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Abstract. Segre classes encode essential intersection-theoretic information concerning
vector bundles and embeddings of schemes. In this paper we survey a range of applications
of Segre classes to the definition and study of invariants of singular spaces. We will focus
on several numerical invariants, on different notions of characteristic classes for singular
varieties, and on classes of Lê cycles. We precede the main discussion with a review of
relevant background notions in algebraic geometry and intersection theory.

Contents

1. Introduction

Segre classes are an important ingredient in Fulton-MacPherson intersection theory: the
very definition of intersection product may be given in terms of these classes, as we will
recall below. It is therefore not surprising that important invariants of algebraic varieties
may be expressed in terms of Segre classes. The goal of this paper is to survey several
invariants specifically arising in singularity theory which may be defined or recast in terms
of Segre classes. Many if not all of these invariants first arose in complex geometry; the fact
that they can be expressed in purely algebraic terms by means of Segre classes extends their
definition to arbitrary algebraically closed fields of characteristic zero. Tools specific to the
theory of Segre classes yield new information on these invariants, or clarify the relations
between them. On the whole, the language of Segre classes offers a powerful perspective in
the study of these invariants.

We will begin with a general introduction to Segre classes and their role in intersection
theory, in §2; a hurried reader can likely skim through this section at first and come back
to it as needed. The survey itself will focus on the following themes:

• Numerical invariants (§3);
• Characteristic classes (§4);
• Lê cycles (§5).

A glance at the table of contents will reveal more specifics about the topics we chose.
One central result will be an expression for the Chern-Schwartz-MacPherson class of a

(possibly singular) subvariety of a fixed ambient nonsingular variety, in terms of the Segre
class of an associated scheme: see the discussion in §4.5 and especially Theorem 4.30.
For example, the topological Euler characteristic of a scheme embedded in a nonsingular
compact complex variety may be computed in terms of this Segre class. In the case of
hypersurfaces, or more generally local complete intersections, this result implies concrete
formulas for (generalized) Milnor numbers and classes. These formulas are explicit enough
that they can be effectively implemented in computer algebra systems such as Macaulay2
for subschemes of e.g., projective space. Characteristic classes of singular varieties are also
treated in detail in other contributions to this ‘Handbook of Geometry and Topology of
Singularities’; see especially the papers by Jean-Paul Brasselet [21] and by Roberto Callejas-
Bedregal, Michelle Morgado, and José Seade [29]. The relation between Segre classes and
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David Massey’s Lê cycles discussed in §5 is the result of joint work with Massey. Lê cycles
are the subject of Massey’s contribution to this Handbook, [67].

The role of Segre classes in singularity theory is certainly more pervasive than this survey
can convey; because of limitations of space (and of our competence) we had to make a rather
narrow selection, at the price of passing in silence many important topics. Among these
omissions, we mention:

• The careful study of multiplicities and Segre numbers by Rüdiger Achilles, Mirella
Manaresi, and collaborators, see e.g., [1];
• Work on the Buchbaum-Rim multiplicity, particularly by Steven Kleiman and Anders

Thorup, [61, 62];
• Work by Terry Gaffney and Robert Gassler on Segre numbers and cycles, [43], briefly

mentioned in §5;
• Seminal work by Ragni Piene on Segre classes and polar varieties, [81], also only briefly

mentioned;
• Alternative uses of Segre classes in defining characteristic classes of singular varieties,

as developed by Kent Johnson [57] and Shoji Yokura [96];
• Toru Ohmoto’s work on Segre-SM classes and higher Thom polynomials [76];
• Equivariant aspects and positivity questions, which have recently come to the fore in

the study of characteristic classes for Schubert varieties, see e.g., [17, 18].

Each of these topics would deserve a separate review article, and this list is in itself incom-
plete.

Acknowledgments. The author thanks the editors of the Handbook of Geometry and
Topology of Singularities for the invitation to contribute this survey, and the referees for
constructive comments.

The author acknowledges support from a Simons Foundation Collaboration Grant, award
number 625561, and also thanks Caltech for the hospitality during the writing of this paper.

2. Segre classes

In this section we review the general definition of Segre class used in the rest of the
article, and place it in the context of Fulton-MacPherson intersection theory. The reader
can safely skim through this section, coming back to it as it is referenced later in the survey.
We also introduce a notion that will be frequently used in the rest, that is, the ‘singularity
subscheme’ of a hypersurface; §2.5 is an extended example revolving around the Segre class
of this subscheme for hyperplane arrangements.

We work over an algebraically closed field k; in later considerations, k will be assumed to
have characteristic 0. Schemes are assumed to be separated of finite type over k. A variety is
a reduced irreducible scheme; a subvariety of a scheme is a closed subscheme that is a variety.
By ‘point’ we will mean closed point. An effective Cartier divisor (or, slightly abusing
language, a hypersurface) is a codimension-1 subscheme that is locally defined by a nonzero
divisor. Cartier divisors are zero-schemes of sections of line bundles. A cycle in a scheme is
a formal integer linear combination of subvarieties. Two cycles are rationally equivalent if
(loosely speaking) they are connected by families parametrized by P1. The Chow group of
dimension-` cycles of a scheme X modulo rational equivalence is denoted A`(X); the direct
sum ⊕`A`(X) is denoted A∗(X). We recall that a proper morphism f : X → Y determines
a covariant push-forward homomorphism f∗ : A∗(X)→ A∗(Y ) preserving dimension, while
a flat or l.c.i. morphism f determines a contravariant pull-back/Gysin homomorphism f∗.
If X is complete, that is, the structure morphism X → Spec k is proper, then the push-
forward of a class α via A∗(X)→ A∗(Spec k) = Z is the degree of α, denoted

∫
α or

∫
X α.
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Intuitively,
∫
α is the ‘number of points’ in the zero-dimensional component of α. Vector

bundles determine Chern classes, which act as operators on the Chow group, and satisfy
various compatibilities (such as the ‘projection formula’) with morphisms. The Chern class
ci(E) ∩ − of a vector bundle E on X defines group homomorphisms A`(X) 7→ A`−i(X).
The ‘total’ Chern class of E is the operator

c(E) = 1 + c1(E) + · · ·+ crkE(E) .

For i > rkE, ci(E) = 0. If O(D) is the line bundle corresponding to a Cartier divisor D, the
action of the operator c1(O(D)) amounts to ‘intersecting by D’: if V ⊆ X is a variety not
contained in D, c1(O(D))∩ [V ] is the class of the Cartier divisor obtained by restricting D
to V ; we write c1(O(D))∩α = D ·α. Every vector bundle E → X determines an associated
projective bundle ‘of lines’, which we denote π : P(E) → X. This bundle is endowed with
a tautological subbundle OE(−1) of π∗E; its dual OE(1), which restricts to the line bundle
of a hyperplane in each fiber of π, plays a distinguished role in the theory.

Our reference for these notions is William Fulton’s text, [39]; Chapters 3–5 of the sur-
vey [40] offer an efficient and well-motivated summary. A reader who is more interested in
topological aspects will not miss much by assuming throughout that k = C and replacing
the Chow group with homology. The constructions in intersection theory are compatible
with analogous constructions in this context, as detailed in Chapter 19 of [39].

2.1. Segre classes of vector bundles, cones, and subschemes. Let V ⊆ Pn be any
subvariety. The degree of V may be expressed as the intersection number of V with a
general linear subspace of complementary dimension:

(2.1) deg V =

∫
Pn

Hn−dimV · V ,

where H = c1(O(1)) is the hyperplane class in Pn and, as recalled above,
∫
Pn γ denotes the

degree of the zero-dimensional component of a rational equivalence class γ ∈ A∗(Pn). In fact,
by definition

∫
Pn γ denotes the integer m such that π∗γ = m[p], where π : Pn → p = Spec k

is the constant map to a point. With this in mind, we can rewrite (2.1) as

(2.2) (deg V )[p] = π∗

∑
i≥0

c1(O(1))i ∩ [V ]

 ∈ A∗(p) :

the only nonzero term on the right is obtained for i = n − dimV , for which it equals
(Hn−dimV · V )[p].

The right-hand side of (2.2) may be viewed as the prototype of a Segre class, for the
trivial projective bundle π : Pn → p. More generally, let X be a scheme and let E be a
vector bundle over X. Denote by π : P(E)→ X the projective bundle of lines in E, i.e., let

(2.3) P(E) = Proj(Sym∗OX
(E ∨)) .

where E ∨ is dual of the sheaf E of sections of E. Then for every class G ∈ A∗(P(E)) we
may consider the class

(2.4) SegreE(G) := π∗

∑
i≥0

c1(OE(1))i ∩G

 ∈ A∗(X) ;

this defines a homomorphism A∗(P(E)) → A∗(X), which we loosely call a Segre operator.
Even if G is pure-dimensional, SegreE(G) will in general consist of components of several
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dimensions. As in the simple motivating example presented above, however, its effect is to
encode intersection-theoretic information on G in terms of a class in A∗(X).

Example 2.1. Let X = Pm and let E = kn+1×X be a free bundle. Then P(E) ∼= Pm×Pn,
and the morphism π : Pm×Pn → Pm is the projection on the first factor. If G ∈ Am(Pm×Pn)
is a class of dimension m (to fix ideas), then

G =

m∑
i=0

giH
n−ihi ∩ [Pm+n] ,

where h, H denote the (pull-backs of the) hyperplane classes from Pm, Pn, respectively, and
gi ∈ Z are integers. Then H = c1(OE(1)), hence

SegreE(G) = π∗

∑
i≥0

c1(OE(1))i ∩G

 =

m∑
i=0

gih
i ∩ [Pm]

recovers the information of the coefficients gi determining the class G. y

Applying SegreE to classes G = π∗(γ) obtained as pull-backs of classes from the base
defines the total Segre class of E as an operator on A∗(X):

(2.5) s(E) ∩ γ := SegreE(G) = π∗

∑
i≥0

c1(OE(1))i ∩ π∗(γ)

 .

It is a fundamental observation that s(E) is inverse to the Chern class operator, in the
sense that

(2.6) c(E) ∩ (s(E) ∩ γ) = γ

for all γ ∈ A∗(X). (Since the intersection product is commutative, it follows that c(E),
s(E) are two-sided inverses to each other.) Indeed, consider the tautological sequence

0 // OE(−1) // π∗E // Q // 0 .

By the Whitney formula,

c(π∗E)c(OE(−1))−1 ∩ π∗γ = c(Q) ∩ π∗γ ;

by the projection formula,

c(E) ∩ π∗(c(OE(−1))−1 ∩ π∗γ) = π∗(c(Q) ∩ π∗γ) .

Since Q has rank rkE − 1, that is, equal to the relative dimension of π,

π∗(c(Q) ∩ π∗γ) = mγ

for some integer m. Restricting to a fiber shows that m = 1, and (2.6) follows.
In fact, these considerations may be used to define Chern classes of vector bundles: Chern

classes of line bundles may be defined independently in terms of their relation with Cartier
divisors (as mentioned above); once Chern classes of line bundles are available, (2.5) may
be used to define Segre classes of vector bundles; and then one may define the Chern class
of a vector bundle E as the inverse of its Segre class, and proceed to prove all standard
properties of Chern classes. This is the approach taken in [39], Chapters 2 and 3.

Other choices in (2.4) also lead to interesting notions: whenever a tautological line bundle
O(1) is defined, one may define a corresponding Segre class. For example, we could apply
the expression in (2.4) to

Proj(Sym∗OX
(F ))
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to define a Segre class for any coherent sheaf F ; one instance will appear below, in §4.1.
More generally, the definition may be applied to every projective cone. A cone over X is a
scheme

C = Spec(S ∗) = Spec(⊕k≥0S k)

where S ∗ is a sheaf of graded OX algebras and we assume (as is standard) that there is a
surjection S 0 � OX , S 1 is coherent, and S ∗ is generated by S 1 over S 0. It is useful to
enlarge cones by a trivial factor: with notation as above, we let

(2.7) C ⊕ 11 := Spec(S ∗[t]) = Spec(⊕k≥0(⊕ki=0S
itk−i)) ,

so that C may be viewed as a dense open subset of its ‘projective completion’ P(C ⊕ 11) =
Proj(S ∗[t]); in fact, C is naturally identified with the complement of P(C) = Proj(S ∗)
in P(C ⊕ 11). Cones over X are endowed with a natural projection π to X and with a
tautological line bundle O(1), so we may defined the Segre class of C in the style of (2.4):

s(C) := π∗

∑
i≥0

c1(OC⊕11(1))i ∩ [P(C ⊕ 11)]

 ∈ A∗(X) .

If C is a subcone of a vector bundle E (as is typically the case), then

(2.8) s(C) = SegreE⊕11([P(C ⊕ 11)]) .

A case of particular interest is the cone associated with sheaf of OX algebras

⊕k≥0I k/I k+1

where I is the ideal sheaf defining X as a closed subscheme of a scheme Y . The corre-
sponding cone Spec(⊕k≥0I k/I k+1) is the normal cone of X in Y , denoted CXY .

Definition 2.2. Let X ⊆ Y be schemes. The Segre class of X in Y is the Segre class of
the normal cone of X in Y :

(2.9) s(X,Y ) := s(CXY ) = π∗

∑
i≥0

c1(O(1))i ∩ [P(CXY ⊕ 11)]

 ,

an element of A∗(X). y

Remark 2.3. The addition of the trivial factor 11 is needed to account for the possibility
that e.g., P(C) may be empty. For instance, this is the case if X = Y , i.e., I = 0: then
CXX = Spec(OX) = X, P(CXX ⊕ 11) = X, and s(X,X) = [X].

If X does not contain any irreducible component of Y , then

s(X,Y ) = π∗

∑
i≥0

c1(O(1))i ∩ [P(CXY )]

 .

In general, it is easy to check that s(C) = s(C⊕11); in particular, the notation is compatible
with the notation s(E) for vector bundles used above. y
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2.2. Properties. —A closed embedding X ⊆ Y is regular, of codimension d, if the ideal
I of X is locally generated by a regular sequence of length d. In this case, one can verify
that

⊕k≥0I k/I k+1 ∼= Sym∗OX
(I /I 2) ,

so that the normal cone CXY is a rank-d vector bundle, denoted NXY . From the definitions
reviewed in §2.1 it is then clear that the Segre class of X in Y equals the inverse Chern
class of its normal bundle:

s(X,Y ) = s(NXY ) ∩ [X] = c(NXY )−1 ∩ [X] .

Example 2.4. Let D ⊆ Y be an effective Cartier divisor. Then NDY is the line bundle
O(D), so that

s(D,Y ) = c(O(D))−1 ∩ [D] = (1 +D)−1 ∩ [D] .

Abusing notation (writing D for [D]), we may write

s(D,Y ) =
D

1 +D
= D −D2 +D3 − · · · .

For instance, if H is a hyperplane in Pn, then

s(H,Pn) = H −H2 + · · · = [Pn−1]− [Pn−2] + [Pn−3]− · · ·+ (−1)n−1[P0]

viewed as a class on H = Pn−1.
More generally, if X = D1 ∩ · · · ∩Dr is a complete intersection of r Cartier divisors, then

X ⊆ Y is a regular embedding, with NXY = O(D1)⊕ · · · ⊕ O(Dr), and we may write

s(X,Y ) =
[X]

(1 +D1) · · · (1 +Dr)
∈ A∗(X) .

Individual components of this Segre class may be written as symmetric polynomials in the
classes D1, . . . , Dr. y

—By definition, the blow-up of Y along X is B`XY := Proj(⊕kI k); the exceptional
divisor E of this blow-up is the inverse image of X, so it is defined by the ideal

(2.10) I ⊕I 2 ⊕I 3 ⊕ · · · ⊆ OY ⊕I ⊕I 2 ⊕ · · · .

it follows that

E = Proj(⊕kI k/I k+1) = P(CXY )
π→ X .

That is, the exceptional divisor is a concrete realization of the projective normal cone of X
in Y . Further, (2.10) shows that the ideal sheaf of E in B`XY is the twisting sheaf O(1).
It follows that c1(O(1)) = −E, and therefore∑

i≥0
c1(O(1))i ∩ [P(CXY )] = E − E2 + E3 − · · · ∈ A∗(E) .

If X does not contain irreducible components of Y , it follows (cf. Remark 2.3) that

(2.11) s(X,Y ) = π∗(E − E2 + E3 − · · · ) .

This observation (and various refinements and alternatives) may be used to construct algo-
rithms to compute Segre classes; see [6], [33], [52], [48], [50] for a sample of approaches and
applications. The algorithms in the recent paper [50] by Corey Harris and Martin Helmer
are implemented in the powerful package SegreClasses ([49]) available in the standard
implementation of Macaulay2 ([46]) .
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The assumption that X does not contain irreducible components of Y is not a serious
restriction: as we have noted that s(C) = s(C⊕11) for a cone C (cf. Remark 2.3), it follows
that

s(X,Y ) = s(X,Y × A1) ,

where on the right we view X ∼= X × {0} as a subscheme of Y × A1. Thus, (2.11) may be
used to compute s(X,Y ) in general, by employing the exceptional divisor E of the blow-up
of Y × A1 along X.

—The construction of normal cones is functorial with respect to suitable types of mor-
phisms. This leads to the following useful result.

Proposition 2.5 ([39, Proposition 4.2]). Let Y , Y ′ be pure-dimensional schemes, X ⊆ Y a
closed subscheme, and let f : Y ′ → Y be a morphism, and g : f−1(X)→ X the restriction.
Then

• If f is flat, then s(f−1(X), Y ′) = g∗s(X,Y ).
• If Y and Y ′ are varieties and f is proper and onto, then g∗s(f

−1(X), Y ′) = (deg f)s(X,Y ).

Here, f realizes the field of rational functions on Y ′ as an extension of the field of rational
functions on Y , and deg f is the degree of this extension if dimY = dimY ′, and 0 otherwise.
In particular, if Y ′ and Y are varieties and f : Y ′ → Y is proper, onto, and birational, then

s(X,Y ) = g∗(s(f
−1(X), Y ′)) .

This birational invariance of Segre classes is especially useful.

Example 2.6. We have verified a particular case of this fact already. Indeed, let X ( Y
be a proper subscheme of a variety, and let f : Y ′ = B`XY → Y be the blow-up of Y
along X. Then f−1(X) = E is the exceptional divisor, a Cartier divisor of B`XY , therefore
(Example 2.4)

s(f−1(X), Y ′) = E − E2 + E3 − · · · .
The birational invariance of Segre classes implies that, letting g = f |E : E → X, we must
have

s(X,Y ) = g∗(E − E2 + E3 − · · · ) ;

we have verified this above in (2.11) (where g is denoted π). y

—The Segre class s(X,Y ) depends crucially on the scheme structure of X; in general,
s(X,Y ) 6= s(Xred, Y ). On the other hand, different scheme structures may lead to the same
Segre class, and this is occasionally useful. For instance, assume that the ideals IX,Y and
IX′,Y of two subschemes X, X ′ of Y have the same integral closure. Then s(X,Y ) =
s(X ′, Y ). Indeed, we may assume IX,Y is a reduction of IX′,Y ; then we have a finite
morphism B`X′Y → B`XY preserving the exceptional divisors ([92, Proposition 1.44]), so
the equality follows from (2.11) and the projection formula. See Example 3.4 below for a
concrete example of this phenomenon.

