
TENSORED SEGRE CLASSES

PAOLO ALUFFI

Abstract. We study a class obtained from the Segre class s(Z, Y ) of an embedding of
schemes by incorporating the datum of a line bundle on Z. This class satisfies basic
properties analogous to the ordinary Segre class, but leads to remarkably simple formulas
in standard intersection-theoretic situations such as excess or residual intersections. We
prove a formula for the behavior of this class under linear joins, and use this formula to
prove that a ‘Segre zeta function’ associated with ideals generated by forms of the same
degree is a rational function.

1. Introduction

Segre classes of subschemes are fundamental ingredients in Fulton-MacPherson intersec-
tion theory: the very definition of intersection product may be given as a component of
a class obtained by capping a Segre class by the Chern class of a bundle determined by
the data ([Ful84, Proposition 6.1(a)]). Segre classes also have applications in the theory of
characteristic classes of singular varieties: both the Chern-Mather and the Chern-Schwartz-
MacPherson class of a hypersurface of a nonsingular variety may be written in terms of
Segre classes determined by the singularity subscheme of the hypersurface ([AB03, Propo-
sition 2.2]). Precisely because they carry so much information, Segre classes are as a rule
very challenging to compute, and their manipulation often leads to overly complex formulas.
The main goal of this note is to study a variation on the definition of Segre class which pro-
duces a class with essentially the same amount of information, but enjoying features that
may simplify its computation and often lead to much simpler expressions. For example,
standard applications to enumerative geometry may be streamlined by the use of this ‘ten-
sored’ class; and we will use this notion to give an efficient proof of the rationality of a Segre
zeta function of a homogeneous ideal in a polynomial ring, subject to the condition that
the generators of the ideal all have the same degree. Concrete applications of the tensored
Segre class to intersection-theoretic computations are given in [Alu15], where several of its
properties are stated without proof. The proofs of those properties may be found (among
others) in this note.

We work over an algebraically closed field k. Throughout this note, Y will denote an
algebraic variety over k, and Z will be a closed subscheme of Y . Segre classes of subschemes
are defined as Segre classes of related cones. Recall the definition, from [Ful84, Chapter 4]:
for a closed subscheme Z of Y , with normal cone CZY , the Segre class of Z in Y is the class

(1.1) s(Z, Y ) := q∗

∑
i≥0

c1(OP(1))i ∩ [P]

 ∈ A∗Z
where P = P(CZ(Y × A1)) is the projectivization of the normal cone of Z ∼= Z × {0}
in Y ×A1, q : P→ Z is the projection, and OP(1) is the tautological line bundle on P. (The
extra A1 factor takes care of the possibility that Z may equal Y .)

One motivation for the introduction of the class studied here is the observation that
there are two ingredients to the definition recalled above: the projective cone P and the
tautological line bundle OP(1). The scheme P does not determine the line bundle OP(1):
even if CZ(Y × A1) is a vector bundle E , twisting E by a line bundle L determines an
isomorphic projective bundle: P(E⊗L ) ∼= P(E ), but modifies the tautological line bundle by
a corresponding twist. In this sense the notation OP(1) is ambiguous, as different realizations
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of the scheme P affect OP(1) by a twist by a line bundle. Implementing this additional degree
of freedom leads to classes that share many of the standard properties of Segre classes, but
are in certain situations better behaved and easier to use.

Thus, we consider the datum of a subscheme Z ⊆ Y as above, together with a line bundle
L over Z.

Definition 1.1. The L -tensored Segre class of Z in Y is

s(Z, Y )L := s(Z, Y )⊗Y×A1 L .

This notion is essentially a particular case of the twisted Segre operator defined and
studied by Steven Kleiman and Anders Thorup in their work on mixed Buchsbaum-Rim
multiplicities, [KT96, §4]; see §2.1. The ⊗ operation used in Definition 1.1 was introduced
in [Alu94, Definition 2]; ‘tensoring’ the class by L essentially reproduces the effect of
tensoring the tautological line bundle OP(1) by L ∨. In particular, the ordinary Segre
class s(Z, Y ) agrees with the class tensored by the trivial bundle: s(Z, Y ) = s(Z, Y )O .
Definition 1.1 has the advantage that if s(Z, Y ) is known, computing the tensored class
does not require an explicit realization of the normal cone P. Also, good properties of the
⊗ notation significantly help in manipulations of tensored classes. For example, [Alu94,
Proposition 2] implies that

(1.2) s(Z, Y )L1⊗L2 = s(Z, Y )L1 ⊗Y×A1 L2

for all line bundles L1, L2 on Z.
We will prove several basic properties of tensored classes:

(i) If Z ⊆ Y is a regular embedding, with normal bundle NZY , then s(Z, Y )L =
(c(L )c(NZY ⊗L ))−1 ∩ [Z]. In particular, if Z = D ⊆ Y is a Cartier divisor, then

s(D,Y )O(−D) = (1 +D +D2 + · · · ) ∩ [D].
(ii) The tensored Segre class s(Z, Y )L is preserved by birational morphisms and by flat

morphisms.
(iii) If Y = V is a nonsingular variety, the class c(TV ⊗L )∩ s(Z, V )L is determined by

Z and L , and is independent of V .
(iv) Residual intersection: Suppose Z contains a Cartier divisor D in Y , and R is the

residual scheme to D in Z (in the sense of [Ful84, §9.2]). Then (omitting evident
push-forwards)

s(Z, Y )L = s(D,Y )L + s(R, Y )O(D)⊗L .

(v) Suppose Y ⊆ Pn, and let H be a general hyperplane. Then

s(H ∩ Z,H ∩ Y )L = H · s(Z, Y )L .

Several of these properties were stated without proof in [Alu15], and used therein to stream-
line intersection-theoretic computations. They are analogues (and formal consequences) of
properties satisfied by ordinary Segre classes. Because of these properties, tools normally
used to compute Segre classes can be applied to compute tensored classes directly. For
example, one may blow-up Y along Z, use (i) to compute the tensored Segre class of the
exceptional divisor, and (ii) (birational invariance) to obtain the tensored Segre class of
Z in Y . Also note that, by (iv), the ordinary residual formula for Segre classes takes the
simple form

(1.3) s(Z,X) = s(D,X) + s(R,X)O(D)

and by (i) and (iv),

s(Z,X)O(−D) = (1 +D +D2 + · · · ) ∩ [D] + s(R,X) .

