LOG CONCAVITY OF THE GROTHENDIECK CLASS OF M,
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ABSTRACT. Using a known recursive formula for the Grothendieck classes of the moduli
spaces Mo,,, we prove that they satisfy an asymptotic form of ultra-log-concavity as poly-
nomials in the Lefschetz class. We also observe that these polynomials are «-positive. Both
properties, along with numerical evidence, support the conjecture that these polynomials
only have real zeros. This conjecture may be viewed as a particular case of a possible
extension of a conjecture of Ferroni-Schréter and Huh on Hilbert series of Chow rings of
matroids.

We prove asymptotic ultra-log-concavity by studying differential equations obtained
from the recursion, whose solutions are the generating functions of the individual Betti
numbers of My ,. We obtain a rather complete description of these generating functions,
determining their asymptotic behavior; their dominant term is controlled by the coefficients
of the Lambert W function. The ~-positivity property follows directly from the recursion,
extending the argument of Ferroni et al. proving y-positivity for the Hilbert series of the
Chow ring of matroids.

1. INTRODUCTION

As a straightforward consequence of the Hard Lefschetz theorem, the sequence of (even)
Betti numbers of a smooth complex projective variety is unimodal. This fact is discussed
in detail in [Sta89, Theorem 18]. The sequence is not necessarily log-concave, but there are
situations where it is expected to be; for example, this is discussed in [MMPR23] for the
case of configuration spaces, providing log-concavity results for e.g., the space of ordered
n-tuples of points in C.

The object of study of this note is the moduli space My, of stable n-pointed curves of
genus 0 for n > 3. We prove an asymptotic log-concavity property for the Poincaré poly-
nomials of these varieties. We also remark that these polynomials are ‘y-positive’. These
results may be viewed as evidence for a conjecture stating that the Poincaré polynomials
of the varieties M ,, only have real zeros, see below.

We focus on the class of My, in the Grothendieck group of varieties K(Varc). It is
known (cf. [MMI16], and §2| below) that the class of My, is a polynomial with integer
coefficients in the Lefschetz-Tate class L = [Al]. We denote this class by

(Mol = ano+ ani L+ + an,n_glnfg .

The Poincaré polynomial is obtained by specializing L to t2; M, only has even cohomology
(also cf. [Kee92, p. 549]), and the integers a, j may be interpreted as the ranks of the
cohomology groups of My ,,. Log-concavity of these polynomials amounts to the statement
that a?m- > api—1an+1 for all ¢ > 1 and all n > 3. The stronger condition of wultra-log-

concavity is the inequality
2
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forall > 1, alln > 3.

Theorem 1.1. With notation as above, Vi > 1 AN s.t. Vn > N

2
Gn,i Onji—1 GQng+l
(1.1) 2 e
("7%) (=0 ()

Thus, an asymptotic log-concavity property holds for the coefficients of the Grothendieck
class of My, that is, for the Betti numbers a,, ;, = rk H?*(Mg ,, Q).

The class [My,] is explicitly known recursively, see [Kee92], [MMI16], Proposition 3.2],
and (2.1) below. The first several expressions for this class are

1
L+1
L2 +5L+1
L3 + 16L* + 16L + 1
L4 + 4213 + 12712 + 42L + 1
L% 4+ 99IL* 4 71513 + 71512 + 99LL + 1
LS + 219L° + 3292IL* + 772313 + 329217 4 219L + 1
L7 + 466IL° + 1333315 + 63173L"* + 6317313 4 133331L% + 4661 + 1
L8 + 9687 + 495561L° + 4295945 + 861235L% + 42959413 + 495561L% 4 968L + 1

Numerical evidence supports the following conjecture. We have learned that the same
conjecture was independently formulated by Luis Ferroni.

Conjecture 1. The polynomial P, (t) € Z[t], such that [My,] = P,(L), has only real zeros.

Due to a standard result attributed to Newton ([Sta89, Theorem 2]), this conjecture
would imply ultra-log-concavity of the polynomials. Thus, Theorem gives some support
to Conjecture [T}

This conjecture may be viewed as a particular case of a possible extension of a conjecture
made in the context of matroids. Indeed, the cohomology of My, agrees with the Chow
ring of the braid matroid, with respect to the minimal building set; see [FMSV24, §5.2].
The first of the conjectures listed in [FMSV24, Conjecture 1.6] posits that the Hilbert series
of the Chow ring of an arbitrary matroid, with respect to the maximal building set, should
only have real roots. (This conjecture is due independently to Ferroni-Schroter and Huh,
see [FS24] Conjecture 8.18].) Conjecture |1 ventures that the same should occur for the
braid matroid with respect to the minimal building set. However, it should be noted that
the Hilbert series of the Chow ring of a matroid with respect to the minimal building set is
in general not real-rooted, as simple examples show.

