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Abstract. We review the basic definitions in Fulton-MacPherson Intersection
Theory and discuss a theory of ‘characteristic classes’ for arbitrary algebraic va-
rieties, based on this intersection theory. We also discuss a class of graph invariants
motivated by amplitude computations in quantum field theory. These ‘abstract
Feynman rules’ are obtained by studying suitable invariants of hypersurfaces de-
fined by the Kirchhoff-Tutte-Symanzik polynomials of graphs. We review a ‘mo-
tivic’ version of these abstract Feynman rules, and describe a counterpart obtained
by intersection-theoretic techniques.
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1. Introduction

One of us had the good fortune to participate in the meeting on Intersection Theory
& Feynman Integrals held in Padova in December 2019, nicknamed MathemAmpli-
tudes 2019. Intersection Theory is a venerable branch of Algebraic Geometry, with
roots grounded in the very origin of the subject and many ramifications tracing its
history to the present day. It is a vast field, and it would be futile to attempt a
comprehensive review. The aspects of the theory with which we are most famil-
iar have a different flavor from the Intersection Theory used in the impressive new
approach to computations of Feynman integrals, presented in other seminars deliv-
ered in this workshop; in this paper we will limit our discussion to the ‘standard’
Intersection Theory in the context of scheme-theoretic Algebraic Geometry, devel-
oped by W. Fulton and R. MacPherson in the ’70s and ’80s. This theory provided
much-needed foundations for a large gamut of applications to questions in Algebraic
Geometry, for example classical enumerative questions and the study of singulari-
ties. W. Fulton’s outstanding text [Ful84] still stands as a complete and thorough
account of the foundations of this theory 35 years after its publication. For a fur-
ther rich selection of examples of applications of this classically inspired, but very
modern, theory, the recent book [EH16] can be heartily recommended. Through its
manifold applications, Fulton-MacPherson’s intersection theory has naturally come
to interact with particle physics in different ways, for example in string theory. It
is hard to believe that there should not be a strong connection between this very
mature theory steeped in Algebraic Geometry and the Intersection Theory deployed
so successfully in the more strictly ‘MathemAmplitudes’ applications that were the
main object of this workshop. We view this as an interesting open question: To es-
tablish a direct interpretation of the intersection-theoretic computations of Feynman
integrals in [MM19, FGL+19, FGM+19] (and others) in terms of Fulton-MacPherson
intersection theory.

We will not address this question in this paper. Our main objective is to give
a necessarily incomplete overview of some ideas in Fulton-MacPherson intersection
theory and of a few applications of this theory, and particularly to an aspect relating
to high energy physics and to Feynman integrals. These latter may seem natural
candidates for a relation with the theme of the workshop, but in all honesty we do
not see a direct such connection. It may simply be that Intersection Theory is vast
enough to have several different manifestations in the theory of Feynman amplitudes.

The application we will discuss employs the notion of characteristic classes beyond
the classical case of compact nonsingular varieties. We will summarize the theory
underlying these classes (originally due to MacPherson) after a short historical prelude
and a rough exposition of the ideas behind the main definition of intersection product.
A review of our application of the theory to a context inspired by quantum field theory
will follow these preliminaries.

The emphasis throughout will be on what is now ‘classical’ intersection theory. We
will only mention very briefly more recent developments, such as the extension to
stacks, quantum cohomology, equivariant intersection theory, and pass over in silence
much more.
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2. Intersection theory in Algebraic Geometry

2.1. A little history. Questions in enumerative geometry go so far back that it is
impossible to identify a ‘first’ such question. The problem of Apollonius (how many
circles are tangent to 3 given circles?) dates back to the second century B.C.; ancient
geometric results, such as the Pappus hexagon theorem can also be framed in terms
close to intersection theory.

In a much more recent past, the introduction of coordinates in geometry in the XVII
century led to natural questions concerning the intersection of curves in the plane.
Bézout’s theorem (∼1750) may be interpreted as the first concrete manifestation
of the intersection ring of projective space. It states that two curves of degrees
d1, d2 meeting transversally in complex projective plane must meet in exactly d1d2

points. More generally, hypersurfaces of degrees d1, . . . , dn in complex n-dimensional
projective space Pn, must meet in d1 · · · dn points if they meet transversally. Modulo
many subtleties, this result may be understood as signifying that intersection theory
in Pn occurs in a ring isomorphic to Z[H]/(Hn+1): a degree-d hypersurface determines
the class of dH in this ring, and the coefficient of Hn in the product of the classes
of a selection of hypersurfaces will yield their intersection number, provided that
needed transversality hypotheses are satisfied. More generally, a subvariety V of Pn
of codimension r will determine a class dHr in Z[H]/(Hn+1); the coefficient d is the
degree of the variety; and intersecting varieties transversally may be interpreted as
performing ordinary algebra in this ring.

Bézout’s theorem may already be used to analyze interesting geometric questions
involving e.g., the possible singularities of plane curves or the degrees of dual curves,
and it leads naturally to questions in enumerative geometry. It also raises founda-
tional questions, such as the exact definitions of intersection numbers and the role
of intersection multiplicities to deal with non-transversal intersections. In the clas-
sical school, such questions were often bypassed by tools such as the ‘principle of
conservation of number’ (which had been accepted in one form or another since the
XVII century) and Chasles’s ‘correspondence principle’: these lead to plausible re-
sults by analyzing explicit degenerations of intersection-theoretic problems to more
approachable problems involving varieties in special positions.

The subject matured to an amazing degree. By 1880, Schubert had developed (by
age 30!) intersection theory with a marked modern flavor, including an explicit in-
terpretation of intersection operations as operations in a suitable ring, with hundreds
of applications. Schubert calculus refers to the intersection theory of Grassmannian,
which may be reduced to the intersection of Schubert varieties, expressing natural
geometric conditions.
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By then, intersection theory had been applied with great success to questions in
enumerative geometry. The epitomizing such question is: How many smooth conics
are tangent to five smooth conics in general position? The correct answer, ,
(cf. the title of [EH16]!), was obtained by Chasles in the 1860s, and requires tools
going beyond Bézout’s theorem: a straightforward application of Bézout’s theorem
to this question has to contend with the presence of ‘excess intersection’; Chasles’s
principle of conservation of number offers an alternative.

Another such question is the determination of the number of smooth plane cubic
curves that are tangent to nine lines in general position. The number is ,,
as found by Maillard in 1872. The number of quartic plane curves tangent to 14
lines in general position (,,,) was determined by Zeuthen in 1873. The
corresponding number for quintics or higher degree curves was unknown in the 1870s,
and it is just as unknown 150 years later.

These are very impressive results, and Schubert’s theory is sophisticated and ex-
tremely successful, but it was recognized that tools such as the ‘principle of con-
servation of number’ lacked rigor in their formulation. One of Hilbert’s famous 1900
problems consisted of providing firm theoretical foundations for Schubert’s work. This
natural question motivated substantial work in the XX century, by a list of math-
ematicians that reads as a who’s who in algebraic geometry, starting with Severi.
Additional motivations came later in the century from the Weil conjectures, which
in time made it clear that it was necessary to extend the foundations of the theory
to fields of arbitrary characteristic and to the scheme-theoretic context; and from
Riemann-Roch problems, originally an indispensable tool in the study of the geome-
try of curves, but generalized by Hirzebruch, Grothendieck, and others to an interplay
between the K-theory of vector bundles and coherent sheaves on a scheme and its
intersection group.

In the XX century, Schubert’s intersection ring evolved into the so-called ‘Chow
ring’ of a (nonsingular) variety, where intersection-theoretic computations may be
performed. As a direct offspring of the principle of conservation of number, the
effect of intersecting with a subvariety, or rather a ‘cycle’, that is, a formal linear
combination of subvarieties, should not change if the cycle is moved in a family
parametrized by a projective line. Fibers of such a family are said to be ‘rationally
equivalent’; the elements of the Chow ring are rational equivalence classes of cycle. An
approach to the formalization of intersection theory can be distilled into a ‘moving
lemma’, proving that two given cycles may be moved in their rational equivalence
classes so as to intersect transversally, and that the class of their intersection is then
independent of the chosen deformations. This program was carried out in the ’50s,
through work of Chow and others; but a sufficiently general form of the moving lemma
is actually extremely challenging, and there are reasons to believe that an ‘elementary’
proof of the moving lemma may simply not be available (cf. [EH16, §0.4.9]).

Ingredients of an alternative approach were introduced in the work of several other
important figures—Segre, Verdier, Kleiman, and others. In the ’70s and 80s, a com-
plete and rigorous Intersection Theory was achieved by Fulton and MacPherson. This
is in the language of schemes, over fields of arbitrary characteristic, and does not re-
quire a moving lemma; in fact, by providing a well-defined intersection product, the
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theory offers the most direct proof of the general form of the moving lemma. Ev-
ery scheme has a Chow group of cycles modulo rational equivalence, and the theory
studies operations that act on these cycles. If the scheme is nonsingular, then in-
tersecting with a cycle may itself be interpreted as one of these operations, and the
Chow group acquires a natural ring structure. This recovered and unified all partial
results obtained in the previous decades and offered concrete tools for computations
in e.g., enumerative geometry.

It is worth pointing out that the Chow group shares features expected of a homol-
ogy theory; for example, it is a covariant functor. The Chow ring of a nonsingular
variety likewise behaves as a cohomology theory: it acts on the Chow group, and is a
contravariant functor. In fact, when the context allows (e.g., for complex varieties),
there are natural homomorphisms from the algebraic Chow theory to homology and
cohomology (particularly Borel-Moore homology; cf. [Ful84, Chapter 19]), match-
ing the algebro-geometric intersection operations with the corresponding topological
ones. For varieties admitting a cellular decomposition, such as Grassmannians or flag
manifolds, this ‘cycle map’ is in fact an isomorphism (cf. [Ful84, Example 19.1.11]), so
in such case there in fact is an isomorphism between the Chow ring and cohomology.
However, beyond these poster cases the situation is quite different; for example, the
dimension-0 Chow group of a complex elliptic curve is infinitely generated. Further,
differential forms, which are a key tool of the intersection theory employed in the
‘MathemAmplitudes’ applications, are not a native ingredient in the scheme-based
Fulton-MacPherson intersection theory. In this theory, even Chern classes of bundles
are defined without reference to differential forms; the theory is not modeled in any
direct sense after Chern-Weil theory.

2.2. Informal overview. We recall the basic definitions, without aiming at full gen-
erality, and stressing the intuitive aspects at the price of inevitable lack of precision.
The reader is referred to [Ful84] for a complete and efficiently organized account of
the theory.