Summary (and shortcut): A reader who may not be too comfortable with the algebro-
geometric language of Proj and cones employed so far may use the following as a charac-
terization (and hence an alternative definition) of Segre classes.

Let Y be a variety. Every closed embedding X ⊆ Y determines a Segre class s(X,Y ) ∈
A∗(X). This class is characterized by the following properties:

• If X ⊆ Y is a regular embedding, with normal bundle NXY , then

s(X,Y ) = c(NXY )−1 ∩ [X] ;
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• if f : Y ′ → Y is proper, onto, birational morphism of varieties, and g : f−1(X)→ X
is the restriction of f , then

s(X,Y ) = g∗s(f
−1(X), Y ′) .

Indeed, by blowing up Y along X, the second property reduces the computation of Segre
class to the case of Cartier divisors, which is covered by the first property.

Unlike this characterization, the definition given in §2.1 does not require the ambient
scheme Y to be a variety. In our applications, this more general situation will not be
important. In any case we note that if Y is pure-dimensional, with irreducible components
Yi (taken with their reduced structure) one can in fact show ([39, Lemma 4.2]) that

(2.12) s(X,Y ) =
∑
i

mis(X ∩ Yi, Yi) ,

where mi is the geometric multiplicity of Yi in Y , and the classes on the right-hand side are
implicitly pushed forward to X. Each s(X ∩ Yi, Yi) is the Segre class of a subscheme of a
variety, thus it is determined by the characterization given above.

2.3. A little intersection theory. Segre classes play a key role in Fulton-MacPherson’s
intersection theory; indeed, the very definition of intersection product may be expressed in
terms of Segre classes. By way of motivation for the formula giving an intersection product,
consider a vector bundle

p : E → X

on a scheme X. Then it may be verified ([39, Theorem 3.3(a)]) that the pull-back p∗ :
A∗(X)→ A∗(E) is an isomorphism.

Remark 2.7. The fact that p∗ is surjective may seem counterintuitive, as it implies that
a vector bundle over X has no nonzero rational equivalence classes of codimension larger
than the dimension of X. See [39, §1.9], particularly Proposition 1.9 and Example 1.9.2.
This fact can be viewed as a generalization of the observation that affine space An has no
nonzero classes of dimension < n. y

We may therefore define a ‘Gysin homomorphism’ σ∗ : A∗(E) → A∗(X), as the inverse
of p∗. That fact that for any subvariety Z ⊆ X,

σ∗([p−1(Z)]) = σ∗(p∗[Z]) = [Z]

(and linearity) suggests that σ∗(α) should be interpreted as the ‘intersection class’ of α with
the zero-section of E.

σ

p

X

E

zero section

Z

([Z])*p*
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We can get an explicit expression for σ∗(α) in terms of the Segre homomorphism from (2.4).
For this, consider E as a dense open subset of its projective completion P(E ⊕ 11), and let
π : P(E ⊕ 11) → X be the projection. If α ∈ Ak(E), then α = p∗(σ∗(α)) is the re-
striction to E of π∗(σ∗(α)). An expression for σ∗(α) may be given in terms of any class
α ∈ Ak(P(E ⊕ 11)) restricting to α on E.

Lemma 2.8. Let α ∈ Ak(E). With notation as above,

σ∗(α) =
{
c(E) ∩ SegreE⊕11(α)

}
k−rkE

where {· · · }` is the term of dimension ` in the class within braces, and α is any class in
Ak(P(E ⊕ 11)) restricting to α on E.

This statement is equivalent to [39, Proposition 3.3]. We sketch a verification. As we
argued in (2.6) (note c(E ⊕ 11) = c(E)),

σ∗(α) = c(E) ∩ (s(E ⊕ 11) ∩ σ∗(α))

= c(E) ∩ π∗

∑
i≥0

c1(O(1))i ∩ π∗(σ∗(α))


= c(E) ∩ SegreE⊕11(π

∗(σ∗(α))) ∈ Ak−rkE(X) .

Now note that if α is any class in Ak(P(E ⊕ 11)) restricting to α on E, then

β = α− π∗(σ∗(α))

is supported on the complement P(E) of E in P(E⊕11). It follows easily that all components
of the class

c(E) ∩ π∗

∑
i≥0

c1(O(1))i ∩ β


have dimension ≥ k − (rkE − 1). Thus, the component of dimension k − rkE of

c(E) ∩ SegreE⊕11(α)

agrees with the component of dimension k − rkE of

c(E) ∩ SegreE⊕11(π
∗(σ∗(α))) = σ∗(α)

and the statement follows.
A deformation argument reduces to the template of intersecting a class with the zero-

section all intersection situations satisfying the following requirements. Let X and V be
closed subschemes of a scheme Y . We assume that V is a variety of dimension m, and that
X ⊆ V is a regular embedding of codimension d. We have the fiber diagram

X ∩ V �
� //

j
��

V

i
��

X �
� // Y

.

The pull-back i∗IX,Y of the ideal of X in Y generates the ideal of X∩V in V . This induces
a surjection

i∗Sym∗OY
(IX,Y /I

2
X,Y ) = ⊕k≥0i∗(I k

X,Y /I
k+1
X,Y )� ⊕k≥0I k

X∩V,V /I
k+1
X∩V,V

and consequently realizes CX∩V V as a closed, m-dimensional subscheme of the pull-back
j∗NXY of the normal bundle of X in V . William Fulton and Robert MacPherson (cf. [42],
[39, Chapter 6]) define the intersection product X ·V ∈ Am−d(X ∩V ) to be the intersection
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of [CX∩V V ] with the zero section of the bundle j∗NXY , defined as above by means of the
Gysin morphism:

X · V := σ∗([CX∩V V ]) .

As shown in [39], this definition implies all expected properties of an intersection product.
Applying Lemma 2.8, we see that

X · V =
{
c(j∗NXY ) ∩ Segrej∗NXY⊕11([P(CX∩V V ⊕ 11)])

}
m−d

since [P(CX∩V V ⊕ 11)] restricts to [CX∩V V ] on j∗NXY

= {c(j∗NXY ) ∩ s(X ∩ V, V )}m−d
(cf. (2.8) and (2.9)). This definition, which we rewrite here for emphasis:

(2.13) X · V := {c(j∗NXY ) ∩ s(X ∩ V, V )}dimV−codimX Y

is of foundational importance in intersection theory. Note that it assigns an explicit contri-
bution to X · V to every connected component Z of X ∩ V :

(2.14) contribution of Z to X · V : {c(NXY |Z) ∩ s(Z, V )}dimV−codimX Y .

It can be shown that the right-hand side of (2.13) preserves rational equivalence in the evi-
dent sense, so that it defines Gysin homomorphisms AkV → Ak−d(X ∩V ). More generally,
it defines a homomorphism AkY

′ → Ak−d(X ×Y Y ′) for every morphism Y ′ → Y . (See [39,
Chapter 6].)

Example 2.9. A particular case of (2.13) gives the self-intersection formula of a regularly
embedded subscheme X of Y . For this, consider the fiber diagram

X //

��

X

��
X // Y

and apply (2.13) to obtain

X ·X = {c(NXY ) ∩ s(X,X)}dimX−codimX Y = cd(NXY ) ∩ [X] .

For instance, the self-intersection of the zero-section of a vector bundle E on a variety W
equals crkE(E)∩[W ]: indeed, the zero-section is regularly embedded, with normal bundle E.

It follows that if σ is any section of a vector bundle E, then writing W for the image of
the zero-section of E,

ι∗(W · σ(W )) = crkE(E) ∩ [W ] ,

where ι : Z(σ)→ W is the embedding of the zero-scheme of σ. Indeed, σ(W ) is rationally
equivalent to the zero-section. Again using (2.13), we can identify the contribution of a
union of connected components Z of Z(σ) to crkE(E) ∩ [W ] as

(2.15) {c(E|Z) ∩ s(Z,W )}dimW−rkE ,

‘localizing’ the top Chern class along the zeros of a section. (See [39, §14.1].) y

The requirement that X be regularly embedded in Y is nontrivial. It can be bypassed if
the ambient scheme Y is a nonsingular variety, say of dimension m. Indeed, in this case the
diagonal embedding Y → Y × Y is regular with normal bundle TY , and we can interpret
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the intersection of any two subvarieties Z,W of Y as the intersection of the diagonal ∆ with
the product Z ×W . The fiber diagram

Z ∩W //

j
��

Z ×W

i
��

Y = ∆ // Y × Y
suggests the definition

(2.16) [Z] · [W ] := ∆ · (Z ×W ) = {c(j∗TY ) ∩ s(Z ∩W,Z ×W )}dimZ+dimW−m .

Note that neither Z nor W need be regularly embedded in Y . This definition passes to
rational equivalence and extends by linearity to a product A∗(Y )×A∗(Y )→ A∗(Y ) making
the Chow group A∗(Y ) into a commutative ring. It can be shown ([39, Proposition 8.1.1(d)])
that (2.16) is compatible with the previous definition, in the sense that if Y is nonsingular,
Z ⊆ Y is a regular embedding, and W ⊆ Y is any subvariety, then [Z] · [W ] agrees with the
definition of Z ·W given earlier.

Example 2.10. Sometimes this intersection product may be used to obtain information about
a Segre class. For example, consider the three singular quadrics Q1, Q2, Q3 ⊆ P3 obtained
as unions of two out of three planes in general position. For example, Q1 could be defined
by the ideal (x2x3), Q2 by (x1x3), and Q3 by (x1x2). The intersection J = Q1 ∩Q2 ∩Q3 is
the reduced union of three lines through a point. It follows (cf. Example 3.3) that

(2.17) ι∗s(J,P3) = 3[P1] +m[P0]

for some integer m, where ι is the embedding of J in P3.
By Bézout’s theorem, the intersection product Q1 ·Q2 ·Q3 equals 8. On the other hand,

we may view this intersection product as arising from the diagram

J = Q1 ∩Q2 ∩Q3
//

j

��

P3

δ
��

Q1 ×Q2 ×Q3
// P3 × P3 × P3

where δ is the diagonal embedding. Using (2.13), we get (omitting an evident pull-back){
c(NQ1×Q2×Q3P3 × P3 × P3) ∩ s(J,P3)

}
0

= 8[P0] ,

that is, denoting by H the hyperplane class in P3,{
(1 + 2H)3 ∩ (3[P1] +m[P0])

}
= 8[P0] ,

which implies 18 +m = 8. This determines m = −10, and hence

ι∗s(J,P3) = 3[P1]− 10[P0] .

This agrees (as it should) with the result obtained by using the SegreClasses package [49]:

i1 : load("SegreClasses.m2")

i2 : R=QQ[x0,x1,x2,x3]

i3 : I=ideal(x1*x2,x1*x3,x2*x3)

i4 : segre(I,ideal(0_R))
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3 2

o4 = - 10H + 3H

1 1

(omitting some additional output; and note that the package chooses to call H1 the hyper-
plane class).

Remark 2.11. We could have chosen the quadrics Q1, Q2, Q3 to be the generators of the
ideal of a twisted cubic C, and the same argument would show that the push-forward of
s(C,P3) also equals 3[P1] − 10[P0]. In this case, the negative coefficient of [P0] reflects the
fact that the normal bundle to a twisted cubic in P3 is positive. So we could interpret the
negative coefficient of [P0] in ι∗s(J,P3) as a measure of ‘positivity’ for the normal cone to
the scheme J in P3. y

The ‘reverse engineering’ technique illustrated above may be used to compute Segre
classes in broad generality. The approach to the computation of Segre classes in projective
space developed in [33] is based on an extension of similar methods. y

For every class α ∈ Ak(P(E ⊕ 11)), Lemma 2.8 gives an interpretation for the class

(2.18)
{
c(E) ∩ SegreE⊕11(α)

}
k−rkE :

this class encodes the class of the restriction of α to E. The other components of the class
within braces have an equally compelling interpretation. If E is a vector bundle of rank
e over a scheme X, and π : P(E) → X is its projectivization, the Chow group A∗(P(E))
is described by a precise structure theorem: for every class G ∈ Ak(P(E)), there exist e
unique classes gj ∈ Aj(X), j = k − e+ 1, . . . , k such that

G =
e−1∑
i=0

c1(OE(1))i ∩ π∗(gk−e+1+i) .

(Cf. [39, Theorem 3.3(b)].) We call the sum gk−e+1 + · · · + gk ∈ A∗(X) the shadow of
G. Note that G may be reconstructed from its shadow and its dimension. The following
elementary result relates the shadow of G to its Segre class.

Lemma 2.12 ([7, Lemma 4.2]). With notation as above, the shadow of G is given by

e∑
i=0

gk−e+1+i = c(E) ∩ SegreE(G) .

With this understood, we see that the class

c(E) ∩ SegreE⊕11(α)

within braces in §2.18 is simply the shadow of α. From this point of view, the intersection
product X · V is one component of the shadow of [CX∩V V ⊕ 11] ∈ A∗(P(j∗NXY ⊕ 11)).
Several classes we will encounter will have natural interpretations as shadows of classes in
suitable projective bundles.

2.4. ‘Residual intersection’, and a notation. Let V be a variety, let X ⊆ V be a
subscheme, and let L be a line bundle defined on X. We introduce the following notation:
if α is a class in A∗(X), and α = ⊕jα(j), with α(j) of codimension j in V , we let

(2.19) α⊗V L :=
∑
j≥0

s(L )j ∩ α(j) =
∑
j≥0

α(j)

c(L )j
.
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This definition was introduced in [2]. Its notation is motivated by the following property
relating the definition to the ordinary operation of tensor product: if E is a vector bundle
on X, or more generally any element in the K-group of vector bundles on X, then for all
α ∈ A∗(X) we have

(2.20) (c(E) ∩ α)⊗M L =
c(E ⊗L )

c(L )rkE
∩ (α⊗M L ) .

See [2, Proposition 1]; the proof of this fact is elementary. Equally elementary is the
observation that the notation gives an action of Pic on the Chow group: if L and M are
line bundles on X, then for all α ∈ A∗(X) we have

(2.21) (α⊗V L )⊗V M = α⊗V (L ⊗M ) .

See [2, Proposition 2].
The notation introduced above often facilitates computations involving Segre classes.

One good example is a formula for the Segre class of a scheme supported on a Cartier
divisor, along with ‘residual’ (possibly embedded) components. Let D ⊆ V be an effective
Cartier divisor, and let R ⊆ V a closed subscheme. The scheme-theoretic union of D and
R is the closed subscheme Z ⊆ V whose ideal sheaf is the product of the ideal sheaves of D
and R. We say that R is the ‘residual’ scheme to D in Z. The task is to express the Segre
class of Z in V in terms of the Segre classes of D and of the residual scheme R.

Proposition 2.13. With notation as above,

s(Z, V ) = s(D,V ) + c(O(D))−1 ∩ (s(R, V )⊗V O(D)) .

This is [39, Proposition 9.2], written using the notation given above; see [2, Proposition 3].
An equivalent alternative formulation is

(2.22) s(Z, V ) = ([D] + c(O(−D)) ∩ s(R, V ))⊗V O(D) .

Along with definition (2.13) and a blow-up construction, Proposition 2.13 may be used
to assign a contribution to intersections products due to residual schemes, with important
applications; see [39, Chapter 9]. In this article, the residual formula (2.22) will have
applications in the theory of characteristic classes for singular varietes, cf. especially §4.4.

2.5. Example: hyperplane arrangements. In the rest of this article we will focus on the
relation between Segre classes and invariants of (possibly) singular spaces. Typically, we will
extract information about a variety X by considering a Segre class of a scheme associated
with the singular locus of X. In many cases we will deal with the case of hypersurfaces of
nonsingular varieties, so we formalize the following definition.

Definition 2.14. Let X be a hypersurface in a nonsingular variety M , defined by the
vanishing of a section s of O(X). Then the singularity subscheme JX of X is defined as
the zero-scheme of the section ds of Ω1

M ⊗O(X) determined by s. We will denote by ι the
embedding JX ↪→ X or JX ↪→M , as context will dictate. y

Thus, if z1, . . . , zn are local parameters for M at a point p, and f is a local equation of
X, the ideal of JX at p as a subscheme of M is the jacobian/Tyurina ideal(

∂f

∂z1
, . . . ,

∂f

∂zn
, f

)
.
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In characteristic 0, if M = Pn and F (x0, . . . , xn) is a homogeneous polynomial defining a
hypersurface X, then JX is globally defined by the ideal(

∂F

∂x0
, . . . ,

∂F

∂xn

)
(in characteristic 0, a homogeneous polynomial belongs to the ideal of its partials).

In order to illustrate the type of information encoded by this subscheme, we present the
case of hyperplane arrangements. Let A denote a hyperplane arrangement in (complex)
projective space Pn, consisting of d (not necessarily distinct) hyperplanes, and consider the
hypersurface A given by the union of these hyperplanes. More precisely, let Li(x0, . . . , xn),
i = 1, . . . , d be linear forms whose vanishing defines the hyperplanes; then the hypersurface
A is defined by the polynomial

F (x0, . . . , xn) :=

d∏
i=1

Li(x0, . . . , xn) .

Max Wakefield and Masahiko Yoshinaga prove ([94]) that an essential arrangement of dis-
tinct hyperplanes in Pn, n ≥ 2, may be reconstructed from the corresponding singularity
subscheme. The following result proves that the ranks of the cohomology of the complement
are determined by the Segre class of the singularity subscheme of the arrangement.

Theorem 2.15. For an arrangement A of d hyperplanes, define integers σi, i = 0, . . . , n,
such that

[Pn]− ι∗s(JA,Pn) =
∑
i≥0

σi[Pn−i] .

Then

(2.23) rkHk(Pn rA,Q) =

k∑
i=0

(
k

i

)
(d− 1)k−iσi

for k = 0, . . . , n.

This statement is given in [11, Theorem 5.1]; we will sketch a proof in §4.4 (see Exam-
ple 4.24). In fact, in loc. cit., the result is stated for hyperplane arrangements consisting
of distinct hyperplanes. Remarkably, this hypothesis is not needed: if any of the hyper-
planes appear with a multiplicity, the effect on the Segre class of the singularity subscheme
precisely compensates for these multiplicities.

Example 2.16. Consider the arrangement in P3 consisting of the planes x1 = 0, x2 = 0,
x3 = 0. The corresponding hypersurface has equation x1x2x3 = 0; the singularity subscheme
is defined by the ideal

(x1x2, x1x3, x2x3) .