Poincaré duality implies that the polynomials expressing [My ] are palindromic. For
palindromic polynomials with nonnegative coefficients, real-rootedness also implies ‘y-posi-
tivity’, which amounts to the positivity of the coefficients of the polynomials in a basis
consisting of polynomials of the type t*(1 + t)/ (see for the precise definition). The
following result is a straightforward consequence of the recursive formula determin-
ing [Mo,], and may be viewed as further evidence for Conjecture

Theorem 1.2. For all n > 3, the polynomial P,(t) € Z[t] such that [My,] = P,(L) is
y-positive.
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The recursive formula determining [My ] is proved in [MMI6] by an argument using
a suitable tree-level partition function. This method is modeled on the analogous result
for the Poincaré polynomial of My, obtained by Y. Manin in [Man95]. The recursion is
equivalent to a recursion for the Betti numbers stated by S. Keel in [Kee92, p. 550], following
from his complete determination of the Chow groups of My ,. For the convenience of the
reader, in §2| we reprove the recursion formula for the Grothendieck class of My, directly
from Keel’s description of ﬂ(),n as a sequence of blow-ups over ﬂo,n—l X ﬂoA. In §3[ we
prove Theorem as a direct consequence of the recursive formula .

Keel’s recursion involves the whole set of Betti numbers, while in order to prove Theo-
rem it is necessary to obtain information about the sequences of a,, ;, for fixed k. In
we explain how to obtain first order linear differential equations satisfied by the generat-

ing functions ay(z) == 3,53 an,k%, determining these functions along with the initial

condition ay(0) = 0. For instance,

02 _ (o) 4 3e8s - 221102410 5, 24520+ 8544
dz 2 2
from which
3 3z 4 5 3 1
ar(2) = 2o (4 D)2 4 (o 2 24 )
2 8 6 2
Z4 Z5 2,6 27 ZS 29 10
=1-Z416- 2 4+127- = +715- 2 +3292- = 4+ 13333 - =~ 449556 - — + - - -

amET o " 7 T or 1o

recovering the coefficients of L2 in the table displayed above.

We use an inductive argument to obtain a general description of these generating func-
tions as finite linear combinations of exponentials with (signed) polynomial coefficients
pgf) (z) € Q[z], 0 < m < k, see Theorem This is the key technical result in this
paper. The polynomials pgf) certainly deserve further study; here we compute their de-
gree and prove that their leading coefficient is positive, and we conjecture that they are
ultra-log-concave with very few exceptions, see Conjecture

The dominant terms in the expressions we obtain determine the asymptotic behavior of
the Betti numbers of Mo,n- The following result appears to be new.

Theorem 1.3. For all k > 0,

o k’—i— 1)]€+n71
Qnfp =T (Mon) 7(]{4_1)!
as n — oo.

Theorem [1.3|is equivalent to the statement that, as n — oo,

73 J—

(h+ 1) W)

k=0

(in the sense that for every k > 0, the coefficient of t* in the Lh.s. converges to the cor-

responding coefficient in the r.h.s. as n — oo) where W(t) is the principal branch of the

Lambert W function, characterized by the identity W (t)eV' ) = t. The function —W (—t)
is the tree function, denoted T'(t) in [CGH™96].

Theorem [I.1] follows easily from Theorem [I.3] see §5] In fact, in §5 we will obtain a more

precise result than Theorem We will show that there exist polynomials g (n) € Q[n]



4 PAOLO ALUFFI, STEPHANIE CHEN, AND MATILDE MARCOLLI

of degree 2m, with positive leading coefficient, such that

rkH%(Mo,n)—(kE]:l)k)l (k+1)" —G—Z ) - (E+1—m)"

(Theorem Remark . The polynomials q7(n) have straightforward expressions in terms
of the coefficients of the polynomials p,(fi) and are also objects of evident interest.

More explicit information on the Grothendieck class [My,] is obtained in [AMN24],
building upon results in this paper, particularly Theorem [£.1] Among other results, further
evidence for Conjecture [2] is obtained and certain generating functions defined in terms of
the polynomials p,(fnf) (z) mentioned above are shown to be rational functions in the tree
function. In a sense, Theorem is the first instance of this phenomenon.

Acknowledgments. The authors are grateful to J. Huh for pointing out reference [FMSV24]
and to Luis Ferroni, Matt Larson, and Sam Payne for helpful comments. P.A. was supported
in part by the Simons Foundation, collaboration grant #625561, and by an FSU ‘COFRS’
award. He thanks Caltech for hospitality. S.C. was supported by a Summer Undergraduate
Research Fellowship at Caltech. M.M. was supported by NSF grant DMS-2104330.

