
MULTIDEGREES OF MONOMIAL RATIONAL MAPS

PAOLO ALUFFI

Abstract. We prove a formula for the multidegrees of a rational map defined by gener-
alized monomials on a projective variety, in terms of integrals over an associated Newton
region. This formula leads to an expression of the multidegrees as volumes of related poly-
topes, in the spirit of the classical Bernstein-Kouchnirenko theorem, extending the scope
of these formulas to more general monomial maps. We also determine a condition under
which the multidegrees may be computed in terms of the characteristic polynomial of an
associated matrix.

1. Introduction

Let V ⊆ Pr be a projective variety, and ϕ : V 99K PM a rational map. The multidegrees
γ` of ϕ, ` = 0, . . . ,dimV , are the coefficients of the class of the (closure of the) graph Γ of
this map in Pr × PM , to wit

γ` = hdimV−` ·H` · Γ ,

where h, resp., H is the pull-back of the hyperplane class in Pr, resp., PM . The numbers γ`
are obviously significant: for example, γdimV = 0 if and only if the general nonempty fiber
of ϕ is positive dimensional; and if the general nonempty fiber consists of D reduced points,
then γdimV is the product of D and deg(imϕ). When V = Pr and M = r, ϕ is a Cremona
transformation if and only if γr = 1. In general, γ0 = deg V and γi = 0 if and only if
i > dim(imϕ); if V = Pr, and for i < dim(imϕ), γi may be interpreted as the degree of the
closure of the image of a general Pi ⊆ Pr. We assemble the multidegrees into a polynomial

γϕ(t) = γ0 + γ1t+ γ2t
2 + · · ·

of degree dim imϕ. This polynomial does not depend on the dimension r of the space
containing V ; it does depend on the hyperplane class of the embedding V ↪→ Pr. We can in
fact define a multidegree class (§2.1) on V as the push-forward to V of (

∑
`≥0H

`) · [Γ]; this
is independent of any projective embedding of V , and our results will in fact deal with this
class. In this introduction we will state the results for the multidegree polynomial, to remain
closer to the more classical notion. We note that Macaulay2 ([GS]) includes a multidegree
command, which is very useful for experimentations involving concrete examples.

We consider rational maps ϕ whose components are monomials µ0, . . . , µM in sections sj
of line bundles Lj , j = 1, . . . , n on V , of course subject to the condition that all monomials
are sections of the same line bundle L . For example, ϕ could be the restriction to V of
a rational map Pr 99K PM defined by isobaric monomials in a collection of homogeneous
polynomials. The hypersurfaces Xj defined by sj on V are required to satisfy a weak
transversality hypothesis, explained in §2.2. For simplicity, the reader may assume that V
is nonsingular and the Xj form a simple normal crossing divisor, but much less is needed:
local equations for the divisors Xj only need to determine regular sequences, i.e., to meet
with regular crossings in the sense of [Har15]; and V is not required to be nonsingular
(see §2.2 for further details). We say that ϕ is r.c. monomial if it satisfies this condition.
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We now state the result. The monomials µi = smi1
1 · · · smin

n determine lattice points
(mi1, . . . ,min) in Zn ⊆ Rn (with coordinates (a1, . . . , an)). We move this set of points so
that one of them is at the origin, by setting m′ij = mij −mMj for i = 0, . . . ,M . Notice that

the lattice points m′i = (m′i1, . . . ,m
′
in) all lie on the subspace d1a1 + · · ·+ dnan = 0, where

dj = hdimV−1 ·Xj is the degree of Xj viewed as an algebraic set in Pr.
We denote by Nϕ the convex hull of the positive orthants translated at the lattice

points m′i; we call Nϕ the Newton outer region of ϕ.

Theorem 1.1. Let ϕ : V 99K PM be a r.c. monomial rational map. Then

(1) γϕ(t) =

∫
Nϕ

n!X1 · · ·Xn t
nhdimV+1 da1 · · · dan

(h+ (a1X1 + · · ·+ anXn)t)n+1
.

Remark 1.2. (i) The integral should be interpreted as follows. Perform the integral with
Xj , h, and t as parameters; the result is a rational function in these parameters. Part
of the content of the statement is that after replacing the parameters Xj by the classes
of the corresponding divisors in V and h by the restriction of the hyperplane class from
Pr, this rational function gives a polynomial in t; the coefficient of t` in this polynomial
is a homogeneous polynomial of degree dimV in the classes Xj and h. The statement is

that replacing the terms hdimV−` · Xj1 · · ·Xj` in this polynomial with the corresponding
intersection numbers determines the `-th multidegree γ`.