These examples illustrate the notational advantage of using tensored classes: the reader is
invited to compare (1.3) with the standard formulation of the residual formula in [Ful84,
Proposition 9.2].
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Tensored Segre classes arise naturally in enumerative geometry. A template situation in
characteristic 0 may be as follows. Consider the linear system of hypersurfaces of Pn of
degree d containing a given scheme Z. For k = 0, . . . , n we may ask for the number Nk

of points of intersection of k general such hypersurfaces and n − k general hyperplanes,
in the complement of Z. (By Bertini’s theorem, these intersection points will count with
multiplicity 1.) We will prove:

Theorem 1.2. With notation as above,

(1.4) ι∗

(
s(Z,Pn)O(−d)

)
=

n∑
k=0

(dk −Nk)[Pn−k]

where ι : Z ↪→ Pn is the inclusion.

For example, the problem of computing characteristic numbers of degree-r plane curves
fits this template: the projective space Pn, with n = r(r + 3)/2, parametrizes degree-
r plane curves; the linear system is spanned by the hypersurfaces of degree d = 2r − 2
parametrizing curves that are tangent to lines; and Z ⊆ Pn is a scheme supported on the
set of non-reduced curves. In this case, the numbers Nk are the ‘characteristic numbers’
of the family of degree r plane curves. (They are known for r ≤ 4, [Vak99]; the problem
of their computation is completely open for r ≥ 5.) It is well known that the problem is
equivalent to the problem of computing the Segre class s(Z,Pn); Theorem 1.2 makes this
fact completely transparent.

By the same token, Theorem 1.2 can be used to compute Segre classes, in low dimension:
if the hypersurfaces are general elements of the linear system of hypersurfaces of degree d
containing a given scheme Z, then a computer algebra system can be used to evaluate the
numbers Nk, giving ι∗

(
s(Z,Pn)O(−d)

)
by (1.4), and ι∗s(Z,Pn) may then be obtained by

tensoring by O(d), making use of (1.2). This strategy is reminiscent of the algorithm (via
residual schemes) introduced by Eklund, Jost, Peterson ([EJP13]). An example will be
given in §3 (Example 3.6).

We also note the following consequence of Theorem 1.2.

Corollary 1.3. Assume Z ⊆ Pn may be defined by an ideal generated by polynomials of
degree d. Then s(Z,Pn)O(−d) is effective.

Example 1.4. Let Z be the Veronese surface in P5. Then ι∗s(Z,P5) = 4[P2]−18[P1]+51[P0]
is not effective, but as the Veronese surface is cut out by quadrics,

ι∗s(Z,P5)O(−2) = 4[P2] + 14[P1] + 31[P0]

is effective. y

Ampleness considerations imply that the class (1 + dH)n+1s(Z,Pn) is effective. Corol-
lary 1.3 also implies this fact, as we note in §3; hence it is a stronger constraint. Further
constraints on the degrees of the components of s(Z,Pn)O(−d) may be derived from Theo-
rem 1.2 by applying a theorem of June Huh; see Remark 3.7.

Theorem 1.2 will follow from a re-writing of the Fulton-MacPherson intersection product
for the intersection of a collection of linearly equivalent effective Cartier divisors X1, . . . , Xm

in a variety V . Let O(X) be the (common) line bundle of these divisors, and assume that
Z is a union of connected components of the intersection X1 ∩ · · · ∩Xm.

Theorem 1.5. The contribution of Z to the intersection product X1 · · ·Xm equals the
component of dimension dimV −m in s(Z, V )O(−X).

This result is a formal consequence of known formulae (cf. [Ful84, Example 6.1]) and of
properties of the ⊗ operation from [Alu94, §2]. The reason we find Theorem 1.5 remarkable

is that the class s(Z, V )O(−X) does not depend on the number m of hypersurfaces: if Z is
a collection of components of the intersection of more hypersurfaces from the same linear
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system, then its contribution to the corresponding intersection product is simply evaluated
by terms of higher codimension in the same class s(Z, V )O(−X). In fact, we can show (The-
orem 3.4) that the contribution supported on subvarieties of Z for the intersection product
of any number of general elements of the linear system equals the term of appropriate di-
mension in s(Z, V )O(−X). This fact is responsible for the particularly simple form taken by
Theorem 1.2.

A similar notational advantage occurs in computing Segre classes of joins with linear
subspaces in projective space. Let Z be a subscheme of Pn; we may assume Z is defined by
a (possibly non-saturated) ideal generated by homogeneous polynomials F1, . . . , Fm of the

same degree d in k[x0, . . . , xn]. For N ≥ n, we consider the subscheme Z
(d)
N of PN defined by

the ideal generated by the Fi, viewed as polynomials in k[x0, . . . , xN ]. Geometrically, Z
(d)
N

is the join of Z ⊆ Pn ⊆ PN and a subspace Pm, m = N − n− 1 complementary to Pn; but

the scheme structure of Z
(d)
N along the ‘vertex’ Pm depends on the choice of the degree d.

Example 1.6. Let Z be a point in P1. Then Z
(1)
2 is a reduced line in P2, while Z

(2)
2 is a line

with an embedded point. y

An analogous linear join operation may also be defined at the level of Chow groups:
as above, let Pm ⊆ PN be a complementary subspace to Pn; and if W ⊆ Z ⊆ Pn is a

subvariety, let W ∨ Pm denote the cone over W with vertex along Pm, a subvariety of Z
(d)
N .

This correspondence passes through rational equivalence, hence it defines a map α 7→ α∨Pm

from A∗Z to A∗Z
(d)
N .