2. RECURSION FOR THE GROTHENDIECK CLASS OF M,

The class [My ] in the Grothendieck group K (Vary), k any algebraically closed field, is
determined by the following recursion.

Theorem 2.1. [My3] =1. Forn >3,

n—2
(2.1) (Mon] = [Mopa](1+L)+L > <7Z__ 12) [Mo,i] [Mont1—i) -
=3

This formula is equivalent to the statement given in [MMI6], proved there by the same
method used to prove an analogous statement for the Poincaré polynomial in [Man95], that
is, by adding contributions of strata of My,. Ultimately, the recursion follows from

Moy]=L~-2)---(L-k+2),

which is easily proved directly, and a sum over trees performed by using (to quote [Man95])
‘a general formula of perturbation theory in order to reduce the calculation of the relevant
generating functions to the problem of finding the critical value of an appropriate formal
potential.’

The recursion is equivalent to a recursive formula determining the set of Betti numbers
of Mo, give in [Kee92, p. 550]. In this reference, the formulas for the Betti numbers
are presented as a consequence of the determination of the Chow groups of My ,, [Kee92,
Theorem 1, §3]. The literature on such formulas is very rich. We mention that the recursion
is equivalent to a functional equation obtained by Getzler as a consequence of [Get95),
Theorem 5.9] and presented as a reformulation of a computation of Fulton and MacPherson
from [FM94]. An alternative version of the same functional equation is given by Manin
n [Man95, (0.7)]. Chen-Gibney-Krashen extend these formulas to the case of pointed
projective spaces and to the motivic setting, [CGK09]; Li obtains general motivic formulas
for configuration spaces in [Li09].

IWe alert the reader to two typos in the cited formula in [Kee92]: the binomial (Z) should be (;‘), and
the expression n — j — 1 should be n — j + 1.
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For the convenience of the reader, we offer a direct derivation of the recursion in the
Grothendieck group K (Vary) from Keel’s description of Mg ,.

Proof of Theorem [2.1. We recall Keel’s recursive construction of My, from [Kee92]. The
space My 3 is a point, and Mg = P'. For n > 4, My, is constructed as a sequence
of blow-ups over /\/lo ne1 X Mo 4. The centers of the blow-ups are all disjoint, smooth, of
codimension 2. In fact, they are isomorphic to products
Mo 1141 X Mo Te|41 5

where T denotes a subset of {1,...,n — 1} such that the complement T contains two of
1,2,3. Note that each center is isomorphic to MOJ X M07n+1_i, withi=3,...,n—2.

Now, if V is the blow-up of a variety V along a regularly embedded center B of codimen-
sion r, then the Grothendieck class of V is

[V]=[V]+ L+ + LB
Indeed, the exceptional divisor of the blow-up is isomorphic to the projectivization of NgV,
a P""L-bundle over B. In the case we are considering, we are blowing up Mg ,—1 x Mo 4,
with class o o o o
[Mos—1 x Moa] = [Mon—1 x P] = [Mon—1](1 +L)
and each center has codimension r = 2; therefore
[(Mon] = [Mon1)(1+1L) +L> [By],
k

where the sum runs through the centers By of the blow-ups. Thus, in order to prove (2.1),
it suffices to show that

n—2
n—2\ — —
BAEDY ( - 1) Mo % Mons1 ).
k =3
Since HOJ X Mo’n_t,_l_i = ﬂo,nﬂ_i X ﬂo,z‘, the right-hand side equals

(2.2) (nn_12> My s x My ]+ > <<7Z_12> + <Z‘f)> Moy x Mons1-]

2 3<i< il

—9\ __ 1
= (nnl>[,/\/lo nt1 ><./\/l n+1] Z <7TL_1)[M01><M0,H_1 il

(3
2 3<i< il

where the first summand only appears if n is odd. o o
According to Keel’s construction, for n > 4, a center isomorphic to Mg ; x Mg pi1—; is
blown up for all sets T'C {1,...,n — 1} such that

e T° contains at least two of 1,2, 3;
o [T\=n—ior|T°=i-1.
For all k between 2 and n — 3, the number of subsets T" such that |T¢| = k and T contains

exactly two of 1,2,3 is
n—4
3
(i 2)

while the number of subsets T" such that |7¢| = k and T contains all of 1,2, 3 is

(:73)
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(in particular, 0 if £ = 2). For 3 < i < ”TH, the number of centers isomorphic to the
product ﬂoyi X ﬂo,nﬂ,i is therefore

(") () () (D) - ()

(Maybe more intrinsically, there is one such center for every subset S C {1,...,n — 1} of
size i — 1. Indeed, if S is such a subset, then either S or S¢ satisfies the condition posed
on T in Keel’s prescription.) If n is odd and i = "T“, the number of centers isomorphic to
Mo, g1 x Monp 18
3( n—4 > +< n—4 ) B (n—2)
+1 +1 = -1 -
3 ty 4 tr