(ii) The convex region Nϕ depends on the choice of the pivoting monomial. It is a
consequence of the theorem that this choice does not affect the result of evaluating the
integral as specified in (i). y

Example 1.3. Let F1, F2, F3 be general homogeneous polynomials in x0, x1, x2 of degrees
1, 2, 3 respectively. Consider the rational map ϕ : P2 99K P2 given in components by
(x0, x1, x2) 7→ (F2F

2
3 , F

2
1F

2
3 , F

3
1F2F3). According to Theorem 1.1, the multidegrees of ϕ are

the coefficients of t` in

∫
Nϕ

n!X1 · · ·Xn t
n hdimV+1 da1 · · · dan

(h+ (a1X1 + · · ·+ anXn)t)n+1
,

where n = 3, dimV = 2, X1, X2, X3 are the curves F1 = 0, F2 = 0, F3 = 0, respectively,
and Nϕ is the Newton outer region determined by the lattice points (0, 1, 2), (2, 0, 2), (3, 1, 1)
translated back to A = (−3, 0, 1), B = (−1,−1, 1), C = (0, 0, 0). That is, Nϕ is the region
in R3 extending from the triangle ABC towards the three positive coordinate directions.

A

C

B
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The reader will easily verify that∫
Nϕ

6X1X2X3 t
3 h3 da1da2da3

(h+ (a1X1 + a2X2 + a3X3)t)4

=
h2(h2 + (−4X1 + 3X3)ht+ (3X2

1 + 3X1X2 − 5X1X3 −X2X3 + 2X2
3 ) t2)

(h+ (−3X1 +X3)t)(h+ (−X1 −X2 +X3)t)
.

As promised, the denominator disappears (canceling the extra factor at numerator) after
setting X1 = h, X2 = 2h, X3 = 3h; we get (as h2 = 1)

γϕ(t) = 1 + 5t+ 6t2 ,

i.e., γ0 = 1, γ1 = 5, γ2 = 6. This says that ϕ is generically 6-to-1. Since the class of the
monomials was 8h to begin with, we see that the base locus of ϕ contributes 58 to the
intersection number (8h)2. y

The integral appearing in Theorem 1.1 may be computed from a decomposition of the
region Nϕ into simplices, including the positive coordinate directions as possible vertices (at
infinity). We will use notation as in §2.2 of [Alu15]: in particular, if a simplex T has s+ 1
finite vertices, its rank is rkT = s; and the volume of T is the normalized volume of the
projection along its infinite directions. Also, we let deg T denote hdimV−rkT ·

∏
Xj , where

the (intersection) product is taken over the complement of the infinite directions in T . We
denote by ai the vertex at infinity in the positive direction of the coordinate ai.

Theorem 1.4. Let ϕ be a r.c. monomial rational map. Then

(2) γϕ(t) =
∑
T

V̂ol(T ) deg(T ) trkT

where the sum ranges over the full-dimensional simplices T in a triangulation of Nϕ, with
vertices chosen among vertices of Nϕ and infinite coordinate vertices.

Example 1.5. For the case illustrated in Example 1.3, a triangulation of Nϕ consists of the
simplices T1 = Ca1a2a3, T2 = ACa2a3, T3 = ABa1a3, T4 = ABCa1. We have rkT1 = 0;

rkT2 = rkT3 = 1; rkT4 = 2; V̂ol(T1) = 1, V̂ol(T2) = 3, V̂ol(T3) = V̂ol(T4) = 1 (as e.g.,
the projection of T4 on the a2a3 plane is the triangle with vertices (1, 2), (0, 2), (1, 1)); and
deg T1 = h2−0 = 1, deg T2 = h2−1·X1 = 1, deg T3 = h2−1·X2 = 2, deg T2 = h2−2·X2·X3 = 6.
According to Theorem 1.4,

γϕ(t) = 1 + 3 · 1 t+ 1 · 2 t+ 1 · 6 t2 ,

agreeing with the previous computation. y

Remark 1.6. The diagram determined by a choice of monomials and the volumes of the
individual simplices of a decomposition are independent of the source variety V . Thus
we could use the same data obtained in Example 1.5 to obtain the multidegree for the
restriction ϕ′ of the map defined in Example 1.3 to any degree-d curve V ⊆ P2, as long as
the restrictions of the curves F1 = 0, F2 = 0, F3 = 0 to V meet with regular crossings. Here,
this means that V should avoid the points of intersection of these curves. With such a choice
of V we have deg T1 = h1−0 ·V = d, deg T2 = h1−1 ·X1 ·V = d, deg T3 = h1−1 ·X2 ·V = 2d,
and deg T2 = h1−2 ·X2 ·X3 ·V = 0 (by dimension considerations). According to Theorem 1.4,

γϕ′(t) = d+ 3 · d t+ 1 · 2d t+ 1 · 0 t2 = d+ 5d t .