Theorem 1.7. In the situation detailed above (in particular, with N = n+m+ 1)

(1.5) s(Z
(d)
N ,PN )O(−dH) =

dn+1[Pm]

1− dH
+ s(Z,Pn)O(−dH) ∨ Pm .

A ‘relative’ version of Theorem 1.7, proven here in Theorem 4.1, is used in computations
carried out in [Alu15]. Another reason that motivates our interest in Theorem 1.7 is that
this statement implies that the push-forward of the ordinary Segre class to PN is of the
form

ιN∗s(Z
(d)
N ,PN ) =

A(H)

(1 + dH)n+1
∩ [PN ]

where A(H) is a certain polynomial independent of N and with nonnegative coefficients
(Theorem 4.3). This is a particular case of the rationality of a ‘Segre zeta function’ which
may be associated with any homogeneous ideal I of a polynomial ring; the case proven
here is the case in which all generators of I have the same degree (or, more generally,
are elements of a linear system in a suitable relative setting, cf. Theorem 4.1). This zeta
function appears to be quite interesting. For example, its poles record the degree of some,
but in general not all, the elements of a minimal generating set of the ideal. The general
case of this rationality statement will be discussed elsewhere.

The basic properties of tensored Segre classes are proven in §2. Theorem 1.5 is proven
in §3, together with its enumeratively-inspired consequence, Theorem 1.2. The ‘relative’
generalization of Theorem 1.7, and the rationality of the Segre zeta function in the particular
case considered here, are discussed in §4.

As mentioned above, the class considered here may be viewed as an application of the
twisted Segre operator defined by S. Kleiman and A. Thorup in [KT96]; see §2.1. Properties
(ii) and (iv) listed above are particular cases of more general statements for these operators
((a), (b) in section (4.4), and Theorem 4.6 in [KT96], respectively). While ‘twisted Segre
classes’ may have been a natural choice for the name of the classes considered here, we
opted for ‘tensored’ for consistency with the terminology used in [Alu15] and since the term
‘twisted Segre class’ is used in a different context in [Wal06].
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Leendert van Gastel also considered classes defined similarly: one can interpret Corol-
lary 3.6 in [vG91] as showing that the class of the Vogel cycle may be expressed as a tensored
Segre class, up to multiplication by the Chern class of a line bundle. It would be interesting
to compare this result with Theorem 1.2.

Finally, we note that the Chern-Schwartz-MacPherson class of a hypersurface X in a
nonsingular variety M may be written as

(1.6) cSM(X) = c(TM) ∩
(
s(X,M) + (s(JX,M)O(−X))∨

)
where JX denotes the singularity subscheme of X, and (·)∨ is the operation that changes
the sign of the components of the class (·) which have odd codimension in M . This follows
immediately from the definition and from [Alu99, Theorem I.4].

Acknowledgments. This work was supported in part by the Simons foundation and by
NSA grants H98230-15-1-0027 and H98230-16-1-0016. The author is grateful to Caltech for
hospitality while this work was carried out.

2. Basic properties

As in the introduction, Y denotes a variety over an algebraically closed field k, em-
beddable in a nonsingular scheme. (By [Ful84, Lemma 4.2], the material extends without
substantial changes to the case in which Y is a pure-dimensional k-scheme.) In this section
we prove the basic properties of tensored Segre classes listed in the introduction.

We recall the definition of the tensored classes: for a closed embedding ι : Z ↪→ Y , and
for a line bundle L on Z, we let

s(Z, Y )L = s(Z, Y )⊗Y×A1 L .

Here we identify Z with Z × {0} ⊆ Y × A1. The ⊗ notation, borrowed from [Alu94, §2],
acts on a class αk in AkZ by

(2.1) αk ⊗Y×A1 L := c(L )−(dimY+1−k) ∩ αk ,

and this definition is extended by linearity to the whole Chow group A∗Z. Properties of
this operation are proven in [Alu94, §2]. Recall that α 7→ α ⊗Y×A1 L defines an action of
Pic on A∗Z; in particular, α = (α ⊗Y×A1 L ) ⊗Y×A1 L ∨. Hence, the ordinary Segre class
may be recovered from a tensored one by tensoring by the dual line bundle:

s(Z, Y ) = s(Z, Y )L ⊗Y×A1 L ∨ .

We note that s(Z, Y )O = s(Z, Y ). Also, s(Z,Z)L = c(L )−1 ∩ [Z] if Z is pure-dimensional.

2.1. Twisted Segre operators. As mentioned in §1, s(Z, Y )L may be expressed in terms
of the twisted Segre operator of [KT96]: with notation as in [KT96, §4.4],

s(Z, Y )L = s(Z,L ∨)[Y ] .

Indeed, according to [KT96, (4.4.2)] and with notation as in §1,

s(Z,L ∨)[Y ] = q∗

∑
i≥0

c1(OP(1)⊗ q∗L ∨)i ∩ [P]

 = q∗
(
c(OP(−1)⊗ q∗L )−1 ∩ [P]

)
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(cf. (1.1)). By [Alu94, Proposition 2], and denoting by Ŷ the blow-up of Y × A1 along

Z × {0} (so that [P] is a divisor in Ŷ ),

q∗
(
c(OP(−1)⊗ q∗L )−1 ∩ [P]

)
= q∗

(
[P]⊗Ŷ (OP(−1)⊗ q∗L )

)
= q∗

(
([P]⊗Ŷ OP(−1))⊗Ŷ q

∗L
)

= q∗
(
([P]⊗Ŷ OP(−1))

)
⊗Y×A1 L

= s(Z, Y )⊗Y×A1 L

= s(Z, Y )L .

2.2. Regular embeddings.

(i) If Z ⊆ Y is a regular embedding, with normal bundle NZY , then

(2.2) s(Z, Y )L = (c(L )c(NZY ⊗L ))−1 ∩ [Z] .