Let V be an algebraic variety over an algebraically closed field k. A cycle of
dimension k on V is a formal linear combination of k-dimensional closed subvarieties
of V , with integer coefficients; Zk(V ) denotes the group of k-dimensional cycles, and
we let Z∗(V ) be the direct sum ⊕k≥0Zk(V ). A rational function on V , i.e., a regular
function f : V → P1, determines a family of cycles: for all p ∈ P1, f−1(p) may be
written as a union of codimension-1 subvarieties, taken with suitable multiplicities.
We define a relation on Zk(V ) by prescribing that two cycles X and Y be related
if there exists a (k + 1)-dimensional subvariety W ⊆ V and a regular function f :
W → P1 such that X = f−1(0) and Y = f−1(∞). This prescription extends to an
equivalence relation on Zk(V ), called rational equivalence. The k-th Chow group of V
is the group Ak(V ) of cycles on V modulo the subgroup determined by elements of
the form α− β, where α, β ∈ Zk(V ) are rationally equivalent. The Chow group of V
is the direct sum ⊕kAk(V ).

If ϕ : V → V ′ is a proper map, a push-forward ϕ∗ : Z∗(V )→ Z∗(V
′) is defined: If

[X] is the cycle determined by a subvariety X of V , then X ′ := ϕ(X) is a subvariety
of V ′ (since ϕ is proper), and we can let ϕ∗([X]) = d · [X ′], where d denotes the degree
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of the restriction of ϕ to X. (Over e.g., C, d is the number of points in a general
fiber of ϕ|X , or 0 if the fiber is positive-dimensional.) This prescription preserves
rational equivalence, so descends to a push-forward ϕ∗ : A∗(V )→ A∗(V

′). Further, it
satisfies (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗, so it defines A∗ as a covariant functor from the category
of algebraic k-varieties (along with proper morphisms) to abelian groups.

A contravariant pull-back is also defined, for a restricted class of morphisms. For
example, if f : W → V is a flat morphism, then one can define f ∗([X]) = [f−1(X)]
for every closed subvariety X of V , and extending this prescription by linearity gives
a homomorphism of abelian groups Ak(V ) → Ak+dimW−dimV (W ) for all k ≥ 0. For
example, if E is a vector bundle on V and π : E → V denotes the projection, we
have a homomorphism π∗ : A∗(V ) → A∗(E). One can prove that this is an isomor-
phism. (In the context of complex geometry this is perhaps not surprising, given the
analogy between the Chow group and homology and the fact that the fiber of E are
contractible. However, such considerations do not suffice, and are not needed, for
the proof of this statement in the general setting of schemes.) Therefore, we may let
s∗ : A∗(E)→ A∗(V ) be the inverse of π∗. This is the Gysin homomorphism, mapping
A∗k(E) to Ak−rk E(V ). As the zero-section s : V → E is a right-inverse of π, it is
natural to view s∗ as a pull-back of classes along the zero-section of E , which may
be identified with V . If β ∈ A∗(E) is any rational equivalence class in E , we can set
V · β := s∗(β) to be the ‘intersection product’ of β by the zero-section in E .

Modulo a deformation argument, this basic intersection operation yields a very
general definition of intersection product, as follows.

A subscheme of a vector bundle is a cone if it is so fiberwise. Every closed sub-
scheme X ⊆ V determines a normal cone CXV ; for example, if X = (0, . . . , 0) is
the origin in affine n-space An, and V is the hypersurface defined by a polynomial
F (x0, . . . , xn) vanishing at the origin, then CXV is the cone defined by the homoge-
neous terms of lowest degree in F . In general, the projectivization of CXV may be
realized as the exceptional divisor in the blow-up of V along X. A pure-dimensional
subscheme X is regularly embedded in V if it is locally defined by dimV − dimX
equations; equivalently, if its normal cone is a vector bundle. This normal bundle
is then denoted NXV . Every closed embedding X ⊆ V admits a ‘deformation to
the normal cone’, replacing it with the embedding of X as the zero-section in CXV .
Given now two subvarieties X and Y of V , assume that X is regularly embedded.
The embedding X ⊆ V may then be deformed to the embedding of the zero-section
X ⊆ NXV ; the embedding Y ⊆ V is simultaneously deformed to the embedding
of the cone CX∩Y Y in NXV . The modern version of the ‘principle of continuity’
amounts to the assertion that the intersection product X · Y should be preserved
under such deformations. We can then define it to equal the intersection product of
the zero-section with the cone CX∩Y Y in the vector bundle NXV : as discussed above,
this product admits a natural definition by means of the Gysin homomorphism.
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The following diagram is a good mnemonic device for the intersection product we
just introduced:

X ∩ Y � � //

i
��

Y

��
X �
� // V

The bottom embedding is assumed to be regular, so it has a normal bundle NXV .
The intersection product X · Y ∈ A∗(V ) may be defined as the push-forward of the
intersection product of the zero-section of NXV with the cone CX∩Y Y .

Remark 2.1. In fact, CX∩Y Y is naturally a subscheme of the restriction i∗(NXV )

of NXV to the subscheme X∩Y i
↪→ X; we can define X ·Y as a class in A∗(X∩Y ) to

be the intersection product of the zero-section of this restriction with the cone CX∩Y Y .
This definition agrees with the one sketched above after push-forward to A∗(V ), and
it is often advantageous to define the product as a class in the smallest subscheme
that can support it.

We also note that the definition can in fact be given for any variety Y mapping
to V , not just for closed subvarieties of V . For a complete discussion of the definition
of intersection product, we refer the reader to [Ful84, Chapter 6]. y

A more explicit ‘computational’ description of the intersection product introduced
here will be given below.

2.3. The intersection ring of a nonsingular variety. The definition sketched
above extends by linearity to a product of any rational equivalence class α in A∗(V )
by a regularly embedded subvariety X ⊆ V . This product is well-defined as an
operator on A∗(V ), and satisfies all expected properties.

However, this does not suffice in order to define a ring structure on the Chow
group A∗(V ), mainly due to the requirement that the intersecting variety X be reg-
ularly embedded in V . However, if V is nonsingular, then there is a systematic way
to reduce any intersection product to a product by a regularly embedded subvari-
ety. The basic observation is that if V is nonsingular, then the diagonal embedding
∆ : V → V ×V is a regular embedding; in fact, its normal bundle is isomorphic to the
tangent bundle TV of V . We may then consider the following intersection diagram:

X ∩ Y � � //

��

X × Y

��
V �
� ∆ // V × V

based on the observation that X∩Y is isomorphic to the scheme-theoretic intersection
of the diagonal with X × Y in the product V × V . In this situation we can set
X · Y ∈ A∗(V ) to be the intersection product V · (X × Y ) in V × V , defined as
discussed in §2.2. It can be shown that this product preserves rational equivalence,
and it extends by linearity to a bilinear map A∗(V )×A∗(V )→ A∗(V ). This operation
is associative and distributive with respect to the group operation in A∗(V ), hence it
defines A∗(V ) as a ring.
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This is the intersection (Chow) ring of the nonsingular variety V . A complete
discussion of this construction may be found in [Ful84, Chapter 8].

2.4. Chern and Segre classes. Intersection-theoretic operations arise as operators
on the Chow group; above we have interpreted the intersection by a regularly em-
bedded subvariety of V as an operator on A∗(V ). As another important example,
a rank-r vector bundle E on V determines ‘Chern classes’ ci(E), i = 0, . . . , r, as op-
erators on A∗(V ). We write ci(E) ∩ α for the result of applying the operator ci(E)
to the rational equivalence class α. The i-th Chern class decreases dimension by i:
the operator ci(E) maps Ak(V ) to Ak−i(V ). The operator c0(E) is the identity. One
collects the individual Chern classes into a single operator

c(E) := 1 + c1(E) + · · ·+ crk E(E) ,

the ‘total Chern class’ of E .
If E is sufficiently ample, then ck(E)∩ [V ] is the class of the locus where rkE−k+1

general sections of E are linearly dependent. In particular, crk E(E) ∩ [V ] is the class
of the zero-scheme of a regular section of E . As a template example, if L is a line
bundle admitting a regular section s, then the operator c1(L) on A∗(V ) coincides
with the intersection product by the zero-scheme D of s, a Cartier divisor of V : the
embedding D ⊆ V is regular, so this intersection was defined in §2.2. In other words

c(L) ∩ α = (1 +D) · α
for all α ∈ A∗(V ). As L is isomorphic to the line bundle O(D) determined by D, this
discussion may be summarized by the equality

c(O(D)) = 1 +D ,

holding for all Cartier divisors D of V .
In fact, Chern classes may be defined in general by means of the case of line bundles.

The Segre class of a vector bundle E on a variety V (or, more generally, a scheme) is
defined as an operator on A∗(V ) by

s(E) ∩ α := π∗

(∑
i≥0

c(O(1))i ∩ π∗(α)

)
,

where π : P(E) → V is the projective bundle (of lines) associated with E , and O(1)
is the hyperplane bundle on P(E) (i.e., the dual to the tautological subbundle). One
can show that s(E) is invertible as an operator on A∗(V ), and then define

c(E) := s(E)−1 .

This notion satisfies all the expected properties of Chern classes: it is preserved by
pull-backs, satisfies a projection formula f∗(c(f

∗E) ∩ α) = c(E) ∩ f∗(α), and the
‘Whitney formula’: if

(2.1) 0 // E ′ // E // E ′′ // 0

is an exact sequence of vector bundles on V , then

c(E) = c(E ′)c(E ′′)
as operators on A∗(V ). The operator ci(E) equals 0 if i > rk E .
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It is useful to extend the Segre class operation to more general objects. A cone
C ⊆ E determines a subscheme P(C) of P(E), and this inherits by restriction a
tautological bundle O(1) and a projection π to V . One can then define the Segre
class of C by

s(C) := π∗

(∑
i≥0

c(O(1))i ∩ [P(C)]

)
.

The case of the normal cone CZ(V ) of a closed subscheme Z ( V is particularly
important: we define the Segre class of Z in V to be the Segre class of this cone:

(2.2) s(Z, V ) := s(CZV ) .

(If Z = V , one can set s(CZV ) = [V ].) If Z is regularly embedded in V , so that the
normal cone is the normal bundle, this definition yields

(2.3) s(Z, V ) = c(NZV )−1 ∩ [Z] .

For example, this formula holds if Z and V are both nonsingular, or if Z is the
complete intersection of a choice of codimZ V divisors in V .

If Z = D is itself a Cartier divisor, then the normal bundle NDV is (the restriction
of) O(D), therefore (2.3) gives

(2.4) s(D, V ) = c(O(D))−1 ∩ [D] = (1 +D)−1 · [D] = (1−D +D2 − · · · ) · [D] .