This says in particular that the degree of the image of a suitably general degree-d curve
V ⊆ P2 via ϕ must be 5d. y
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Remark 1.7. In the particular case where V = Pr and Xj = coordinate hyperplanes, the
multidegrees of rational monomial maps may be computed via toric methods by mixed
volumes of Minkowsky sums of polytopes (see e.g., [GSP06], §4, or [Dol], §3.5). In particular,
the top degree may be expressed as the ordinary (normalized) euclidean volume of a convex
polytope; this is an instance of the Bernstein-Kouchnirenko theorem. The leading coefficient
of (2) reproduces this result in this particular case, and extends it to the more general
monomial maps on arbitrary projective varieties considered here, where toric techniques do
not seem to be immediately applicable. Even for these very special monomial maps, it would
be interesting to understand more fully the relation between the ordinary volumes appearing
in Theorem 1.4 and the mixed volumes obtained by applying the Bernstein-Kouchnirenko
theorem. y

In the case M = r = n−1, Nϕ has one finite face which (if non-degenerate) is an (n−1)-
simplex in Rn. The map ϕ is determined by the n× n matrix M′ϕ = (m′ij) whose rows m′i
consist of the translated lattice points, as above. (So one row of M′ϕ is 0.) We say that
ϕ is well-presented if the following requirement on M′ϕ is satisfied. Every choice of a set

I of indices i1, . . . , i` determines a projection Rn → Rn−` along the coordinate directions
ai1 , . . . , ai` . We require that the projection of the Newton outer region of ϕ be the Newton
outer region determined by the projections of the rows m′k for k /∈ I. (We also require
a condition on the signs of certain minors of Mϕ; see §4.2.) For example, the standard
Cremona transformation (x1 : · · · : xn) 7→ ( 1

x1
: · · · : 1

xn
) trivially satisfies this condition.

We prove that if ϕ is well-presented, then the multidegree polynomial of ϕ may be com-
puted directly from the characteristic polynomial of the matrixM′ϕ. The precise statement
in the generality considered here is given in Theorem 4.11; for ordinary monomial rational
maps ϕ : Pn−1 99K Pn−1, the result may be stated as follows. Let

α : (x1, . . . , xn−1) 7→ (xa111 · · ·xa1,n−1

n−1 , . . . , x
an−1,1

1 · · ·xan−1,n−1

n−1 )

be a morphism of tori, with aij ∈ Z, inducing a rational map ϕ : Pn−1 99K Pn−1. Let A =
(aij) be the matrix of exponents of α, with characteristic polynomial PA(t) = det(t I −A).

Theorem 1.8. If the monomial rational map ϕ : Pn−1 99K Pn−1 is well-presented, then
γϕ(t) = tn−1PA

(
1
t

)
.

It would be interesting to provide alternative characterizations of well-presented mono-
mial rational maps.

Acknowledgments. The author is grateful to Igor Dolgachev for useful conversations,
particularly concerning the material in §4, and to the referee for a careful reading of the
paper and for the suggestion to include Remark 1.6. The author’s research is partially
supported by a Simons collaboration grant.

2. Proof of Theorem 1.1

2.1. The multidegree class. We work over an algebraically closed field.
Fulton-MacPherson intersection theory yields a direct relation between the multidegrees

of a rational map ϕ : Pr 99K PM and the degrees of the Segre classes of the base scheme
of ϕ: see e.g., [Alu03], Proposition 3.1; [GSP06], Proposition 5; or [Dol], Proposition 2.3.1.
The case considered here requires the straightforward generalization of this relation to the
case of rational maps ϕ : V 99K PM , where V is a subvariety of Pr.

Notation: Let V be a closed subvariety (or subscheme) of Pr, L a line bundle on V , and
let ϕ : V 99K PM be the rational map determined by a linear system in H0(V,L ). Let
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Γ ⊆ V × PM be the closure of the graph of ϕ, and let G be its ‘shadow’ in V :

G := π∗((1 +H +H2 + · · · ) ∩ [Γ]) ,

where H is the pull-back of the hyperplane class from the PM factor, and π : Γ→ V is the
projection. This is the ‘multidegree class’ mentioned in the introduction; the multidegrees
of ϕ are the degrees of the components of G, viewed as classes in Pr:

γϕ(t) =

∫
(1 + ht+ h2t2 + · · · ) ∩G =

∑
`≥0

(hdimV−` ·G`) t` ,

where h is the pull-back of the hyperplane class from Pr, and G` is the term of codimension `
in G. Thus, computing the multidegree polynomial is reduced to computing the multidegree
class G.

Lemma 2.1. Let i : S ⊆ V be the base scheme of the linear system defining ϕ. Then

G = c(L ∗)−1(([V ]− i∗s(S, V ))⊗V L ∗) .

Here we are using the ⊗ notation introduced in §2 of [Alu94]: if a is a class of codimen-
sion p in A∗V , then a ⊗V L ∗ denotes c(L ∗)−p ∩ a; the class a ⊗V L ∗ is defined for all
a ∈ A∗V by extending this prescription by linearity. Propositions 1 and 2 in [Alu94] detail
a few simple properties of this operation, freely used in what follows.