Proof. If Z ⊆ Y is a regular embedding, then s(Z, Y ) = c(NZY )−1 ∩ [Z] by [Ful84, Propo-
sition 4.1(a)]. Also note that in this case Z is pure-dimensional (as Y is pure-dimensional
by assumption). Applying [Alu94, Proposition 1], we obtain

s(Z, Y )L = s(Z, Y )⊗Y×A1 L = (c(NZY )−1 ∩ [Z])⊗Y×A1 L

= c(L )codimZ Y c(NZY ⊗L )−1 ∩ ([Z]⊗Y×A1 L )

= c(L )dimY−dimZc(NZY ⊗L )−1 ∩ (c(L )−(dimY+1−dimZ) ∩ [Z])

with the stated result. �

Example 2.1. Let Z be the complete intersection of r linearly equivalent effective Cartier
divisors X1, . . . , Xr; let D be the common divisor class of the hypersurfaces Xi. Then
NZY = O(D)⊕r, hence NZY ⊗ O(−D) ∼= O⊕r, and (2.2) gives

s(Z, Y )O(−D) = c(O(−D))−1 ∩ [Z] = (1 +D +D2 + · · · ) ∩ [Z] = s(Z,Z)O(−D) ,

independently of r. In particular, if Z = D is a Cartier divisor, then s(D,Y )O(−D) =

s(D,D)O(−D) = D +D2 +D3 + · · · as stated in §1. y

2.3. Behavior under morphisms.

(ii) Let π : Y ′ → Y be a morphism of varieties, let ρ : Z ′ := π−1(Z)→ Z be the induced

morphism, and L̃ = ρ∗L . Then

– If π is proper and onto, then ρ∗(s(Z
′, Y ′)L̃ ) = deg(Y ′/Y )s(Z, Y )L .

– If π is flat, then ρ∗(s(Z, Y )L ) = s(Z ′, Y ′)L̃ .

Proof. Both statements follow immediately from the analogous properties of ordinary Segre
classes, proven in[Ful84, Proposition 4.2(a)], and from the projection formula, which implies
that

ρ∗(α⊗Y ′×A1 ρ∗L ) = ρ∗(α)⊗Y×A1 L

if dimY ′ = dimY , as is immediate from the definition of the ⊗ operation. �

For the corresponding (more general) facts for twisted Segre operators, see [KT96, (4.4)].
Note that as a consequence of the first formula, tensored Segre classes are invariant

under birational maps, in the sense that ρ∗

(
s(π−1(Z), Y ′)L̃

)
= s(Z, Y )L if π is a proper

birational morphism.
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2.4. Independence of a nonsingular ambient variety.

(iii) If Y = V is a nonsingular variety, the class c(TV |Z ⊗L )∩ s(Z, V )L is independent
of V ; it is determined by Z and L .

In fact, we will show that

(2.3) c(TV |Z ⊗L ) ∩ s(Z, V )L = c(L )dimV ∩ (cF(Z)⊗V×A1 L )

where cF(Z) is the class defined in [Ful84, Example 4.2.6]. This class only depends on Z,
and if αk is a class of dimension k, then

c(L )dimV ∩ (αk ⊗V×A1 L ) = c(L )dimV ∩ (c(L )−(dimV+1−k) ∩ αk) = c(L )k−1 ∩ αk
is independent of V , so indeed (2.3) verifies (iii).

Proof of (2.3). By [Alu94, Proposition 1],

c(L )dimV ∩ (cF(Z)⊗V×A1 L ) = c(L )dimV ∩ ((c(TV ) ∩ s(Z, V ))⊗V×A1 L )

= c(L )dimV ∩ (c(L )− dimV c(TV ⊗L ) ∩ (s(Z, V )⊗V×A1 L ))

= c(TV ⊗L ) ∩ s(Z, V )L

as needed. �

2.5. Residual intersection.

(iv) Suppose Z contains a Cartier divisor D in Y , and let R be the residual scheme to D
in Z. Then

(2.4) s(Z, Y )L = s(D,Y )L + s(R, Y )O(D)⊗L .

Proof. This follows from the usual residual intersection formula, i.e., [Ful84, Proposition 9.2],
in the formulation given in [Alu94, Proposition 3]:

s(Z, Y ) = s(D,Y ) + c(O(D))−1 ∩ (s(R, Y )⊗Y O(D)) .

This gives

s(Z, Y )L = s(Z, Y )⊗Y×A1 L

= s(D,Y )⊗Y×A1 L + c(L )−1 c(L )

c(O(D)⊗L )
∩ ((s(R, Y )⊗Y O(D))⊗Y L )

∗
= s(D,Y )L + c(O(D)⊗L )−1(s(R, Y )⊗Y (O(D)⊗L ))

= s(D,Y )L + s(R, Y )c(O(D)⊗L )

as stated. Equality ∗ follows from [Alu94, Proposition 2]. �

The ‘additivity’ formula (2.4) will be used in the proof of Theorem 4.1. It may also be
obtained as a particular case of additivity for twisted Segre operators, [KT96, Theorem 4.6,
(4.7.1)].

2.6. General hyperplane sections.

(v) Suppose Y ⊆ Pn, and let H be a general hyperplane. Then

s(Z ∩H,Y ∩H)L = H · s(Z, Y )L .

Proof. More generally, we can prove that if D is a Cartier divisor of Y intersecting properly
every component of the normal cone of Z in Y , then

s(D ∩ Z,D)L = D · s(Z, Y )L .

Indeed, it is easy to see that this is the case for ordinary Segre classes ([AF15, Lemma 4.1]),
so we only need to verify that if α ∈ A∗Z and D is a divisor of Y , then for all line bundles L

(D · α)⊗D×A1 L = D · (α⊗Y×A1 L ) .
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This is immediately checked for a pure-dimensional class by using (2.1), hence it holds for
all classes by linearity. �

3. Intersection product

In this section we use tensored Segre classes to give a reformulation of the Fulton-
MacPherson intersection product. This will again be a formal consequence of the usual
formulation of the product, but in some situations the use of tensored classes yields partic-
ularly simple expressions, cf. Theorems 1.2 and 1.5.

The reformulation relies on the following observation concerning the ⊗ operation used to
define tensored classes.