We have computed the corresponding Segre class in Example 2.10:

ι∗s(JA,P3) = 3[P1]− 10[P0] .

We have d = 3 and (σ0, . . . , σ3) = (1, 0,−3, 10), therefore Theorem 2.15 gives

rkHk(P3 rA,Q) =


20 · 1 = 1 k = 0

21 · 1 + 20 · 0 = 2 k = 1

22 · 1 + 2 · 21 · 0 + 20 · (−3) = 1 k = 2

23 · 1 + 3 · 22 · 0 + 3 · 21 · (−3) + 20 · 10 = 0 k = 3

as it should.
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Now assume the same planes appear with multiplicities 2, 3, 5 respectively. The ideal of
A is generated by x21x

3
2x

5
3, therefore JA is defined by the ideal(

x1x
3
2x

5
3, x

2
1x

2
2x

4
3, x

2
1x

3
2x

4
3

)
and the package SegreClasses evaluates its Segre class as

ι∗s(JA,P3) = 7[P2]− 46[P1] + 270[P0] .

In this case d = 10 and (σ0, . . . , σ3) = (1,−7, 46,−270), therefore

rkHk(P3 rA,Q) =


90 · 1 = 1 k = 0

91 · 1 + 90 · (−7) = 2 k = 1

92 · 1 + 2 · 91 · (−7) + 90 · 46 = 1 k = 2

93 · 1 + 3 · 92 · (−7) + 3 · 91 · 46 + 90 · (−270) = 0 k = 3

according to Theorem 2.15, with the same result since the support of the arrangement is
the same as in the previous case. y

In general, the fact that multiplicities do not affect the right-hand side of (2.23) is a
consequence of the residual formula of Proposition 2.13, as the reader may enjoy verifying.

Note that the Segre class appearing in Theorem 2.15 is the Segre class s(JA,Pn) of
the singularity subscheme in the ambient space Pn. The singularity subscheme JA is also
contained in the hypersurface A. It is natural to ask what type of information the Segre
class s(JA,A) may encode; a full answer to this question will be given in §4.3. Here we point
out that, in the case of reduced arrangements (that is, if the hyperplanes are all different),
this Segre class is in fact determined by the number d of hyperplanes.

Proposition 2.17. Let A be a reduced arrangement of d hyperplanes in Pn, and let ι :
JA ↪→ Pn be the corresponding singularity subscheme. Then

(2.24) ι∗s(JA,A) = d

n∑
i=2

(−1)i(d− 1)i−1[Pn−i] .

Proof. Let H1, . . . ,Hd be the hyperplanes of the arrangement, and let Lk(x0, . . . , xn) be a
generator of the homogeneous ideal of Hk. By (2.12),

(2.25) s(JA,A) =
∑
k

s(JA ∩Hk, Hk) .

The ideal of JA ∩Hk is given by d∑
j=1

∏
6̀=j
L`
∂Lj
∂xi

, Lk


i=0,...,n

=

∏
` 6=k

L`
∂Lk
∂xi

, Lk


i=0,...,n

and this is the ideal ∏
`6=k

L`, Lk


since at least one of the derivatives of Lk is nonzero.

It follows that JA ∩ Hk is the subscheme of Hk traced by the union of the other hy-
perplanes; that is, it is a Cartier divisor of class (d − 1)H in Hk, where H denotes the
hyperplane class. Therefore

ι∗s(JA ∩Hk, Hk) = (d− 1)[Pn−2]− (d− 1)2[Pn−3] + (d− 1)3[Pn−4] + · · ·
and the statement follows from (2.25). �
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Therefore, while the Segre class s(JA,Pn) detects nontrivial combinatorial information
about the arrangement (as Theorem 2.15 shows), the Segre class s(JA,A) is blind to any
information but the degree of the arrangement (assuming that the arrangement is reduced).

In particular, note that s(JA,Pn) is not determined by s(JA,A); we will come back to
this point in §4.1, Example 4.3.

In §4 we will learn that if X is a hypersurface in a nonsingular variety, then the two
classes s(JX,X) and s(JX,M) are closely related to different ‘characteristic classes’ for X,
and this will provide a further explanation for the behavior observed in this example (see
Examples 4.13 and 4.24).

3. Numerical invariants

3.1. Multiplicity. The most basic numerical invariant of a singularity is its multiplicity.
Let X be a hypersurface of An, and let p be the origin. Write the equation F of X as a
sum of homogeneous terms:

F (x1, . . . , xn) =
∑
i≥0

Fi(x1, . . . , xn)

with Fi(x1, . . . , xn) homogeneous of degree i. By definition, the multiplicity mpX of X at
p is the smallest m such that Fm(x1, . . . , xn) 6= 0. Thus, p ∈ X if and only if mpX ≥ 1.
The ‘initial’ homogeneous polynomial FmpX defines the tangent cone to X at p; therefore,
mpX is the degree of the tangent cone to X at p.

There is a natural identification of the tangent cone to X at p defined in the previous
paragraph with the normal cone CpX introduced in §2.1:

(3.1) CpX = Spec(⊕k≥0mk/mk+1)

where m is the maximal ideal in the local ring of X at p. We can projectivize this cone, or
rather consider the projective completion π : P(CpX ⊕ 11) → p (cf. (2.7); this accounts for
the possibility X = p, see Remark 2.3), and observe that the degree mpX of this projective
cone satisfies

(mpX)[p] = π∗

∑
i≥0

c1(O(1))i ∩ [P(CpX ⊕ 11)]


(cf. (2.2)). In other words, we have verified that the multiplicity of X at p is precisely the
information carried by the Segre class of p in X:

(3.2) s(p,X) = (mpX)[p] .

Of course these considerations are not limited to the case in which X is an affine hy-
persurface. The tangent cone to a point p of any scheme X is defined to be the normal
cone CpX, that is, the spectrum of the corresponding associated graded ring, as in (3.1).
A standard computation shows that if U = AN is an affine space centered at p, and X ∩U
is defined by an ideal I, then the ideal defining ⊕k≥0mk/mk+1 is generated by the initial
forms of the polynomials in I; so this is indeed a straightforward generalization of the situ-
ation for hypersurfaces. We can define mpX to be the degree of the projective completion
P(CpX ⊕ 11); and then (3.2) holds in this generality. To avoid certain pathologies, it is
common to assume that X be pure-dimensional. For example, this hypothesis implies that
the multiplicity of X at p equals the sum of the multiplicities of its irreducible components,
by (2.12).
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The degree of the projective completion of CpX can also be computed by means of the
Hilbert function defined for all integers t > 0 by

(3.3) h(t) := dimk(⊕t−1i=0m
i/mi+1) :

for t� 0, h(t) agrees with a polynomial with leading term (mpX) t
d

d! , where d is the dimen-
sion of X.

More generally, we can consider a subvariety V of a (pure-dimensional) scheme X. Samuel
([84]) defines the multiplicity mVX of the local ring OX,V in terms of the leading term
of (3.3), where now m is taken to be the maximal ideal of OX,V . This amounts to taking
the fiberwise degree of the projective completion P(CVX ⊕ 11) → V of the normal cone
CVX, hence it determines the dominant term of the Segre class:

(3.4) s(V,X) = (mVX)[V ] + lower dimensional terms .

Example 3.1. Let V be a proper subvariety of codimension d of a variety X, and let π :
E → V be the exceptional divisor in the blow-up B`VX. Then

π∗(E
d−1) = (−1)d(mVX)[V ] .

Indeed, this is the dominant term of the Segre class s(V,X) by (2.11). y

Summarizing, we can take (3.4) as the definition of multiplicity of a variety along a
subvariety, and this agrees with Samuel’s algebraic notion of multiplicity. The agreement
can be extended by the additivity formula (2.12) to arbitrary pure-dimensional schemes X.
It can also be extended to the case in which V is an irreducible component of a subscheme
Z of X, leading to the following interpretation of Samuel’s multiplicity.

Definition 3.2. The multiplicity of a pure-dimensional scheme X along a subscheme Z at
an irreducible component V of Z is the coefficient of [V ] in s(Z,X).

Example 3.3. If X is nonsingular and Z is reduced, then the multiplicity of X along Z is 1
at every component of Z. For instance, each line in Example 2.10 appears with multiplicity
1 in the Segre class s(J,P3), and this is the reason why the dominant term in (2.17) equals
3[P1]. y

Example 3.4. If Z is (locally) a complete intersection in X, and its support V is irreducible,
then

s(Z,X) = m[V ] + lower dimensional terms

where m is the geometric multiplicity of V in Z, that is, the length of the local ring OZ,V .
Indeed, in this case the Segre class is the inverse Chern class of the normal bundle (§2.2):
s(Z,X) = c(NZX)−1 ∩ [Z] = [Z] + · · · , and [Z] = m[V ] ([39, §1.5]). So the multiplicity of
X along Z at V equals the geometric multiplicity of V in Z for complete intersections.

This is not true in general, even if X is nonsingular. For example, let Z be the ‘triple
point’ defined by the ideal (x2, xy, y2) in the plane. Then s(Z,A2) = 4[p], where V = p is
the origin, while the geometric multiplicity is 3. Indeed, let Z ′ be the scheme defined by
(x2, y2). Then s(Z ′,A2) = 4[p], since Z ′ is a complete intersection, and s(Z,A2) = s(Z ′,A2)
since (x2, xy, y2) is the integral closure of (x2, y2) (see §2.2). y

Example 3.5. Let D be the discriminant of a line bundle L on a nonsingular complete
variety M , i.e., the subset of PH0(M,L ) parametrizing singular sections of L . For X ∈ D,
consider the integer

(3.5) mXD =

∫
c(L )c(T∨M ⊗L ) ∩ s(JX,M)
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where JX is the singularity subscheme of X (Definition 2.14) and T∨M is the cotangent
bundle of M . Under reasonable hypotheses, if D is a hypersurface, then mXD 6= 0 and in
this case mXD is the multiplicity of D at X, as the notation suggests. (See [16] for the
precise statement of a more general result. A different formula not using Segre classes may
be found in [79].)

To see this, one can realize the discriminant D as the image of the correspondence

D̂ := {(p,X) ∈M × P(M,L ) | p ∈ Sing(X)} .

The fiber of X in this correspondence is (isomorphic to) JX, and D̂ maps birationally to D
under mild hypotheses. The birational invariance of Segre classes implies then that s(X,D)

is the push-forward of s(JX, D̂), and the latter is computed by making use of Theorem 4.1,
which we will discuss later.

For instance, let X consist of a d-fold hyperplane in M = Pn. Then JX is a (d− 1)-fold
hyperplane, and consequently

s(JX,Pn) = (1 + (d− 1)H)−1 ∩ (d− 1)[Pn−1] ,

whereH denotes the hyperplane class. (Example 2.4.) ViewX as a point of the discriminant
D of O(X) over Pn. Then according to (3.5) the multiplicity of D at X is

mDX =

∫
(1 + dH)

(1 + (d− 1)H)n+1

1 + dH
∩ s(JD,Pn)

=

∫
(1 + (d− 1)H)n ∩ (d− 1)[Pn−1]

= n(d− 1)n .

At the opposite extreme, assume that X has isolated singularities. Then we will verify
that mDX equals the sum of their Milnor numbers, see §3.3. y

Several more refined notions of ‘multiplicity’ may be defined by means of Segre classes;
see [61] and [1] for two particularly well-developed instances.

3.2. Local Euler obstruction. The local Euler obstruction EuX(p) of a possibly singular
varietyX (or more generally a reduced pure-dimensional scheme) at a point p ∈ X is another
numerical invariant, in some ways analogous to the multiplicity; indeed, if X is a curve,
then EuX(p) equals the multiplicity mpX. We first summarize the original transcendental
definition, due to MacPherson ([66, §3]).

We will assume that X is a subvariety of a nonsingular variety M . If X has dimension n,
there is a rational map

X 99K Grn(TM)|X
associating with each nonsingular x ∈ X the tangent space TxX ⊆ TxM , viewed as a point
in the Grassmann bundle Grn(TM). The closure of the image of this rational map is the

Nash blow-up X̂ of X; it comes equipped with

• a proper birational map ν : X̂ → X; and
• a rank-n vector bundle T̂ , the pull-back of the tautological subbundle on Grn(TM).

Over the nonsingular part X◦ of X, ν is an isomorphism and T̂ agrees with the pull-back
of TX◦. Thus, the Nash blow-up is a modification of X that admits a natural vector
bundle T̂ restricting to TX◦ on the nonsingular part of X. The fiber of X̂ over a point
x ∈ X parametrizes ‘limits’ of tangent spaces to X◦ as one approaches x. At a point
x̂ ∈ ν−1(x), the fiber of T̂ over x̂ is just this limit tangent space.
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The Nash blow-up and the tautological bundle T̂ are independent of the chosen embed-
ding of X in a nonsingular variety.

Let p ∈ X. As we will work in a neighborhood of p, we may assume that X is affine,
M = Am, and p is the origin. Over C, MacPherson considers the differential form d||z||2,
a section of the real dual bundle TM∗. By construction T̂ is a subbundle of ν∗(TM); we

denote by r the pull-back of this form to the real dual T̂ ∗.
Next, consider the ball Bε and the sphere Sε of radius ε centered at p. For small enough

ε, r is nonzero over ν−1(z), 0 < ||z|| ≤ ε ([66, Lemma 1]). By definition, the local Euler

obstruction EuX(p) is the obstruction to extending r as a nonzero section of T̂ ∗ from ν−1(Sε)
to ν−1(Bε).

For curves, the local Euler obstruction equals the multiplicity. The local Euler obstruction
of a cone over a plane curve of degree d at the vertex equals 2d − d2 ([66, p. 426]). In
particular, note that (unlike the multiplicity) EuX(p) may be negative.

The following algebraic alternative to the transcendental definition is due to G. Gonzalez-
Sprinberg and J.-L. Verdier.

Theorem 3.6 ([45]). With notation as above,

(3.6) EuX(p) =

∫
c(T̂ |ν−1(p)) ∩ s(ν−1(p), X̂) .

The proof of this equality is quite delicate. The section r may be replaced with a section
σs of T̂ obtained by projecting the ‘radial’ section of ν∗TAm by means of a hermitian
form s. Viewing ν−1(p) as a union of components of the zero-scheme of this section, the
local Euler obstruction is then interpreted as its contribution of ν−1(p) to the intersection

product of σs(X̂) with the zero-section of T̂ , that is, the localized contribution to the degree

of the top Chern class cdimX(T̂ ) ∩ [X̂]. This gives (3.6) as we have seen in Example 2.9,
particularly (2.15). The main problem with this sketch is that the section σs is not algebraic.

This is handled in [45] by applying this argument to a variety dominating X̂ and such that
the pull-back of σs is algebraic; (3.6) then follows by the projection formula.

Theorem 3.6 yields an interpretation of the local Euler obstruction that does not depend
on complex geometry, so may be adopted over arbitrary fields. The use of the Nash blow-
up is not necessary: any proper birational map ν : X̂ → X such that ν∗Ω1

X surjects onto

a locally free sheaf Ω̂ of rank n = dimX will do, with T̂ = Ω̂∨. (This follows from the
birational invariance of Segre classes; see [39, Example 4.2.9].)

Claude Sabbah ([83]) recasts the algebraic definition of EuX(p) it in terms of the conormal
space of X. Recall that if W ( M is an embedding of nonsingular varieties, then the
conormal bundle N∨WM of W in M is the kernel of the natural morphism of cotangent
bundles T∨M |W → T∨W :

0 // N∨WM
// T∨M |W // T∨W // 0 .

The conormal space N∨XM of a possibly singular subvariety X of M is the closure of the
conormal bundle of its nonsingular part X◦:

N∨XM := N∨X◦M .

The projectivization P(N∨XM) ⊆ P(T∨M |X) is equipped with

• a morphism κ : P(N∨XM)→ X; and, letting m = dimM ,

• a rank-(m − 1) vector bundle T , the pull-back of the tautological subbundle on
P(T∨M |X) = Grm−1(TM |X).
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Proposition 3.7 ([60, Lemma 2]).

(3.7) EuX(p) = (−1)m−n−1
∫
c(T |κ−1(p)) ∩ s(κ−1(p),P(N∨XM)) .

This result may be established as a corollary of Theorem 3.6, by means of a commutative
diagram

J //

��

P(N∨XM)

κ

��
X̂ ν

// X

where J is the unique component of the fiber product dominating X; see [60] for details.

Example 3.8. Again let D be the discriminant of a line bundle L on a non singular complete
variety (Example 3.5), and let X ∈ D be a singular section of L . Then under mild
hypotheses (implying that D is a hypersurface) we have

(3.8) EuD(X) =

∫
c(T∨M ⊗L ) ∩ s(JX,M)

([4, Theorem 3]). Indeed, one can verify that the correspondence D̂ mentioned in Exam-
ple 3.5 is the Nash blow-up of D, and JX is isomorphic to the fiber of the point X ∈ D
under D̂ → D. Then (3.8) follows from the Gonzalez-Sprinberg–Verdier formula (3.6), after

manipulations expressing s(JX, D̂) in terms of s(JX,M) and a computation of the Chern
class of the tautological bundle.

For a concrete instance, consider (as in Example 3.5) the case of a d-fold hyperplane
in Pn. According to (3.8), the local Euler obstruction of the discriminant of O(X) at the
corresponding point is

EuD(X) =

∫
(1 + (d− 1)H)n

1 + dH
∩ (d− 1)[Pn−1]

= (d− 1) · (d− 1)n − 1

d
.

The reader should compare the formulas for the multiplicity of a discriminant at a singular
hypersurface X, (3.5), and for the local Euler obstruction at X, (3.8). We do not know if the
similarity between these formulas can be extended to more general cases, e.g., discriminants
of complete intersections. y

A classical result of Lê Dũng Tráng and Bernard Teissier expresses the local Euler ob-
struction as an alternating sum of multiplicities of polar varieties, [64, Corollaire 5.1.2].

3.3. Milnor number. Segre classes provide a natural algebraic framework to treat Milnor
numbers. Here we work over C; the formulas we will obtain could be taken as alterna-
tive algebraic definitions extending the notions to arbitrary algebraically closed fields of
characteristic 0.

Let X be a hypersurface in a nonsingular variety M , and let p be an isolated singularity
of X. Again consider the singularity subscheme JX of X, Definition 2.14. In this case p is
the support of one component of JX, which we denote p̂. As a subscheme of M , the ideal
of p̂ at p is (

∂f

∂z1
, . . . ,

∂f

∂zn
, f

)
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where the ideal of X is locally generated by f and z1, . . . , zn are local parameters for M at
p.

Proposition 3.9. The Milnor number µX(p) of X at p equals the coefficient of p in s(p̂,M):

s(p̂,M) = µX(p)[p] .