Proof. (Cf. Proposition 3.1 in [Alu03].) Identifying Γ with the blow-up of V along S, the
class of the exceptional divisor E is seen to equal D −H, where D = π∗c1(L ). Thus

G = π∗

(
1

1−H
∩ [Γ]

)
= c(L ∗)−1 ∩ π∗

(
1−D
1−H

∩ [Γ]

)
= c(L ∗)−1 ∩ π∗

((
1−D
1−H

∩ [Γ]

)
⊗Γ L ⊗Γ L ∗

)
= c(L ∗)−1 ∩ π∗

((
1

1 +D −H
∩ [Γ]

)
⊗Γ L ∗

)
= c(L ∗)−1 ∩ π∗

(((
1− E

1 + E

)
∩ [Γ]

)
⊗Γ L ∗

)
= c(L ∗)−1 ∩

(
[V ]− π∗

(
E

1 + E
∩ [Γ]

)
⊗V L ∗

)
= c(L ∗)−1 ([V ]− i∗s(S, V )⊗V L ∗)

as stated. �

2.2. r.c. monomial schemes and maps. Now assume that ϕ is monomial in the sense
specified in §1: the linear system defining ϕ is generated by monomials µ0, . . . , µM in sections
sj of line bundles Lj , j = 1, . . . , n on V ; if µi = smi1

1 · · · smin
n , we assume L ⊗mi1

1 ⊗ · · · ⊗
L ⊗min
n

∼= L for all i.
We let Xj denote the zero-scheme of sj . The zero-schemes of the monomials µi are

effective divisors supported on the union of the Xj ’s, and the intersection of these divisors,
i.e., the base scheme S of ϕ, is a monomial scheme. The condition we require of the
hypersurfaces Xj is that monomial schemes defined with respect to X1, . . . , Xn may be
principalized by a sequence of blow-ups along codimension 2 monomial subschemes defined
with respect to the proper transforms of the Xj ’s and the exceptional divisors in the blow-up
sequence. C. Harris proves ([Har15]) that this condition holds if the hypersurfaces Xj meet
with regular crossings, i.e., for all A ⊆ {1, . . . , n} and all p ∈ ∩i∈AXi, the local equations
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for Xi, i ∈ A, form a regular sequence at p. Harris’s theorem extends a result of R. Goward
([Gow05], Theorem 2), which deals with the normal crossings case and under the assumption
that V is nonsingular. In the situation considered by Harris, neither V nor the Xj need to
be smooth. For example, V could be an arbitrarily singular subvariety of Pr, and the Xj

could be obtained as intersections of V with components of a divisor with simple normal
crossings in Pr, such that V meets properly all strata of this divisor.

If the Xj meet with regular crossings, then the base scheme S is a r.c. monomial scheme
in the sense of [Har15] and [Alu15], and we say that ϕ is a r.c. monomial rational map. The
theorems stated in the introduction hold under the assumption that ϕ is r.c. monomial.

2.3. Newton regions. In the situation described in §2.2, the base scheme S of ϕ is the
subscheme of V defined by the monomials µ0, . . . , µM . As in [Alu15], we associate with
the monomials µi = smi1

1 · · · smin
n the lattice points (mi1, . . . ,min) in Rn, and the ‘Newton

region’ N obtained as the (closure of the) complement in the positive orthant of the convex
hull N c of the translations by µi of the positive orthants.

N

N c

O

If dj = hdimV−1 ·Xj , then for every i we have
∑
djmij = hdimV−1 ·

∑
mijXj = hdimV−1 ·

c1(L ) ∩ [V ] =: d. Therefore all the vertices (mij) belong to the hyperplane with equation
d1a1 + · · ·+dnan = d in Rn. We translate the vertices so that this hyperplane goes through
the origin, for example by subtracting the coordinates of one vertex. (The choice of this
pivoting monomial will be immaterial.)

O

Nϕ

The ‘Newton outer region’ Nϕ is the corresponding translation of the region N c.

Lemma 2.2. With notation as above,

[V ]− i∗s(S, V ) =

∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

.

Proof. Since S is r.c. monomial by assumption, by the main theorem in [Alu15] its Segre
class in V is evaluated by the integral over N of the same rational function appearing on
the right-hand side. Since the integral over the positive orthant is 1 (i.e., [V ]), the integral
over N c equals [V ]− i∗s(S, V ) when viewed in A∗V , as stated. �



MULTIDEGREES OF MONOMIAL RATIONAL MAPS 7

2.4. The main theorem. By Lemmas 2.1 and 2.2, the multidegree class is given by

G = c(L ∗)−1

(∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

⊗V L ∗
)

.