Lemma 3.1. Let A be a Chow class in a subscheme Z of a pure-dimensional scheme X,
and let L be a line bundle on Z. Then the term of dimension dimX − c in

c(L )c−1 ∩ (A⊗X L )

equals the term of dimension dimX − c in A (in particular, it is independent of L ).

Proof. Letting A(i) denote the part of A of dimension dimX − i,

c(L )c−1∩(A⊗X L ) = c(L )c−1

(
A(0)

c(L )0
+

A(1)

c(L )1
+

A(2)

c(L )2
+ · · ·

)
= c(L )c−1 ∩A(0) + c(L )c−2 ∩A(1) + · · ·+A(c−1) + c(L )−1 ∩A(c) + · · ·

It is clear that the term of dimension dimX − c in this expression is A(c), independently
of L . �

Remark 3.2. If A = c(E )
c(F ) ∩ [X], with E , F vector bundles of ranks e, f respectively, then

Lemma 3.1 asserts that the term of codimension c = e− f + 1 in A does not change if we
tensor both E and F by a line bundle L . Indeed, using [Alu94, Proposition 1]

c(L )c−1 ∩ (A⊗X L ) = c(L )e−f ∩
((

c(E )

c(F )
∩ [X]

)
⊗L

)
= c(L )e−f ∩

(
c(E ⊗L )

c(L )e−fc(F ⊗L )
∩ [X]

)
=

c(E ⊗L )

c(F ⊗L )
∩ [X] .

This recovers the result of [AF95]. y

Now we consider a standard intersection template. Let V be a variety, B ⊆ V a closed
subscheme, and assume that the inclusion B ↪→ Y is a regular embedding. Let f : Y → V
be a morphism, and assume Z ⊆ Y is a collection of connected components of f−1(B). Let
g : Z → B be the induced morphism.

Z //

g

��

Y

f
��

B // V

Proposition 3.3. For all line bundles L on Z, the contribution (B · Y )Z of Z to the
Fulton-MacPherson intersection product B · Y is given by

(3.1) (B · Y )Z = {c(g∗NBV ⊗L ) ∩ s(Z, Y )L }d
where {·}d denotes the term of dimension d, and d = dimY − codimB V .

The point of this statement is that the contribution of Z to B · Y , and hence the right-
hand-side of (3.1), is independent of L ; thus, we may have the flexibility of choosing a
specific line bundle to simplify this expression. Theorem 1.5 will precisely be obtained in
this fashion.
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Proof. By [Ful84, §6.1], (B · Y )Z = {c(g∗NBV ) ∩ s(Z, Y )}d. Applying Lemma 3.1 to A =
c(g∗NBV ) ∩ s(Z, Y ), X = Y × A1, and c = dimY + 1− d, we obtain

(B · Y )Z = {c(g∗NBV ) ∩ s(Z, Y )}d
= {c(L )dimY−d ∩ ((c(g∗NBV ) ∩ s(Z, Y ))⊗Y×A1 L )}d
∗
= {c(L )dimY−dc(L )− codimB V c(g∗NBV ⊗L ) ∩ (s(Z, Y )⊗Y×A1 L )}d
= {c(g∗NBV ⊗L ) ∩ s(Z, Y )L }d

as stated. Equality ∗ holds by [Alu94, Proposition 1]. �

Next, we verify that Theorem 1.5 follows from Proposition 3.3. Let X1, . . . , Xm be
effective Cartier divisors in a variety V ; assume O(Xi) is independent of i, and let O(X)
denote this line bundle. We define the intersection product X1 · · ·Xm by applying the
Fulton-MacPherson definition ([Ful84, §6.1]) to the following Cartesian diagram:

X1 ∩ · · · ∩Xm
//

i
��

V

∆
��

X1 × · · · ×Xm
// V × · · · × V

where the vertical map ∆ is the diagonal embedding.
Let Z be a union of connected components of the intersection X1∩· · ·∩Xm. Theorem 1.5

states that the contribution (X1 · · ·Xm)Z of Z to the intersection product X1 · · ·Xm is given
by

(X1 · · ·Xm)Z = {s(Z, V )O(−X)}dimV−m .

Proof of Theorem 1.5. We have Z ⊆ X1 ∩ · · · ∩ Xm
i
↪→ X1 × · · · × Xm. Denote by g this

inclusion. We have

g∗NX1×···×Xm(V × · · · × V ) =
⊕
j

NXjV |Z ∼= O(X)⊕m|Z .

It follows that

(g∗NX1×···×Xm(V × · · · × V ))⊗ O(−X)|Z ∼= O⊕mZ ,

and hence

c(g∗NX1×···×Xm(V × · · · × V )⊗ O(−X)) = 1 .

The statement then follows immediately from Proposition 3.3. �

Next, we assume that Z is cut out by a linear system L ⊆ H0(Y,L ) and that Y is
projective; let H be the hyperplane class on Y . For a class α ∈ AkY , we will let degα
denote

∫
Y H

k ·α, i.e., the degree of the push-forward of α to projective space. If X1, X2, . . .
are general elements of L, we are interested in the contribution to deg(X1 · · ·Xc) supported
on (subvarieties of) Z, for all c ≥ 0. As mentioned in §1, this situation is motivated by
enumerative geometry: typically, the non-complete variety Y r Z may parametrize some
type of geometric object, and the degree of the part of X1 · · ·Xc supported on Y r Z will
have enumerative significance. This degree can be obtained by taking the contribution
supported on Z away from the total degree of X1 · · ·Xc; thus, this operation may be viewed
as ‘performing intersection theory in the non-complete variety Y r Z’.

Theorem 3.4. For all c ≥ 0, the contribution to deg(X1 · · ·Xc) supported on Z equals

deg{s(Z, Y )L ∨}dimY−c.

Proof. Let H1, . . . ,HdimY−c be general hyperplanes, and let

Z(c) = H1 ∩ · · · ∩HdimY−c ∩ Z , Y (c) = H1 ∩ · · · ∩HdimY−c ∩ Y ;
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note that dimY (c) = c. The intersections X
(c)
i := Xi ∩ Y (c) are general representatives of

the restriction of the linear system L to Y (c); this system cuts out Z(c). We have

deg(X1 · · ·Xc) =

∫
Y

(X
(c)
1 · · ·X

(c)
c ) .