This is as prescribed in (2.2), concluding the verification. O

Remark 2.2. The distributions of products in the sequence of centers and in the correspond-
ing sum in (2.1]) differ in general. For example, for n = 6 the summation in (2.1)) expands
to

6 [ﬂ(),;; X MOA] +4 [MOA X ﬂo,g]

while Keel’s construction prescribes blowing up along 7 copies of My 3 x My 4 and 3 copies

of moA X Moﬂg.
The recursion for the Poincaré polynomial following directly from Keel’s recursion in [Kee92,
p. 550] gives yet a different decomposition: 5[ Mg 3 X Mo 4] + 5 [Moa x My 3]. J

3. Mo, 1S y-POSITIVE
For a survey on ~-positivity, we refer the reader to [Athl8]; we follow the terminology
in [FMSV24, §2.2]. A univariate polynomial f(¢) = Y a;t’ is ‘symmetric’, with ‘center’ 4,
if ag_; = a; for all i. Every symmetric polynomial f(t) € Z[t] with center % can clearly be
written

5]
(3:-1) F&)y=> it (t+1)"%

i=0
for unique integers 7;, i =0, ..., L%J

Definition 3.1. We say that a symmetric polynomial f is vy-positive if all the integers ;
are nonnegative. J

Our interest in this notion is due to the following well-known fact.

Lemma 3.2 ([Ath18], §1; [ENV23], Proposition 5.3). Real-rooted symmetric polynomials
with nonnegative coefficients are y-positive.

Thus, y-positivity may be taken as collateral evidence for real-rootedness. In [FMSV24,
Theorem 1.8] it is shown that the Hilbert series of the Chow ring of every matroid is -
positive. We prove the analogous statement for Mo ;.

Theorem 3.3. For all n > 3, the polynomial P,(t) € Z[t] such that [Moy,] = P,(L)
18 7y-positive.

(This is Theorem stated in the introduction.)
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Proof. Following [FMSV24], for a symmetric polynomial (3.1)) we let

4]
W)= vt
=0

Thus, f is y-positive if and only if 7(f) has nonnegative coefficients. This operation satisfies
several properties (see [FMSV24, Lemma 2.9]):

(i) v(fg9) = () (9);
(it) y(tf) =ty (f)
(iii) v(f (1 + 1)) =~(f)
(iv) If f and g have the same center of symmetry, then v(f + g) = v(f) + v(9)-

With this understood, the proof of Theorem [B-3]is a straightforward consequence of the
recursion (2.1)) for the Grothendieck class [Mp,]. In terms of the polynomial P,, this
recursion reads

n—2
i—

n—2
P, (t) :Pnfl(t)(l‘”)‘ktz ( 1
i—3

)POP 0.

The constant P3(t) = 1 is trivially v-positive. Arguing by strong induction, assume that
Py (t) is ~-positive for all & < n. The degree of Py(t) is kK — 3 and the polynomial is
palindromic, so it is symmetric with center k—gg It follows that each term P;P,y1—; is
symmetric with center 252, and (P, Py41-i) = Y(P)y(Pat1-:) by (i). By (ii) and (iv),

3 (@ (?_‘f)ampnm(w) =5 (1R,

and this polynomial has center "ng’ +1 ”773 By (iii),

V(P10 (1 + 1)) = 7 (Pr1),

and P,_1(t)(1 +t) also has center 253. By (iv) again, we can conclude

2 -2
(32 AP =(Pa)+ Y (7 )P (Pusacs).
=3

By induction the r.h.s. has nonnegative coefficients, and it follows that P, is «-positive, as
needed. [l

Remark 3.4. The argument is analogous to the proof of [FMSV24, Theorem 1.8], which
hinges on a recursion for the Hilbert series of the Chow ring of an arbitrary matroid,
defined by means of maximal building sets, that is very similar to . It is tempting
to venture that a similar recursion may hold for Chow rings of some matroids w.r.t. more
general building sets (but simple examples show that y-positivity need not hold for arbitrary
building sets). This would immediately imply ~-positivity for the corresponding Hilbert
series. Theorem would be recovered as the particular case given by the braid matroid
with respect to the minimal building set, cf. [FMSV24] §5.2]. 4
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The first several polynomial G,,(t) := v(P,) for n > 3 are
1
1
1+ 3t
14 13t
1 + 38t + 45t>
1+ 94t + 42312
1 + 213t 4 2425¢% + 1575t
1+ 459t + 11017¢% + 25497t
1 4 960t + 43768t* + 240066t> 4 99225t .

