΨΓ/e, te), that
is, a copy of XΓre ∩XΓ/e ⊆ Pn−2.

The invariant C−(t) satisfies an inclusion-exclusion property because so does the
Chern-Schwartz-MacPherson class, and its behavior with respect to taking a cone
amounts to multiplication by (t + 1): this follows easily from the formula for CSM
classes of cones, see Proposition 5.2 in [AM09]. Therefore,

CXΓ∩XΓ2e/e
′ (t) = CXΓ/e

(t) + (t+ 1)CXΓre∩XΓ/e
(t)− CXΓre∩XΓ/e

(t)

= CXΓ/e
(t) + t CXΓre∩XΓ/e

(t) .

Using this fact together with the two formulas given at the beginning of the proof,
we get

CXΓ2e
(t)− (t− 1)CXΓ

(t) = CXΓ/e
(t) + t CXΓre∩XΓ/e

(t)

= CXΓ/e
(t) + t

(
CXΓ

(t)− (t− 1)CXΓre
(t)
)
,

which yields immediately the stated formula. �

5.3. By Lemma 2.3, a multiple regular edge satisfies both conditions I and II, and
hence the doubling edge formula of Theorem 5.1 applies to it.

Theorem 5.2. Let e be a regular edge of Γ. Then∑
m≥0

CΓ(m+1)e
(t)

sm

m!
= ets

(
K(t)CΓ(t)−K ′(t)CΓ2e(t) +

K ′′(t)

2
CΓ3e(t)

)
,
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where
K(t) = t2e−s + (t− 1)(ts− t− 1) .

Equivalently,

CΓ(m+1)e
(t) =

(
t2CΓ(t)− 2t CΓ2e(t) + CΓ3e(t)

)
(t− 1)m−1

−
(
(t2 − 1)CΓ(t)− 2t CΓ2e(t) + CΓ3e(t)

)
tm−1

+
(
(t2 − t)CΓ(t)− (2t− 1)CΓ2e(t) + CΓ3e(t)

)
(m− 1) tm−2 .

The fact that the coefficient of CΓ(t) determines the others by taking derivatives
is a consequence of the analogous feature displayed by the coefficients of the basic
recursion for CΓme :

Lemma 5.3. Let e be a regular edge of Γ. Then for m ≥ 1

CΓ(m+3)e
(t) = (3t− 1)CΓ(m+2)e

(t)− (3t2 − 2t)CΓ(m+1)e
(t) + (t3 − t2)CΓme(t) .

This feature reflects the fact that the characteristic polynomial for the recursion is
a function of t− x:

x3 − (3t− 1)x2 + t(3t− 2)x− t2(t− 1) = −(t− x)2(t− x− 1) .

This fact is intriguing, and we do not have a conceptual explanation for it. (Note that
the corresponding fact is not verified for the recursion computing the Grothendieck
class. Using (5.8) in [AM11b], it is immediate to show that

U(Γ(m+3)e) = (2T− 1)U(Γ(m+2)e)− T (T− 2)U(Γ(m+1)e)− T2 U(Γme) ,

with notation as in [AM11b], if e is regular in Γ. The characteristic polynomial factors
as (x+ 1) (T− x)2.) Lemma 5.3 is an immediate consequence of Theorem 5.1:

Proof. If e is a regular edge, then e satisfies conditions I and II in Γne for all n ≥ 2,
by Lemma 2.3. Apply Theorem 5.1 to obtain

CΓ(m+2)e
(t) = (2t− 1)CΓ(m+1)e

(t)− t(t− 1)CΓme(t) + tmCΓ/e(t)

CΓ(m+3)e
(t) = (2t− 1)CΓ(m+2)e

(t)− t(t− 1)CΓ(m+1)e
(t) + tm+1CΓ/e(t)

for m ≥ 1. The stated recursion follows immediately, by eliminating CΓ/e(t) from
these expressions. �

Theorem 5.2 follows directly from this lemma, by standard methods.

Remark 5.4. Theorem 5.2 may be rewritten in the following fashion: for all regular
edges e of Γ,∑

m≥0

CΓ(m+1)e
(t)

sm

m!
=
(
ets − e(t−1)s

)
CΓ2e(t)

−
(
(t− 1) ets − t e(t−1)s

)
CΓ(t) + t

(
(s− 1) ets + e(t−1)s

)
CΓ/e(t) .