By Theorem 1.5, the contribution of Z(c) to X
(c)
1 · · ·X

(c)
c is given by∫

Y
{s(Z(c)

− , Y (c))L ∨}0 ,

where Z
(c)
− is the part of X

(c)
1 ∩· · ·∩X

(c)
c supported within Z(c). By [Alua, Theorem 1.1(b)],

s(Z
(c)
− , Y (c)) = s(Z(c), Y (c)), and hence s(Z

(c)
− , Y (c))L ∨

= s(Z(c), Y (c))L ∨
. Further, by prop-

erty (v) of tensored Segre classes (cf. §2.6),

s(Z(c), Y (c))L ∨
= HdimY−c · s(Z, Y )L ∨

.

It follows that the contribution to X1 · · ·Xc supported on Z has degree∫
Y
HdimY−c · s(Z, Y )L ∨

= deg{s(Z, Y )L ∨}dimY−c

as stated. �

Theorem 1.2 is a special case of Theorem 3.4, where Y = Pn and L = O(d).

Example 3.5. For the problem of characteristic numbers of plane conics we have Y = P5,
d = 2; and Z consists of the Veronese surface in P5 with its reduced structure. Denoting
by h the hyperplane in Z ∼= P2, the pull-back of H to Z equals 2h, and we have

c(NZP5) =
(1 + 2h)6

(1 + h)3
.

By property (i) of tensored classes (cf. §2.2) we have that

s(Z,P5)O(−2H) = (c(O(−4h))c(NZP5 ⊗ O(−4h)))−1 ∩ [Z] =
(1 + h− 4h)3

(1− 4h)(1 + 2h− 4h)6
∩ [Z]

=
(1− 3h)3

(1− 4h)(1− 2h)6
∩ [Z] = (1 + 7h+ 31h2) ∩ [Z]

and it follows that

ι∗s(Z,P5)O(−2H) = 4[P2] + 14[P1] + 31[P0] .

Using Theorem 1.2, this says that the characteristic numbers Nk for smooth plane conics,
that is, the number of conics tangent to k general lines and containing 5− k general points,
must be 1, 2, 22, 23 − 4, 24 − 14, 25 − 31 = 1, 2, 4, 4, 2, 1 for k = 0, . . . , 5. y

Example 3.6. As mentioned in §1, results such as Theorems 3.4 or 1.2 may be used to
compute Segre classes. For example, consider the monomial scheme Z defined by the ideal
I = (x2

1x
6
2, x

3
1x

4
2, x

4
1x

3
2, x

5
1x2, x

7
1) in P3. Let f1, f2, f3 be general degree-8 polynomials in I,

and let

J1 = (f1) : I∞ , J2 = (f1, f2) : I∞ , J3 = (f1, f2, f3) : I∞ .

Macaulay2 ([GS]) can compute these ideals for ‘random’ polynomials fi, and the degrees of
the residual schemes R1, R2, R3 defined by the ideals J1, J2, J3:

(3.2) degR1 = 6 , degR2 = 14 , degR3 = 30 .

According to Theorem 1.2 (assuming that the fi’s are random enough),

ι∗s(Z,P3)O(−8) = (8− 6)[P2] + (82 − 14)[P1] + (83 − 30)[P0] = 2[P2] + 50[P1] + 482[P0] .
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Letting H denote the hyperplane class, it follows that

ι∗s(Z,P3) =
2[P2]

(1 + 8H)2
+

50[P1]

(1 + 8H)3
+

482[P0]

(1 + 8H)4
= 2[P2] + 18[P1]− 334[P0] .

Cf. [Alub, Example 1.2] for a different computation of the same class. We note that by (1.2)

s(Z,P3)O(−d) = s(Z,P3)O(−8) ⊗P3×A1 O(8− d)

=
2[P2]

(1 + (8− d)H)2
+

50[P1]

(1 + (8− d)H)3
+

482[P0]

(1 + (8− d)H)4

= 2[P2] + (4d+ 18)[P1] + (6d2 + 54d− 334)[P0] ,

and by Theorem 1.2 we can deduce that the degrees of the corresponding residual schemes
for degree-d general polynomials in I must be

degR′1 = d− 2 , degR′2 = d2 − 4d− 18 , degR′3 = d3 − 6d2 − 54d+ 334 .

Therefore, the residual degrees for any one d (d = 8 in this case) determine the residual
degrees for every d. (Macaulay2 can confirm low degree specializations of this formula (e.g.,
d = 9) in this example.) y

Corollary 1.3 follows from Theorem 1.2 and [Ful84, Theorem 12.3], which ensures that all
contributions to an intersection product in projective space are nonnegative: with notation
as in §1, di −Ni ≥ 0 for all i, therefore the class

ι∗s(Z,Pn)O(−d) = (d0 −N0)[Pn] + (d1 −N1)[Pn−1] + · · ·+ (dn −Nn)[P0]

is effective. We also note that it follows that

(1 + dH)n+1 ∩ ι∗s(Z,Pn) = (1 + dH)n+1
(
ι∗s(Z,Pn)O(−dH) ⊗Pn×A1 O(dH)

)
= (1 + dH)n+1

(
(d0 −N0)[Pn]

1 + dH
+

(d1 −N1)[Pn−1]

(1 + dH)2
+ · · ·+ (dn −Nn)[P0]

(1 + dH)n+1

)
= (d0 −N0)(1 + dH)n[Pn] + (d1 −N1)(1 + dH)n−1[Pn−1] + · · ·+ (dn −Nn)[P0]

is necessarily an effective class.

Remark 3.7. Further constraints on the degrees of the components of s(Z,Pn)O(−d) follow
from Theorem 1.2 and a theorem of June Huh. Specifically, assume that Z may be cut out
by hypersurfaces of degree d in Pn, and let

s(Z,Pn)O(−d) = a0[Pn] + a1[Pn−1] + · · ·+ an[P0] .