It would be interesting to study these polynomials further. The polynomial P, is real-
rooted if and only if G, is real-rooted ([EMSV24, Proposition 2.8]), so in order to prove
Conjecture [1} it would suffice to prove that G, is real-rooted for all n > 3.

Using the recursion , it is easy to show that the formal power series

=2 Gy
n>3
is the unique solution of the differential equation

E_ z+G
dz 1—1tG

satisfying G(0) = 0.

4. THE COEFFICIENT OF L¥ IN [M,]

Keel’s recursion ([Kee92, p. 550]) relates the Betti numbers a, ; of My, to the num-
bers ay, for all 0 < £ < k, 3 < m < n. This does not suffice for investigating log-concavity,
since we need specific information about a,, j for individual k. In this section we obtain a
precise description of the corresponding generating functions, from which we will extract
in §5| the asymptotic behavior of a, = rk H**(My,,) for fixed k, as n — oo. Our result
below appears to be new in this form, notwithstanding the very extensive literature on the
cohomology of Mo p,.

As in the introduction, set

n—1 Zn—l

_ z _ 2k g
ag(z) = Zan,k CE ZrkH (Mon) ek
n>3 n>3
a generating function for the coefficients of L* in [Mo.n].
Theorem 4.1. We have ag(z) =e* — (z+1). For all k > 0,

(4.1) ax(z) = ((]Zill)) (+1)z | o2 Z 2 elk=m)z

where pgf)(z) € Qz], 1 < m < k, is a polynomial of degree 2m with positive leading
coefficient.
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It is convenient to extend the notation introduced in this statement by setting p(()k) =

(k+1
() for all k> 0.

Proof. Since tk H*(My,,) = 1 for all n > 3, we have ag(z) = > n>3 Zn_l. =e* — (14 2) as
stated. Next, consider the formal power series

n—1

M(z) = Z[ﬂo,n]ﬁ

n>3

with coefficients in K (Vary). The recursion ([2.1)) implies easily that M satisfies the following
differential equation:

dM 24+ (1+L)M
dz  1-LM

(Mutatis mutandis, this is equivalent to [Man95l (0.8)].) The function ay(z) are the coeffi-
cients of M as a power series in L:

M = ag(2) + a1(2)L + as(2)L? +

Imposing that this series satisfies ([4.2]) and reading off the coefficients of L* gives us differ-
ential equations for these coefficients. The first few such equations are

(4.2)

dOé() +
— =« z
dz 0
dal 2
— =apt+tapzt+ag+ o
dz
do
d—; :ag—i—a%z—i—a%—i—anal + a1z + a1 + ag
do
3 af)l + agz + ag + 3043041 + 20901 2 + 20901 + 20900 + a% + oz + o + ag

dz

and solving them recursively, they take the form

dayg n

— =ap+=2

dz 0

d

ﬂ2041—1—622—@%—62

dz

d 34522 +82+44
ﬂ:a2+3e3z—(z2+5z+5)62z+z T 2;— 2t e*

dz

The theorem will be an easy consequence of the following result.

Lemma 4.2. For k > 1, the function a(z) satisfies a differential equation of the form

k
doy, o (k + 1) k+1 )z z m k) (kfm)z
(4.3) P _ak+k(k+l) +e E )"

m=1

where fr(,lf)(z) € Q[z] denotes a polynomial of degree 2m with positive leading coefficient for
m=1,---,k—1, and f,gk)(z) € Q[z] is a polynomial of degree 2k — 1 with positive leading
coefficient.
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To see that (4.3)) implies (4.1)), set o, = e*A; by (4.3 ,

k
dAk:k(k+1 kz+z mf(k km)z,
m=1

dz (k+1)!
from which

k
(k1) m. (k) (N (k—m)z
A= ¢ + ) (=) p) (2)e

where pm ( ) € Q[z] are determined by integration by parts and we absorb the constant
of integration in the summation. For k —m > 0, degpg,li) = deg f,gf) = 2m; for m = k,
degpgf) =1+ deg f,gk) = 2k. The leading coefficient of p,(ﬁ)(z) has the same sign as the
leading coefficient of fff ). The expression for oy, = e* Ay, given in Theorem u follows.

Therefore, we only need to prove Lemma

Proof of Lemmal[{.2 For all i > 0, consider the two statements

7

da z m p(i i—m)z
(L3) 5 =oite m220<—1> 19 (2) =)
(T3) ai(z) = e* y_ (=1)"pli) (z) elimm?
m=0

where féz)( ) =1 Ezﬂ)),, pg)( ) = ((1131” and the other polynomials fﬁi) (2), pgl)(z) satisfy
the conditions listed in Lemma [£.2] and Theorem 11

We have to prove that (Lj) holds for all £ > 0. As shown above, (L) and (L) hold. We
work by strong induction. By the argument preceding this proof, (L;) = (T;). Therefore,
in proving (Lj) we may assume the truth of both (L;) and (7;) for all 1 <i < k, as well as

the expression ag(z) = €* — (2 + 1), which we have already verified.