That is, CΓme(t) is given by the expression(
CΓ2e(t)− t CΓ(t)− t CΓ/e(t)

) (
tm−1 − (t− 1)m−1

)
+
(
CΓ(t) + (m− 1)CΓ/e(t)

)
tm−1

for all m ≥ 1. These expressions are simpler to apply than Theorem 5.2, since CΓ/e(t)
is usually more immediately accessible than CΓ3e . y
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Example 5.5. The n-edge banana graph consists of n edges connecting two distinct
vertices.

e

2e Γ3e Γ4e

e e

Γ

e

Γ

We have
CΓ(t) = t+ 1 , CΓ2e(t) = t (t+ 1) , CΓ/e(t) = 1 :

indeed, Γ is a single bridge, and Γ2e is a 2-polygon (see Proposition 3.1 in [AM11a]).
The formula in Remark 5.4 yields the following pretty generating function:∑

m≥0

CΓ(m+1)e
(t)

sm

m!
= (1 + ts) ets + t e(t−1)s ,

or equivalently
CΓne(t) = n tn−1 + t (t− 1)n−1

for n ≥ 1. This agrees with the formula given in Example 3.8 of [AM11a], which was
obtained by a very different method. y

5.4. The coefficients obtained in Remark 5.4 agree with the ones conjectured in
[AM11b], §6.2, with the difference that the formulas given here are applied to Γ2e

rather than Γ = Γe; this accounts for the extra factor of t in the last coefficient. The
point is that the hypotheses of Theorem 5.1 are automatically satisfied for Γ2e since
e has parallel edges in Γ2e, while they are not necessarily satisfied for Γ. Accord-
ingly, while it is tempting to interpret Γ0e as Γ r e, the generating function given in
Remark 5.4 cannot be extended in general to provide information about this graph.

Example 5.6. We verify that Theorem 5.1 does not necessarily hold if e does not satisfy
the hypotheses presented in §2. For this, we return to the graph of Examples 2.2
and 4.9.

Γe eΓ Γ

e

We have (cf. Examples 4.9 and 5.5)

CΓ(t) = t5 + 2 t4 + 4 t3 + 2 t2

CΓre(t) = (t+ 1)2 t2

CΓ/e(t) = 4 t3 + t(t− 1)3 ;

the formula in Theorem 5.1 would give

(*) (2t− 1)CΓ(t)− t(t− 1)CΓre(t) + CΓ/e(t) = t6 + 2 t5 + 8 t4 + 2 t3 + t2 − t
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and we can verify that this does not equal CΓ2e(t).

2eΓ

e

Indeed, the graph polynomial for Γ2e is

ΨΓ2e = t6t5t4t2 + t6t5t4t1 + t6t5t3t2 + t6t5t3t1 + t6t4t3t2 + t6t4t3t1

+ t6t4t1t2 + t6t1t2t3 + t5t4t3t2 + t5t4t3t1 + t5t4t1t2 + t5t1t2t3

(where the pairs of variables (t1, t2), (t3, t4), (t5, t6) correspond to the three pairs of
parallel edges). Macaulay2 confirms that XΓ2e is nonsingular in codimension 1, hence

cSM(XΓ(2)
) = 4 [P4] + 8 [P3] + · · ·

from which
CΓ2e(t) = t6 + 2 t5 + 7 t4 + l.o.t. ,

differing from (*). In fact, a computation using the code from [Alu03] shows that

CΓ2e(t) = t6 + 2 t5 + 7 t4 + 2 t3 + t2 − t ;

this differs from (*) by exactly t4. The corresponding CSM class is

4[P4] + 8[P3] + 18[P2] + 14[P] + 7[P0] ,

correcting the formula given at the end of §6 in [AM11b]. (Incidentally, the fact that
in these examples the discrepancies occurring when conditions I and II fail are pure
powers of t is also intriguing, and calls for an explanation.) By Remark 5.4, we also
obtain that

CΓme(t) = (t2− t+1)2 t (t−1)m−1 +
(
4t3 + t2 + 4t− 1 + (m− 1) (t3 + t2 + 3t− 1)

)
tm

for all m ≥ 1.

me
Γ

m

6. Alternative approach, via specialization

6.1. In this section we explain briefly a different approach to the question studied
in this paper, based on the theory of specialization of Chern classes; this theory is
originally due to Verdier ([Ver81]). For simplicity, we now work over C.