From this observation and (3.5), it follows that if X only has isolated singularities
p1, . . . , pr, then (under mild hypotheses) the multiplicity of the discriminant of O(X) at
X equals the sum of the Milnor numbers

∑
i µX(pi). For an earlier proof of this fact, at

least in the context of dual varieties, cf. [30].

Proof. In characteristic 0, f is integral over the ideal generated by its partials (see e.g.,
[92, Example 1.43]), therefore s(p̂,M) = s(p′,M), where p′ is the scheme defined by
(∂f/∂z1, . . . , ∂f/∂zn). Now (Example 3.4) s(p′,M) = m[p], where m is the geometric
multiplicity of p in p′. By definition,

m = dim OM,p/(∂f/∂z1, . . . , ∂f/∂zn) ,

and this equals the Milnor number µ ([73, p. 115]). �

As an alternative, one can verify that s(p̂,M) evaluates the effect on the Euler charac-
teristic of X due to the presence of the singularity p, cf. [39, Example 14.1.5(b)].

Adam Parusiński ([78]) defines a generalization of the Milnor number to hypersurfaces
with arbitrary (compact) singular locus. A section s of O(X) defining X determines a
section ds of T∨M ⊗ O(X) in a neighborhood of X, of which JX is the zero-scheme (Def-
inition 2.14). By definition, Parusiński’s generalized Milnor number µ(X) equals the con-
tribution of the singular locus to the intersection number of the image of this section and
the zero section of T∨M ⊗ O(X).

Proposition 3.10 ([3, Proposition 2.1]). With notation as above,

(3.9) µ(X) =

∫
c(T∨M ⊗ O(X)) ∩ s(JX,M) .

Proof. Let U be a neighborhood of JX where ds is defined, and consider the fiber diagram

JX //

��

U

ds
��

U
0 // T∨M ⊗ O(X)|U

The normal bundle of the zero-section equals T∨M⊗O(X)|JX , and s(JX,U) = s(JX,M) as
open embeddings are flat, cf. Proposition 2.5. The stated formula follows then from (2.13).

�

In other words, Parusiński’s Milnor number equals the localized contribution of JX to
the degree of the top Chern class of T∨M ⊗ O(X). (But note that in general the section
s does not extend to an algebraic section defined on the whole of M , so this number does
not equal the degree of the top Chern class.)

If M is compact and Xgen is a nonsingular hypersurface linearly equivalent to X, then

(3.10) µ(X) = (−1)dimX(χ(Xgen)− χ(X))

where χ denotes the topological Euler characteristic ([78, Corollary 1.7], and cf. [39, Exam-
ple 14.1.5(b)]). Thus this generalization of the Milnor number can also be interpreted as
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the effect on the Euler characteristic of X due to its singular locus. This observation is at
the root of the definition of the ‘Milnor class’, see §4.6.

Comparing (3.8) and (3.9), we see that, under reasonable hypotheses, this generalized
Milnor number equals the local Euler obstruction of the discriminant of O(X) at X. The
class c(T∨M ⊗O(X))∩ s(JX,M) appearing in these formulas is the ‘µ-class’ studied in [3].
Even when JX or M are not compact, this class carries interesting information.

4. Characteristic classes

The formalism of Segre classes provides a unifying point of view on several ‘characteristic
classes’ for singular varieties. We refer here to various generalizations to (possibly) singular
varieties of the basic notion of total Chern class of the tangent bundle of a nonsingular
variety:

c(TV ) ∩ [V ] ∈ A∗(V ) .

This is class of evident importance in the nonsingular case. The codimension-1 term
c1(TV ) ∩ [V ] is the canonical class of V , up to a sign. For compact complex varieties,
the degree of the dimension 0 term equals the topological Euler characteristic, as a con-
sequence of the classical Poincaré-Hopf theorem. The total Chern class is effective if the
tangent bundle is suitably ample. For nonsingular toric varieties, the class has a compelling
combinatorial interpretation: it is the sum of the classes of the torus orbit closures, which
are determined by the cones of the corresponding fan. In any case, the sheaf of differentials
is in a sense the ‘only’ canonically determined sheaf on a scheme, and the total Chern class
of the (co)tangent bundle is correspondingly the ‘only’ canonically defined class in the Chow
group of a nonsingular variety.

It is natural to explore generalizations of this notion to singular varieties, and in this
section we will review different alternatives for such an extension, as they relate to Segre
classes. We remark that there are several other notions of ‘characteristic class’ associated
to a variety (for example the Todd and L classes), and modern unifications of these notions,
such as the Hirzebruch and motivic Chern class of Brasselet-Schürmann-Yokura ([23]).
While analogues of Segre classes may be defined in these different contexts, we will limit
ourselves to the characteristic classes defined in the Chow group and having a direct relation
with the classical notion of Segre classes discussed in §2. We will also not deal with germane
notions such as Johnson’s or Yokura’s Segre classes (see [57], [96]).

4.1. Chern-Fulton and Chern-Fulton-Johnson classes. Let X be a scheme that can
be embedded as a closed subscheme of a nonsingular variety M . Here no restrictions on the
characteristic of the ground field are needed. We let

(4.1)
cF(X) := c(TM |X) ∩ s(X,M)

cFJ(X) := c(TM |X) ∩ s(NXM) .

Here NXM = I /I 2, where I is the ideal sheaf of X in M ; the Segre class s(NXM)
is obtained by applying the basic construction of Segre classes to the cone Sym∗OX

(NXM)
(see §2.1). We call cF(X) the ‘Chern-Fulton class’ of X, and cFJ(X) the ‘Chern-Fulton-
Johnson’ class ofX. The following result shows that these classes are canonically determined
by X.

Theorem 4.1 ([39, Example 4.2.6], [41]). The classes cF(X), cFJ(X) defined above are
independent of the ambient nonsingular variety M .
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This is proved by relating classes determined by different embeddings by means of ‘exact
sequences of cones’ (cf. [39, Examples 4.1.6, 4.1.7]). For instance, if X ↪→ M and X ↪→ N
are distinct embeddings in nonsingular varieties, then we have a diagonal embedding X ⊆
M ×N , and there is a corresponding exact sequence of cones

0 // TN |X // CX(M ×N) // CXM // 0

implying
s(X,M ×N) = s(TN |X) ∩ s(X,M) .

The independence of cF(X) follows.
Theorem 4.1 is useful in the computation of Segre classes; it is employed in the com-

putations leading to the formulas presented in Example 3.5 and 3.8. It has the following
consequence.

Corollary 4.2. Let X = V be a nonsingular variety. Then

cF(V ) = cFJ(V ) = c(TV ) ∩ [V ] .

Proof. By Theorem 4.1, we can use X = M = V to compute cF(V ) and cFJ(V ); and
s(V, V ) = s(NV V ) = [V ]. �

Therefore these two classes are generalizations of the notion of total Chern class from the
nonsingular case. They both satisfy formal properties analogous to the nonsingular case.
For example, both classes satisfy expected adjunction formulas for sufficiently transversal
intersections with smooth subvarieties: for the Chern-Fulton class, this follows from [48,
Theorem 3.2]; and see [41, §3] for the Chern-Fulton-Johnson class. On the other hand, some
simple relations in the nonsingular case do not hold for these classes.

Example 4.3. If W ⊆ X ⊆ M , with both X and M nonsingular, we may compute cF(W )
using either embedding, and Theorem 4.1 implies that

(4.2) s(W,X) = c(NXM |W ) ∩ s(W,M) .

For instance, if X is a nonsingular hypersurface, then

s(W,X) = c(O(X)) ∩ s(W,M) .

Such appealingly simple formulas do not hold in general if X is singular, even if it is
regularly embedded in M (so that NXM is defined, and the terms in the formulas make
sense). Indeed, (4.2) fails already for W = a singular point of a curve X in M = P2.

Without additional hypotheses on W and X guaranteeing that the corresponding se-
quence of cones is exact, the Segre class of W in X is not determined by the class of W
in M . Sean Keel ([59]) proved that (4.2) does hold if X is regularly embedded, provided
that the embedding W ⊆ X is ‘linear’.

It would be useful to have precise comparison results relating the difference between the
two sides of (4.2) to the singularities of X. We will encounter below (Remark 4.16) one
case in which this difference has a clear significance. y

The classes cF(X) and cFJ(X) differ in general. The discrepancy is a manifestation of the
difference between the associated graded ring of an ideal I of a commutative ring R, that is,
⊕kIk/Ik+1, and the symmetric algebra of I/I2 over R/I. The former is in a sense closer to
the ring R: for example, in the geometric context and if R is an integral domain, the Krull
dimension of the associated graded ring equals the dimension of R, while the dimension
of the symmetric algebra of a module is bounded below by the number of generators of
the module ([56, Corollary 2.8]). The difference is analogous to the difference between the
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tangent cone of a scheme at a point and the tangent space of the same: the former may
be viewed as an analytic approximation of the scheme at the point, while the latter only
records the minimal embedding dimension. Accordingly, cF(X) is perhaps a more natural
object of study than cFJ(X). The triple planar point X defined by the ideal (x2, xy, y2) in
the affine plane A2 gives a concrete example for which cF(X) 6= cFJ(X) (see [8, §2.1]).

One class of ideals for which the associated graded ring is isomorphic to the symmetric
algebra is given by ideals generated by regular sequences (cf. [72], [90, Theorem 1.3]). Thus,
cF(X) = cFJ(X) if X is a local complete intersection. In this case the embedding X ⊆ M
is regular, s(X,M) = c(NXM)−1 ∩ [X] (§2.2), and therefore

(4.3) cF(X) = cFJ(X) = c(TvirX) ∩ [X] ,

where TvirX is the class TM |X − NXM in the Grothendieck group of vector bundles on
X (so c(Tvir) = c(TM |X)c(NXM)−1). We can view TvirX as a ‘virtual tangent bundle’
for X; it is well-defined for local complete intersections, i.e., independent of the ambient
nonsingular variety M . We note that, more generally,

cF(Z) = c(TvirX) ∩ s(Z,X)

if Z is linearly embedded in a local complete intersection X, cf. Example 4.3.
If X is a local complete intersection, we will denote the class (4.3) by cvir(X), the ‘virtual’

Chern class of X. For instance, if X = D is a hypersurface in a nonsingular variety M ,
then

cvir(D) = cF(D) = cFJ(D) = c(TM |D) ∩ [D]

1 +D
.

This implies the following useful interpretation of the Chern-Fulton / Fulton-Johnson class
of a hypersurface.

Proposition 4.4. Let i : D ↪→ M be a hypersurface in a nonsingular variety M , and let
i′ : Dgen →M be a nonsingular hypersurface such that [D] = [Dgen]. Then

i∗cvir(D) = i′∗(c(TDgen) ∩ [Dgen]) .

In particular, over C and if M is compact, then
∫
cF(D) = χ(Dgen) is the topological

Euler characteristic of a smoothing of D, when a smoothing is available. Barbara Fantechi
and Lothar Göttsche prove that in fact

∫
cF(X) is constant along lci deformations if X is a

local complete intersection [34, Proposition 4.15].
These results may be seen as indicating that a class such as cF(X) is not useful in the

study of singularities, precisely because (at least in the lci case) it is blind to the singularities
of X. This feature is balanced by the sensitivity of cF(X) to the scheme structure of X;
as we will see below (Proposition 4.20) this can be used to encode in a Chern-Fulton class
substantial information on the singularities of X.

Bernd Siebert obtains a formula for the ‘virtual fundamental class’ in Gromov-Witten
theory in terms of the Chern-Fulton class, [87, Theorem 4.6]. Siebert also argues that cF(X)
could be considered as the Segre class of the Behrend-Fantechi intrinsic normal cone of X
([20]).

4.2. The Deligne-Grothendieck conjecture and MacPherson’s theorem. A func-
torial theory of Chern classes arose in work of Alexander Grothendieck and Pierre Deligne.
Here we will assume that the ground field is algebraically closed, of characteristic 0.
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For an algebraic variety X, we denote by F(X) the group of integer-valued constructible
functions on X. These are integer linear combinations of indicator functions for con-
structible subsets of X; equivalently, every constructible function ϕ ∈ F(X) may be written

ϕ =
∑
W

mW 11W

where W ranges over subvarieties of X, 11W (p) = 1 or 0 according to whether p ∈ W or
p 6∈W , and mW ∈ Z is nonzero for only finitely many subvarieties W .

For a proper morphism f : X → Y , we can define a push-forward of constructible
functions f∗ : F(X) → F(Y ). By linearity, this is determined by the push-forward f∗(11W )
of the indicator function of a subvariety W of X; we set

f∗(11W )(p) := χ(f−1(p) ∩W )

for p ∈ Y . Here, χ is the topological Euler characteristic if k = C, and a suitable general-
ization for more general algebraically closed fields of characteristic 0 (see e.g., [10, §2.1]).

With this push-forward, the assignment X 7→ F(X) is a covariant functor from the
category of algebraic k-varieties, with proper morphisms, to the category of abelian groups
([66, Proposition 1] for the complex case; the argument generalizes to more general fields).

The Chow group is also a covariant functor between the same categories. The following
statement, whose conjectural formulation is attributed to Deligne and Grothendieck, gives
a precise relationship between these two functors. It was proved by MacPherson [66].

Theorem 4.5. There exists a natural transformation c∗ : F⇒ A∗ which, on a nonsingular
variety V , assigns to the constant function 11V the total Chern class c(TV ) ∩ [V ].

MacPherson’s statement and proof was for complex varieties, in homology; Fulton ([39,
Example 19.1.7]) places the target in the Chow group. Gary Kennedy ([60]) extended the
result to arbitrary algebraically closed fields of characteristic 0. An alternative argument in
this generality (and an alternative construction of c∗) is given in [9].

The natural transformation c∗ is easily seen to be unique if it exists, as its value is deter-
mined by the normalization requirement by resolution of singularities. MacPherson provides
a different construction, not relying on resolutions; and then proves that this construction
satisfies the covariance requirement. The ingredients in MacPherson’s construction are the
local Euler obstruction EuX , reviewed above in §3.2, and the Chern-Mather class cMa(X),
which will be discussed below in §4.3. MacPherson defines c∗ by prescribing that

c∗(EuX) = cMa(X) ,

and is able to prove that this assignment determines a natural transformation. Since
EuV = 11V if V is nonsingular, this definition satisfies the normalization requirement in
Theorem 4.5. Any choice of a constructible function on varieties X which takes the con-
stant value 11V for nonsingular varieties V will then provide us with a ‘characteristic class’
in the Chow group A∗(X) agreeing with the total Chern class of the tangent bundle when
X = V is a nonsingular variety, as prospected in the leader to this section.

Example 4.6. Let D be a hypersurface in a nonsingular complex variety. Assume that
D may be realized as the central fiber of a flat family over a disk, such that the general
fiber Dgen is nonsingular. Verdier [93] defines a ‘specialization’ of constructible functions
from the general fiber to D, and proves that this specialization operation is compatible with
MacPherson’s natural transformation and specialization of Chow classes. As a consequence,
if σ(11) denotes the specialization of the constant function 11, we have

cvir(D) = c∗(σ(11))
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(cf. Proposition 4.4). If D is itself nonsingular, then σ(11) = 11D, and cvir(D) = c(TD)∩ [D].
We do not know whether the Chern-Fulton or Chern-Fulton-Johnson classes admit a similar
description for more general varieties. y

A formula for the Chern-Mather class due to Sabbah, [83, Lemma 1.2.1], leads to a useful
alternative description of the image of a constructible function ϕ via MacPherson’s natural
transformation c∗. In recalling this description, we essentially follow the lucid account given
in [80, §1].

Let X be a proper subvariety of a nonsingular variety M . Every constructible function
ϕ ∈ F(X) may be written uniquely as a finite linear combination of local Euler obstructions
of subvarieties of X:

ϕ =
∑
W⊆X

nW EuW

([66, Lemma 2]). Now recall (3.2) that the conormal space N∨WM of a possibly singular
subvariety W of M is the closure of the conormal bundle of its nonsingular part W ◦:
N∨WM := N∨W ◦M . We associate with the local Euler obstruction of a subvariety W of M
the cycle of the projectivization of its conormal space, up to a sign recording the parity of
the dimension of W :

(4.4) EuW 7→ (−1)dimW [P(N∨WM)] .

By linearity, every constructible function on X is then associated with a cycle in the pro-
jectivized cotangent bundle of the ambient nonsingular variety M , P(T∨M), and in fact of
the restriction P(T∨M |X) to X.

Definition 4.7. The characteristic cycle of the constructible function ϕ is the linear com-
bination

Ch(ϕ) :=
∑
W⊆X

nW (−1)dimW [P(N∨WM)] ,

where ϕ =
∑

W⊆X nW EuW . y

(We have chosen to view Ch(ϕ) as a cycle in P(T∨M |X). It is also common in the liter-
ature to avoid the projectivization, and consider characteristic cycles as cycles in T∨M |X .)

In keeping with the theme of this paper, we will formulate the alternative description of
c∗ stemming from Sabbah’s work in terms of a Segre operator (cf. [7, Lemma 4.3]). For
this, it is convenient to adopt the following notation. If A =

∑
i ai is a rational equivalence

class, where ai is the component of dimension i, we will let

A∨ :=
∑
i

(−1)iai

be the class obtained by changing the sign of all odd-dimensional components of A. Note
that if E is a vector bundle, then

(c(E) ∩A)∨ = c(E∨) ∩A∨ .
Later on, it will also be convenient to use the notation

(4.5) A∨ := (−1)dimMA∨ =
∑
i

(−1)dimM−iai ,

where M is the fixed ambient nonsingular variety.

Theorem 4.8. The class c∗(ϕ)∨ is the shadow of the characteristic cycle Ch(ϕ). That is,

(4.6) c∗(ϕ) = c(TM |X) ∩ SegreT∨M |X (Ch(ϕ))∨ .
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Indeed, (4.6) is equivalent to

(4.7) c∗(ϕ) = (−1)dimM−1c(TM |X) ∩ π∗(c(O(1))−1 ∩ Ch(ϕ)) ,

where π∗ : P(T∨M |X) → X is the projection; this is [80, (12)], and the right-hand side is
the shadow of Ch(ϕ) by Lemma 2.12, up to changing the sign of every other component.
By linearity, (4.7) follows from

cMa(W ) = c∗(EuW ) = (−1)dimM−dimW−1c(TM |W ) ∩ π∗(c(O(1))−1 ∩ [P(N∨WM)])

(where π is now the projection to W ). This formula is (equivalent to) [83, Lemma 1.2.1];
also cf. [60, Lemma 1].

Formula (4.6) should be compared with the formulas (4.1) defining the Chern-Fulton and
Chern-Fulton-Johnson classes. The Segre term

SegreT∨M |X (Ch(ϕ))∨

plays for MacPherson’s natural transformation precisely the same rôle played by the ‘ordi-
nary’ Segre classes s(X,M), resp., s(NXM) for cF(X), resp., cFJ(X). We will come back
to this term below, see (4.16).