Rewrite (4.2)) as

dM  z+(1+L)M 1+z4+M
- ioom M LM
=2+ M+ LM (1+z+M).
>1

The equation satisfied by the coefficient of ¥ for k > 0 is

k
d
(4.4) % =+ E coefficient of L*~¢ in M%(1 + z + M).
2
/=1

The coefficients of LF=¢ in M*¢ and M**! are respectively

(45) Z ai1 .. 'aig ; Z O‘i1 . .ai£+1 .

i1+ +ig=k—{ 14 Figp1=k—4

Since ¢ > 1, the expressions only involve terms «; with ¢ < k, which by induction may be
assumed to satisfy (7;) for ¢ > 0 and equal e* — (z 4+ 1) for ¢ = 0.

It is clear (by induction) that the summation in is a linear combination of exponen-
tials with coefficients in Q[z]. In order to prove (Lg), we have to prove the following.
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Claim 4.3. With notation as above, the coefficient of €"* in

k
(4.6) Z (1+2) Z Qi QG T+ Z Qjy * v Oy

=1 i1 tig=k—L i1+ tigr1=k—£
equals
0 ifr<lorr>k+1;
a polynomial of degree 2k — 1 and sign of l.c. (—1)* ifr=1;
a polynomial of degree 2(k + 1 —r) and sign of l.c. (—1)F+1-" ifl<r<k+1.

(k+ 1)k
(k+ 1)
Since our main application (to asymptotic log-concavity) concerns the dominant term,

we focus on the last statement in Claim first. For this, note that by the induction
hypothesis the two terms in (4.5)) respectively equal

(k+1)z

Further, the coefficient of the dominant term e equals fék) =k

/l/ Z
Z H m e" + lower order terms
i1+ +ipg=k—f m=1

and
+1 .
1
Z H (im + e* D2 1 1ower order terms

(1 1)!
i1+-+igp1=k—L m=1 m+

where ‘lower order terms’ stands for a linear combination with polynomial coefficients of
exponentials e"# with m < k, resp., m < k + 1. Therefore, the equation satisfied by «ay is

dov k I+1 i 4 1
(4.7) d—k =g + Z Z H ~m | e*+Dz 4 Jower order terms.
o {=1 \i1++igy1=k—€m=1

Lemma 4.4.
/+1

i 'm+1ﬂm k+ 1)k
Sy I =

=1 \ji+-+jey1=k—£m=1

Proof. Let

R CROAE )N Te
W(t)._j; T AR

This is the principal branch of the Lambert W function; in particular,
W(t)eV® =t
(see |[CGHT96, (3.1)]). By implicit differentiation,
aw W (t)
dt t(14+W())’
and it follows that

2
(4.8) t2jt <W()) = —% = W+ W) - W)+
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The coefficient of t*+1 in the Lh.s. of (4.§) is
(k+ 1)k
(k+ 1)1
The coefficient of t**1 in the r.h.s. equals the coefficient of t**1 in
k

Z(_l)ﬁw(t)f+1 )

(=1
Now (j1+1)+ -+ (jeg1 +1) = k+ 1 if and only if j1 + - -+ + jry1 = k — £, therefore the
coefficient of t**1 in (—1)*W (t)*T! equals

(~1)"

041 (41 i i
(—1)5 Z H ]m+1 _ (_1)k Z H m+ 1)
jm + 1 ]m + 1
Ji++jep1=k—€m=1 J1t-tjer1=k—€m=1

and this concludes the proof. ]

By Lemma we can rewrite (4.7 as

Pk ) (k+1)z
R RN T

+ lower order terms

) ) ) w o, (k+ 1) ) )
and this concludes the verification that f;” =k W as stated in Claim 4.3
The rest of the proof of Claim [4.3]is a straightforward, but somewhat involved, verifica-
tion. If all 4; are < k and positive, then by the induction hypothesis

11+ +is ] )
0y i, = €T (1) g (el

m=0
with g, (2) € Q[z] a polynomial of degree 2m and positive leading coefficient. The coefficient
of € in this term is
0 ifr<sorr>i 4+ ---+is+s
(4.9) A . ' . '
(_1)’Ll+~--+’bs+5 Tgi1+~~+is—(7’—5) (Z) fs<r<ii+---+is+s.