We can perform the ⊗V on the integrand. If µ = sm1
1 · · · smn

n is the pivoting monomial,
then m1X1 + · · ·+mnXn represents c1(L ) (once the Xj are replaced with the homonymous
cycles). Using the simple properties of ⊗V (cf. §2 of [Alu94]),

n!X1 · · ·Xn

(1 + a1X1 + · · ·+ anXn)n+1
⊗V L ∗ =

n! c(L ∗) ·X1 · · ·Xn

(1 + (a1 −m1)X1 + · · ·+ (an −mn)Xn)n+1

and hence

(3) G =

∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + (a1 −m1)X1 + · · ·+ (an −mn)Xn)n+1

Now, as (a1, . . . , an) ranges over N c, the translated point (a1 − m1, . . . , an − mn) ranges
over Nϕ. Therefore,

Theorem 2.3. With notation as above, the multidegree class of a r.c. monomial rational
map V 99K Pn is given by

(4) G =

∫
Nϕ

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

Theorem 2.3 is the primary result. To complete the proof of Theorem 1.1, it suffices to
read the degree hdimV−` · G` off the components of the multidegree class, where G` has
codimension ` in V . From (4), inserting a dummy variable u to keep track of codimensions,
we see that

(5) G0 +G1u+G2u
2 + · · · =

∫
Nϕ

n!X1 · · ·Xn u
n da1 · · · dan

(1 + (a1X1 + · · ·+ anXn)u)n+1
.

Formally,

γϕ(t) = hdimV ·G0 + hdimV−1 ·G1 t+ hdimV−2 ·G2 t
2 + · · ·

= hdimV

(
G0 +G1

t

h
+G2

t2

h2
+ . . .

)
Implementing this formal manipulation in (5) yields the integral given in (1), concluding
the proof of Theorem 1.1. �

3. Proof of Theorem 1.4

3.1. Generalized simplices. Integrals such as the one appearing in Theorem 2.3 may be
computed from a triangulation of the region Nϕ. For us, a generalized simplex T of rank
s in Rn is the subset spanned by s + 1 affinely independent points v0, . . . , vs, and n − s
positive coordinate directions aj1 , . . . , ajn−s

(‘infinite vertices’). Thus,

T =

{
s∑
i=0

αivi +

n−s∑
k=1

βkejk | ∀i, k : αi ≥ 0, βk ≥ 0, and
∑
i

αi = 1

}
where e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). The (normalized) volume V̂ol(T ) of a
simplex is the normalized volume of the simplex obtained by projecting T along its infinite
directions. The simplex may degenerate when the vertices are affinely dependent; the
volume of such an ‘empty’ simplex is 0.

A simple calculus exercise yields the following result.
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Lemma 3.1. If T has finite vertices vi = (vi1, . . . , vis), i = 0, . . . , s, and infinite vertices
ajk , k = 1, . . . , n− s, then∫

T

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

=
V̂ol(T )∏s

i=0(1 + vi1X1 + · · ·+ vinXn)
· X1 · · ·Xn∏n−s

k=1 Xjk

.

Proof. [Alu15], Lemma 2.5. �

3.2. Multidegree class and volumes of simplices. The point now is that if (vi1, . . . , vin)
is one of the translated monomials, i.e., one of the vertices of Nϕ, then after evaluating the
Xi’s to the corresponding classes,

vi1X1 + · · ·+ vinXn = 0 :

indeed, vi1X1 + · · ·+vinXn is obtained by subtracting two classes both representing c1(L ).
Therefore, if T is part of a triangulation of Nϕ, and the finite vertices of T are vertices
of Nϕ, then the contribution of T to the multidegree class G is simply (by Theorem 2.3)

V̂ol(T ) · X1 · · ·Xn∏n−s
k=1 Xjk

.

The factor

XT :=
X1 · · ·Xn∏n−s
k=1 Xjk

for the generalized simplex T is the product of the classes Xj such that aj is not an infinite
vertex of T . As a class in A∗V , XT has codimension equal to the rank of T . Summarizing,

Corollary 3.2. With notation as above, the multidegree class for ϕ is given by

(6) G =
∑
T

V̂ol(T ) ·XT

where the sum is over the generalized simplices in a triangulation of Nϕ, with finite vertices
at vertices of Nϕ.

Remark 3.3. The region Nϕ may be viewed as the convex hull of the (finite) translated
monomials and of the (infinite) positive coordinate directions. As such, it always admits a
triangulation whose simplices have vertices among these points, cf. §2.2 in [DLRS10]. y

3.3. Multidegree polynomial. If an embedding of V in a projective space Pr has been
chosen, and h is the restriction of the hyperplane class, it is now natural to let the degree
of T be the intersection number hdimV−rkT ·XT . By (6), we have

γ` =
∑

rkT=`

V̂ol(T ) deg(T ) ,

where the sum is over (maximal dimension) simplices of fixed rank in a triangulation of Nϕ.
In other words,

γϕ(t) =
∑
T

V̂ol(T ) deg(T ) trk(T ) ,

concluding the proof of Theorem 1.4. �
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4. Well-presented rational maps

4.1. The matrix of a rational map. We now consider the n×(M+1)-matrixMϕ whose
rows are the vectors

mi = (mi1, · · · ,min)

determined by the exponents of the monomials defining the rational map ϕ. We aim at
identifying a condition under which the multidegree polynomial of ϕ may be obtained
directly from this matrix. We specialize to the case M = n−1, and renumber the monomials
from 1 to n, so the matrix Mϕ := (mij)i=1,...,n

j=1,...,n
is square. The motivating example is

the case of dominant (ordinary) monomial maps Pn−1 99K Pn−1, and monomial Cremona
transformations in particular (cf. §3.5 of [Dol]); we remind the reader that our context is
more general, in that the source need not be projective space (or even nonsingular) and the
monomials may be built on sections of line bundles, cf. §§1 and 2.