One key property of Segre classes is their birational invariance: if ν : Ṽ → V is a
proper birational map, then for every closed subscheme Z of V we have

(2.5) ν∗s(ν
−1(Z), Ṽ ) = s(Z, V ) .

In the particular case where ν : Ṽ → V is the blow-up of V along Z, so that
E = ν−1(Z) is the exceptional divisor, (2.4) and (2.4) give

s(Z, V ) = ν∗((1− E + E2 − E3 + · · · ) · [E]) .

As E is in fact isomorphic to P(CZV ), this formula is just a restatement of the
definition (2.2).

2.5. The intersection product in terms of Chern and Segre classes. The
zero-section Z of a vector bundle E on a variety V is regularly embedded, and its
normal bundle is E itself. It is useful to ‘complete’ the vector bundle E by adding a
hyperplane at infinity, thereby replacing it with P(E ⊕ OV ). Then the ‘intersection
with the zero-section’, i.e., the Gysin homomorphism s∗ introduced in §2.2, admits
the following description. Let α ∈ Ak(E). Then

s∗(α) =

{
c(E) ∩ p∗

(∑
i≥0

c(O(1))i ∩ α

)}
k−rk E

where {· · · }` is the term of dimension ` in the class within braces, and α is any class
on P(E⊕OV ) extending α. (This formula is a restatement of [Ful84, Proposition 3.3].)
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In the situation represented by the diagram shown earlier,

X ∩ Y � � //

i
��

Y

��
X �
� // V

with X, Y subvarieties of V , and X regularly embedded, this formula gives the fol-
lowing expression for the intersection product:

(2.6) X · Y = {c(i∗NXV ) ∩ s(X ∩ Y, Y )}dimX+dimY−dimV

([Ful84, Proposition 6.1(a)]). If V is nonsingular, then the intersection product of
the rational equivalence classes of two subvarieties X, Y (without further hypotheses)
corresponds to the diagram

X ∩ Y � � //

i
��

X × Y

��
V �
� ∆ // V × V

(cf. §2.3) and is given by

(2.7) X · Y = i∗ {c(i∗TV ) ∩ s(X ∩ Y,X × Y )}dimX+dimY−dimV ∈ A∗(V ) ,

where TV is the tangent bundle.
It is important to note that (2.7) does not require the subvarieties X, Y to be in

‘special position’ with respect to one another. In fact, this formula is especially useful
when the varieties meet with e.g., ‘excess intersection’, that is, when their intersection
does not have the expected dimension. And again note that the formula does not
‘move’ the subvarieties: as stressed in §2.1, this approach to intersection theory does
not rely on a moving lemma.

Example 2.1. Let V be a nonsingular compact complex algebraic variety. Its topo-
logical Euler characteristic χ(V ) is then given by the ‘self-intersection’ V · V in the
product V × V : indeed, according to (2.6), this product is given by

V · V = {c(TV ) ∩ s(V, V )}0 = cdimV (TV ) ∩ [V ] ,

and
∫
cdimV (TV )∩ [V ] = χ(V ) by the Poincaré-Hopf theorem (we denote by

∫
α the

degree of the zero-dimensional component of a class α).
Thus, we could take V · V as the definition of the topological Euler characteristic

of V , and this would extend this notion to nonsingular varieties over arbitrary fields,
including e.g., fields in positive characteristic. y

The (degree of the) intersection in Example 2.1 is an ‘ordinary’ intersection number,
arising from a situation which is as far from transversal as possible, and computed
without deforming the intersecting varieties within their rational equivalence (or ho-
mology) classes. Fulton-MacPherson intersection theory is very successful at handling
such excess intersection situations, which abound in e.g., classical enumerative prob-
lems. For example, the historically significant number , of conics tangent to 5
nonsingular conics in general position in P2

C, mentioned in §2.1, may be obtained using
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Fulton-MacPherson intersection theory by computing the relevant Segre class to eval-
uate directly the contribution of the excess intersection to the Bézout number. This
computation is actually quite straightforward ([Ful84, Example 9.1.9]), and extends
the result to arbitrary algebraically closed fields. For example, the corresponding
number over fields of characteristic 2 is 51. A similar excess intersection technique
may also be used to recover (and justify rigorously) Maillard’s result computing the
number , of cubics tangent to 9 lines in general position in P2

C. (This was done
in [Alu87]. The number was also verified in [KS91], by different techniques. The
number for quartics was verified rigorously by Vakil [[Vak99]].)

A natural question at this point is whether the intersection numbers needed in the
MathemAmplitudes applications may be interpreted in terms of Fulton-MacPherson
intersection theory. If questions of excess intersection arise naturally in the context
needed for these computations, formulas such as (2.7) would yield the most natural
approach to the computation of such numbers.

2.6. Some more recent developments. The definitions reviewed in the past sev-
eral sections date back about 40 years, and yet remain the state of the art for in-
tersection theory in the context of schemes. The theory has been and continues to
be extremely successful; Fulton’s text [Ful84] counts thousands of citations. It would
be futile to either attempt to review its applications or overview directions in which
intersection theory has developed in algebraic geometry in the past several decades.

Among the issues that may be closer to possible applications to MathemAmpli-
tudes, probably the intersection theory of moduli spaces stands out; the geometry of
moduli spaces of pointed rational curves appears to be especially relevant to these
computations. We will just mention several themes, with an ‘initial’ reference that
the reader may use as a seed for a more thorough bibliographic search.

In general, intersection theory on moduli spaces requires an extension of the theory
beyond schemes, to stacks. This foundational work was initiated in the ’80s, [Vis89].
In the ’90s, intersection numbers on the moduli space of curves were the object of
important conjectures by Witten, proven by Kontsevich, see [Loo93]. A description
of the tautological ring of Mg,n is available through Faber’s conjectures, [Fab99];
these are still partly open, and they have been extended in several directions. The
intersection theory of M 0,n is well understood (and does not requires extensions to
stacks) after work of Keel, [Kee92]. However, subtle questions remain about this
space, related to a conjecture of Fulton’s, [GKM02].

Another fascinating interaction of physics and intersection theory stemmed directly
from enumerative geometry. Physicists Candelas, de la Ossa, Green, and Parkes pro-
vided a spectacular computation of the (expected) number of rational curves of a
given degree on a quintic threefold, by methods that did not use standard intersec-
tion theory [CdlOGP91]. This work brought mirror symmetry to the full attention
of mathematician, and was also important in the development of new tools such as
quantum cohomology, based on the study of moduli spaces of stable maps and on
Gromov-Witten invariants, ([KM94, FP97, Pan98]). A key ingredient in the defini-
tion of these invariants is the notion of virtual fundamental class; and one approach
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to the treatment of this class is through excess intersection ([Sie04]) by means anal-
ogous to (2.6). These enumerative questions were also one of the motivations for the
development of equivariant methods in intersection theory, particularly leaning on
localization formulas. A full equivariant version of intersection theory was developed
in [EG98].

In the rest of this paper we will focus on a completely different, and much less
explored, interaction between intersection theory and theoretical physics. Among
the many unmentioned developments of intersection theory of the past few decades,
there is a theory of characteristic classes of singular varieties. We will recall the main
definitions of an important such class, and then report on an invariant constructed
on the basis of this class for hypersurfaces arising in quantum field theory, specifically
associated with the contribution of (‘Feynman’) graphs to an amplitude computation.

In a sense this is closer to the theme of MathemAmplitudes: this work was originally
motivated by the attempt to understand the type of numbers that can be obtained as
Feynman amplitudes in quantum field theory. On the other hand, it is also directly in
contrast with the philosophy underlying MathemAmplitudes, which aims at bypassing
the perturbative approach.

Be is as it may, this is another instance of the conceptual interaction between
intersection theory and high energy physics, and we would like to advertise it in the
hope that it may stimulate (even) closer interactions. We should also point out that
(Fulton-MacPherson) intersection theory is part of the standard toolbox in the work
of many physicists and mathematical physicists. We will mention the work of Esole
and his collaborators, broadly aimed at the study of elliptic fibrations, see [EJK19]
as one example among many.

3. Characteristic classes of singular/noncompact algebraic varieties

3.1. Chern classes and the Euler characteristic. Let V be a nonsingular com-
pact algebraic variety over C. The tangent bundle of V is a natural source of im-
portant invariants of V , particularly by means of its Chern classes. For example,
the canonical bundle of V is the top exterior power of V , and its Chern class equals
−c1(TV ) ∩ [V ], the canonical divisor of V . This divisor class agrees with the class
determined by a meromorphic top differential form on V by taking the difference
between the divisor of zeros of the form and the divisor of poles; the vanishing of
this class is one of the defining properties of Calabi-Yau varieties. More generally,
the Chern classes ci(TV ) encode an obstruction to the existence of global frames of
dimV − i + 1 vector fields on V , or (dually, and therefore up to sign), linearly inde-
pendent global differential forms on V . In particular, the top Chern class cdimV (TV )
quantifies the obstruction to the existence of a nonvanishing tangent vector field on V .
The precise result here was already recalled in Example 2.1:

(3.1)

∫
cdimV (TV ) ∩ [V ] = χ(V )

equals the topological Euler characteristic of V , by the Poincaré-Hopf theorem.
The algebro-geometric point of view provides a generalization of these consider-

ations to more general fields: for example, we can take the left-hand side of (3.1)
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as the definition of an ‘Euler characteristic’ for a nonsingular, complete variety: a
tangent bundle is defined in this generality (for example by reference to the sheaf
of differential forms, which is an inherently algebraic object), and Chern classes are
also defined in general as reviewed in §2.4. This general form of the Euler character-
istic has the same pleasant properties of the topological Euler characteristic in the
complex, topological sense: for example, it is multiplicative in the sense that

χ(V ×W ) = χ(V )χ(W ) ,

and it is additive in the sense that if V , resp., V ′ are complete nonsingular varieties
and Z, resp., Z ′ are closed subvarieties, and V r Z ∼= V ′ r Z ′ are isomorphic, then

χ(V )− χ(Z) = χ(V ′)− χ(Z ′) .

In fact, this allows us to define a consistent notion of Euler characteristic for possibly
singular, possibly noncomplete varieties: if U = V rZ, where Z is a closed subvariety
of a complete nonsingular variety V , we may set

χ(U) := χ(V )− χ(Z) ;

and if W = qiUi is a possibly singular variety, written as the disjoint union of locally
closed nonsingular subvarieties, we may define

χ(W ) :=
∑
i

χ(Ui) .