The strength of Theorem 4.8 is that (as Sabbah puts it, [83, p. 162]) ‘. . . cela montre
que la théorie des classes de Chern de [66] se ramène à une théorie de Chow sur T∨M ,
qui ne fait intervenir que des classes fondamentales.’ Indeed, the Segre term is determined
by the characteristic cycle Ch(ϕ); this is a linear combination of (dimM − 1)-dimensional
fundamental classes of projectivized conormal spaces. These characteristic cycles (and the
local Euler obstruction itself) arise naturally in the theory of holonomic D-modules; this
aspect is also treated in [83], as well as in work of Masaki Kashiwara, Victor Ginzburg,
and others (see e.g., [25], [44]). The characteristic cycles Ch(ϕ) are projectivizations of La-
grangian cycles in T∨M , and various functoriality properties admit a compelling geometric
description in terms of Lagrangian cycles. Thus, the functor F of constructible functions
may be replaced by a ‘Lagrangian functor’ associating with X the group of integer linear
combinations of conormal cycles. See [83] and [60] for more information.

From this point of view, defining a characteristic class for arbitrary varieties that gen-
eralizes the total Chern class of the tangent bundle from the nonsingular case amounts to
identifying ways to define Lagrangian cycles which, in the nonsingular case, associate a
variety with the cycle of its conormal bundle (up to sign). We will focus on two specific
choices:

• The conormal space of a (possibly singular) variety X, corresponding to the Chern-
Mather class cMa(X) = c∗(EuX) (§4.3); and
• The ‘characteristic cycle’ of X, that is, Ch(11X), corresponding to the ‘Chern-

Schwartz-MacPherson class’ of X (§4.4).

One of the challenges will be to find (more) explicit expressions for the corresponding Segre
terms SegreT∨M |X (Ch(EuX))∨, SegreT∨M |X (Ch(11X))∨.

4.3. Chern-Mather classes. A key ingredient in MacPherson’s construction of the natu-
ral transformation c∗ is the Chern-Mather class of a variety X, cMa(X). MacPherson gives
a definition of this class in [66, §2], attributing it to Mather. We note that the definition of
an equivalent notion was given earlier by Wu Wen-Tsün ([95]); the equivalence was proved
later by Zhou Jianyi ([100])1.

1We also note that in his review of [47], Raoul Bott credits Wu with an approach to the algebraic
construction of characteristic classes similar to and preceding Grothendieck’s.
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Let X be a reduced subscheme of a nonsingular variety M of pure dimension n, and let
X◦ be the nonsingular part of X. Recall (§3.2) that the Nash blow-up X̂ of X is the closure
of the image of the natural rational map X 99K Grn(TM)|X associating with a nonsingular
x ∈ X◦ the tangent space TxX

◦ ⊆ TxM . The projection from the Grassmannian restricts
to a proper birational map ν : X̂ → X, and the tautological subbundle restricts to a rank-n
vector bundle T̂ on X̂ extending the pull-back of TX◦. The local Euler obstruction EuX(p)
equals ∫

c(T̂ |ν−1(p)) ∩ s(ν−1(p), X̂)

(Theorem 3.6). Following MacPherson, we define the Chern-Mather class of X to be the

push-forward of the Chern class of T̂ .

Definition 4.9. With notation as above, the Chern-Mather class of X is

(4.8) cMa(X) = ν∗

(
c(T̂ ) ∩ [X̂]

)
,

an element of A∗(X). y

As we discussed in §4.2, we have the following alternative expression for the Chern-Mather
class:

(4.9) cMa(X) = c(TM |X) ∩ (−1)dimX SegreT∨M |X ([P(N∨XM)])∨ .

This is (4.6) for ϕ = EuX , as Ch(EuX) = (−1)dimX [P(N∨XM)] (see (4.4)). The equiva-
lence of (4.8) and (4.9), due to Sabbah, may be verified by the same techniques proving
Proposition 3.7; cf. [60, Lemma 1].

If X is a hypersurface, the Segre term can be expressed directly in terms of ordinary Segre
classes. Recall that for a rational equivalence class A of a subvariety of a fixed ambient
variety M , we let

A∨ := (−1)dimMA∨ .

Theorem 4.10. Let X be a hypersurface of a nonsingular variety M . Then

(−1)dimX SegreT∨M |X ([P(N∨XM)])∨ =
(
[X] + ι∗s(JX,X)∨

)
⊗M O(X) .

(Cf. [5, Lemma I.2] and [14, Proposition 2.2].) In this statement, JX is the singularity
subscheme of X (Definition 2.14), ι : JX → X is the embedding, and we use the notation
⊗M recalled in §2.4.

Proof. The left-hand side of the stated formula equals

(4.10) π∗
(
c(OT∨M |X (1))−1 ∩ [P(N∨XM)]

)
,

where π : P(T∨M |X) → X is the projection. As X is a hypersurface, the projectivized
conormal space P(N∨XM) may be realized as the closure of the image of the rational map

X 99K P((T∨M ⊗ O(X))|X) ∼= P(T∨M |X)

associating with every x ∈ X◦ the hyperplane TxX
◦ of TxM , viewed as a point of P(N∨xM).

This closure is isomorphic to the blow-up of X along the base scheme of the rational map,
and the base scheme is JX by definition. For another point of view on this observation,
recall that the Nash blow-up of a hypersurface X is isomorphic to its blow-up along JX,
see e.g., [74, Remark 2]; for hypersurfaces, the conormal space is isomorphic to the Nash
blow-up. Now we have

(4.11) OT∨M |X (1) ∼= O(T∨M⊗O(X))|X (1)⊗ π∗O(X) ;
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therefore (4.10) may be rewritten

π∗
(
c(O(T∨M⊗O(X))|X (1)⊗ π∗O(X))−1 ∩ [B`JXX]

)
,

and as O(T∨M⊗O(X))|X (1) restricts to c(O(−E)) on the blow-up, where E denotes the ex-
ceptional divisor, this class equals

π∗
(
c(π∗O(X)⊗ O(−E))−1 ∩ [B`JXX]

)
= π∗

(
c(O(−E))−1 ∩ [B`JXX]

)
⊗M O(X) ,

where now π denotes the projection from the blow-up and we made use of (2.21) and of the
projection formula. This last expression equals the right-hand side of the formula given in
the statement, by (2.11). �

Remark 4.11. To parse the expression obtained in Theorem 4.10, note that as X is a
hypersurface,

cF(X) = c(TM |X) ∩ s(X,M) = c(TM |X) ∩ (1 +X)−1 ∩ [X]

= c(TM |X) ∩ ([X]⊗M O(X)) ,

while (4.9) and Theorem 4.10 imply that

(4.12) cMa(X) = c(TM |X) ∩
((

[X] + ι∗s(JX,X)∨
)
⊗M O(X)

)
.

What this is saying is that the Chern-Mather class of a hypersurface X is the Chern-
Fulton class of a virtual object whose fundamental class is

(4.13) [X] + ι∗s(JX,X)∨ ,

a perturbation of the fundamental class ofX, determined by the Segre class of the singularity
subscheme of X in X.

Enforcing the analogy with the Chern-Fulton class, we could formally write

cMa(X) = c(TM |X) ∩ sMa(X,M) ,

for a ‘Segre-Mather class’ sMa(X,M). Thus sMa(X,M) = s(X,M) if both X and M are
nonsingular, and Theorem 4.10 gives an explicit expression for the Segre-Mather class if X
is a hypersurface in a nonsingular variety M .

We do not know a similarly explicit expression of the Segre-Mather class for more general
varieties X. y

As there are implementations for the computation of Segre classes (see §2.2), Chern-
Mather classes of hypersurfaces in e.g., nonsingular projective varieties can also be computed
by making use of (4.12). See [48] for concrete examples.

Remark 4.12. We note that the relation between the Segre class of the singularity subscheme
of a hypersurface X of projective space and the Chern-Mather class of X may also be
obtained as a corollary of results of Piene: the polar classes of a hypersurface X ⊆ Pn can
be computed in terms of the Segre class s(JX,X) ([81, Theorem 2.3]) and the Chern-Mather
class may be expressed in terms of polar classes ([82, Théorème 3]).

In fact, for projective varieties, the fact that (4.12) only holds for hypersurfaces is tem-
pered by another result of Piene, [82, Corollaire, p. 20], showing that Chern-Mather classes
are preserved by general projections. Thus, the computation of the degrees of the compo-
nents of the Chern-Mather class of a projective variety may be reduced to the hypersurface
case. y
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In any case, it would be interesting to extend Theorem 4.10 beyond the hypersurface
case. It is conceivable that even if X is not a hypersurface, the Segre term in (4.9) may
admit an equally transparent expression in terms of the Segre class of a scheme naturally
associated with the singularities of X.

Example 4.13. It follows easily from the definition that if X = X1 ∪X2 is the union of two
closed reduced subschemes of the same pure dimension and with no irreducible components
in common, then cMa(X) = cMa(X1) + cMa(X2) (where the classes on the right-hand side
are viewed as classes in A∗(X)). Indeed, the Nash blow-up of X is simply the union of the
Nash blow-ups of X1 and X2. (This also implies that EuX = EuX1 + EuX2 ; cf. [66, p. 426].)

For a hyperplane arrangement A consisting of d distinct hyperplanes Hi in Pn, this
implies that the Chern-Mather class of the corresponding hypersurface A is

cMa(A) =
∑
i

cMa(Hi) =
∑
i

c(THi) ∩ [Hi]

and therefore if i : A→ Pn is the embedding, and H denotes the hyperplane class,

i∗cMa(A) = d · (1 +H)n ∩ [Pn−1] .

Let’s verify that this is compatible with the formula (2.24) for s(JA,A) obtained in §2.5:

ι∗s(JA,A) = d
n∑
i=2

(−1)i(d− 1)i−1[Pn−i]

= d
(
(d− 1)[Pn−2]⊗A O((d− 1)H)

)
= d(d− 1)(1 + (d− 1)H) ∩

(
[Pn−2]⊗Pn O((d− 1)H)

)
,

where we have used the notation in §2.4. It follows that the ‘perturbed fundamental class’
(4.13) is

[A] + ι∗s(JA,A)∨

= d
(
[Pn−1] + (d− 1)(1− (d− 1)H) ∩

(
[Pn−2]⊗Pn O(−(d− 1)H)

))
and therefore the push-forward of the Segre-Mather class to Pn equals (using (2.20) and (2.21))

i∗
(
([A] + ι∗s(JA,A)∨)⊗Pn O(A)

)
= d

(
[Pn−1] + (d− 1)(1− (d− 1)H) ∩

(
[Pn−2]⊗Pn O(−(d− 1)H)

))
⊗Pn O(dH)

= d

(
[Pn−1]⊗ O(dH) + (d− 1)

1 +H

1 + dH
∩ ([Pn−2]⊗Pn O(H))

)
= d

(
1

1 + dH
+ (d− 1)

1 +H

1 + dH

H

(1 +H)2

)
∩ [Pn−1]

= d · (1 +H)−1 ∩ [Pn−1] .

In conclusion,

i∗ (c(TPn|A) ∩ sMa(A,Pn)) = d · (1 +H)n+1(1 +H)−1 ∩ [Pn−1]
= d · (1 +H)n ∩ [Pn−1]

as it should.

More generally, let X = ∪ri=1Xi be the union of r distinct irreducible (possibly singular)
hypersurfaces in a nonsingular variety M . Denote by X−i the union of the hypersurfaces
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other than Xi. Then, omitting evident push-forwards:

(4.14) s(JX,X) =
∑
i

Xi · s(X−i,M) + s(JXi, Xi)⊗M O(X−i) .

This may be proved by the same technique used in the proof of Proposition 2.17, using (2.22)
(that is, ‘residual intersection’) to account for the singularity subschemes of the individual
components Xi. The reader should have no difficulty verifying that (4.14) is compatible
with the fact that cMa(X) =

∑
i cMa(Xi). y

4.4. Chern-Schwartz-MacPherson classes of hypersurfaces. Again all our schemes
will be subschemes of a fixed nonsingular variety M , and we work in characteristic 0. We
do not need to assume that schemes are reduced or pure-dimensional.

Choosing the function 11X for every scheme is trivially the simplest way to define a
constructible function generalizing 11V for nonsingular varieties V . Thus, this defines a
characteristic class trivially generalizing c(TV ) ∩ [V ].

Definition 4.14. Let X be a scheme as above. The Chern-Schwartz-MacPherson (CSM)
class of X is the class

cSM(X) := c∗(11X) ∈ A∗(X) .

More generally (abusing language) we let

cSM(W ) := c∗(11W ) ∈ A∗(X)

for any constructible subset W of X; the context will determine the Chow group where
cSM(W ) is meant to be taken. Note that as 11W only depends on the support Wred of W , we
have cSM(W ) = cSM(Wred). (Cf. Remark 4.21 below for relevant comments on this point.)

Definition 4.14 is given in [66] (for compact complex varieties, and in homology); MacPher-
son attributes it to Deligne. In [24], Brasselet and Marie-Hélène Schwartz proved that the
class agrees via Alexander duality with the classes defined earlier by Schwartz in relative
cohomology ([85, 86]).

One way to compute cSM(X) is to express the constant function 11X as a linear combi-
nation of local Euler obstructions:

11X =
∑
i

mi EuWi

for a choice of finitely many subvarieties Wi of X. It then follows that

cSM(X) = c∗(11X) =
∑
i

mic∗(EuWi) =
∑
i

micMa(Wi) .

The proof in [24] relies on establishing precise relations between indices of radial vector
fields and local Euler obstructions, and hence between Schwartz’s classes and Chern-Mather
classes. It is also possible to prove that the classes defined by Schwartz satisfy enough of
the functoriality properties of the classes defined by MacPherson to guarantee that they
must agree ([15]); this approach avoids the use of local Euler obstructions or Chern-Mather
classes.

One motivation in Schwartz’s work was to obtain a class generalizing the classical Poincaré-
Hopf theorem to singular varieties. This incorporated in MacPherson’s approach as an
implication of the naturality of c∗. Assume that X is complete, so that the constant map
κ : X → pt = Spec k is proper. The fact that c∗ is a natural transformation implies that
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the following diagram is commutative:

F(X)

κ∗
��

c∗ // A∗(X)

κ∗
��

F(pt) Z A∗(pt)

If W ⊆ X is any constructible subset, the commutativity of the diagram

11W_

κ∗
��

� // cSM(W )
_

κ∗
��

χ(W ) � //
∫
cSM(W )

amounts to the equality

(4.15)

∫
cSM(W ) = χ(W ) :

the degree of the CSM class equals the topological Euler characteristic (or a suitable gener-
alization over fields other than C). This can be viewed as an extension to possibly singular,
possibly noncompact varieties of the Poincaré-Hopf theorem, holding over arbitrary alge-
braically closed fields of characteristic 0.

By Theorem 4.8, we have

cSM(X) = c(TM |X) ∩ SegreT∨M |X (Ch(11X))∨ .

Just as in §4.3, it is natural to ask for a more explicit and computable expression for the
Segre term

(4.16) sSM(X,M) := SegreT∨M |X (Ch(11X))∨ ,

which we view as a ‘Segre-Schwartz-MacPherson’ class. In §4.5 we will argue that this task
can be reduced to the case of hypersurfaces; in this section we focus on the hypersurface
case. The following result is the CSM version of Theorem 4.10.

Theorem 4.15. Let X be a hypersurface in a nonsingular variety M . Then

SegreT∨M |X (Ch(11X))∨ =
(
[X] + ι∗(c(O(X) ∩ s(JX,M)))∨

)
⊗M O(X) .

This is [5, Lemma I.3]; cf. [14, Proposition 2.2]. It can be interpreted as stating that if X
is a hypersurface of a nonsingular variety M , then the Chern-Schwartz-MacPherson class
of X is the Chern-Fulton class of an object whose ‘fundamental class’ is

(4.17) [X] + ι∗(c(O(X)) ∩ s(JX,M))∨ .

Remark 4.16. The reader should compare (4.13) and (4.17), that is, the perturbations of the
fundamental class corresponding to the different characteristic classes we have encountered,
in the case of hypersurfaces:

Chern-Fulton: [X]

Chern-Mather: [X] + ι∗s(JX,X)∨

Chern-Schwartz-MacPherson: [X] + ι∗(c(O(X)) ∩ s(JX,M))∨ .

The difference between the Chern-Mather class and the Chern-Schwartz-MacPherson class
is captured precisely by the difference between

s(JX,X) and c(O(X)) ∩ s(JX,M) .
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As we have observed in Example 4.3, it is natural to compare the classes s(W,X) and
c(O(X))∩s(W,M), for any subscheme W of a hypersurface X. The case W = JX provides
one instance in which the difference has a transparent and interesting interpretation. y

Different proofs are known for Theorem 4.15. One approach consists of proving that the
class

(4.18) c(TM |X) ∩
((

[X] + ι∗(c(O(X) ∩ s(JX,M)))∨
)
⊗M O(X)

)
has the same behavior under blow-ups along nonsingular subvarieties of JX as the class
cSM(X). By resolution of singularities, we may then reduce to the case in which X is a
divisor with normal crossings and nonsingular components, and in this case one can verify
that (4.18) does equal cSM(X). It follows that (4.18) must equal cSM(X) in general. This
approach is carried out in [5].

A perhaps more insightful argument consists of a concrete realization of the characteristic
cycle Ch(11X). For this, view the singularity subscheme JX of X as a subscheme of M .
Consider the blow-up

π : B`JXM →M

of M along JX. This is naturally embedded as a subscheme of P(P1
M (O(X))), the pro-

jectivization of the bundle of principal parts of O(X). The inverse image X := π−1(X)
is contained in P((T∨M ⊗ O(X))|X) ⊆ P((P1

M (O(X)))|X), and contains the exceptional
divisor E = π−1(JX) of the blow-up. Thus, we have (dimM − 1)-dimensional cycles [X ],
[E ] of P((T∨M ⊗ O(X))|X) ∼= P(T∨M |X).

The reader may find it helpful to recall that B`JXX may also be realized as a subscheme
of P(T∨M |X); the proof of Theorem 4.10 relies on the identification of this subscheme with
the projectivized conormal space P(N∨XM), whose cycle is (−1)dimX Ch(EuX).

Lemma 4.17. The characteristic cycle Ch(11X) equals (−1)dimX([X ]− [E ]).

This statement implies Theorem 4.15, by an argument similar to the proof of Theo-
rem 4.10. (Cf. e.g., [5, Theorem I.3].) Lemma 4.17 is proved in [80, Corollary 2.4], along
with a thorough discussion of characteristic cycles of other constructible functions natu-
rally associated with a hypersurface. An earlier description of the characteristic variety of
a hypersurface is given in [63, Theorem 3.3].

Theorem 4.15 is equivalent to the following formula, which we state as a separate result
for ease of reference.