4.2. Well-presented maps. We say that ϕ is well-presented byM =Mϕ if the following
condition holds. For every subset I = {i1, . . . , i`} ⊆ {1, . . . , n}, we let MI be the matrix
obtained by removing the i-th row and column of M for all i ∈ I. We also let πI denote
the projection Rn≥0 → Rn−`≥0 along the i1, . . . , i` directions. We require that

• The projection πI(Nϕ) of the Newton outer region of ϕ equals the Newton outer
region determined by the projections πI(mk) for k 6∈ I; and

• For all I ( {1, . . . , n}, the determinant of MI is either 0 or has sign (−1)n−1−|I|.

Roughly, these conditions say that the ordered simplex determined by the rows of the
matrix M is in sufficiently general position with respect to the coordinate directions.

Example 4.1. The standard Cremona transformation P2 99K P2 (x1 : x2 : x3) 7→ (x2x3 :
x1x3 : x1x2) with matrix 0 1 1

1 0 1
1 1 0


is well-presented.

O

For (for example) I = {3}, we see that the projection (1, 1) of the third row to the horizontal
plane is in the region determined by the projections (0, 1) and (1, 0) of the other rows:
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Also, detM{3} = det

(
0 1
1 0

)
= −1, as required. The reader can verify that the conditions

are satisfied for all choices of I.
On the other hand, the identity P2 → P2 is not well-presented.

For example, for I = {3} we have the following projection:

The projection of the third row is not in the outer region determined by the other two.
Further, detM{3} = 1 6= (−1)1 in this case. y

4.3. The Newton region of a well-presented rational map. The main implication of
the condition considered in §4.2 is the following description of the Newton region N deter-
mined by a well-presented monomial map. This is the closure in the positive orthant of the
complement of the outer region N c determined by the rows ofMϕ. (Recall that the region
Nϕ is a translation of N c.) For example, for the Cremona transformation in Example 4.1,
the Newton region consists of three infinite parallelepipeds along the coordinate axes, and
one tetrahedron connecting them:

Lemma 4.2. If ϕ is well-presented, then the corresponding Newton region is the (non-
overlapping) union over all proper subsets I = {i1, . . . , i`} ( {1, . . . , n} of the generalized
simplices with infinite vertices at ai1 , . . . , ai` and finite vertices at the origin and the rows
mk of Mϕ for k 6∈ I.

This statement is well illustrated by the the Cremona example depicted above. There are
7 proper subsets of {1, 2, 3}; the tetrahedron in the middle corresponds to I = ∅; the three
infinite simplices to the singletons; and the three simplices corresponding to the remaining
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three subsets are empty. More generally, the following picture (still for n = 3) may help in
visualizing the content of Lemma 4.2:

a
3

a
2

a
1

m
1

m
2

m
3O

The positive orthant is represented by the simplex Oa1a2a3, and a3 points towards the
reader. The triangle m1m2m3 is contained in the orthant, and m3 points away from the
reader. The region between the triangles m1m2m3 and a1a2a3 is the region N c. The
region N is its complement, i.e., the union of the simplices Om1a2a3, Om1m2a3, etc., as
prescribed by the lemma. In the Cremona case of Example 4.1, the vertices m1, m2, m3 are
on the faces Oa2a3, Oa1a3, Oa1a2, respectively, so three of the simplices are degenerate.

Proof. It is clear that N may be decomposed as a union of simplices with vertices at the
origin O, at some subset of infinite directions ai, i ∈ I ⊆ {1, . . . , n}, and at a subset of the
rows ofM. Also, I cannot consist of the whole {1, . . . , n}, since the generalized simplex with
vertices O, a1, . . . , an is the whole positive orthant. For I = {i1, . . . , i`} properly contained
in {1, . . . , n}, we have to determine the set of n − ` rows mk completing O, ai1 , . . . , ai` to
a simplex T contained in N . For this, we project along I. For i ∈ I, πI(mi) is in the
outer region determined by the projections πI(mk) for k 6∈ I, by the first requirement listed
in §4.2. It follows that these latter n − ` rows must be the complementary set of vertices
of T , and this is the assertion of the statement. �

4.4. The multidegree class of a well-presented map. Lemma 4.2 and volume com-
putations give the following result. Recall that G denotes the multidegree class, cf. §2.1,
and that for I ⊆ {1, . . . , n},MI denotes the matrix obtained by removing the i-th row and
column from M for all i ∈ I.

Corollary 4.3. If ϕ is r.c.-monomial and well-presented by the matrix M =Mϕ, then

(7) G = c(L ∗)−1 ∩

 ∑
I⊆{1,...,n}

(−1)n−|I|(detMI)
∏
k 6∈I

Xk

 .