Let {Xu} be a family of hypersurfaces over a disk; assume that the fibers over u 6= 0
are all isomorphic. Under suitable (and mild) hypotheses, one may define a specific
constructible function σ on the central fiber X = X0, with the property that cSM(σ)
equals the specialization (in the sense of intersection theory) of the CSM class of the
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general fiber. The value σ(p) at a point p ∈ X equals the Euler characteristic of the
intersection of the ε-ball centered at p with nearby fibers Xu, as ε → 0 and |u| � ε.
See [Ver81], Proposition 4.1. It may also be computed in terms of an embedded
resolution of X, see [Alu].

In the situation we will consider here, the hypersurfaces Xu will be elements of a
pencil in projective space. It is easy to verify that σ(p) = 1 if X is nonsingular at p,
and σ(p) = 0 if p is a point of transversal intersection of two nonsingular components
of X, provided that p does not belong to the base locus of the pencil. Parusiński
and Pragacz ([PP01], Proposition 5.1) prove that σ(p) = 1 if p ∈ Xu ∩ X (u 6= 0)
is a point of the base locus, if Xu is smooth and transversal to the strata of a fixed
Whitney stratification of X at p. This beautiful observation will be used below.

6.2. Returning to graph hypersurfaces, recall that if e is a regular edge of Γ, then

ΨΓ = te ΨΓre + ΨΓ/e ;

as Γr e is not a forest, both ΨΓre and ΨΓ/e are polynomials of positive degree. Thus,
we may view ΨΓ as an element of the pencil spanned by te ΨΓre and ΨΓ/e: u = 1 in

(*) Ψu = te ΨΓre + uΨΓ/e .

We note that Xu : {Ψu = 0} is isomorphic to XΓ : {Ψ1 = 0} for u 6= 0: indeed, with
d = deg ΨΓ,

Ψu(u
2te, ut 6=e) = u2 teΨΓre(ut6=e) + uΨΓ/e(ut 6=e) = ud+1 teΨΓre(t6=e) + ud+1 ΨΓ/e(t6=e)

= ud+1 ΨΓ(te, t6=e) ,

where t 6=e denotes the variables corresponding to edges other than e. View (*) as
defining a family as in §6.1, with central fiber X : {Ψ0 = 0}. That is,

X = X∧Γre ∪H ,

where n = number of edges in the graph Γ, H ∼= Pn−2 is the hyperplane defined
by te = 0, and X∧Γre denotes the cone over XΓre ⊆ H with vertex at the point
p = (te : t6=e) = (1 : 0 : · · · : 0). As a consequence of Verdier’s theorem (Théorème 5.1
in [Ver81]),

cSM(11XΓ
) = cSM(σ) ,

where these classes are taken in A∗Pn−1, and σ is the specialization function on X
defined in §6.1.

6.3. The difficulty with this approach lies in the explicit computation of σ. Again we
indicate two conditions under which a result may be obtained, matching the result of
the more algebraic approach taken in the rest of the paper.

The first condition is a ‘set-theoretic’ version of condition I:

(Condition I’) ∂XΓre ⊆ XΓ/e .

As pointed out in §2.2, Condition I implies this inclusion at the level of schemes; here,
we are only requiring it at the level of sets. If this condition is satisfied, then the value
of σ may be determined for all points of X rXΓ. This consists of the complements
of XΓ in X∧Γre rH, in X∧Γre ∩H, and in H rX∧Γre.
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Lemma 6.1. If condition I’ holds, then

• For q ∈ (X∧Γre rH) rXΓ, σ(q) = 1;
• For q ∈ (X∧Γre ∩H) rXΓ, σ(q) = 0.
• For q ∈ (H rX∧Γre) rXΓ, σ(q) = 1;

In fact, σ(q) = 1 for all q ∈ H rX∧Γre.

