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Abstract. We express the Segre class of a monomial scheme in projective space in terms
of log canonical thresholds of associated ideals. Explicit instances of the relation amount
to identities involving the classical polygamma functions.

1. Introduction

The log canonical threshold of an ideal is a measure of the singularity of the corresponding
scheme. It can be defined in a broad variety of ways, relating it to many different areas of
algebraic geometry and singularity theory; a survey of this notion and of its ubiquity may
be found in [Mus12]. The purpose of this short note is to point out another unexpected
connection: we will show that, in the particular case of monomial schemes, the Segre class
may be computed from the log canonical threshold of certain related ideals.

By a result of J. Howald ([How01]), the log canonical threshold of a monomial ideal I
in a polynomial ring has a very simple expression in terms of the Newton diagram of the
ideal: it measures the distance of the diagram from the origin along the main diagonal.
This is a straightforward consequence of Howald’s realization of the multiplier ideal of a
monomial ideal and the fact that the log canonical threshold equals the smallest jumping
number of an ideal. It easily follows that the whole diagram for I may be reconstructed
from knowledge of the log canonical thresholds of suitable extensions of the ideal. We apply
this observation to obtain the Segre class of the scheme defined by I in projective space.
Segre classes are basic invariants in intersection theory; Chapter 4 in [Ful84] is the standard
reference for this notion. They are characterized by the fact that they are invariant under
birational maps (in the sense of [Ful84], Proposition 4.2) and that if S is a local complete
intersection in V , then the Segre class s(S, V ) equals the inverse Chern class of the normal
bundle of S in V : s(S, V ) = c(NSV )−1 ∩ [S].

The result of this note is the following.

Theorem 1.1. Let I be a proper monomial ideal in the variables x1, . . . , xn, and let S be
the subscheme defined by I in PM , M ≥ n− 1. For ri > 0, denote by Ir1,...,rn the extension
of I under the homomorphism defined by xi 7→ xrii , i ≤ n. Then

(1) s(S,PM ) = 1− lim
m→∞

∑ mn!X1 · · ·Xn

(m + a1X1 + · · ·+ anXn)n+1

where the sum is taken over all (a1, . . . , an) ∈ Zn
>0 such that

lct(Ia2···an,...,a1···an−1) ≥ m

a1 · · · an
,

and Xi denotes the hyperplane xi = 0.

The limit appearing in the statement should be interpreted as follows. When the param-
eters X1, . . . , Xn are set to complex numbers (say, with positive real part), the given limit
converges to, and hence determines, a rational function of X1, . . . , Xn, with a well-defined
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expansion as a series in X1, . . . , Xn. The statement is that evaluating the terms of this series
as intersection products with Xi = the i-th coordinate hyperplane in PM , the right-hand
side equals the Segre class of S in PM . (Each of the terms is supported on a subscheme
of S, cf. Lemma 2.10 in [Alu], hence this computation determines a class in A∗S.)

Theorem 1.1 is proved in §3. In §2 we illustrate the result in simple examples. In the
case of ideals generated by a pure power x`1, the statement reduces to an elementary limit
of polygamma functions. In general, every independent computation of the Segre class of
a monomial ideal would give rise, via (1), to an identity involving limits and series of such
functions. We find this observation intriguing, but we hasten to add that the shape of
the formulas, more than their algebro-geometric content, seems to be responsible for this
phenomenon. The role played by the log canonical threshold is limited to the demarcation
of the Newton polytope of I in the positive orthant in Rn (Lemma 3.1).

Our main interest in Theorem 1.1 stems from the fact that both sides of (1) are defined
for arbitrary homogeneous ideals in a polynomial ring. It is natural to ask to what extent
formulas such as (1) may hold for non-monomial schemes, perhaps after a push-forward to
projective space.

Acknowledgments. The author’s research is partially supported by a Simons collaboration
grant.