Theorem 4.18. Let X be a hypersurface in a nonsingular variety M . Then

cSM(X) = c(TM |X) ∩
((

[X] + ι∗(c(O(X)) ∩ s(JX,M))∨
)
⊗M O(X)

)
.

Remark 4.19. Xiping Zhang has generalized this result to the equivariant setting, [99]. y

We have already observed that the formula in Theorem 4.18 may be viewed as expressing
cSM(X) as the Chern-Fulton class of a virtual object with a similar behavior to a hypersur-
face, but with a fundamental class modified to include lower dimensional terms. There is a
perhaps more compelling intepretation of this object as a Chern-Fulton class, obtained by
applying residual intersection as follows.

Recall that the Chern-Fulton class of a scheme is not just determined by its support; the
specific scheme structure affects the class. For a hypersurface X of a nonsingular variety
M , we consider the Chern-Fulton class of the scheme obtained by ‘thickening’ X along its
singularity subscheme JX: that is, for k ≥ 0 we consider the scheme X(k) whose ideal sheaf
in M is

IX,M · (IJX,M )k .
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Thus X = X(0). The residual formula in Proposition 2.13 yields an expression for the Segre
class of this scheme in M . According to (2.22),

s(X(k),M) =
(
[X] + c(O(−X)) ∩ s((JX)k,M)

)
⊗M O(X) ,

where (JX)k is the subscheme of M defined by the ideal (IJX,M )k. (Thus (JX)0 = ∅,
(JX)1 = JX, etc.) Accordingly, we have an expression for the Chern-Fulton class of X(k):

(4.19) cF(X(k)) = c(TM) ∩
(
[X] + c(O(−X)) ∩ s((JX)k,M)

)
⊗M O(X) .

This expression makes sense for all nonnegative integers k, and by definition

cvir(X) = cF(X(0)) .

Now we observe that s((JX)k,M) is determined by s(JX,M) for all k ≥ 0: indeed, the
component of dimension ` of this class is given by

s((JX)k,M)` = kdimM−`s(JX,M)` .

Indeed, if E denotes the exceptional divisor of the blow-up B`JXM , then the inverse image
of (JX)k in the blow-up is kE , so the assertion follows from (2.11).

As a consequence, (4.19) expresses cF(X(k)) as a polynomial in k, and as such this class
can be given a meaning for every integer k.

Proposition 4.20. Let X be a hypersurface in a nonsingular variety M . With notation as
above,

cSM(X) = cF(X(−1)) .

This is of course just a reformulation of Theorem (4.18). It identifies the Chern-Schwartz-
MacPherson class of X with the Chern-Fulton class of a virtual (fractional?) scheme ob-
tained from X by simply ‘removing’ its singular locus. The Segre-Schwartz-MacPherson
class of a hypersurface X in a nonsingular variety M is simply

sSM(X,M) = s(X(−1),M) .

Remark 4.21. There is one case in which the virtual scheme X(−1) is not virtual. Let V
be a nonsingular hypersurface of a nonsingular variety M , and let X be the non-reduced
hypersurface whose ideal is the r-th power of the ideal of V :

IX,M = IV,M
r .

Then (as the characteristic is 0), JX has ideal IV,M
r−1, hence X(k) has ideal IV,M

r+k(r−1)

for k ≥ 0. This ideal makes sense for k = −1, giving X(−1) = V . Therefore

cSM(X) = cSM(V ) = c(TV ) ∩ [V ] = cF(V ) = cF(X(−1))

as it should.
Using Proposition 2.13, it is not hard to verify that if X is a possibly non-reduced effective

Cartier divisor in a nonsingular variety M , then

cF(X(−1)) = cF(Xred
(−1)) ,

even if the support Xred is singular. This is compatible with our definition of the Chern-
Schwartz-MacPherson class of a possibly non-reduced scheme X, which guarantees that it
only depends on the support of X. y
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Example 4.22. The polar degree of a hypersurface X of Pn defined by a homogeneous
polynomial F is the degree of the gradient map Pn → Pn,

(4.20) p 7→
(
∂F

∂x0
: · · · : ∂F

∂xn

)
.

A hypersurface is ‘homaloidal’ if this map is birational, that is, if its polar degree is 1. Igor
Dolgachev ([32, p. 199]) conjectured that a hypersurface X is homaloidal if and only if Xred

is homaloidal.
Now, the graph of the map (4.20) is isomorphic to the blow-up of the zero-scheme of the

partials, that is, to B`JXPn. Therefore, it is straightforward to express the polar degree
in terms of the degrees of the components of the Segre class of JX in Pn, and therefore in
terms of the degrees of the components of the Chern-Schwartz-MacPherson class of X. The
result of this computation is the following (see [10, §3.1] for more details).

Proposition 4.23. Let X ⊆ Pn be a hypersurface. Denote by deg ci(X) the degree of the
dimension-i component of cSM(X). Then the polar degree of X equals

(−1)n −
n∑
i=0

(−1)n−i deg ci(X) .

Since cSM(X) = cSM(Xred), it follows that the polar degree of X equals the polar degree
of Xred, verifying Dolgachev’s conjecture. (To our knowledge, the first proof of the conjec-
ture appeared in [31, Corollary 2], over C. The argument sketched above holds over any
algebraically closed field of characteristic 0.) y

Example 4.24. We return once more to a hyperplane arrangement A in Pn and its corre-
sponding hypersurface A. We will sketch a proof of Theorem 2.15, which relies on the
computation of cSM(A). We will assume that A is reduced, but as we just observed,

cSM(Ared) = cF(A
(−1)
red ) = cF(A(−1)), and it follows that the result holds without changes for

non-reduced arrangements (as stated in §2.5).

The arrangement A corresponds to a central arrangement Â in An+1. We let χ
Â

(t)

be the characteristic polynomial of Â ; see e.g., [77, Definition 2.5.2]. (For arrangements
corresponding to graphs, this is essentially the same as the chromatic polynomial of the
graph.) We define χA (t) to be the quotient χ

Â
(t)/(t− 1); this is also a polynomial in Z[t],

of degree n.
Now consider the Chern-Schwartz-MacPherson class of the complement of A:

cSM(Pn rA) = c∗(11Pn − 11A) ∈ A∗(Pn) .

As an element of A∗(Pn), this class may be written as an integer linear combination of the
classes [Pi] for i = 0, . . . , n.

Theorem 4.25 ([11, Theorem 1.2]). The class cSM(Pn r A) equals the class obtained by
replacing ti with [Pi] in χA (t+ 1).

This may be proved by a combinatorial argument, using ‘Möbius inversion’. Alternately,
one may use the deletion-contraction property of the characteristic polynomial and the fact
that Chern-Schwartz-MacPherson classes satisfy an inclusion-exclusion property: if W1 and
W2 are locally closed subsets of a variety V , then

(4.21)
cSM(W1 ∩W2) = c∗(11W1∩W2) = c∗(11W1 + 11W2 − 11W1∪W2)

= cSM(W1) + cSM(W2)− cSM(W1 ∪W2)
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in A∗(V ). June Huh extracts an expression of the characteristic polynomial from these
considerations, see [55, Remark 26].

The information carried by the characteristic polynomial of an arrangement is equivalent
to the information in its Poincaré polynomial

πA (t) := (−t)n · χA(−t−1) .
As the reader can verify, Theorem 4.25 is equivalent to the following formula:

i∗cSM(A) = c(TPn) ∩
(

1− 1

1 +H
πA

(
−H

1 +H

))
∩ [Pn]

where H is the hyperplane section and i : A→ Pn is the inclusion. Therefore

i∗sSM(A,Pn) =

(
1− 1

1 +H
πA

(
−H

1 +H

))
∩ [Pn]

Using Theorem 4.15 and simple manipulations, it follows that

πA

(
−H

1 +H

)
∩ [Pn] =

1 +H

1 + dH

(
1− ι∗s(JA,Pn)∨ ⊗Pn O(dH)

)
∩ [Pn]

where d is the number of hyperplanes in the arrangement. Letting

ι∗s(JA,Pn) =
∑
i

si[Pi] =
∑
i

siH
n−i ∩ [Pn]

we get an equality of power series in h modulo hn+1:

πA

(
−h

1 + h

)
≡ 1 + h

1 + dh

(
1−

n∑
i=0

si · (−h)n−i

(1 + dh)n−i

)
mod hn+1

or equivalently

(4.22) πA (t) ≡ 1

1− (d− 1)t

(
1−

n∑
i=0

si ·
(

t

1− (d− 1)t

)n−i)
mod tn+1 .

By a classical result of Peter Orlik and Louis Solomon ([77, Theorem 5.93]),

πA (t) =
n∑
i=0

rkHk(Pn rA,Q)ti .

Reading off the coefficients of ti, i = 0, . . . , n in (4.22) yields Theorem 2.15. y

4.5. Chern-Schwartz-MacPherson classes, general case. Formulas in the style of
Theorem 4.18 are useful: they have been applied to concrete computations of Chern-
Schwartz-MacPherson classes, and they are amenable to implementation in systems such as
Macaulay2 since Segre classes are (§2.2). One may expect that there should be a straightfor-
ward generalization of Theorem 4.15 to higher codimension subschemes X of a nonsingular
variety, based on the Segre class of a subscheme defined by a suitable Fitting ideal, gen-
eralizing the singularity subscheme JX. One could also expect a generalization of the
interpretation of the Chern-Schwartz-MacPherson class as the Chern-Fulton class of a suit-
able virtual scheme, along the lines of Proposition 4.20. With the exception of results for
certain types of complete intersections ([36], [38]), we do not know of explicit results along
these lines.

However, a formula for the Chern-Schwartz-MacPherson class of an arbitrary subscheme
of a nonsingular variety in terms of the Segre class of a related scheme can be given. This is
the most direct extension of Theorem 4.15 currently available, and it will be presented below
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(Theorem 4.30). Before discussing this result, we note that, for computational purposes,
the case of arbitrary subschemes can already be treated by organizing a potentially large
number of applications of the hypersurface case.

Proposition 4.26. Let X be a subscheme of a nonsingular variety M , and assume that X
is the intersection of r hypersurfaces X1, . . . , Xr. Then

cSM(X) =
r∑
s=1

(−1)s−1
∑

i1<···<is

cSM(Xi1 ∪ · · · ∪Xis) .

This is clear from inclusion-exclusion, which holds for CSM classes since it holds for con-
structible functions, cf. (4.21). Since the classes appearing in the right-hand side are all CSM
classes of hypersurfaces, they can be computed by applying Theorem 4.18. This approach
yields an algorithm for computing Chern-Schwartz-MacPherson classes of subschemes of Pn
and more general varieties, based on the computation of Segre classes (cf. [6], [58], [52], [48],
[53]). The current Macaulay2 distribution includes the package CharacteristicClasses

[54], by Helmer and Christine Jost, which implements this observation.

Example 4.27. Let X be the scheme defined by the ideal (xz2 − y2w, xw2 − yz2, x2w −
y3, z4 − yw3) in P3. The following Macaulay2 commands compute the push-forward to P3

of its Chern-Schwartz-MacPherson class.

i1 : load("CharacteristicClasses.m2")

i2 : R=QQ[x,y,z,w]

i3 : I=ideal(x*z^2-y^2*w, x*w^2-y*z^2, x^2*w-y^3, z^4 -y*w^3)

i4 : CSM I

3 2

o4 = 2h + 6h

1 1

(The package uses h1 to denote the hyperplane class.) This shows that the locus is a sextic
curve with topological Euler characteristic equal to 2. (It is in fact an irreducible rational
sextic with one singular point.) As the ideal has four generators, the computation requires
15 separate applications of Theorem 4.18, including one for a degree-13 hypersurface. y

One intriguing aspect of this approach via inclusion-exclusion is that the same sub-
scheme may be represented as an intersection of hypersurfaces in many different ways; and
extra features such as embedded or multiple components do not affect the result, since the
Chern-Schwartz-MacPherson class only depends on the support of the scheme. Massive
cancellations involving the Segre classes underlying such computations must be at work.
To our knowledge, more direct proofs of such cancellations are not available.

One obvious drawback of Proposition 4.26 is the large number of computations needed to
apply it: 2r−1 distinct Segre class computations for the intersection of r hypersurfaces. As
we will see next, the same input—for example, a set of generators for the homogeneous ideal
of a projective scheme X ⊆ Pn—may be used to obtain an expression that is a more direct
generalization of Theorem 4.18, in the sense that it gives an expression for cSM(X) in terms
of a single Segre class of a related scheme. The price to pay is an increase in dimension,
and the fact that (at this time) the result only yields the push-forward of cSM(X) to the
Chow group A∗(M) of the ambient nonsingular variety.
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Let X be a subscheme of a nonsingular variety M . We may assume that X is the zero
scheme of a section of a vector bundle E on M ; in fact, we may choose E = Spec(SymE ),
where E is any locally free sheaf surjecting onto the ideal sheaf IX,M of X in M . Note that
we can assume that the rank of E is as high as we please: for example, we can replace E with
E ⊕ O⊕aM for any a ≥ 0. The surjection E � IX,M induces a morphism φ : E |X → ΩM |X
whose cokernel is the sheaf of differentials ΩX . We view this as a morphism of vector
bundles over X, φ : E∨|X → T∨M |X . The kernel of φ determines a subscheme JE(X) of

the projectivization P(E∨|X)
π→ X.

Definition 4.28. With notation as above, we will denote by JE(X) the subscheme of
P(E∨|X) defined by the vanishing of the composition of the pull-back of φ with the tauto-
logical inclusion OE∨(−1)→ π∗E∨|X . y

It may be helpful to describe JE(X) in analytic coordinates (x1, . . . , xn) for M , over an
open set U where ΩM and E are trivial. If X is defined by f0(x) = · · · = fr(x) = 0 (so
rkE = r + 1), φ : E |X → ΩU |X has matrix

∂f0
∂x1

· · · ∂fr
∂x1

...
. . .

...
∂f0
∂xn

· · · ∂fr
∂xn


and JE(X) is defined by the ideal

(y0df0 + · · ·+ yrdfr) =

(
r∑
i=0

yi
∂fi
∂xj

)
j=1,...,n

in P(E∨|X∩U ) = Pr × (X ∩U). In other words, JE(X) records linear relations between the
differentials of the generators of the ideal of X. These may be due to relations between the
generators themselves (note that nothing prevents us from choosing e.g., f0 = f1), or to
singularities of X.

Example 4.29. If X is a hypersurface, defined by the vanishing of a section s of E = O(X),
then JE(X) is the subscheme of X ∼= P0 × X defined by the vanishing of ds. That is,
JE(X) = JX in this case: in this sense, the definition of JE(X) generalizes the notion of
‘singularity subscheme’ of a hypersurface. y

We view JE(X) as a subscheme of the nonsingular variety P(E∨), and denote by ι :
JE(X) ↪→ P(E∨) the inclusion and π : P(E∨) � M the projection. The claim is now
that the Segre class of JE(X) in P(E∨) determines the Segre term for the Chern-Schwartz-
MacPherson class of X, at least after push-forward to M .

Theorem 4.30 ([13]). Let i : X ↪→M be a closed embedding of a scheme X in a nonsingular
variety M , defined by a section of a vector bundle E of rank > dimM . Then with notation
as above, i∗cSM(X) equals

(4.23) c(TM) ∩ π∗
(
c(π∗E∨ ⊗ OE∨(1))

c(OE∨(1))
∩
(
s(JE(X),P(E∨))∨ ⊗P(E∨) OE∨(1)

))
.

Despite its rather complicated shape, (4.23) is straightforward to implement in a system
capable of computing Segre classes; for example, Macaulay2 enhanced with the package
SegreClasses ([49]) for computations in products of projective space. Concrete examples
may be found in [13, §1].

Theorem 4.30 is proved by realizing JE(X) as the singularity subscheme of a hypersur-
face in P(E∨), applying Theorem 4.4, and computing the push-forward by using standard
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intersection-theoretic calculus and the naturality of c∗. The result is that if X is given by
a section of a vector bundle E, then (4.23) computes

(4.24) i∗cSM(X)− c(TM)

c(E)
ctop(E) ∩ [M ]

([13, Theorem 2.5]). If the rank of E exceeds the dimension of M (as required in Theo-
rem 4.30), then the second term vanishes, and the theorem follows. We will come back to
the more general case in §4.6. To our knowledge, the auxiliary hypersurface used in this
argument was first introduced by Callejas-Bedregal, Morgado, and Seade in [26], in the
case of local complete intersections. The construction was also considered independently
by Ohmoto ([75]) and Xia Liao ([65]).

The class (4.23) may be interpreted unambiguously as a class in A∗(X), and it is likely
that it simply equals cSM(X), but the argument we just sketched only shows the equality
in A∗(M).

The reader will certainly notice similarities between the statement of Theorem 4.30 and
the case of hypersurfaces treated in §4.4. The new statement does recover Theorem 4.18
(after push-forward to M) in the hypersurface case, as we see in the example that follows.

Example 4.31. Let X be the hypersurface defined by a section s of a line bundle L ∼= O(X)
on a nonsingular variety M . We may view X as the zero scheme of the section (s, s, . . . , s)
of E = O(X)⊕r+1, for any r ≥ 0. Then

P(E∨) = P(O(−X)⊕r+1) ∼= Pr ×M ;

via this identification, OE∨(1) ∼= OPr×M (1)⊗ π∗O(X). Therefore

c(π∗E∨ ⊗ OE∨(1))

c(OE∨(1))
=

(1 + h)r+1

1 + h+ π∗X
,

where h is the hyperplane class in Pr ×M . The scheme JE(X) is locally defined by the
ideal

((y0 + · · ·+ yr)ds, s)

in Pr×M , where yi are homogeneous coordinates in Pr. Note that (ds, s) is the ideal of the
singularity subscheme JX. A generalization of the residual formula for Segre classes (2.22)
shows that

s(JE(X),P(E∨))∨ ⊗P(E∨) OE∨(1)

=
h

(1 + h)(1 + π∗X)
∩ π∗[X] +

1 + h+ π∗X

(1 + h)(1 + π∗X)
∩ π∗

(
s(JX,M)∨ ⊗M O(X)

)
.

Therefore, the term to push forward in (4.23) evaluates to

(1 + h)r · h
(1 + h+ π∗X)(1 + π∗X)

∩ π∗[X] +
(1 + h)r

1 + π∗X
∩ π∗

(
s(JX,M)∨ ⊗M O(X)

)
.

The push-forward is carried out by the projection formula and reading off the coefficient of
hr. The second summand pushes forward to

1

1 +X
∩
(
s(JX,M)∨ ⊗M O(X)

)
= (c(O(X) ∩ s(JX,M))∨ ⊗M O(X) .

The first summand pushes forward to(
coefficient of hr in

(1 + h)r · h
1 + h+ π∗X

)
∩ [X]

1 +X
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and elementary manipulations evaluate the coefficient, giving(
1− Xr

(1 +X)r

)
∩ [X]

1 +X
.