Proof. By (3) in §2.4,

G =

∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + (a1 −mn1)X1 + · · ·+ (an −mnn)Xn)n+1

where we have used mn as pivot. As N is the complement of N c in the positive orthant,
and the integral over the orthant is c(L ∗), the decomposition of N obtained in Lemma 4.2
and the formula for integrals over simplices (Lemma 3.1; remember that O is a vertex of
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each simplex) give

G = c(L ∗)−1 ∩

1−
∑

I({1,...,n}

(V̂olTI)XTI

 ,

where TI is the simplex with vertices at the origin, ai for i ∈ I, and mk for k 6∈ I. Now

V̂ol(TI) is, by definition, the normalized volume of the simplex spanned by the projections
of the finite vertices of TI ; thus, it equals ± the determinant of the matrix obtained by
replacing, for i ∈ I, the i-th row of M with the standard basis vector ei. In other words,
this volume equals ±detMI , and by the second requirement listed in §4.2 we have

V̂ol(TI) = (−1)n−1−|I| detMI

for I properly contained in {1, . . . , n}. Thus

G = c(L ∗)−1 ∩

1 +
∑

I({1,...,n}

(−1)n−|I|(detMI)XTI

 .

The statement follows, putting detMI = 1 for I = {1, . . . , n} (the ‘empty matrix’). �

Since the nonzero components of the class G have codimension at most n− 1, the right-
hand side of (7) is necessarily a polynomial of degree less than n in the Xj ’s, once these are
evaluated to the corresponding classes in A∗V . As we will see, this fact has a more direct
explanation.

We consider the matrix Mϕ(X) whose rows are the vectors

(mi1X1, · · · ,minXn)

As usual, the Xj ’s are considered as parameters at first, and will eventually be evaluated
to the corresponding classes in A∗V . For the considerations which follow, we impose that

(8) m11X1 +m12X2 + · · ·+m1nXn = · · · = mn1X1 +mn2X2 + · · ·+mnnXn .

Once the Xj are replaced with the corresponding classes c1(Lj) in A∗V , this common value

is c1(L ) by assumption. This amounts to the statement that the column vector

1
...
1


is an eigenvector of Mϕ(X), with eigenvalue c1(L ). Thus, the characteristic polynomial
of Mϕ(X) has a factor of (t− c1(L )):

(9) det(t I −Mϕ(X)) = (t− c1(L )) ·Q(t)

for a polynomial Q(t) of degree n − 1. On the other hand, evaluating the characteristic
polynomial of Mϕ(X) at t = 1 gives the term in parentheses appearing in (7): indeed,

(10) det(t I −Mϕ(X)) =
∑

I⊆{1,...,n}

t|I|(−1)n−|I| detMI
∏
k 6∈I

Xk

by elementary linear algebra. It follows that G may be computed directly from the polyno-
mial Q(t):

Corollary 4.4. If ϕ is well-presented, and with notation as above, G = Q(1).

Proof. By (10), this follows from (7) and (9): the factor (t − c1(L )) equals c(L ∗) for
t = 1. �
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4.5. The multidegree class and a characteristic polynomial. We will now identify
Q(t) itself as a characteristic polynomial. LetM′′ϕ(X) be the matrix obtained by subtracting
the last row of Mϕ(X) from the others, and discarding the last row and column:m11X1 m12X2 m13X3

m21X1 m22X2 m23X3

m31X1 m32X2 m33X3

;

(
(m11 −m31)X1 (m12 −m42)X2

(m21 −m31)X1 (m22 −m42)X2

)
Lemma 4.5.

Q(t) = det(t I −M′′ϕ(X)) .

Proof. This is also elementary linear algebra. Performing a change of basis from the stan-
dard basis to e1, . . . , en−1, e1 + · · ·+ en, Mϕ(X) is transformed into

1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

 · Mϕ(X) ·


1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1

 =

(
M′′ϕ(X) 0
∗ c1(L )

)

hence

det(t I −Mϕ(X)) = (t− c1(L )) · det(t I −M′′ϕ(X)) .

The result follows by comparing with (9). �

Corollary 4.6. With notation as above, and assuming that ϕ is well-presented, the mul-
tidegree class of ϕ is obtained by evaluating the characteristic polynomial for the matrix
M′′ϕ(X) at t = 1.

Remark 4.7. Note that Xn does not appear inM′′ϕ(X), and hence in the expression for the
multidegree class obtained in Corollary 4.6. This is not too surprising, given the redundancy
built into the classes of the hypersurfaces Xi (cf. (8)). Of course we could use the i-th row
as pivot, and this would yield an expression for the multidegree class in which Xi does not
appear. y

4.6. Monomial morphisms of tori. The matrixM′′ϕ(X) has a compelling interpretation

in the case of rational maps ϕ : Pn−1 99K Pn−1 whose components are monomials in the
homogeneous coordinates x1, . . . , xn. Every such map may be obtained by homogenizing a
monomial morphisms of (n− 1)-tori:

(11) α : (x1, . . . , xn−1) 7→ (xa111 · · ·xa1,n−1

n−1 , . . . , x
an−1,1

1 · · ·xan−1,n−1

n−1 )

with aij ∈ Z. A homogenization may be performed (for example) by multiplying each
monomial by a power of xn to obtain monomials of common degree 0, then multiplying
each monomial by a common factor to obtain nonnegative exponents throughout.