Then the numbers 1− a0, d− a1, . . . , dn − an form a log-concave sequence of nonnegative
integers with no internal zeros. Indeed, if Z may be cut out by hypersurfaces of degree d,
then the blow-up of Pn along Z may be realized as a subvariety of Pn×P(O(d)⊕r) ∼= Pn×Pr−1

for some r, and the numbers Ni in Theorem 1.2 may be interpreted as the multidegrees of
the class of this blow-up in Pn×Pr−1. These numbers form a log-concave sequence with no
internal zeros by [Huh12, Theorem 21], and the statement follows. y

4. Segre classes of linear joins

Next we consider Segre classes of linear joins. The following situation generalizes slightly
the one presented in §1; this generalization has been useful in applications. Let V be a
variety, and Z ⊆ Y = V × Pn a closed subscheme defined by a section s of E ⊗ O(d),
where E is (the pull-back of) a vector bundle defined on V . The situation described in §1
corresponds to taking V to be a point. For any N ≥ n, we embed Pn in PN , for example by

(x0 : · · · : xn) 7→ (x0 : · · · : xn : 0 : · · · : 0); we may then define a subscheme Z
(d)
N of V × PN

by using ‘the same’ section s, interpreting the O(d) components of s as expressed in the

first (n+ 1) homogeneous coordinates of PN . Geometrically, the scheme Z
(d)
N is supported

on the join of Z ⊆ V × Pn ⊆ V × PN and V × PN−n−1, where PN−n−1 is spanned by the
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last N − n homogeneous coordinates. Thus Z
(d)
n = Z; but note that the scheme structure

on Z
(d)
N along the ‘vertex’ V × PN−n−1 is not determined by Z alone—it also depends on

the choice of d (cf. Example 1.6).
These linear joins also define a map α 7→ α ∨ (V × Pm), (m = N − n − 1) from A∗Z

to A∗Z
(d)
N : if W is a subvariety of Z, the join W ∨ (V × Pm) is a subvariety of Z

(d)
N .

Theorem 1.7 is the particular case corresponding to V = {pt} of the following statement.

Theorem 4.1. With notation as above, and letting H denote the hyperplane class:

(4.1) s(Z
(d)
N , V × PN )O(−dH) =

dn+1[V × Pm]

1− dH
+ s(Z,Pn)O(−dH) ∨ (V × Pm) .

Proof. We consider the projection p : V × PN 99K V × Pn with center at V × Pm; the

indeterminacy of p is resolved by blowing up V × PN along V × Pm. Let π : Ỹ → V × PN
be this blow-up, p̃ the lift of p to Ṽ , and let E be the exceptional divisor.

E �
� //

ρ

��

Ṽ

π
��

p̃

((
V × Pm �

� // V × PN
p // V × Pn

By hypothesis, Z
(d)
N is defined by the section s of E ⊗O(d) whose zero-scheme is Z in V ×Pn.

It follows that π−1(Z
(d)
N ) = E ∪ p̃−1(Z) set-theoretically; we will refine this statement to a

scheme-theoretic one in a moment. First, let π′, resp., p̃′ be the restrictions of π, resp., p̃

to π−1(Z
(d)
N ), and note that

π′∗p̃
′∗([W ]) = [W ] ∨ Pm

realizes the join operation A∗Z → A∗Z
(d)
N .

Let (x0 : · · · : xN ) be homogeneous coordinates in PN . On open sets U of a cover of V
we may write s = (F1, . . . , Fm) (m = rk E ) with

Fi = Fi(x0, . . . , xn) ∈ OV (U)[x0, . . . , xn]

homogeneous polynomials. The center V × Pm of the blow-up is cut out by x0, . . . , xn, so

the ideal of π−1(Z
(d)
N ) in Ṽ is generated over U by

Fi(ηxj) = ηdFi(xj)

in the patch for Ṽ obtained by setting one of the xj ’s to 1 and letting η be the coordinate
corresponding to the exceptional divisor. It follows that

π−1(Z
(d)
N ) = dE ∪ p̃−1(Z)

(scheme theoretically). We apply the residual intersection formula ((iv), cf. §2.5) with
D = dE, R = p̃−1(Z), and L = O(−dH) to obtain

s(π−1(Z
(d)
N ), Ṽ )O(−dH) = s(dE, Ṽ )O(−dH) + s(p̃−1(Z), Ṽ )O(d(E−H)) .

By birational invariance ((ii), §2.3) and the projection formula, this yields

s(Z
(d)
N ,Pn+m+1)O(−dH) = π′∗

(
s(dE, Ṽ )O(−dH) + s(p̃−1(Z), Ṽ )O(d(E−H))

)
.

We have to compute the push-forward by π′∗ of the two terms on the right-hand side.

Concerning the first term, we have s(dE, Ṽ ) = d[E]
1+dE , and π′ restricts to ρ on E. We have

ρ∗
[E]

1 + E
= s(V × Pm, V × Pn+m+1) =

[V × Pm]

(1 +H)n+1
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by the birational invariance of Segre classes and the fact that V ×Pm is regularly embedded
in V × PN , with normal bundle O(H)⊕(n+1). Hence

ρ∗
d[E]

1 + dE
=
dn+1[V × Pm]

(1 + dH)n+1
.

It follows that

π′∗s(dE, Ṽ )O(−dH) =

(
dn+1[V × Pm]

(1 + dH)n+1

)O(−dH)

=
dn+1[V × Pm]

1− dH

as a class in A∗Z
(d)
N . (Here we have again used [Alu94, Proposition 1].) As for the other

term, since p̃ is flat, then (§2.3)

s(p̃−1(Z), Ṽ )O(d(H−E)) =
(
p̃′∗s(Z, V × Pn)

)O(d(H−E))
;

and since H − E is the pull-back of the hyperplane class from Pn (which we also denote
by H), we get

s(p̃−1(Z), Ṽ )O(d(E−H)) = p̃′∗(s(Z, V × Pn)O(−dH)) .