In conclusion, (4.23) equals

c(TM) ∩
(

[X]

1 +X
+ (c(O(X) ∩ s(JX,M))∨ ⊗M O(X)− Xr

(1 +X)r+1
∩ [X]

)
.

Theorem 4.30 asserts that for r+1 > dimM , this expression equals i∗cSM(X). And indeed,
if r + 1 > dimM , the last term vanishes and we recover the expression in Theorem 4.18. y

As with Proposition 4.26, one intriguing feature of Theorem 4.30 is the vast degree of
freedom in the choice of the data needed to apply it—here, the vector bundle E and the
section of E whose zero-scheme defines X. The fact that different choices of bundles or
of defining sections lead to the same result reflects sophisticated identities involving the
relevant Segre classes, for which we do not know a more direct proof.

4.6. Milnor classes. We have seen that Parusiński’s generalization of the Milnor number
to complex hypersurfaces with arbitrary singularities satisfies (3.10):

µ(X) = (−1)dimX(χ(Xgen)− χ(X)) ,

where Xgen is a nonsingular hypersurface linearly equivalent to X. Also, we have seen that
χ(Xgen) =

∫
cvir(X) (Proposition 4.4) and χ(X) =

∫
cSM(X) (4.15). Therefore,

µ(X) = (−1)dimX

∫
cvir(X)− cSM(X) .

This equality motivates the following definition, which makes sense over any algebraically
closed field of characteristic 0.

Definition 4.32. Let X be a local complete intersection. The Milnor class of X is the
class

M (X) := (−1)dimX (cvir(X)− cSM(X))

where cvir(X) is the class of the virtual tangent bundle of X. y

(Recall that being a local complete intersection in a nonsingular variety is an intrinsic
notion, cf. [51, Remark II.8.22.2, p.185], and that the virtual tangent bundle of a local
complete intersection is well-defined as a class in the Grothendieck group of vector bundles
on X.)

Definition 4.32 would place the class in A∗(X). The class is clearly supported on the
singular locus Xsing of X, and in the case of a hypersurface X we will produce below a well-
defined class in A∗(JX) whose image in A∗(X) is the class of Definition 4.32. Formulas
explicitly localizing the class to the singular locus are also given in the local complete
intersection case in [22] (over C, and in homology).

One could extend the definition of the Milnor class to more general schemes X, as mea-
suring the difference between cSM(X) and cF(X) or cFJ(X) (cf. (4.3)). However, recall that
in general cF(X) 6= cFJ(X) for schemes that are not local complete intersections, so this
would require a choice that seems arbitrary. For this reason, we prefer to only consider the
Milnor class for local complete intersections.

The geometry associated to Milnor classes of hypersurfaces and more generally local
complete intersections has been studied very thoroughly. We mention [80], [22], [71], [26]
among many others, as well as [97], [98], where (to our knowledge) the notion was first
introduced and studied. The contribution [29] to this Handbook includes a thorough survey
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of Milnor classes. Here we focus specifically on the relation between Milnor classes and Segre
classes, and on consequences of this relation.

First, we note that the Milnor class of a hypersurface X of a nonsingular variety M
admits an expression in terms of a Segre operator (4.6):

(4.25) M (X) = c(TvirX) ∩ SegreT∨M ([E ])∨ ,

where [E ] is the class of the exceptional divisor of the blow-up π : B`JXM →M ; as pointed
out in §4.4, E may be viewed as a cycle in P(T∨M), so SegreT∨M ([E ]) is defined. To ver-
ify (4.25), let X = π−1(X); then s(X,M) = π∗s(X , B`JXM), by the birational invariance
of Segre classes, and this implies the expression

cvir(X) = c(TM |X) ∩ π∗
(

[X ]

1 + X

)
for the virtual Chern class of X. Also, note that OT∨M (1)|X ∼= O(X − E )|X (this follows
from (4.11)); by Lemma 4.17, (4.7) implies

cSM(X) = c∗(11X) = c(TM |X) ∩ π∗
(

[X ]− [E ]

1 + X − E

)
.

Therefore

(−1)dimX(cvir(X)− cSM(X)) = (−1)dimXc(TM |X) ∩ π∗
(

[X ]

1 + X
− [X ]− [E ]

1 + X − E

)
= (−1)dimXc(TM |X) ∩ π∗

(
1

1 + X
· [E ]

1 + X − E

)
=
c(TM |X)

1 +X
∩ π∗

(
[E ]

1−X + E

)
∨

=
c(TM |X)

1 +X
∩ π∗

(
c(OT∨M (−1))−1 ∩ [E ]

)
∨

= c(TvirX) ∩ SegreT∨M ([E ])∨

as claimed. By Theorem 4.8, identity (4.25) may be written

M (X) = c(O(X))−1 ∩ c∗(νJX)

for the constructible function νJX whose characteristic cycle is the exceptional divisor E . As
a Lagrangian cycle, [E ] is a linear combination of cycles of conormal spaces of subvarieties
of JX: [E ] =

∑
W nW [N∨WM ]; then, as prescribed by Definition 4.7:

νJX =
∑
W

(−1)dimWnW 11W .

Over C, and if X is reduced, Parusiński and Pragacz ([80, Corollary 2.4]) prove that

νJX = (−1)dimX(χX − 11X) ,

where for p ∈ X, χX(p) denotes the Euler characteristic of the Milnor fiber of X at p.
(In [80], νJX is denoted µ.)

In general, note that E is the projectivized normal cone of JX. If Y is any sub-
scheme of M , then we can associate to Y a constructible function νY by letting νY =∑

W (−1)dimWnW 11W , where the subvarieties W are the supports of the components of the
normal cone CYM and nW is the multiplicity of the component supported on W . Then the
class c∗(νY ) generalizes the class c∗(νJX) = c(O(X)) ∩M (X). Kai Behrend ([19, Proposi-
tion 4.16]) proves that if Y is endowed with a symmetric obstruction theory (the singularity
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subscheme of a hypersurface gives an example), then the 0-dimensional component of c∗(νY )
equals the corresponding ‘virtual fundamental class’; its degree is a Donaldson-Thomas type
invariant.

Expression (4.25) for the Milnor class may be recast in terms of the Segre class s(JX,M).

Proposition 4.33. Let X be a hypersurface in a nonsingular variety M . Then

M (X) = (−1)dimMc(TM |JX) ∩
(
(c(O(X)) ∩ s(JX,M))∨ ⊗M O(X)

)
.

This is an immediate consequence of Theorem 4.18. Indeed,

cvir(X) = c(TvirX) ∩ [X] = c(TM |X)c(NXM)−1 ∩ [X] = c(TM |X)c(O(X))−1 ∩ [X]

= c(TM |X) ∩ ([X]⊗M O(X)) .

Note that we have written the right-hand side in Proposition 4.33 as a class in A∗(JX).
The statement means that this class pushes forward to the difference defining the Milnor
class in Definition 4.32. The formula also implies that every connected component of JX has
a well-defined contribution to the Milnor class of X. Of course if a component is supported
on an isolated point p, and p̂ denotes the part of JX supported on p, then the contribution
of p to the Milnor class is

(−1)dimMc(TM |JX) ∩
(
(c(O(X)) ∩ s(p̂,M)∨)⊗M O(X)

)
= s(p̂,M) ,

a class whose degree equals (in the complex setting) the ordinary Milnor number, cf. §3.3.
Proposition 4.33 may be formulated in terms of the ‘µ-class’ of [3], already mentioned

in §3.3:

µO(X)(JX) := c(T∨M ⊗ O(X)) ∩ s(JX,M) .

Indeed, simple manipulations using (2.20) and (2.21) show that

M (X) = (−1)dimMc(O(X))dimX
(
µO(X)(JX)∨ ⊗M O(X)

)
,

or, equivalently,

µO(X)(JX) = (−1)dimMc(O(X))dimX
(
M (X)∨ ⊗M O(X)

)
.

It is somewhat remarkable that M (X) and µO(X)(JX) are exchanged by the ‘same’ oper-
ation. Such involutions are not uncommon in the theory, see [27], [37].

The µ-class has applications to e.g., duality, and such applications can be formulated in
terms of the Milnor class. We give one explicit example.

Example 4.34. Let M be a nonsingular projective variety, and let H be a hyperplane tangent
to M , that is, a point of the dual variety M∨ of M ; so X = M∩H is a singular hypersurface
of M . Rewriting [3, Proposition 2.2] in terms of the Milnor class, we obtain that the
codimension of M∨ in the dual projective space is the smallest integer r ≥ 1 such that the
component of dimension r − 1 in the class

(1 +X)dimM
(
M (X)∨ ⊗M O(X)

)
does not vanish. Further, the projective degree of this component (viewed as a class in
the dual projective space) equals the multiplicity of M∨ at H, up to sign. (This result
generalizes (3.5).) We do not know a ‘Segre class-free’ proof of these facts.

For a concrete example, consider M = P2×P1, embedded in P5 by the Segre embedding.
Using coordinates (x0 : x1 : x2) for the first factor, and (y0 : y1) for the second factor, let X
be the hypersurface with equation x0y1 = 0: Thus, X is a hyperplane section via the Segre
embedding, and X is the transversal union of two surfaces isomorphic to P1 × P1, resp. ,
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P2, meeting along a P1. If h1, resp., h2 denote the pull-back of the hyperplane class from
the first, resp. second factor, then the reader can verify that

cvir(X) =
(
(h1 + h2) + (2h21 + 3h1h2) + 4h21h2

)
∩ [P2 × P1] ,

cSM(X) =
(
(h1 + h1) + (2h21 + 4h1h2) + 5h21h2

)
∩ [P2 × P1] .

It is easy to obtain these expressions ‘by hand’; in any case, the following application of [54]
will confirm the second assertion.

i1 : load("CharacteristicClasses.m2")

i2 : R=MultiProjCoordRing {2,1}

i3 : CSM ideal(R_0*R_4)

2 2

o3 = 5h h + 2h + 4h h + h + h

1 2 1 1 2 1 2

Therefore

M (X) = (−h1h2 − h21h2) ∩ [P2 × P1] ,

(1 +X)dimM
(
M (X)∨ ⊗ O(X)

)
= −h1h2 ∩ [P2 × P1] .

In fact, it is easy to verify (by hand!) that for the corresponding hypersurface in M =
Pn × P1, we have

M (X) = (−1)n+1(1 + h1)
n−1h1h2 ∩ [Pn × P1] ,

(1 +X)dimM
(
M (X)∨ ⊗ O(X)

)
= (−1)n+1h1h2 ∩ [Pn × P1] .

The conclusion is that M∨ has codimension n in the dual P2n+1, and is nonsingular at
the point corresponding to this hyperplane section. (In fact, it is well known that the
Segre embedding of Pn × P1 in P2n+1 is isomorphic to its dual variety for all n ≥ 1 [89,
Example 9.1].) y

It is natural to ask about extensions of Proposition 4.33 to more general local complete
intersections. For us, X ⊆ M is a local complete intersection if X is the zero-scheme of a
regular section of a vector bundle E defined on some neighborhood of X. For notational
convenience, we will restrict M if necessary and assume that E is defined over the whole
of M . Recall that the bundle E and the section defining X determine a closed subscheme
JE(X) of P(E∨|X) (Definition 4.28). We view JE(X) as a subscheme of P(E∨), and denote
by π : P(E∨)→M the projection.

Theorem 4.35. Let i : X ↪→ M be a local complete intersection in a nonsingular variety
M , obtained as the zero-scheme of a regular section of a vector bundle E of rank codimXM .
Then (−1)dimX+1i∗M (X) equals

(4.26) c(TM) ∩ π∗
(
c(π∗E∨ ⊗ OE∨(1))

c(OE∨(1))
∩
(
s(JE(X),P(E∨))∨ ⊗P(E∨) OE∨(1)

))
in A∗(M).

This statement may seem puzzling at first, since (4.23) and (4.26) are the same formula,
yet the first is stated to equal i∗cSM(X) (for arbitrary X) and the second equals i∗M (X) (for
local complete intersections). The difference is in the ranks of the bundle E: in Theorem 4.30
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the rank is required to exceed the dimension of the ambient varietyM , while in Theorem 4.35
the rank is equal to the codimension of X. Both statements are consequences of the more
general result (4.24): the formula evaluates the CSM class up to a correction term, which
is 0 if rkE � 0, and it is precisely i∗(cvir(X)) if X is a local complete intersection and
rkE = codimXM .

Example 4.36. Let X ⊆ M be a hypersurface defined by a section s of O(X). In Exam-
ple 4.31 we viewed X as the zero scheme of the section (s, . . . , s) of O(X)⊕r+1, and showed
that (4.23) evaluates to

c(TM) ∩
(

[X]

1 +X
+ (c(O(X) ∩ s(JX,M))∨ ⊗M O(X)− Xr

(1 +X)r+1
∩ [X]

)
.

The case considered in Theorem 4.35 corresponds to r = 0, for which the formula gives

c(TM) ∩
(
(c(O(X) ∩ s(JX,M))∨ ⊗M O(X)

)
,

agreeing with (−1)dimX+1i∗M (X) by Proposition 4.33. In this sense, Theorem 4.35 gener-
alizes Proposition 4.33. y

Expression (4.26) shows that, as in the case of the ‘characteristic’ classes reviewed in
this section, the Milnor class of a local complete intersection is determined by a Segre
class, s(JE(X),P(E∨)) in this case. If M = Pn, this class can be computed using e.g., the
Macaulay2 package [49]; the other ingredients in (4.26) are straightforward. For explicit
formulas and examples, see [13].

5. Lê cycles

5.1. Stückrad-Vogel intersection theory and van Gastel’s result. An ‘excess inter-
section’ situation occurs when loci intersect in higher than expected dimension. For exam-
ple, r hypersurfaces in a nonsingular variety M are expected to intersect in a codimension-r
subscheme; if they intersect along a subscheme of higher dimension, ‘excess’ intersection
occurs.

The ability to deal with excess intersection is one the successes of Fulton-MacPherson’s
intersection theory. If X1, . . . , Xr are hypersurfaces, and Z is a connected component of
X1 ∩ · · · ∩Xr, then the contribution of Z to the intersection product of the classes of the
hypersurfaces may be written as

(5.1)

{
r∏
i=1

(1 +Xi) ∩ s(Z,M)

}
dimM−r

.

For this, view X1 · · ·Xr as (X1 × · · · ×Xr) ·∆, where ∆ is the diagonal in M × · · · ×M :
we have (X1 × · · · ×Xr) ∩∆ ∼= X1 ∩ · · · ∩Xr, ∆ ∼= M , and we consider the fiber diagram

X1 ∩ · · · ∩Xr
//

��

∆ ∼= M

��
X1 × · · · ×Xr

// M × · · · ×M .

We can view Z as a connected component of (X1 × · · · × Xr) ∩∆. The restriction of the
normal bundle NX1×···×Xr(M × · · · ×M) to Z is then isomorphic to ⊕iO(Xi)|Z , so that its
Chern class is (the restriction of)

∏r
i=1(1 + Xi). Then (5.1) follows from (2.14). The fact

that Z may be of dimension higher than dimM − r is precisely accounted for by the Segre
class of Z in M .
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An alternative approach to intersection theory in projective space, dealing differently with
excess intersection, was developed by Jürgen Stückrad and Wolfgang Vogel ([88], and see
[35] for a comprehensive account). In excess intersection situations, this approach produces
a cycle after a transcendental extension of the base field; the intersection product can be
computed from this cycle, and agrees with the Fulton-MacPherson intersection product.

We review the construction of the Stückrad-Vogel ‘v-cycle’, essentially following the ‘geo-
metric’ account given in [91], where it is also extended to the setting of more general schemes.
However, we only present the construction in the somewhat limited scope needed for our
application, and we make a substantial simplification, at the price of only obtaining a cycle
depending on general choices. (The Stückrad-Vogel construction produces a well-defined
cycle independent of such choices, after a transcendental extension of the base field.)

Let V be a variety, L a line bundle on V , s1, . . . , sr nonzero sections of L , and D the
collection of the corresponding Cartier divisors D1, . . . , Dr. The sections s1, . . . , sr span a
subspace of H0(V,L ); by a ‘D-divisor’ we will mean a divisor defined by a section of this
subspace. Let Z = D1 ∩ · · · ∩Dr.

The following inductive procedure constructs a cycle on Z, depending on general choices of
D-divisors. The procedure only involves proper intersections with Cartier divisors, which is
defined at the level of cycles: if W is a variety, and a Cartier divisor D intersects it properly,
i.e., it does not contain it, then D∩W is a Cartier divisor in W (or empty), and we denote
by D ∗W the corresponding cycle (or 0). The class of this cycle is the intersection product
of [W ] by D in the Chow group. By linearity, this operation is extended to cycles ρ such
that D does not contain any component of ρ: then D ∗ ρ denotes the corresponding ‘proper
intersection’ product.

The algorithm may be described as follows.

• Let α0 = 0, ρ0 = V ;
• For j > 0: if ρj−1 6= 0, then a general D divisor D′j intersects ρj−1 properly; let

D′j ∗ ρj−1 = αj + ρj , where αj collects the components of the intersection product
that are contained in Z = D1 ∩ · · · ∩Dr;
• This procedure stops when ρj = 0.

It is easy to see that a general D′j does intersect ρj−1 properly, so it is always possible

to make the choice needed in the second point. Also, let s′j be the section defining D′j .

The construction implies that if ρj−1 6= 0, then s′j is not in the span of s′1, . . . , s
′
j−1. In

particular, the procedure must stop at some j ≤ r. We set αi = ρi = 0 for j < i ≤ r.
Definition 5.1. We denote by D ∩. V the sum

∑r
i=0 α

i. This is a cycle on Z = D1∩· · ·∩Dr.
y

Remark 5.2. We chose the notation D ∩. V to align with the notation used by van Gastel (in
a more general context). This is the ‘v-cycle’ determined by D . The definition presented
above only depends on the linear system spanned by the sections defining the divisors Di

in the collection D . y

According to our definition, the cycle D ∩. V depends on the choice of the divisors D′j .
One of the advantages of the more sophisticated Stückrad-Vogel construction is that it
yields a well-defined cycle independent of any choice, albeit after extending the ground
field. However, we are only interested in the rational equivalence class of D ∩. V , and this
is independent of the choices. In fact, the following holds.

Theorem 5.3. With notation as above,

[D ∩. V ] = s(Z, V )⊗V L ∨
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in A∗(Z).

In the context of Stückrad-Vogel intersection theory, this is [91, Corollary 3.6]. Theo-
rem 5.3 can also be proved by interpreting D ∩. V in terms of the blow-up of V along Z;
this naturally identifies its rational equivalence class as a ‘tensored Segre class’ in the sense
of [12], up to a product by c(L ).

By (2.21), Theorem 5.3 is equivalent to

(5.2) s(Z, V ) = [D ∩. V ]⊗V L .