On the other hand,

af = (e — (2 +1)) = mzt:() (;) (=) (2 + 1)me™

therefore the coeflicient of €% in ag is

0 fr<Qorr>t
(O (=D (z+ 1) fo<r<t

r

(4.10)

We will frequently refer to (4.9) and (4.10) in the rest of the proof.
First, (4.9) and (4.10) imply that the coefficient of €”* in (4.6|) is possibly nonzero only if
0 <r < k+1. Indeed, the maximum exponent for ozf')ozil -+ oy, , where all i; are positive, is
t4 (i1 + - +is) +s

by (4.9) and (4.10), so for t +s=+¢+1and i; +--- +is = £ — k it equals k + 1.
Next, consider the case r = 0, that is, the term in (4.6)) not involving exponentials.
By (4.9), the only possibly nonzero contributions to » = 0 in (4.6)) come from terms with
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all i; equal to 0. However, in this case ) i; = 0, that is, k — £ = 0, and the corresponding
summands in (4.6|) are
(4.11) (L4 2)af + ot = af(1+ 24+ ag) = (6* — (2 + 1))Fe?.
This is a multiple of €*, therefore the contribution to » = 0 vanishes, as stated in Claim

For r = 1: By (4.9)), at most one index may be nonzero. If all indices equal 0, then ¢ = k
as in the previous case, the corresponding part of (4.6)) is , and the coefficient of e?
equals (—1)¥(1 4 2)*. For 1 < ¢ < k, the corresponding contribution to (£.6)) is

01+ 2)ag Map—g + (0 + Dagor—r = af tap—p (04 1)e* — (1 +2)) .
Now aj_y is a multiple of e?, so the coefficient of e* in this expression is the coefficient in
—agflak_g(l + z), that is,
¢ (k—¢
DM+ )0 ().

These polynomials have degrees k + 1,k +2,...,2k—1lasfl=k—-1,k—2,...,1.

The conclusion is that the coefficient of e* in (4.6 has degree 2k — 1 and sign of leading
coefficient (—1)¥, as stated in Claim

Finally, we consider the case 1 < r < k + 1. Each «; with ¢ > 0 is a multiple of e?, so
the coefficient of €* is nonzero only for terms in (4.6) with at most r indices i; > 1. These
terms are of two types. First, we have terms

(4.12) (1+ 2)aga, - a

with s < r, all 4; positive, i1 +--- + i3 = k — ¢, and s +¢ = £. The maximum r for which

€™ appears in (4.12)) is
th(ii+1)+ o+ (st 1) =s+t+ > ij=L+k—L=k.

Therefore (4.12) does not contribute to the coefficient of ¢"* if r = k + 1.
For 1 <r <k, (4.9) and (4.10) imply that the coefficient of ¢"* in (4.12)) equals

3 ( : ) CDF (2 1) g ().

r1
r1+ro=r

S

For an individual summand to be nonzero we need r1 <, i.e., 7y —t < 0, as well as s < 7y,
i.e., r1 —t <r —{. Each nonzero summand has degree
t—ri+14+2k—r—(t—m))=2k—2r+14+mr —t;
since 7 — ¢t < min(0, 7 — £) for nonzero summands, the maximum of this expression is
2k —2r + 14+ min(0,r — ) < 2(k—r+1).

Therefore, if 1 < r < k, the coefficient of €"* in each term of type (4.12]) is a polynomial of
degree strictly less than 2(k —r + 1).
The other possible type is

(4.13) g, -

with s <, all i; positive, i; +---+1is =k — ¢, and s+t = ¢+ 1. By (4.9) and (4.10), the
coefficient of €"# in this term equals

t —r —r
Z < >(_1)k +1(Z + l)t lgk—i—l—r—(t—m) :

1
r1+ro=r

We argue as above: nonzero individual summands have r; —t < 0 and s < rg, ie., r; —t <
r — (£ +1). Now note that as 1 < r, for all r the sum (4.6) will include terms (4.13)) with
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£+1 < r. For these terms, the condition 1 — ¢ < 0 implies the condition s < 73; the degree
of the summand,

(t—r)+2k+1—r—(t—r1))=2k+1—r)+(r1 —1t),

achieves its maximum for 71 = ¢ and equals 2(k + 1 — 7). All these summands are of the
form

(_1)k_r+1gk+1fr )

so the sign of their leading coefficient is (—1)k1-.

We conclude that, for 1 < r < k, the coefficient of €"* in is the sum of poly-
nomials of degree < 2(k + 1 — r) obtained from terms of type and from terms of
type with £ > r, and of polynomials of degree exactly 2(k+ 1 —r) and sign of leading
coefficient (—1)**17", from terms of type with £ < r.