Example 4.8. Applying this procedure to the monomial map of tori

(x1, x2, x3) 7→ (x−1
1 x3, x

−2
2 , x2x3)

gives the following rational map P3 99K P3:

(x1 : x2 : x3 : x4) 7→ (x−1
1 x3 : x−2

2 x2
4 : x2x3x

−2
4 : 1) = (x2

2x3x
2
4 : x1x

4
4 : x1x

3
2x3 : x1x

2
2x

2
4) .

We say that α is well-presented if its homogenization is well-presented in the sense spec-
ified in §4.2. We are ready to prove Theorem 1.8 from the introduction:
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Theorem 4.9. Let α be a map of (n− 1)-tori, let A = (aij) be the (n− 1)× (n− 1) matrix
of exponents, let PA(t) = det(t I − A) be the characteristic polynomial of A, and let γα(t)
be the multidegree polynomial for the corresponding rational map Pn−1 99K Pn−1. Assume
that α is well-presented. Then

γα(t) = tn−1PA

(
1

t

)
.

Proof. The matrix h ·A obtained by multiplying each entry of A by the hyperplane class h
equals the matrixM′′ϕ(X) for the rational map Pn−1 99K Pn−1 obtained by homogenizing α,
and setting all Xj to equal h. By Corollary 4.6, the multidegree class equals det(I − h ·A),
and the stated formula follows by formal manipulations. �

Example 4.10. The standard Cremona transformation corresponding to the map of tori

(x1, . . . , xn−1) 7→ (x−1
1 , . . . , x−1

n−1)

is well-presented (Example 4.1). The exponent matrix is

A =

−1 · · · 0
...

. . .
...

0 · · · −1


hence PA(t) = (t + 1)n−1. According to Theorem 4.9, its multidegree polynomial is

γα(t) = (1 + t)n−1. Therefore its multidegrees are γ` =
(
n−1
`

)
(cf. [GSP06], Theorem 2,

and [Dol], §3.4). y

4.7. Multidegrees of well-presented r.c. monomial rational maps. For more gen-
eral well-presented r.c. monomial rational maps V 99K Pn−1 based on n hypersurfaces
X1, . . . , Xn, consider (as in §2 and 3) the Newton outer region Nϕ, whose vertices are the
rows of the (n× n) matrix M′ϕ(X) of translations (mj −mn) ·X:m11X1 m12X2 m13X3

m21X1 m22X2 m23X3

m31X1 m32X2 m33X3

;

(m11 −m31)X1 (m12 −m32)X2 (m13 −m33)X3

(m21 −m31)X1 (m22 −m32)X2 (m23 −m33)X3

0 0 0


(Of course any row can serve as pivot.)

Theorem 4.11. Let ϕ be well-presented, and let M′ϕ(X) be as above, with characteristic
polynomial PM′ϕ(X)(t) = det(t I −M′ϕ(X)). Then the multidegree polynomial of ϕ is given

by

(12) γϕ(t) = hdimV−ntnPM′ϕ(X)

(
h

t

)
.

Identity (12) should be interpreted by computing the right-hand side formally; this yields
an expression in t whose coefficients are homogeneous polynomials of degree dimV in the
variables h,X1, . . . , Xn. The statement is that evaluating the products as intersection prod-
ucts of the corresponding classes in V gives the multidegree polynomial of ϕ.

Proof. The characteristic polynomial of M′ϕ(X) equals t PM′′ϕ(X)(t), and it follows from

Lemma 4.5 and Corollary 4.6 that

PM′ϕ(X)(t) = tnG0 + tn−1G1 + · · ·+ tGn−1 ,

where G` is the term of codimension ` in G. Since

γϕ(t) = hdimV ·G0 + hdimV−1 ·G1t+ · · ·
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the stated formula follows by formal manipulations of these expressions. �

Example 4.12. Returning to the case in Example 1.3, ϕ is well-presented, as the reader can
easily verify. The matrices Mϕ, M′ϕ(X) are0 1 2

2 0 2
3 1 1

 ,

−3X1 0 X3

−X1 −X2 X3

0 0 0

 .

We have det(t I −M′ϕ(X)) = t(t+ 3X1)(t+X2). According to Theorem 4.11,

γϕ(t) = h2−3t3
h

t

(
h

t
+ 3X1

)(
h

t
+X2

)
= h2 + (3h ·X1 + h ·X2) t+ 3X1X2 t

2

Since X1 = h and degX2 = 2h in this example, this recovers the result γϕ(t) = 1 + 5 t +
6 t2 for the multidegree polynomial of ϕ, in agreement with the computations performed
in Examples 1.3 and 1.5. y
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