In the complex case, this more general notion of Euler characteristic still agrees with
the topological (compactly supported) Euler characteristic.

It is natural to ask whether more general invariants of algebraic varieties satisfy
these strong multiplicative and additive properties. We will present two such notions:
one directly related to intersection theory, in this section; and one of a different (but
ultimately also related) nature, in §4.1.

3.2. Chern classes of noncompact/singular varieties. For convenience we will
now work over C; the material in this subsection has a natural generalization to
arbitrary algebraically closed fields of characteristic zero ([Ken90, Alu06]).

As we have recalled, the Euler characteristic of a nonsingular compact complex
algebraic variety V equals the degree of the zero-dimensional part of the total Chern
class of the tangent bundle of V ,

c(TV ) ∩ [V ] = (1 + c1(TV ) + · · ·+ cdimV (TV )) ∩ [V ] ∈ A∗(V ) .

We will call this class the ‘Chern class of V ’ for short. It is natural to ask whether the
additivity properties of the Euler characteristic may be extended to the Chern class
of a variety, and in particular whether this notion of Chern class may be extended to
varieties that are not necessarily nonsingular or compact.

A natural extension would associate a ‘Chern class’ to every constructible (integer-
valued) function ϕ on a variety V . Every constructible function may be written as a
finite sum of indicator functions of closed subvarieties, with integer coefficients:

ϕ =
∑
Z⊆V

mZ11Z ,
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where mZ ∈ Z and 11Z(p) = 1 if p ∈ Z, 0 if p 6∈ Z. Denoting by C(V ) the abelian
group of constructible integer-valued functions, ‘additivity’ would imply that this
extended Chern class should be a homomorphism of abelian groups

(3.2) c∗ : C(V )→ A∗(V ) ,

subject to the requirement that if i : Z ↪→ V is the inclusion of a closed nonsingular
subvariety, then

c∗(11Z) = i∗(c(TZ) ∩ [W ]) ∈ A∗(V ) .

These additivity and normalization requirements alone do not determine a unique
homomorphism c∗. A Chern-class version of the multiplicativity property of the
Euler characteristic leads to a further requirement that does determine a unique
homomorphism.

For this, consider the product V ×W of two compact complex algebraic varieties,
with projections πV , πW to the factors. We have

T (V ×W ) = π∗V (TV )⊕ π∗W (TW ) ,

and therefore (by the Whitney formula, (2.1))

c(T (V ×W )) = π∗V c(TV ) π∗W c(TW ) .

Now observe that π∗W (c(TW ) ∩ [W ]) consists of classes of dimension ≥ dimV ; the
classes of dimension > dimV vanish after push-forward to V , while

πV ∗(cdimW (TW ) ∩ [W ]) =

(∫
cdimW (TW ) ∩ [W ]

)
[V ] = χ(W ) [V ] .

Therefore the other good functoriality property of Chern classes recalled in §2.4 give

(3.3)
πV ∗(c(T (V ×W )) ∩ [V ×W ]) = c(TV ) ∩ πV ∗(π∗W (c(TW ) ∩ [W ])

= χ(W ) c(TV ) ∩ [V ] .

This tells us what functoriality property we should expect from the sought-for
homomorphism c∗ in (3.2). We may view the abelian group C(V ) introduced above
as the value of a functor

C : {compact complex varieties} −→ {abelian groups} ;

if f : V → W is a proper morphism, we let

f∗ : C(V )→ C(W )

be the homomorphism determined by letting for all closed subvarieties Z of V and
points p ∈ W

f∗(11Z)(p) = χ(f−1(p) ∩ [Z]) ,

and extending this prescription to all constructible functions by linearity. It can be
shown that the right-hand side in this expression is a constructible function, and that
(f ◦ g)∗ = f∗ ◦ g∗. (This is ultimately because of the additivity and multiplicativity
properties of the Euler characteristic.) For example,

πV ∗(11V×W ) = χ(W ) 11V ,

in accord with the Chern class identity (3.3). With this notation, we can state the
following key result.
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Theorem 3.1. There exists a unique natural transformation c∗ : C → A∗ such that
if V is a nonsingular variety, then

c∗(11V ) = c(TV ) ∩ [V ] .

This statement was conjectured in homology by Grothendieck and Deligne, and
proved by MacPherson ([Mac74]). The extension to the Chow group may be found
in [Ful84, Example 19.1.7].

We can use the natural transformation provided by Theorem 3.1 to give the fol-
lowing definition. For a compact variety V , and every locally closed U , we can set

cSM(U) := c∗(11U) ∈ A∗V .

The normalization requirement specified in Theorem 3.1 implies that if U = Z
i
↪→ V

is a nonsingular, compact subvariety of V , then

cSM(Z) = i∗ (c(TZ) ∩ [Z])

as expected. In this sense, cSM(U) is an extension to possibly singular, possibly
noncompact varieties of the notion of total Chern class of the tangent bundle. It shares
additive and multiplicative properties with the Euler characteristic. For example, let
U1, U2 be two locally closed subsets of V . Since

11U1∪U2 = 11U1 + 11U2 − 11U1∩U2 ,

we must have

(3.4) cSM(U1 ∪ U2) = cSM(U1) + cSM(U2)− cSM(U1 ∩ U2) ,

an ‘inclusion-exclusion’ formula that is often useful in concrete computations.

Remark 3.1. As we will observe below, the degree of cSM(U) equals its topological
Euler characteristic χ(U). More generally, all the terms in cSM(U) may be interpreted
as obstructions to the existence of ‘global frames of tangent vector fields’, similar
to the interpretation of the components of ci(TV ) in the nonsingular case, recalled
in §3.1. If U is singular, one needs to define a suitable notion extending ‘tangent vector
fields’. This may be done by considering vector fields that have suitably controlled
(‘radial’) behavior near the singularities. This fundamental insight actually preceded
MacPherson’s work and the formulation of the Grothendieck-Deligne conjecture: as
early as 1965 ([Sch65a, Sch65b]), Marie-Hélène Schwartz had introduced radial frames
and extended this general form of the Poincaré-Hopf theorem, producing Chern classes
for singular varieties, in relative cohomology. Brasselet and Schwartz later proved
that the Schwartz classes and the MacPherson classes agree under Alexander duality
([BS81, AB08]). The notation cSM is chosen as an acronym for ‘Chern-Schwartz-
MacPherson’. y

As an example of the benefit of the functoriality property of cSM classes, consider
the constant map κ : V → pt of a compact variety V to a point. The fact that c∗ is
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a natural transformation implies that the following diagram is commutative:

C(V )

κ∗
��

c∗ // A∗(V )

κ∗
��

C(pt) Z A∗(pt)

Chasing this diagram with the constructible function 11U for any locally closed subset
U ⊆ V :

11U_

κ∗
��

� // cSM(U)
_

κ∗
��

χ(U)
∫
cSM(U)

proves that

(3.5)

∫
cSM(U) = χ(U) .

Thus, the topological Euler characteristic of U equals the degree of its Chern-Schwartz-
MacPherson class. This should be viewed as an extension to possibly singular, possi-
bly noncompact varieties, of the Poincaré-Hopf theorem. The existence of a natural
transformation c∗ as stated in Theorem 3.1 recovers this fundamental classical theo-
rem as the extremely special case of constant maps on nonsingular compact varieties.

For V = Pn, the CSM class of a locally closed subset U is an element of A∗Pn, that
is, an integer linear combination of the classes [P0], . . . , [Pn] of linear subspaces of Pn:

cSM(U) =
n∑
i=0

ai[Pi] .

The information carried by the class in this case consists of n + 1 integers, and the
foregoing considerations imply that a0 = χ(U) is the topological Euler characteristic
of U . It can be shown that the integers a0, . . . , an in fact determine and are determined
by the Euler characteristics of the intersections of U with general linear subspaces of
all dimensions in Pn ([Alu13]).

3.3. Effective computations and generalizations. The definition of c∗ given by
MacPherson in [Mac74] relies on an important alternative generalization to singular
varieties of the total Chern class, called the Wu-Mather Chern class, and on a subtle
numerical invariant of singularities, the local Euler obstruction. In principle, the
Chern class c∗(ϕ) associated with a constructible function may be computed by using
these ingredients.

In practice, however, the functoriality property of cSM classes yields a more efficient
tool for their computation. As a consequence of resolution of singularities (which
holds in characteristic 0), for any constructible function ϕ ∈ C(V ) there exists a
finite collection of nonsingular varieties Zi and maps fi : Zi → V such that

ϕ =
∑
i

mifi∗(11Zi
)
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for suitable integers mi. Functoriality and the normalization property stated in The-
orem 3.1 imply then that

c∗(ϕ) =
∑
i

mifi∗(c(TZi) ∩ [Zi]) .

In practice, this method can be refined further. Let’s focus on the class cSM(V ) =
c∗(11V ), where V is compact but possibly singular. Decompose V as a disjoint union
of a collection of locally closed nonsingular subvarieties Ui:

V = qiUi .

By additivity,

cSM(V ) =
∑
i

cSM(Ui) :

thus, the computation of the CSM class of a variety V is reduced to the computation
of the contribution cSM(U) ∈ A∗(V ) of nonsingular locally closed subsets U . For this,
consider the closure U of U in V . Again by resolution of singularities, there exists

a nonsingular complete variety Ũ along with a proper map u : Ũ → U , that is an

isomorphism over U , and such that the complement Ũ−U is a divisor D with normal
crossings and nonsingular components Di.

U �
� // Ũ

u
��

U �
� // U �

� ι // V

The following result computes directly the image of cSM(U) in A∗(V ).

Proposition 3.2.

(3.6) cSM(U) = i∗u∗

(
c(TŨ)∏
i(1 +Di)

∩ [Ũ ]

)
This is proved in [Alu06], where it is also shown that this definition may be used

to extend Theorem 3.1 to arbitrary algebraically closed field of characteristic 0. The
way the expression in the formula should be interpreted is as follows. As we discussed
in §2.4, 1 + Di = c(O(Di)) is an operator on the Chow group A∗V ; the intersection
product by Di is nilpotent, since Dk

i = 0 for k > dimV ; and then 1 +Di is invertible,
and the notation in the ‘denominator’ in (3.6) records the action by its inverse.

Other formulas computing CSM classes bypass the use of resolution of singularities.
If X is a hypersurface in a nonsingular variety V , then

(3.7) cSM(X) = c(TV )c(O(X))−1 ∩ ([X] + (s(JX, V )∨ ⊗V O(X))) .