Therefore in this case the coefficient of €"% in is a polynomial of degree 2(k+1—r) and
sign of leading coefficient (—1)*+1~", and this completes the verification of Claim 0

This concludes the proof of Lemma and therefore of Theorem [4.1 O
Theorem identifies the degrees and signs of leading coeflicients of the polynomi-
als pgf)(z), m=1,...,k, in the expression
_ n=l (k4 1)k F
rk H2k M z _ €(k+1)z+6z —_1)m (k) p e(k—m)z,
valid for £ > 1; and recall that we set p(()k) = ((12111))1: for all £k > 0. The first several such
polynomials for k,m > 1 are
1
pgl) = 522+Z+1
p§2) =22 4+3242
1 ) 1
p§2) = §z4 + 623 +22% + 22 + 3
9 15
pf’) = 122 + 5% +95
1 11
p§3) = 524 + 323 +922+92+3
@_ 1 e, 75,354, 73 17T, 5 2
D3 _48Z +24z +24z +2z + 42 +2z+3
4 16 56 38
pg):§z2+§z+§
(4 _ 27 4,51 5 129 , 65 45
D5 162+4Z+4Z+2Z4
1 13 21 74 13
Py = R R SR R EE e
@_ L s, 17, 56, 495 289, 1035 8 , 19 13
PiTRR® TT T Tt T TR TR T ;
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The leading coefficients of these polynomials are positive by Theorem but note that the
polynomials themselves appear to be positive. In fact, the explicit computation of several
hundred examples suggests the following.

Conjecture 2. For all k > 0, the polynomials pgn), 0 < m < k, have positive coefficients

DENGENG]

and are log-concave with no internal zeros. All but py’, ps”, ps~ are ultra-log-concave.

(Note: pgl), pg ), pé ) are log-concave.)

The positivity statement in this conjecture is proved in [AMN24], by a refinement of the

techniques used in this paper. Also, in loc. cit. the ultra-log-concavity statement is verified

for several infinite families of polynomials pﬁf).

5. PROOF OoF THEOREMS [[.1] AND [[.3]

Theorem [I.3] follows easily from Theorem [£.I] In fact, Theorem [4.1] implies the following
more precise statement. Denote by c( € Q the coefficients of pgn)( ):

2m
) =D e
j=0

Theorem 5.1. Let n > 3. For every k > 1:

— ke Dkrn-t o Eo 2y o
Qn Lk = I‘kH2k(M0,n) = ((k—gl)' + E (—1) E ( j ) 5:;] (k‘ m + 1) 1= ]
) m=1 §=0

Proof. By definition, a, ; is the coefficient of ( 11), in the expansion of ay(z). The stated

formula follows from Theorem [£.1] and straightforward computations. ([
Remark 5.2. By Theorem Cﬁn)zm > (. By Theorem
_ k
rk H*(Mo,,) = % (k4 1)+ mzl(—nmqﬁ,’;) (n)-(k+1—m)"
where
2m )
a (n) :jz_%(k—mwil)jﬂ(n_l)m(n_j)

is a polynomial in Q[n] of degree 2m and with positive leading coefficient.
(k)

If the positivity claim in Conjecture [2| holds, then all coefficients Gy, are positive for
Ek>1,1<m<k 0<75<2m. _J

Ezxample 5.3. We have:

N 1 2 _ 2
tk H*(Mon) = 5 - 2" = % (cf. [Kee92, p. 550])
rkH4(M0n):*'3n—%‘2n+3n 0On® + 33n 6n +
R 8 24
and
M . A 140 11

n% — 7n® + 35n* — 77n3 + 120n2 — 72n + 32
48 ’
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Alternative expressions for rk H?*(Mo,,) for all k > 0, n > 3 are discussed in [AMN24]. _

Proof of Theorem[1.3 The statement is trivially true for £k = 0. For k > 0, it is an imme-
diate consequence of Theorem since (with notation as in Remark [5.2))

A’ () (k+ 1)

for 1 <m <k. OJ
Finally, we deduce Theorem from Theorem
Proof of Theorem [1.1. We verify the stronger claim that for any fixed & > 0, the limit of

the ratio

(5.1)

2
Qn, K Op k—1 Opk+1

") B G)

as n — oo is +00. The terms involved in the ratio are of type

(7).

and by Theorem [I.3] this is asymptotic to

(i + 1)itn-t / (n-3)! i+ )" n—i—3)!  (i+1)""%(n—i—3)!
il( ‘

(i+1)!

n—i—3)! (i + 1)!(n — 3)! N (n —3)!

Thus, the limit of (5.1)) as n — oo equals the limit of

((k F1)RAn2( — - 3)!)2/<kk+”_3(n — k=2 (k+2)kt 1 — k- 4)!)

(n—3)! (n—3)! (n—3)!

as n — oo. This expression equals

(k+ 12062 (n — k —3)  (k+1)2¢2 (k+1)2\" n—k-3
kktn=3(k + 2)k+n—1(p — k —2)  kF-3(k+2)k1 \ k(k+2) n—k—2
and converges to oo as claimed as n — 00, since (1) _ K242k > 1. O
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