Using (5.1), we see that

D1 · · ·Dr ∩ [V ] = {c(L )r ∩ ([D ∩. V ]⊗V L )}dimV−r

in AdimV−rZ. This is equivalent to the formula

D1 · · ·Dr ∩ [V ] =

r∑
j=0

c1(L )r−j ∩ αj ,

cf. [91, Proposition 1.2 (c)].
In conclusion, the Stückrad-Vogel construction offers an alternative to the treatment of

excess intersection of linearly equivalent divisors. By (5.2), the relevant Segre class may be
computed in terms of the v-cycle. Among other pleasant features, this approach leads to
‘positivity’ statements for Segre classes: by construction, the v-cycle is effective; by (5.2),
the non-effective parts of the Segre class of the intersection of sections of a line bundle L
are due to the ‘tensor’ operation ⊗V L . (Cf. [12, Corollary 1.3].)

5.2. Lê cycles and numbers. Broadly speaking, one can view singularities as arising
because of an excess intersection. For example, if X is a hypersurface of Pn, with equation
F (x0, . . . , xn) = 0, the singular locus of X is the intersection of the n+1 hypersurfaces with
equations ∂F/∂xi = 0, i = 0, . . . , n. Then X is singular precisely when these hypersurfaces
meet with excess intersection. The scheme they define is the singularity subscheme JX of
Definition 2.14; and the Segre class that is relevant to the Fulton-MacPherson approach is
precisely, and not surprisingly, the class s(JX,M) that appears in most results concerning
hypersurfaces reviewed in §3 and 4. Taking the point of view of §5.1, we could express these
results in terms of the v-cycle corresponding to the linear system spanned by the partials.

A closely related construction was provided (independently from Stückrad and Vogel)
by Massey in 1986, leading to his definition of Lê cycles ([68], [69], [70]). The theory and
applications of Lê cycles are surveyed in [67]. Massey’s definition may be given for analytic
functions defined for a nonempty open subset of Cn+1. We are going to consider the case
of a homogeneous polynomial, and view it as the generator of the ideal of a hypersurface in
Pn. We will follow [67, §7.7] for the resulting projective Lê cycles. The considerations that
follow would hold over any algebraically closed field of characteristic 0.

Let F (x0, . . . , xn) be a homogeneous polynomial, defining a projective hypersurface X ⊆
Pn. Massey’s definition can be phrased in terms very close to the inductive definition given
in §5.1, applied to the linear system spanned by the derivative ∂F/∂xi of F . We give the
affine definition of the cycles first.

• Let Γn+1 = Cn+1, Λn+1 = 0;
• For 1 ≤ k ≤ n+ 1, define Γk−1 and Λk−1 by downward induction by

Γk ∗ V
(

∂F

∂xk−1

)
= Λk−1 + Γk−1 ,
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where the (cycle-theoretic) intersection is assumed to be proper, and Λk−1 consists
of the components contained in JX, Γk−1 of the other components.

Following [67, §7.7]:

Definition 5.4. The projective Lê cycles of X are the cycles
Vk
X := P(Λk+1). y

The projectivization of the cycles Γj are the projective relative polar cycles of X.
The Lê cycles of X evidently depend on the chosen coordinates, and may not be defined

for certain choices as the cycles appearing in the definition may fail to meet properly. Massey
proves that a general choice of coordinates guarantees that the intersections are proper, so
that the corresponding Lê cycles exist. In the following, the Lê cycles we consider will be
assumed to be obtained from a general choice of coordinates.

Comparing Massey’s definition with Definition 5.1, we recognize that the sum
∑n

k=0

Vk
of Lê cycles may be viewed as an instance of the v-cycle D ∩. Pn, where D is the collection
of partial derivatives of F . The dependence on the choices (e.g., the choice of coordinates
in Massey’s definition, or the choice of D′j in Definition 5.1) is eliminated once one passes
to rational equivalence, so that

[D ∩. Pn] =
∑
k

[
Vk
X ]

in A∗(JX) if all choices are general. (Note however that the indexing conventions differ, so
that with notation as in §5.1, [

Vk
X ] = [αn−k].)

With this understood, the next result follows immediately from Theorem 5.3.

Proposition 5.5. Let X be a degree-d hypersurface in Pn, with projective Lê cycles
Vk
X .

Then

(5.3)
∑
k

[
Vk
X ] = s(JX,Pn)⊗Pn O(−(d− 1))

in A∗(JX).

Remark 5.6. For M = Cn, Gaffney and Gassler ([43]) propose a generalization of classes
of Lê cycles based on more general ideals, which in the case of the Jacobian ideal of a
polynomial defining a hypersurface X is closely related with the Segre class of JX (cf. the
definition of the Segre cycle Λg

k(I, Y ) in [43, (2.1)]). Partly motivated by this work, Callejas-
Bedregal, Morgado, and Seade gave a definition of Lê cycles for a hypersurface X of a
compact complex manifold M , which amounts essentially to a cycle representing the Segre
class s(JX,M) ([27, Definition 3.2]). This definition is not compatible with Massey’s Lê
cycles for M = Pn, as the authors opted to omit the extra tensor appearing in (5.3). Since
the ‘hyperplane’ defined in [43] differs from the tautological class used in [27], this causes
a discrepancy amounting to a twist of the line bundle of the hypersurface. This twist is
accounted for in Proposition 5.5, which is compatible with the construction in [43].

See [28] and [37] for further discussions of [27, Definition 3.2]. In particular, Callejas-
Bedregal, Morgado, and Seade propose an alternative ‘geometric’ definition in [28] (Defi-
nition 1.3), which does agree with Massey’s for M = Pn. Also see [29, §4] (particularly
Definition 4.4) for a comprehensive account. We will come back to this definition in §5.3. y

The fact that the Lê cycles are cycles is important for geometric applications. Proposi-
tion 5.5 only computes their classes up to rational equivalence, in the Chow group A∗(JX)
of the singularity subscheme of the hypersurface. These classes still carry useful information,
even after a push-forward by the inclusion ι : JX → Pn. We consider the class

ι∗([
Vk
X ]) = λkX [Pk] ,
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where the integers λkX are (still following Massey) called the Lê numbers of the hypersurface.
(Massey’s Lê numbers also depend on the choice of coordinates; again, we will assume that
the choice of coordinates is sufficiently general.) Proposition 5.5 implies as an immediate
corollary a formula for the Lê numbers in terms of the degrees of the components of the
Segre class (and conversely).

Corollary 5.7. Let X ⊆ Pn be a hypersurface, and denote by si the degree of the i-th
dimensional component of the Segre class s(JX,Pn). Then for k = 0, . . . , n:

λkX =
n∑
j=k

(
n− k − 1

j − k

)
(d− 1)j−ksj(5.4)

sk =

n∑
j=k

(
n− k − 1

j − k

)
(−(d− 1))j−kλjX .(5.5)

Proof. Denote the hyperplane class byH. By Proposition 5.5 and the definition of⊗Pn (2.19):

(λnX + λn−1X H + · · ·+ λ0XH
n) ∩ [Pn]

= ((sn + sn−1H + · · ·+ s0H
n) ∩ [Pn])⊗Pn O(−(d− 1))

=

(
sn +

sn−1H

(1− (d− 1)H)
+ · · ·+ s0H

n

(1− (d− 1)H)n

)
∩ [Pn]

and the first formula follows by matching terms of equal degrees in the two expressions.
‘Solving for s(JX,Pn)’ in Proposition 5.5 gives

s(JX,Pn) =
∑
k

[
Vk
X ]⊗Pn O(d− 1)

(apply (2.21)), and the second formula follows by the same token. �

Remark 5.8. Formula (5.4) in Corollary 5.7:

λkX = sk + (n− k − 1)(d− 1)sk+1 +

(
n− k − 1

2

)
(d− 1)2sk+2 + · · · .

can be viewed as the degree of the ordinary Segre class, ‘corrected’ by a term determined
by the degree d of the hypersurface.

In the introduction to [43], Gaffney and Gassler state: “. . . In fact, the Segre numbers (of
the Jacobian ideal) are just the Lê numbers of David Massey.” Corollary 5.7 is compatible
with this assertion: it is easy to verify that the ‘Segre numbers’ of [43] agree with the
right-hand side of (5.4). y

Example 5.9. Consider the hypersurface X of P5 defined by the polynomial

F = x70 − x71 − (x32 + x33 + x34 + x35)x
4
0 .

The singularity subscheme JX is a non-reduced 3-dimensional subscheme of P5 supported
on the linear subspace x0 = x1 = 0. We can use the package [49] to compute its Segre class:

i1 : load("SegreClasses.m2")

i2 : R=ZZ/32749[x0,x1,x2,x3,x4,x5]

i3 : X=ideal(x1^7- x0^7 - (x2^3+x3^3+x4^3+x5^3)*x0^4)

i4 : JX=ideal jacobian X
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i5 : segre(JX,ideal(0_R))

5 4 3 2

o5 = - 3168H + 792H - 144H + 18H

1 1 1 1

(Working over a finite field of large characteristic does not affect the result, and often leads
to faster computations.) Thus,

ι∗s(JX,P5) = 18[P3]− 144[P2] + 792[P1]− 3168[P0] ,

and Corollary 5.7 yields

λ4X = 0

λ3X = 18

λ2X = −144 + 2 · 6 · 18 = 72

λ1X = 792 + 3 · 6 · (−144) +
(
3
2

)
· 36 · 18 = 144

λ0X = −3168 + 4 · 6 · 792 +
(
4
2

)
· 36 · (−144) +

(
4
3

)
· 216 · 18 = 288 .

These Lê numbers agree with those obtained by applying Massey’s inductive definition
with coordinates (x0, . . . , x5); the Lê cycles are complete intersections in this case, and
computing their degrees is straightforward. (Using (x5, . . . , x0) leads to a different list; this
latter choice is not sufficiently general.) y

We can also projectivize the cycles Γk appearing in Massey’s definition (corresponding
to the ρ-cycles in the Stückrad-Vogel algorithm). Again (loosely) following Massey, we callLk
X := P(Γk+1) the ‘projective polar cycles’ of X, and their degrees γkX the ‘polar numbers’

of X. We assume these are computed for a general choice of coordinates.
At the level of rational equivalence classes, Massey’s algorithm implies easily the relation∑

k

[
Vk
X ] = [Pn]− (1− (d− 1)H)

∑
k

[
Lk
X ]

from which λnX = 0 and

λkX = (d− 1)γk+1
X − γkX

for 0 ≤ k < n. Equivalently,

γkX = (d− 1)n−k −
n−1∑
j=k

(d− 1)j−kλjX

for 0 ≤ k ≤ n. (Also see [67, Corollary 7.7.3].)

Corollary 5.10. With notation as in Corollary 5.7, and for k = 0, . . . , n:

γkX = (d− 1)n−k −
n∑
j=k

(
n− k
j − k

)
(d− 1)j−ksj

sk = δnk −
n∑
j=k

(
n− k
j − k

)
(−(d− 1))j−kγjX

where δnk = 1 if k = n, 0 otherwise.
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Proof. The first formula is obtained by reading off the coefficient of [Pk] in the identity

(5.6)
∑
k

[
Lk
X ] = (1− (d− 1)H)−1 ∩ ([Pn]− s(JX,Pn)⊗Pn O(−(d− 1))) ,

which follows from the above discussion and Proposition 5.5. Solving for s(JX,Pn) in (5.6)
gives

s(JX,Pn) = [Pn]− (1 + (d− 1)H)−1 ∩
∑
k

([
Lk
X ]⊗Pn O(d− 1))

(use (2.20) and (2.21)) with the stated implication on degrees. �

Example 5.11. For the hypersurface in Example 5.9, the computation of the polar numbers
runs as follows.

γ5X = 1

γ4X = 6

γ3X = 36− 18 = 18

γ2X = 216− (−144)−
(
3
1

)
· 6 · 18 = 36

γ1X = 1296− 792−
(
4
1

)
· 6 · (−144)−

(
4
2

)
· 36 · 18 = 72

γ0X = 7776− (−3168)−
(
5
1

)
· 6 · 792−

(
5
2

)
· 36 · (−144)−

(
5
3

)
· 216 · 18 = 144 .

Again, it is straightforward to verify that these agree with the result of Massey’s algorithm,
applied with coordinates (x0, . . . , x5). y

Remark 5.12. We already mentioned (Remark 4.12) Piene’s seminal 1978 paper [81], in-
cluding formulas for polar classes of hypersurfaces in terms of Segre classes. The reader is
warned that these two uses of the term ‘polar’ differ: Piene’s polar classes of a hypersurface
X are classes in A∗(X), while Massey’s polar cycles are not supported on X. Therefore, the
degrees of Piene’s polar classes are not the polar numbers γk computed above. However, we
note that the formula in Corollary 5.10 is very similar to the formula in [81, Theorem 2.3];
the main difference is in the use of s(JX,M) rather than s(JX,X). y

5.3. Lê, Milnor, Segre. One moral to be drawn from the preceding considerations is
that the information carried by the Lê classes of a hypersurface X of projective space, its
Milnor class, and the Segre class of its singularity subscheme JX, is essentially the same.
The relation between Segre classes and Milnor classes goes back to [2], while the relation
between Milnor classes and Lê classes was first studied in [27, 28]. As far as hypersurfaces of
projective space are concerned, many of the results covered in this review could be written
in terms of any of these notions. Note however that extending Lê cycles/classes to the
setting of a hypersurface of a more general nonsingular variety is nontrivial (this is one
of the main goals of [27]; and see below); localizing Milnor classes to the components of
the singular locus also requires nontrivial considerations (see e.g., [22]); while the Segre
class of the singularity subscheme JX is naturally defined as a class in the Chow group of
JX, does not require a projective embedding, and may be considered over arbitrary fields.
For these reasons, it would seem that the language of Segre classes is preferable over these
alternatives.

For the convenience of the reader, we collect here the formulas translating these notions
into one another. For notational economy we will let

V
:=
∑
k

[
Vk
X ] , M := M (X) , S := s(JX,Pn)
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for a degree-d hypersurface X of Pn, and omit evident push-forwards. Then, denoting by
H the hyperplane class:{V

= S ⊗Pn O(−(d− 1)H)

S =
V
⊗Pn O((d− 1)H)

(5.7)


M = (−1)n

(1 +H)n+1

1 + dH
∩
(
S∨ ⊗Pn O(dH)

)
S = (−1)n

(1 + dH)n

(1 + (d− 1)H)n+1
∩
(
M ∨ ⊗Pn O(dH)

)(5.8)


V

= (−1)n(1 +H)n(1− (d− 1)H) ∩ (M ∨ ⊗Pn O(H))

M = (−1)n
(1 +H)n+1

1 + dH
∩ (

V∨ ⊗Pn O(H))
(5.9)

Indeed, (5.7) follows from Proposition 5.5; (5.8) from Proposition 4.33; and (5.9) is then an
immediate consequence, using (2.20) and (2.21).

This dictionary suggests possible extensions of the notion of Lê classes to hypersurfaces
of more general varieties. Let M be a nonsingular compact complex variety endowed with
a very ample line bundle O(H). For a hypersurface X of M , Callejas-Bedregal, Morgado,
and Seade have constructed global Lê cycles, determined by the choice of linear subspaces
of Pn, generalizing the case M = Pn; see [28, Definition 1.3] and [29, §4.3]. Denoting the
corresponding class

V
CBMS(X), and letting L = O(X), they prove the following result

(which we state using our notation).

Theorem 5.13 ([29, Theorem 4.6]).
V
CBMS(X) = (−1)dimMc(O(H))dimM c(O(H)⊗L ∨) ∩ (M (X)∨ ⊗M O(H))

M (X) = (−1)dimMc(O(H))dimM+1 c(L )−1 ∩ (
V
CBMS(X)∨ ⊗M O(H)) .

That is, the natural generalization of (5.9) holds for this class; the class
V
CBMS agrees

with the class of Massey’s Lê cycle for M = Pn.
It is straightforward (using Proposition 4.33 and (2.20) and (2.21)) to write

V
CBMS(X)

in terms of a Segre class:
V
CBMS(X) = c(O(H)) c(T∨M ⊗ O(H)) ∩

(
s(JX,M)⊗M (O(H)⊗L ∨)

)
.

This expression reduces to (5.7) for M = Pn, and it could be used to extend the definition
of

V
CBMS(X) to arbitrary fields and possibly noncomplete varieties.

There are other possible extensions of Massey’s Lê class to more general projective vari-
eties; (5.7) suggests alternative generalizations. Exploring such alternatives is the subject
of current research.
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[17] P. Aluffi, L. C. Mihalcea, J. Schürmann, and C. Su. Shadows of characteristic cycles, Verma modules,

and positivity of Chern-Schwartz-MacPherson classes of Schubert cells. arXiv:1709.08697.
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[47] A. Grothendieck. La théorie des classes de Chern. Bull. Soc. Math. France, 86:137–154, 1958.
[48] C. Harris. Computing Segre classes in arbitrary projective varieties. J. Symbolic Comput., 82:26–37,

2017.
[49] C. Harris and M. Helmer. SegreClasses: A Macaulay2 package. Version 1.02. Available at https:

//github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.
[50] C. Harris and M. Helmer. Segre class computation and practical applications. Math. Comp.,

89(321):465–491, 2020.
[51] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977.
[52] M. Helmer. Algorithms to compute the topological Euler characteristic, Chern-Schwartz-MacPherson

class and Segre class of projective varieties. J. Symbolic Comput., 73:120–138, 2016.
[53] M. Helmer. Computing characteristic classes of subschemes of smooth toric varieties. J. Algebra,

476:548–582, 2017.
[54] M. Helmer and C. Jost. CharacteristicClasses: A Macaulay2 package. Version 2.0. Available at https:

//github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.
[55] J. Huh. Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Amer.

Math. Soc., 25(3):907–927, 2012.
[56] C. Huneke and M. Rossi. The dimension and components of symmetric algebras. J. Algebra, 98(1):200–

210, 1986.
[57] K. W. Johnson. Immersion and embedding of projective varieties. Acta Math., 140(1-2):49–74, 1978.
[58] C. Jost. Computing characteristic classes and the topological Euler characteristic of complex projective

schemes. J. Softw. Algebra Geom., 7:31–39, 2015.
[59] S. Keel. Intersection theory of linear embeddings. Trans. Amer. Math. Soc., 335(1):195–212, 1993.
[60] G. Kennedy. MacPherson’s Chern classes of singular algebraic varieties. Comm. Algebra, 18(9):2821–

2839, 1990.
[61] S. Kleiman and A. Thorup. A geometric theory of the Buchsbaum-Rim multiplicity. J. Algebra,

167(1):168–231, 1994.
[62] S. Kleiman and A. Thorup. Mixed Buchsbaum-Rim multiplicities. Amer. J. Math., 118(3):529–569,

1996.
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