This is proved in [Alu99]. Here JX is the subscheme of X defined locally by the
partial derivatives of a local equation of X; thus, it is a scheme supported on the
singular locus of X. The term s(JX, V ) denotes the Segre class introduced in §2.4;
other notation used in this statement is explained in loc. cit. A somewhat more
involved statement generalizes (3.7) to arbitrary subschemes of nonsingular varieties,
[Alu19].
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MacPherson’s natural transformation and CSM classes have been generalized in
several directions. Ohmoto obtained an equivariant version of the theory ([Ohm06]).
The equivariant setting may be used to provide formulas for CSM classes based on
localization techniques ([Web12]), thereby also bypassing resolution of singularities.
Brasselet, Schürmann, and Yokura have introduced and studied powerful ‘motivic’
and associated ‘Hirzebruch’ classes for possibly singular varieties, depending on a
parameter ([BSY10]). For different values of the parameter, these classes may be
used to recover the CSM class and other important characteristic classes (particularly
the Todd class and the L class). One important feature of this approach is the role
played by the Grothendieck group of algebraic varieties. In some sense this works as
a replacement for the functor of constructible functions considered above. We will
review the definition of this object in the next section, but will not expand on its role
in the theory introduced in [BSY10].

CSM classes (as well as the more recent generalizations mentioned in the previous
paragraph) have been computed for many classical varieties; among others we mention
Schubert varieties in flag manifolds, a topic that has received recent attention and
revealed deep connections with e.g., the theory of stable envelopes of Maulik and
Okounkov ([RV18], [AMSS], and several others). The reader is warned that many
important aspects of the theory, such as the role of characteristic cycles or D-modules,
are entirely omitted in the short summary sketched above. Our goal has simply been
to alert the reader of the existence of these important invariants, of their ‘geometric’
interpretation, and of the fact that there are effective intersection-theoretic techniques
to compute them if suitable information is available. In the section that follows we will
use these classes to define invariants associated with graphs, motivated by the role of
certain related hypersurfaces in perturbative expansions of Feynman amplitudes and
by considerations stemming from computations in the Grothendieck ring of varieties.

4. ‘Feynman motives’ and cSM classes of graph hypersurfaces

4.1. The Grothendieck ring of varieties. In §3.2 we have presented one substan-
tial generalization of the Euler characteristic, with values in a Chow group. There
is a different generalization, which extends the good additivity and multiplicativity
properties of the Euler characteristic in an essentially tautological fashion, and which
has revealed to be very useful.

Consider the free abelian group I(Vark) on isomorphism classes of varieties over a
field k (or more generally over Z; or over a fixed scheme). We simply impose relations
capturing additivity in the simplest, most general way:

K(Vark) := I(Vark)/〈[V ]− [Z]− [U ]〉 :

here V ranges over all k-varieties, Z ⊆ V is a closed subvariety, and U = V rZ is the
complement in V ; 〈[V ]−[Z]−[U ]〉 is the subgroup generated by all these elements. We
can give a ring structure to the group K(Vark) by declaring that [V ] · [W ] = [V ×W ]
for all varieties V and W , and extending this definition by linearity; the identity
element 1 is the class of a point. The resulting ring is the ‘Grothendieck ring of
k-varieties’.
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Example 4.1. Denote by L the class [A1] of the affine line in the ring K(Vark); this is
called the ‘Lefschetz-Tate motive’. Then

(4.1) [Pnk ] = Ln + Ln−1 + · · ·+ 1 =
Ln+1 − 1

L− 1
∈ K(Vark) :

indeed, we can write Pnk as a disjoint union of affine spaces:

Pnk = An q An−1 q · · · q A0

so that (4.1) follows from additivity in K(Vark). (Note that [Ak] = [A1 × · · · × A1︸ ︷︷ ︸
k times

] =

Lk.) The right-hand side of (4.1) also records the fact that kn+1 r {0} = An+1 r A0

maps to Pn as a Zariski-locally trivial fibration with fibers k∗ = A1 rA0. y

Tautologically, every ring-valued invariant of algebraic k-varieties which is pre-
served by isomorphisms, satisfies additivity over disjoint unions, and multiplicativity
over products, must factor through K(Vark). Thus, the association of a variety V
with its class [V ] in the Grothendieck ring K(Vark) is a universal such invariant; it
is viewed as a ‘universal Euler characteristic’, as the topological Euler characteristic
is the simplest example of such an invariant, for k = C. Among other invariants that
must factor through K(Vark) we mention the number of points of V if k is a finite
field, and the class in the Grothendieck group of pure Chow motives. Because of this
latter connection, the class [V ] in K(Vark) may be viewed as a simplified analogue
of the motive of V , and is also known as the ‘naive motive’ of V . The Grothendieck
ring K(Vark), or rather a completed localized version of K(Vark), is the ring of values
of the sophisticated theory of motivic integration of Denef and Loeser; see [Loo02]
for an excellent survey. Also see [Bit04] for a useful alternative presentation of the
Grothendieck ring of varieties.

The Chern-Schwartz-MacPherson class satisfies additivity and multiplicativity prop-
erties, but does not factor through the Grothendieck group: indeed, it takes values in
the Chow group of the variety, so its target is not a fixed group or ring. Nevertheless,
there are clear similarities linking the two theories. The theory of motivic Chern
classes of Brasselet, Schürmann, and Yokura defines a natural transformation from a
relative version of the Grothendieck group of varieties over a given variety V to the
Grothendieck group of coherent sheaves of OV -modules, adjoined with a free vari-
able y. As mentioned in §3.3, this theory generalizes the theory of Chern-Schwartz-
MacPherson classes summarized in §3.2; in this context, the relative Grothendieck
group plays the role of the group of constructible functions. In a different direction,
there is an analogue to motivic integration with values in the Chow group, which may
be used to recover Chern-Schwartz-MacPherson classes, see [Alu07].

We will not review these developments here, rather highlight the simpler observa-
tion that often the work needed to perform concrete computations in K(Vark) will
also yield results at the level of CSM classes. This is the case for the graph hypersur-
faces arising in the interpretation of the contribution of a given graph to a Feynman
amplitude (in perturbative massless scalar field theories) as a ‘period’. We will discuss
this context next, and conclude the paper with a description of an invariant defined
in terms of characteristic classes of graph hypersurfaces, mimicking the invariant of
these objects defined below in terms of naive motives.
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4.2. Feynman integrals and graph hypersurfaces. Let G be a (undirected)
graph with n > 0 edges. The (Kirchhoff-Tutte-Symanzik) ‘graph polynomial’ of G is
the polynomial

ΨG(t1, . . . , tn) :=
∑
T

∏
e 6∈T

te

where T ranges over the maximal spanning forests of G, i.e., the unions of spanning
trees or the connected components of G, and te is a variable associated with edge e.

Example 4.2. The graph polynomial of the ‘banana graph’ with 3 edges,

2
t3

t1t

is

(4.2) ΨG(t) = t2t3 + t1t3 + t1t2 .

Indeed, this graph has three spanning trees, each consisting of a single edge. y

It follows immediately from the definition that ΨG(t) is homogeneous, of degree
equal to the number of loops in G. The vanishing of ΨG(t) defines the ‘graph hyper-
surface’ of G. This may be viewed in Pn−1 or as a cone in An, where n is the number of
edges of G. The second option is preferable. In fact, the most natural object of study
is the complement Y̌G := Anr X̌G of the affine graph hypersurface X̌G corresponding
to G, defined by ΨG(t) = 0 in the ambient affine space An.

These graph hypersurface complements Y̌G = An r X̌G arise naturally in pertur-
bative quantum field theory, when one writes the Feynman integrals for a massless
scalar field theory in terms of Feynman parameters.

The physical Feynman rules for a scalar quantum field theory express the Feynman
integral for a Feynman graph G of the theory in the form

U(G) =

∫
δ(
∑

e∈Eint(G) εe,vke +
∑

e′∈Eext(G) εe′,vpe′)

q1(k1) · · · qn(kn)
dDk1 · · · dDkn ,

where the constraint in the delta function is the momentum conservation relation at
vertices ∑

e∈Eint(G)

εe,vke +
∑

e′∈Eext(G)

εe′,vpe′ = 0

with external momenta pe′ , with the propagators associated to edges given by the
quadrics qe(ke) = k2

e +m2, with k2
e :=

∑D
i=1 k

2
e,i with D the spacetime dimension. The

matrix εe,v is the incidence matrix of the graph G.
The “Feynman trick” or Feynman parameters representation of the Feynman inte-

gral above refers to the use of the identity

1

q1 · · · qn
= (n− 1)!

∫
[0,1]n

δ(1−
∑

i ti)

(t1q1 + · · ·+ tnqn)n
dt1 · · · dtn

to replace the product of quadratic forms in the denominator with a linear com-
bination of quadratic forms and an integration of the coefficients te (the Feynman
parameters) over a simplex σn = {t |

∑
i ti = 1}.
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One then considers a change of variables ke = ue+
∑`

j=1 ηe,jxj, with ηe,j the circuit

matrix of the graphG and ` = b1(G) the loop number, with constraint
∑

e teueηe,j = 0,
for all j = 1, . . . , `. The ue are taken, as a function of the external momenta, to be a
solution to the equation ∑

e∈Eint

εe,vue +
∑

e′∈Eext

εe′,vpe′

that follows from momentum conservation at vertices and the orthogonality∑
e

εe,vηe,j = 0,

for all j = 1, . . . , ` of incidence and circuit matrices. One can then take care of the
integration in the xi variables in the resulting Feynman integral via the identity∫

dDx1 · · · dDx`
(
∑

i tiqi)
n

= C`,n det(MG(t))−D/2(
∑
i

ti(u
2
i +m2))−n+D`/2,

where C`,n is a factor independent of G (for fixed number of loops and internal edges)
and equal to

C`,n =

∫
dDx1 · · · dDxn
(1 +

∑
k x

2
k)
n
,

while MG(t) is the matrix MG(t)kr =
∑

i tiηikηir, whose determinant is given by the
graph polynomial, det(MG(t)) = ΨG(t). One can also show that, in the massless case
m = 0, the term

∑
i tiu

2
i can also be written as a polynomial PG(t, p), homogeneous of

degree b1(G)+1 in t. The graph polynomial ΨG(t) is also known as the first Symanzik
polynomial and PG(t, p) as the second Symanzik polynomial of the graph G. Up to
a numerical factor including C`,n and powers of 2π, and up to a divergence captured
by a Gamma factor Γ(n−D`/2), the parametric form of the Feynman integral U(G)
is then given by

U(G) =

∫
σn

PG(t, p)−n+D`/2

ΨG(t)−n+D(`+1)/2
ωn,

with ωn the volume form on the simplex σn induced by dt1 · · · dtn. We focus here on
the range where D` ≥ 2n so that the integrand is a rational function with the first
Symanzik polynomial in the denominator. Modulo the important issue of infrared
divergences caused by the intersections of the domain of integration σn and the hy-
persurface defined by the vanishing ΨG(t) = 0, which need to be dealt with through
an appropriate renormalization procedure that we will not be discussing here, the
parametric Feynman integral looks formally like a period of an algebraic differential
form defined on the graph hypersurface complement Y̌G = AnrX̌G. Thus, knowledge
of the motivic properties of these graph hypersurface complements can predict the
nature of the numbers that can occur as periods.