2. Examples

Let n = 1, and I = (x`1) for some ` ≥ 1. Then Ia2···an,...,a1···an−1 = I, lct(I) = 1
` , and the

range of summation specified in Theorem 1.1 is lct(I) ≥ m
a1

, that is, a1 ≥ m`. Thus, the
summation in the statement of the theorem is∑

a≥m`

mX1

(m + aX1)2
.

Recall that the r-th polygamma function Ψ(r)(x), defined for r > 0 as the r-th derivative of

the digamma function d
dx ln(Γ(x)) =

d
dx

Γ(x)

Γ(x) , admits the series representation

Ψ(r)(x) = (−1)r+1r!
∑
a≥0

1

(a + x)r+1

for x complex, not equal to a negative integer. We have∑
a≥m`

x2

(m + ax)2
=
∑
a≥0

x2

(m + (a + m`)x)2
=
∑
a≥0

1

(a + m` + m
x )2

= Ψ(1)
(
m` +

m

x

)
.

Thus, formally ∑
a∈Z>0,a≥m`

mX1

(m + aX1)2
=

mΨ(1)(m` + m
X1

)

X1
,

and the right-hand side in (1) may be rewritten as

1− lim
m→∞

m

X1
Ψ(1)

(
m` +

m

X1

)
.
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The asymptotic behavior of Ψ(r)(x) is well-known: as x → ∞ in any fixed sector not
including the negative real axis,

Ψ(r)(x) ∼ (−1)r+1r!

x−r

r
+

x−r−1

2
+
∑
k≥1

B2k

(2k)!

Γ(r + 2k)

Γ(r + 1)
x−r−2k


(see for instance [Apo13], (25.11.43)). In particular, for fixed ` and x

Ψ(1)

(
m

(
` +

1

x

))
∼
(
m

(
` +

1

x

))−1

=
x

m(1 + `x)

as m→∞ in Z>0. Therefore,

lim
m→∞

m

X1
Ψ(1)

(
m` +

m

X1

)
= lim

m→∞

m

X1

X1

m(1 + `X1)
=

1

1 + `X1
.

Theorem 1.1 asserts that

s(S,PM ) = 1− 1

1 + `X1
=

`X1

1 + `X1
= c(NSPM )−1 ∩ [S] ,

as it should, since S is a divisor in this case.
The assumption n = 1 in this computation must be irrelevant, since the Segre class is

not affected by this choice. The computation itself is, however, affected by the choice of n.
Viewing the monomial x`1 as a monomial in (for example) two variables x1, x2 leads via
Theorem 1.1 to the formula

s(S,PM ) = 1− lim
m→∞

∑ 2mX1X2

(m + a1X1 + a2X2)3
,

where the summation is over all positive integers a1, a2 such that lct(Ia2,a1) ≥ m
a1a2

. Since

Ia2,a1 = (x`a21 ), this amounts to the requirement that a1 ≥ m`, a2 ≥ 1, so the summation
may be rewritten∑

a1≥m`,a2≥1

2mX1X2

(m + a1X1 + a2X2)3
=

2mX1X2

X3
2

∑
a1≥m`

∑
a2≥0

1

(a2 + 1 + m+a1X1
X2

)3
.

After performing the second summation, we see that the content of Theorem 1.1 in this
case is

(2) s(S,PM ) = 1− lim
m→∞

−mX1

X2
2

∑
a1≥m`

Ψ(2)

(
m + a1X1 + X2

X2

)
.

Heuristically, we can now argue that, as m→∞,

Ψ(2)

(
m + a1X1 + X2

X2

)
∼ −

(
m + a1X1 + X2

X2

)−2

so that, again as m→∞,∑
a1≥m`

Ψ(2)

(
m + a1X1 + X2

X2

)
∼ −

∑
a1≥m`

X2
2

(m + a1X1 + X2)2
= −X2

2

X2
1

∑
a≥0

1

(a + m` + m+X2
X1

)2

= −X2
2

X2
1

Ψ(1)

(
m` +

m + X2

X1

)
∼ −X2

2

X2
1

(
m` +

m + X2

X1

)−1

= − X2
2

mX1

1

1 + `X1 + X2
m

.
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Thus, the right-hand side of (2) equals

1− lim
m→∞

1

1 + `X1 + X2
m

=
`X1

1 + `X1

as expected.
For ‘diagonal’ ideals I = (x`11 , . . . , x`nn ), we have

lct(Ia2···an,...,a1···an−1) = lct(x`1a2···an1 , . . . , xa1···an−1`n
n ) =

1

`1a2 · · · an
+ · · ·+ 1

a1 · · · an−1`n
;

the condition that this be ≥ m/a1 · · · an is equivalent to

a1

`1
+ · · ·+ an

`n
≥ m .