It follows that

π′∗s(p̃
−1(Z), Ṽ )O(d(E−H)) = π′∗p̃

′∗(s(Z, V × Pn)O(−dH)) = s(Z, V × Pn)O(−dH) ∨ (V × Pm)

and this concludes the proof. �

For d = 1, (4.1) reproduces Lemma 4.2 in [Alu15], which was stated and used without
proof in that reference. Theorem 1.7 follows from Theorem 4.1, by letting V = a point. In
this case, the information of s consists of m = rkE homogeneous polynomials F1, . . . , Fm ∈
k[x0, . . . , xn] of the same degree d.

Example 4.2. Let Z be a nonsingular conic in P2; then Z
(d)
3 is supported on a quadric cone

in P3. By Theorem 1.7,

s(Z
(d)
3 ,P3)O(−dH) = d3[P0] + s(Z,P2)O(−dH) ∧ P0 .

We have

s(Z,P2)O(−dH) = (1−dH)−1(1+(2−d)H)−1∩ [Z] = [Z]+(2d−2)H · [Z] = [Z]+(4d−4)[P0]

and therefore

s(Z
(d)
3 ,P3)O(−dH) = 2[P2] + (4d− 4)[P1] + d3[P0]

after push-forward to P3. The ordinary Segre class is immediately obtained from this:

s(Z
(d)
3 ,P3) =

2[P2]

(1 + dH)2
+

(4d− 4)[P1]

(1 + dH)3
+

d3[P0]

(1 + dH)4
= 2[P2]− 4[P1] + d(d2 − 6d+ 12)[P0]

after push-forward to P3. The case d = 2 corresponds to the reduced quadric cone in P3. y

In the rest of the section we will focus on the simpler Theorem 1.7. In our view, the most
interesting feature of this statement is that the shape of the expression (1.5) is independent
of N ≥ n; thus it can be taken as an invariant of the ideal I = (F1, . . . , Fm). In terms of
ordinary Segre classes, this observation takes the following form.

Theorem 4.3. With notation as above, let ιN : Z
(d)
N ↪→ PN be the inclusion. Then

(4.2) ιN∗s(Z
(d)
N ,PN ) =

A(H)

(1 + dH)n+1
∩ [PN ]

where A(H) is a polynomial of degree n+1 with nonnegative coefficients, independent of N .
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Proof. We push forward the class to PN , and write it ‘cohomologically’. So

ιN∗s(Z,Pn)O(−dH) = a0 + a1H + · · ·+ anH
n

is a shorthand for the class (a0 +a1H+ · · ·+anH
n)∩ [Pn] = a0[Pn]+a1[Pn−1]+ · · ·+an[P0].

This class is effective (by Corollary 1.3), so the coefficients ai are all nonnegative. By
Theorem 1.7,

ιN∗s(Z
(d)
N ,PN )O(−dH) = a0 + a1H + · · ·+ anH

n +
dn+1Hn+1

1− dH
.

The ordinary Segre class is obtained by tensoring by O(dH):

ιN∗s(Z
(d)
N ,PN ) =

a0

1 + dH
+ · · ·+ anH

n

(1 + dH)n+1
+

dn+1Hn+1

(1 + dH)n+1

that is,

(4.3) ιN∗s(Z
(d)
N ,PN ) =

a0(1 + dH)n + a1H(1 + dH)n−1 + · · ·+ anH
n + dn+1Hn+1

(1 + dH)n+1

and this verifies the statement. �

Remark 4.4. The polynomial A(H) has the following interpretation. Let SZ(H) ∈ Z[H] be
the polynomial of degree ≤ n such that

ι∗s(Z,Pn) = SZ(H) ∩ [Pn] .

Then

(4.4) A(H) =
[
(1 + dH)n+1SZ(H)

]
n

+ dn+1Hn+1 ,

where [·]n denotes truncation to Hn of the polynomial within [·]. (This is obtained from
the numerator of (4.3) by a computation analogous to the one presented at the end of §3.)
Thus, A(H)− dn+1Hn+1 is the unique polynomial of degree ≤ n such that

(A(H)− dn+1Hn+1) ∩ [Pn] = (1 + dH)n+1 ∩ ι∗s(Z,Pn) .

As observed at the end of §3, this is an effective class; and indeed A(H) has nonnegative
coefficients as proven in Theorem 4.3. Also note that SZ(H) is determined by Z as a

subscheme of Pn, while Z
(d)
N depends on the choice of degree d for generators of an ideal

defining Z. Expressions (4.2) and (4.4) clarify the dependence of the Segre class s(Z
(d)
N ,PN )

on the scheme Z and the choice of d.

Example 4.5. For the conic in Example 4.2, A(H) = 2H + (6d− 4)H2 + d3H3. y

Remark 4.6. The class ιN∗s(Z
(d),PN ) (for N � 0) is an invariant determined by the homo-

geneous ideal I = (F1, . . . , Fm) chosen to define Z scheme-theoretically in Pn, subject to the
condition that degFi = d for all i. By Theorem 4.3, this invariant of I may be interpreted
as the result of setting t = hyperplane class H in a well-defined rational function ζI(t) with
a single pole at −1/d of order ≤ (n + 1), and numerator of degree ≤ (n + 1) and with
nonnegative coefficients.

Such a ‘zeta function’ ζI(t) can be defined for any homogeneous ideal I ⊆ k[x0, . . . , xn],
and we will prove elsewhere that the essential features verified here for ideals generated by
polynomials of a fixed degree hold in general:

• ζI(t) is rational;
• The poles of ζI(t) are at −1/di, where di are degrees of polynomials in any generating

set for I.
• The numerator of ζI(t) is a polynomial of degree equal to the degree of the denom-

inator, with nonnegative coefficients, and with known leading term.
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In general, not all generators of I will contribute poles to ζI(t). It would be very worthwhile
providing a complete description of the poles of ζI(t) and an effective interpretation of the
numerator of this function. At present, such descriptions are available for the case studied
in this note (as discussed in Remark 4.4) and for ideals generated by monomials, where the
information can be obtained from an associated Newton polytope. y
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