Extensive computational results of Broadhurst and Kreimer [BK97] found the sys-
tematic occurrence of multiple zeta values in such computations of Feynman integrals.
Multiple zeta values can be realized as periods of ‘mixed-Tate motives’ [GM04] and
in fact all periods of mixed-Tate motives are Q[(2πi)−1]-linear combinations of multi-
ple zeta values, [Bro12]. The occurrence of multiple zeta values in Feynman integral
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computations originally motivated the conjecture that the varieties Y̌G would all be
mixed-Tate motives. This was originally formulated by Kontsevich as a question
on the polynomial summability of the graph hypersurfaces XG, which can be also
formulated as the question of whether the classes [XG] in the Grothendieck ring of
varieties belong to the subring Z[L] generated by the Lefschetz motive L = [A1].
This conjecture was disproved by Belkale and Brosnan [BB03] who showed that the
classes [XG] additively generate the localization of the Grothendieck ring obtained by
inverting the classes [GLn] for all n. This means that one expects to see arbitrarily
complicated motives occurring when arbitrarily large graphs are considered. Specific
counterexamples of non-mixed-Tate graph hypersurfaces, for the ϕ4-scalar quantum
field theory and for graphs starting at 14 edges, were found by Doryn [Dor11] and
by Schnetz [Sch11]. It remains an interesting question to understand which motives
occur and which families of graphs give rise to mixed-Tate motives.

Some related constructions of algebraic varieties associated to parametric Feynman
integrals are worth mentioning. The first is a variant on the graph hypersurface X̌G,
which however is always a mixed-Tate motive for all graphs G. It is obtained in the
following way. In the derivation of the parametric Feynman integral recalled above,
instead of fixing the choice of the ue as a solution to the momentum conservation
equation and

∑
e teueηe,j = 0, we can consider the ue as ranging over all possible

solutions. These are all of the form

ue =
∑̀
r=1

ηe,rβr,

where the orthogonality constraint above becomes

0 =
∑
e,r

teηe,rηe,jβr = Qt(β).

This determines a complete intersection variety

ΛG = {(t, β) |Qt(β) = 0},

with (Qt(β))j =
∑

e,r teηe,rηe,jβr. One obtains in this way a formulation of the Feyn-
man integral where the relevant variety replacing the graph hypersurface comple-
ment X̌G is the variety ΛG defined above, see [BM13]. In terms of motivic properties,
the varieties ΛG were introduced by Esnault and Bloch in relation to Hodge structures
and shown to be always mixed-Tate, [Blo].

Another related construction, also due to Bloch [Blo10], shows that, while the
graph hypersurfaces XG themselves are not always mixed-Tate, if one considers a
suitable combination of the classes [XG], obtained by summing over all graphs with
fixed number of vertices, with each class [XG] weighted by a combinatorial symmetry
factor n!/|Aut(G)|, then the resulting Grothendieck class is always mixed-Tate. This
observation is consistent with the fact that, in physics, it is not the contribution of
individual Feynman integrals that has physical meaning, but the combined contri-
bution, appropriately weighted by symmetry factors, of all graphs at a given order
(usually loop number or number of internal edges) in the perturbative expansion.
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We also should mention another important algebro-geometric construction in per-
turbative quantum field theory related to the parametric form of Feynman integrals.
There are linear relations satisfied by Feynman integrals, which significantly reduce
the combinatorial complexity of the perturbative expansion. The coefficients of these
linear relations are rational functions of the spacetime dimension D, the mass param-
eters and the external momenta, [Smi12]. This makes it possible to reduce, through
an integration by parts method, the computation of Feynman integrals to a finite set
of master integrals. It is shown in [BBKP19] that the number of master integrals can
be computed as a vector space dimension, which in turn is computed by the Euler
characteristic of a hypersurface complement. As in the previous discussion of para-
metric Feynman integrals, one writes the combination

∑
e teqe in the loop momentum

variables xi (i = 1, . . . , `) as a quadratic, a linear, and a constant term∑
e

teqe =
∑
i,j

Mijxixj +
∑
i

2Qixi + J,

and set G = U + F with U = detM and F = U(QtM−1Q+ J), where

U (`+1)D/2−|ν|F |ν|−`D/2

recovers the same integrand of the parametric Feynman integral described above,
where U and F occur as the first and second Symanzik polynomials, in the slightly
more general form where we have exponents νi of the denominators qi and we use the
more general version of the Feynman parameters formula given by

1

qν11 · · · qνnn
=

Γ(|ν|)
Γ(ν1) · · ·Γ(νn)

∫
[0,1]n

δ(1−
∑

i ti)

(t1q1 + · · ·+ tnqn)n
tν1−1
1 · · · tνn−1

n dt1 · · · dtn,

with |ν| = ν1 + · · ·+ νn, so that the parametric Feynman integral is written, up to a
numerical factor and Gamma functions, in the form

U(G) =

∫
σn

ωn
U (`+1)D/2−|ν|F |ν|−`D/2

.

This can be equivalently reformulated in the Lee–Pomeransky form, where, with
numerical and Gamma factors included

U(G) =
Γ(D/2)

Γ((`+ 1)D/2− |ν|)

(∏
i

∫
R

xνi−1
i dxi
Γ(νi)

)
G−D/2.

This formulation of the parametric Feynman integrals is a multidimensional Mellin
transform of the function G−D/2. If one considers only those relations between Feyn-
man integrals that do not involve different graphs, so that one can work with a fixed G
and the corresponding G = GG, then those relations that change the exponents νi by
integer shifts can be identified, via Mellin transform, with differential operators that
annihilate G−D/2. These can be treated using results from the theory of D-modules.
Consider the algebraic torus Gn

m and the hypersurface V (G) = {t = (te) | G(t) = 0}
inside the torus, V (G) ⊂ Gn

m, with

O(Gn
m r V (G)) = C[t±1

e ,G−1].
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The space of all master integrals, seen as Mellin transforms of Gs, can be identified
with the C(s, ν)-vector space VG spanned by the integrals with parameters νi shifted
by an integer n. The number of master integrals is the dimension dimC(s,ν) VG. Using
a result of Loeser and Sabbah, [LS91], [LS92], this dimension can be computed (see
Section 3 of [BBKP19]) as the Euler characteristic of the algebraic de Rham complex
of a holonomic D-module, which is then identified with the Euler characteristic of
the algebraic de Rham complex of C[t±1

e ,G−1], hence the Euler characteristic of the
hypersurface complement Gn

m r V (G). It seems an interesting question what addi-
tional information on the space of master integrals can be derived from the additional
information, beyond the Euler characteristic, given by the CSM characteristic classes
of the hypersurface V (G) and its complement Gn

m r V (G).

4.3. Algebro-geometric Feynman rules: motivic Feynman rules. The ‘Feyn-
man rules’ are a formalism that extracts from a given graph the corresponding contri-
bution to the Feynman amplitude. The rules themselves satisfy an interesting general
structure. For example, if 〈G〉 denotes the contribution of G to an amplitude, then
it can be shown that ∑

graphs G

〈G〉 = exp

( ∑
connected graphs G

〈G〉

)
;

this equality encodes a crucial contribution of symmetries in evaluating 〈G〉 in terms
of the product of the contributions of its connected components. In particular, we
could restrict our attention to connected graphs. Further, if G is obtained as the join
of two subgraphs G1, G2 by a single edge, then

〈G〉 = ‘propagator’ ·〈G1〉 · 〈G2〉 ,

including a multiplicative factor (the ‘(inverse) propagator’) that is independent of
the graphs.

Some of this structure is mirrored by the graph polynomial itself. For example,
it is easy to see that if G is the disjoint union of two graphs G1 and G2 (including
the possibility that G1 and G2 may be connected at a vertex), then ΨG = ΨG1 ·ΨG2 .
We say that a ring-valued invariant U(G) of a graph is an ‘abstract Feynman rule’
if U(G) = U(G1)U(G2) when G is obtained by joining G1 and G2 at a vertex. In
particular, if G1 and G2 are joined by an edge e, then U(G) = U(e)U(G1)U(G2):
thus, the invariant for a single edge behaves as an ‘propagator’ for these rules.

The reason why the very simple multiplicative property over disjoint union of
graphs is referred to as an “abstract Feynman rule” lies in the fact that this is the
minimal algebraic requirement needed to set up an “algebraic renormalization pro-
cedure”. This requires the additional property that the target commutative ring R
is a Rota–Baxter algebra of weight −1, while the source polynomial algebra on the
Feynman graphs (with product given by the disjoint union) is also endowed with a
coproduct making it into a Hopf algebra H. A Rota–Baxter algebra (ring) of weight λ
is a unital commutative algebra (ring) R endowed with a linear operator T : R → R
which satisfies the λ-Rota–Baxter identity

T (a)T (b) = T (aT (b)) + T (T (a)b) + λT (ab).
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Note here an important point: the morphism φ : H → R that we are referring to
as an abstract Feynman rule is only a morphism of commutative algebras, and knows
nothing about the coproduct of H and the Rota-Baxter operator of R. However,
the multiplicativity of φ, together with the coproduct of H and the Rota-Baxter
operator of R determine a unique multiplicative splitting (Birkhoff factorization) of φ
into two algebra homomorphisms with respective targets given by subalgebras of R
corresponding, respectively, to renormalized values and counterterms in the physical
case. Indeed, the Rota–Baxter operator T determines a decomposition of R into two
commutative algebras (rings), R+ = (1 − T )R and R− the unitization of T R. The
convolution product ? of morphisms φ1, φ2 ∈ HomAlg(H,R) dual of the coproduct ∆
of H is given by

φ1 ? φ2(x) = 〈φ1 ⊗ φ2,∆(x)〉 =
∑

φ1(x(1))φ2(x(2)),

for ∆(x) =
∑
x(1)⊗x(2) = x⊗1+1⊗x+

∑
x′⊗x′′. SinceH is a graded connected com-

mutative Hopf algebra, the antipode is defined inductively by S(x) = −x−
∑
S(x′)x′′.