For e.g., n = 2, the content of Theorem 1.1 in this case is the identity

1+ lim
m→∞

mX1

X2
2

m`1−1∑
a1=1

Ψ(2)

(
m`2 − b

a1`2

`1
c+

m + a1X1

X2

)
+

∑
a1≥m`1

Ψ(2)

(
1 +

m + a1X1

X2

)
=

`1`2X1X2

(1 + `1X1)(1 + `2X2)
.

3. Proof of Theorem 1.1

For positive integers r1, . . . , rn and a homogeneous ideal I of k[x1, . . . , xM+1] generated by
polynomials in x1, . . . , xn, with M + 1 ≥ n, we let Ir1,...,rn denote the extension of I via the
ring homomorphism k[x1, . . . , xM+1]→ k[x1, . . . , xM+1] defined by xi 7→ xrii , i = 1 . . . , n. If
I is a monomial ideal, let N ′ ⊂ Rn be the convex hull of the lattice points (i1, . . . , in) ∈ Zn

such that xi11 · · ·xinn ∈ I, and let N be the (closure of the) complement of N ′ in the positive
orthant Rn

≥0. We call N the ‘Newton region’ for I.
If I is monomial, the ideal Ir1,...,rn is also monomial, and its Newton region is obtained

by stretching N by a factor of r1 in the x1 direction, . . . , rn in the xn direction. We will
denote by Nr1,...,rn this stretched region.

Lemma 3.1. Let I be a proper monomial ideal, and let N be as above. For (a1, . . . , an) ∈
Zn
>1 and m > 0,(a1

m
, . . . ,

an
m

)
∈ N ⇐⇒ a1 · · · an lct(Ia2···an,...,a1···an−1) ≤ m .

Proof. Let a1, . . . , an integers > 1. Note that(a1

m
, . . . ,

an
m

)
∈ N ⇐⇒

(a1

m
a2 · · · an, . . . ,

an
m

a1 · · · an−1

)
∈ Na2···an,...,a1···an−1

⇐⇒ a1 · · · an
m

(1, . . . , 1) ∈ Na2···an,...,a1···an−1 .

By Howald’s result ([How01], Example 5) this is the case if and only if

a1 · · · an
m

≤ 1

lct(Ia2···an,...,a1···an−1)
,

yielding the statement. �
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Remark 3.2. The restriction to ai > 1 in this statement is in order to ward off the ‘annoying
exception’ raised in [How01], Example 5: the formula for the log canonical threshold used
in the proof does not hold if the corresponding multiplier ideal is trivial. In any case, the
difference between N and the region spanned by the n-tuples (a1m , . . . , anm ) satisfying the
stated condition with ai > 0 vanishes in the limit as m → ∞, so we may (and will) adopt
the condition for (a1, . . . , an) ∈ Zn

>0 in the application to Theorem 1.1. y

By Lemma 3.1, the limit in (1) equals

lim
m→∞

1

mn

∑
(a1,...,an)∈Zn

>0

(
a1
m

,...,an
m

)∈N ′

n!X1 · · ·Xn

(1 + a1
mX1 + · · ·+ an

mXn)n+1
.

This may be interpreted as a limit of Riemann sums for the integral∫
N ′

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

.

Since the value of this integral on the positive orthant is 1, the right-hand side of (1) equals∫
N

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

.

This equals the Segre class s(S,PM ) once Xi is interpreted as the i-th coordinate hyperplane
in PM , by Theorem 1.1 in [Alu]. y
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