Proof. If condition I’ holds, then the singularities of XΓre are contained in XΓ/e, and
it follows easily that the singular locus of the cone X∧Γre is contained in XΓ.

On the other hand, note that ΨΓre is one of the partial derivatives of ΨΓ; hence,
the singularities of XΓ are contained in X∧Γre.

Thus: the first statement holds since X∧Γre is nonsingular at q, and q does not
belong to the base locus of the pencil. The third statement likewise holds because q
is not in the base locus, and H ∼= P2 is nonsingular. In the second statement, q is
nonsingular on both X∧Γre and H, and these hypersuraces intersect transversally at
p, so σ(q) = 0 as recalled in §6.1.

To prove the last assertion, we have to consider q ∈ (H ∩ XΓ) r X∧Γre. (We have
already dealt with the other points in H rX∧Γre.) At these points, both X and XΓ

are nonsingular (by condition I’). Further, the intersection H ∩ XΓ = XΓ/e is also
nonsingular at such points, again by condition I’. Thus the hypotheses of the result of
Parusiński and Pragacz recalled in §6.1 are satisfied, and it follows that σ(q) = 1. �

6.4. The locus unaccounted for in Lemma 6.1 is XΓ ∩X∧Γre. These are points in the
base locus which are contained in the component X∧Γre. If XΓ were nonsingular and
transversal to the strata of X∧Γre at these points, then (according to the formula of
Parusiński and Pragacz) we would have σ(q) = 1 for q ∈ XΓ ∩X∧Γre; the deviation of
σ from 1 at such points is a measure of non-transversality of the two hypersurfaces.
Also note that this locus equals the cone over XΓre ∩ XΓ/e with vertex at p. The
following condition should again be interpreted as a subtle notion of ‘transversality’
of the intersection of the various loci considered here.

(Condition II’) σ(q) = 1 for q ∈ X∧Γre ∩X∧Γ/e .

Lemma 6.2. Assume both conditions I’ and II’ hold. Then

σ = 11X∧Γre
+ 11H − 211XΓre

+ 11XΓre∩XΓ/e

where the latter two mentioned loci are viewed as subsets of H ∼= Pn−2.

Proof. This follows from Lemma 6.1, condition II’, and elementary bookkeeping. �

6.5. Applying Verdier’s theorem now recovers the same formula we obtained in The-
orem 4.7

Theorem 6.3. Let e be a regular edge of Γ. Assume (Γ, e) satisfies both conditions I’
and II’ given above. Then

CXΓ
(t) = CXΓre∩XΓ/e

(t) + (t− 1)CXΓre
(t) .

Proof. Applying Verdier’s theorem and additivity of CSM classes, we get

cSM(X) = cSM(σ) = cSM(11X∧Γre
) + cSM(11H)− 2 cSM(11XΓre

) + cSM(11XΓre∩XΓ/e
) .
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Recalling H ∼= Pn−2, and expressing in terms of polynomial Feynman rules, this gives

CXΓ
(t) = (t+ 1)CXΓre

(t)− 2CXΓre
(t) + CXΓre∩XΓ/e

(t) ,

with the stated result. Here we also used the fact that CX∧Γre
(t) = (t + 1)CXΓre

, an

easy consequence of Proposition 5.2 in [AM09]. �

6.6. In conclusion, we have verified that the deletion-contraction formula obtained
under the ‘algebraic’ conditions I and II described in §2 also holds under the condi-
tions I’ and II’ given in §§6.3-6.4.

These latter conditions have a more ‘geometric’ flavor: condition I’ is a set-theoretic
statement, and condition II’ amounts to a statement on the Euler characteristics of
intersections of an ε-ball with nearby fibers in a fibration naturally associated with the
pair (Γ, e). In this sense they are perhaps easier to appreciate, although in practice
the algebraic counterparts I and II are more readily verifiable in given cases, by means
of tools such as [GS]. It would be interesting to relate these two sets of conditions
more precisely: does (Γ, e) satisfy I and II if and only if it satisfies I’ and II’? Do
these conditions admit a transparent combinatorial interpretation?
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