The Birkhoff factorization of an algebraic Feynman rule φ ∈ HomAlg(H,R) is defined
inductively through the explicit formula

φ−(x) = −T (φ(x) +
∑

φ−(x′)φ(x′′))

φ+(x) = (1− T )(φ(x) +
∑

φ−(x′)φ(x′′)).

The Rota-Baxter identity for T ensures that these are still algebra homomorphisms
φ± ∈ HomAlg(H,R±).

The case where R is an algebra of Laurent power series, with projection onto
the polar part as Rota-Baxter operator, corresponds to the physical case where the
resulting renormalization procedure (the Connes–Kreimer renormalization) recovers
the physical BPHZ renormalization procedure. The same structure however is imple-
mentable for other types of Rota-Baxter structure, hence we use in this setting the
broader term “abstract Feynman rules” and “algebraic renormalization”. We will not
review here the detailed properties of Rota–Baxter algebras and Birkhoff factoriza-
tion, as we will not need them in the rest of the paper, but we refer the readers to
[CK00], [CM08], [Mar10] for a detailed discussion of Connes–Kreimer renormaliza-
tion. For examples of this formalism of algebraic renormalization applied outside of
the quantum field theory BPHZ renormalization, with other Rota-Baxter structures,
see for instance [MM20], [MT15].

As a broad class of examples of abstract Feynman rules, we can take the ‘Tutte-
Grothendieck invariants’ of graphs, that is, specializations of the Tutte polynomial.
Many important invariants of graphs (e.g., the chromatic and flow polynomials, the
partition function of the Ising model, etc.) are invariants of this type. We note that
Tutte-Grothendieck invariants satisfy, essentially by definition, simple formulas with
respect to the operations of deletion G r e and contraction G/e of an edge e of a
graph G. As a consequence, they also satisfy ‘multiple edge formulas’, which can be
assembled into a generating function: if TG(x, y) denotes the Tutte polynomial of a
graph G, and we denote by Gme the graph obtained by replacing an edge e by m
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parallel edges, then

(4.3)
∑
m≥0

TGme(x, y) · s
m

m!
= es

(
TGre(x, y) +

e(y−1)s − 1

y − 1
TG/e(x, y)

)
provided that e is not a bridge or a looping edge in G. While this tighter structure is
not satisfied by arbitrary abstract Feynman rules, we will see that glimpse of it are
satisfied by the rules that arise naturally in the context of graph hypersurfaces.

For us ([AM11a, AM11b]), an ‘algebro-geometric Feynman rule’ is an abstract
Feynman rule which only depends on the complement Y̌G := An r X̌G. The depen-
dence of an algebro-geometric Feynman rule on Y̌G does not a priori depend only
on the isomorphism class of Y̌G. For example, it may depend also on the specific
data of immersed algebraic varieties, for which a suitable form of Grothendieck ring
of immersed conical varieties can be defined, see [AM11a]. We say that an algebro-
geometric Feynman rule is ‘motivic’ if it only depends on the class U(G) := [Y̌G] in
the Grothendieck ring K(Vark). In fact, the class U(G) is itself an algebro-geometric
Feynman rule, with propagator given by the Lefschetz-Tate motive L. Indeed, it is
essentially straightforward to verify that if G = G1 q G2, then Y̌G ∼= Y̌G1 × Y̌G2 :
therefore, U(G1 q G2) = U(G1)U(G2); and if G = e consists of a single edge, then
ΨG = 1, so that

U(e) = [A1 r ∅] = [A1] = L .

Example 4.3. For the ‘3-banana’ G of Example 4.2,

U(G) = L2(L− 1)

as may be checked easily: the complement Y̌G of the affine graph hypersurface maps to
the complement of a smooth conic in P2, with k∗ fibers; smooth conics are isomorphic
to P1, and the result follows. y

This motivic Feynman rule is not a Tutte-Grothendieck invariant. This fact reflects
the important observation, due to Belkale and Brosnan and already discussed in §4.2,
that in general graph hypersurfaces do not determine mixed-Tate motives, that is,
polynomials in the class L. If recursive formulas under deletion and contraction
held for the motivic Feynman rule, it would follow that the class of every graph
hypersurface is in Z[L].

It is natural then to inquire to what extent a given algebro-geometric Feynman
rule may satisfy deletion-contraction or multiple-edge formulas: for motivic Feynman
rules, this may be viewed as a way to quantify the extent to which graph hypersurfaces
fail to be mixed-Tate motives, and the recursive process underlying multiple-edge for-
mulas may be used to provide families of graphs whose hypersurface do determine
mixed-Tate motives. For instance, for certain SYK quantum field theories that are
dominated by the melonic sector, one sees by a careful use of these recursive pro-
cedures that the dominant contributions to the asymptotic expansion remain in the
mixed-Tate class, see [AMQ].

The behavior of the motivic Feynman rule with respect to these operations amounts
to the following statement.
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Theorem 4.1 ([AM11b]). Let U(G) := [Y̌G] ∈ K(Vark). Assume the edge e of G is
neither a bridge nor a looping edge. Then

U(G) = L · [Y̌Gre ∪ Y̌G/e]− U(Gr e) .

Further, let Gme be the graph obtained by replacing e with m parallel edges. Then

(4.4) U(G2e) = (L− 2) · U(G) + (L− 1) · U(Gr e) + L · U(G/e) ;

and∑
m≥0

U(Gme)
sm

m!
=
e(L−1)s − e−s

L
U(G) +

e(L−1)s + (L− 1)e−s

L
U(Gr e)

+

(
se(L−1)s − e(L−1)s − e−s

L

)
U(G/e) .

The first formula is the analogue for motivic Feynman rules of a deletion-contraction
formula. Note that it includes a term, [Y̌Gre ∪ Y̌G/e], which does not only depend on
combinatorial information, in the sense that it is not the Grothendieck class of a
graph hypersurface complement. In a sense, this term is responsible for the fact that
graph hypersurfaces are not necessarily mixed-Tate, as it prevents a straightforward
recursive determination of the class U(G). It is quite interesting that the second and
third formulas are combinatorial, thus close in spirit with the situation for Tutte in-
variants. Compare the third formula with the corresponding formula (4.3) that holds
for Tutte polynomials. The coefficients appearing in this expression are independently
significant, as they are related to functions used in defining Hirzebruch’s Ty genus.

Example 4.4. The ‘n-banana graph’

n

may be viewed as Gme for m = n − 2, where G is the 3-banana graph. We found
U(G) = L2(L− 1) (Example 4.3), and it is easy to verify that

U(Gr e) = L(L− 1) , U(G/e) = (L− 1)2 .

By Theorem 4.1, a generating function for the class U(Gn) is∑
n≥2

U(Gn)
sn−2

(n− 2)!
= (L− 1)

(
(L2s− Ls+ L2 + 1)

e(L−1)s − e−s

L
+ (Ls+ L− s)e−s

)
One may observe that this expression equals

d

ds2

(
(L− 1)

e(L−1)s − e−s

L
+ se(L−1)s

)
and it follows that

(4.5) U(Gn) = (L− 1)
(L− 1)n − (−1)n

L
+ n(L− 1)n−1

for n ≥ 2. y
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4.4. Chern-Schwartz-MacPherson Feynman rules. Recall that the Grothendieck
ring of varieties acts as a ‘universal Euler characteristic’. Thus, the formulas obtained
in Theorem 4.1 hold for every additive and multiplicative ring-valued invariants of
complements of affine graph hypersurfaces.

The Euler characteristic is such an invariant, but it is not useful in this case (as it
equals 0 if the graph is not a forest); it is natural to inquire whether the other gener-
alization of the Euler characteristic that we have examined in §3.2, that is, the Chern-
Schwartz-MacPherson class, may also be used to define abstract Feynman rules. The
result of this last section in this paper is that this is indeed the case. Thus, the
intersection theory (in the sense of §2) used in our treatment of characteristic classes
for singular/noncompact varieties provides an alternative way of encoding some of
the basic structure underlying amplitudes in perturbative quantum field theory.

The resulting graph-theoretic invariant is not motivic, that is, it is not a spe-
cialization of the motivic Feynman rules introduced above, and also is not a Tutte-
Grothendieck invariant. In fact, its behavior with respect to deletion and contraction
is very subtle, and we will close this paper by describing multiple-edge formulas that
it satisfies.

Remark 4.1. The Euler characteristic of the complement YG of the projective graph
hypersurface XG carries more information than its affine counterpart; see below.
Contrary to an early guess of the first author, the Euler characteristic χ(YG) can take
any integer value, as has been proved recently ([DPSW20]). y

In order to define the ‘Chern-Schartz-MacPherson’ Feynman rules, recall that
in §3.2 we have defined a class cSM(U) ∈ A∗(V ) for every locally closed subset U
of a variety V . For a graph G with n edges we let V = Pn, so that elements of the
Chow group A∗(V ) may be written as a linear combination

a0[P0] + a1[P1] + · · ·+ an[Pn]

with integer coefficients ai. We say that a locally closed subset U ⊆ An is ‘conical’ if
u ∈ U if and only if λu ∈ U for all λ ∈ k∗. With every locally closed conical subset
U ⊆ An we associate the polynomial

FU(t) := a0 + a1T + · · ·+ anT
n

determined by the coefficients ai in the class

cSM(U) = a0[P0] + a1[P1] + · · ·+ an[Pn] ,

where we view U as a locally closed subset of the projective space Pn obtained by
completing An.
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Example 4.5. An affine subspace Ak through the origin in An is conical. Its completion
in Pn is a subspace Pk. By additivity, and denoting by H the hyperplane class,

cSM(Ak) = cSM(Pk)− cSM(Pk−1)

= c(TPk) ∩ [Pk]− cSM(TPk−1) ∩ [Pk−1]

= ((1 +H)k+1 ·Hn−k − (1 +H)k ·Hn−k+1) ∩ [Pn]

= (1 +H)k ·Hn−k ∩ [Pn]

=
k∑
i=0

(
k

i

)
[Pi] ,

therefore

FAk(T ) =
k∑
i=0

(
k

i

)
T i = (1 + T )k .

Note that the result is independent of the ambient dimension n. y

It is in fact easy to see that if U ⊆ An, and An is viewed as a subspace of Am for
some m ≥ n, then FU(t) may be computed by using either embedding.

The following lemma is key for the considerations that follow.

Lemma 4.2. The invariant FU(T ) is additive, in the sense that if U ′, U ′′ are locally
closed conical subsets of An, then

FU ′∪U ′′(T ) = FU ′(T ) + FU ′′(T )− FU ′∩U ′′(T ) .

It is also multiplicative, in the following sense: Let U ′ ⊆ An′, U ′′ ⊆ An′′ be locally
closed conical affine varieties. Then

FU ′×U ′′(T ) = FU ′(T ) · FU ′′(T ) .

The first part of Lemma 4.2 follows from the additivity property of Chern-Schwartz-
MacPherson classes, cf. (3.4). The second part of the lemma is perhaps subtler than
it looks. If U ′ ⊆ An and U ′′ ⊆ Am, then the left-hand side refers to a CSM class
computed in Pm+n. Standard product formulas for CSM classes reduce the right-hand
side to a computation for a locally closed subset of Pm×Pn. Comparing classes in these
two different completions of Am+n requires some work, carried out in [AM11a]. An
alternative approach, pointed out by Schürmann and by Weber ([Web12]), interprets
the polynomial FU(T ) in terms of equivariant Chern-Schwartz-MacPherson classes,
and the product formula is straightforward from this point of view.

Lemma 4.2 justifies the following definition. Recall that for a graph G with n edges,
Y̌G denotes the complement An r X̌G of the affine hypersurface defined by the graph
polynomial ΨG.

Definition 4.1. The Chern-Schwartz-MacPherson Feynman rules assign to every
graph G the polynomial

CG(T ) = FY̌G(T )

in Z[T ]. y
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By Lemma 4.2,
CG(T ) = CG1(T ) · CG2(T )

ifG consists of the disjoint union ofG1 andG2, possibly joined at a single vertex. Thus
the Chern-Schwartz-MacPherson Feynman rules are abstract (and algebro-geometric)
Feynman rules in the sense introduced in §4.3. The propagator is Ce(T ) = FA1(T ) =
1 + T . Comparing with the motivic propagator U(e) = L, it is tempting to view the
variable T as somehow related with the ‘torus’ k∗, whose Grothendieck class is L− 1.

Example 4.6. Explicit computations may be carried out in several cases using the
methods summarized in 3.3, and are aided by properties of Chern-Schwartz-MacPherson
Feynman rules that we will list below. For the n-banana graph Gn of Example 4.4,
one obtains the remarkably simple expression

(4.6) CGn(T ) = T (T − 1)n−1 + nT n−1 .

This expression should be compared, both for similarities and differences, with (4.5).
In particular, note that a simple substitution such as T = L − 1 does not lead to a
match of these expressions. y

We collect below several properties of the new polynomial graph invariant. Most
follow easily from the definition and from Lemma 4.2.

• The polynomial CG(T ) is of the form

T n + (n− b1(G))T n−1 + lower degree terms ,

where n is the number of edges of G.
• CG′(T ) = (1 + T )CG(T ) if G′ is obtained from G by splitting an edge or

attaching an edge to a single vertex.
• CG′(T ) = TCG(T ) if G′ is obtained from G by attaching a looping edge to a

vertex.
• CG(0) = 1 if G is a forest. In fact, CG(T ) = (1 + T )n if G is a forest with n

edges; in particular
• CG(0) = 0 if G is not a forest.
• C ′G(0) = χ(YG), the Euler characteristic of the projective graph hypersurface

complement.

Example 4.7. Let Gn be an n-sided polygon. Then Gn may be obtained by splitting
the single edge of a looping edge n−1 times, and it follows that CGn(T ) = T (T+1)n−1.

This may of course be verified directly: the graph polynomial for a polygon is
t1 + · · ·+ tn, therefore Y̌Gn = An − An−1, hence

CGn(T ) = FAn−An−1(T ) = FAn(T )− FAn−1(T ) = (1 + T )n − (1 + T )n−1 ,

where we used the first part of Lemma 4.2 and the result obtained in Example 4.5. y

Example 4.8. Let Gn again be the n-banana graph. Then the Euler characteristic of
the graph hypersurface XGn defined by the Kirchhoff-Tutte-Symanzik polynomial
of Gn (whose complement in Pn−1 is YGn) is

χ(XGn) = n+ (−1)n

for n ≥ 2. (Indeed, χ(YGn) = C ′Gn
(0) = (−1)n−1 according to (4.6).) y
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The equality χ(YG) = C ′G(0) follows from a more refined result, relating CG(T )
directly with the Chern-Schwartz-MacPherson class of the projective complement
YG = Pn−1 rXG. Namely, one may verify that if

CG(T ) = a0 + a1T + · · ·+ anT
n ,

then

(4.7) cSM(YG) = a1[P0] + · · ·+ anT
n−1

Thus, the coefficient of T in CG(T ), that is, a1 = C ′G(0), equals
∫
cSM(YG) = χ(YG)

by the singular/noncompact Poincaré-Hopf theorem (cf. (3.5)).
Summarizing, if G is not a forest, then

(4.8) CG(T ) = χ(YG)T + · · ·+ (n− b1(G))T n−1 + T n .

Incidentally, this expression along with Lemma 4.2 clarifies in what sense the Euler
characteristic of the projective complement YG fails to be multiplicative on disjoint
unions, i.e., to be an abstract Feynman rule: if G = G′ qG′′ (and neither G′ nor G′′

are forests), then

CG(T ) = CG′(T )CG′′(T ) = χ(YG′)χ(YG′′)T
2 + · · · :

while χ(YG) = 0, since this equals the coefficient of T in CG(T ), the information of
the product χ(YG′)χ(YG′′) is preserved in the Chern-Schwartz-MacPherson Feynman
rules, as the coefficient of T 2.

All coefficients in (4.8) may be interpreted in terms of Euler characteristics. We do
not have a reference for the following result, so we will provide a proof.

Proposition 4.3. Let G be a graph that is not a forest, and let

CG(T ) = a1T + a2T
2 + · · ·+ anT

n .

Denote by ei, i = 0, . . . , n− 1, the topological Euler characteristic of the intersection
of YG with a general linear subspace of codimension i in Pn−1. Then a1 = e0 and

ak =
n−1∑
i=k−1

(
i− 1

k − 2

)
ei

for k = 2, . . . , n,

ek =
n∑

i=k+1

(
i− 2

k − 1

)
(−1)i−k−1ai

for k = 1, . . . , n− 1.

Proof. As pointed out in (4.7), the coefficients of CG(T ) determine cSM(YG). We
assemble these coefficients in the polynomial

γ(t) :=
n∑
k=1

akt
k−1 .

We also assemble the Euler characteristics of general linear sections in a polynomial:

χ(t) :=
n−1∑
k=0

χ(YG ∩ Lk) · (−t)k ,
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where Lk is a general linear subspace Pn−1−k of codimension k. (So, for instance, the
constant term of χ(t) equals χ(YG).) By [Alu13, Theorem 1.1], the polynomials γ(t)
and χ(t) are interchanged by the involution

p(t) 7→ t · p(−t− 1) + p(0)

t+ 1
.

This statement implies the two given expressions. �

The last issue we want to discuss is whether the Chern-Schwartz-MacPherson Feyn-
man rules satisfy deletion-contraction or multiple edge formulas analogous to (4.3)
(for Tutte-Grothendieck invariants) or the formula given in Theorem 4.1 (for the
motivic Feynman rules).

Determining general deletion-contraction formulas for Chern-Schwartz-MacPherson
Feynman rules is in fact an open question. Let G be a graph, and let e be an edge
of G; we assume that e is ‘regular’, that is, it is not a bridge or a looping edge of G,
and G r e is not a forest. (These excluded cases are easy to treat separately.) We
have a precise result if G and e satisfy two technical conditions, which we summarize
as follows.

• Condition I: The Kirchhoff-Tutte-Symanzik graph polynomial ΨG belongs to
the Jacobian ideal of ΨGre.
• Condition II: The proper transform of XG ⊆ Pn−1 intersects transversally the

exceptional divisor in a suitable blow-up.

The reader may find a more explicit statement of these conditions in [Alu12, §2].
These conditions are needed in order to control the relevant intersection theory in a
blow-up construction that relates the graph hypersurface of G with the graph hyper-
surfaces of the deletion Gr e and contraction G/e.

Theorem 4.4. Assume G is a graph, and e is a regular edge of G for which conditions
I and II hold. Then

CG(T ) = FY̌Gre∪Y̌G/e
(T ) + (T − 1)CGre(T )

Further

CG2e(T ) = (2T − 1)CG(T )− T (T − 1)CGre(T ) + CG/e(T ) .

Just as in the analogue for the motivic Feynman rules, stated in Theorem 4.1, the
first formula includes an unavoidable term that is not determined by a single graph
hypersurface.

We do not know of a combinatorial translation of the two technical conditions on
which this statement relies; the first condition is studied from a combinatorial per-
spective in [KMY18], but without reaching a characterization. There is however one
case where the conditions automatically hold. The following is [Alu12, Lemma 2.3].

Lemma 4.5. Let G be a graph and let e be a regular edge of G. Assume that e has
parallel edges in G. Then conditions I and II hold for G, e.

Therefore, we can give a multiple edge formula that does not rely on the technical
conditions listed above.
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Corollary 4.6. Let G be a graph and let e be a regular edge of G. Then for m ≥ 1

CG(m+3)e
(T ) = (3T − 1)CG(m+2)e

(T )− (3T 2 − 2T )CG(m+1)e
(T ) + (T 3 − T 2)CGme(T ) .

Example 4.9. Coming back once again to the example of n-bananas, (4.6), the recur-
sion in Corollary 4.6 implies the identity

(T (T − 1)m+2 + (m+ 3)Tm+2) = (3T − 1)(T (T − 1)m+1 + (m+ 2)Tm+1)

− (3T 2 − 2T )(T (T − 1)m + (m+ 1)Tm) + (T 3 − T 2)(T (T − 1)m−1 +mTm−1) .

In fact, an explicit computation of the Chern-Schwartz-MacPherson Feynman rules
for the 2-banana, the 3-banana, and the 4-banana suffice to obtain the general for-
mula (4.6), by means of Corollary 4.6. y

5. Epilogue

We have reviewed the apparatus of modern intersection theory in algebraic geom-
etry and discussed an application in the form of a theory of ‘characteristic classes’
for possibly singular, possibly noncompact algebraic varieties. We have further illus-
trated this application by means of the example of graph hypersurfaces, whose study
is motivated by the structure of perturbative quantum field theory.

We hope that this excursion will raise the reader’s interest in this aspect of algebraic
geometry. Whether this can be useful in the study of Feynman amplitudes in the style
of the other talks in the MathemAmplitudes workshop will stand as an open question.
Can one construct a ‘CSM class’ in twisted cohomology? Is there a good notion
of ‘twisted’ algebro-geometric Feynman rules? Do relations among cSM classes of
relevant loci imply relations of corresponding Feynman amplitudes?
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