
Quantum cohomology
at the Mittag�Le�er Institute

Edited by P� Alu�

Typeset by AMS�TEX





Preface

These are transcripts of notes taken at �some of� the lectures given at the
Mittag�Le�er institute during the �rst semester of the ������	 year on Enumer�
ative geometry and its interaction with theoretical physics� The �rst part of this
collection consists of notes from talks on the basics of quantum cohomology
 as
developed in �F�P� These talks formed the main body of the Tuesday seminar se�
ries at the Institute The second part treats more advanced topics in quantum
cohomology
 which were primarily addressed in the Thursday seminar series The
third part consists of background material and related topics and contains material
from both of these two series An appendix
 kindly provided by A Kresch
 gives a
description of his C�program farsta for quantum cohomology computations

These notes are meant as a series of snapshots of quantum cohomology as seen
by the speakers at the time of their lectures The reader should bear in mind that
quantum cohomology is a growing and rapidly changing �eld� as any snapshot of
a moving target
 these notes are unavoidably a little blurry Many of the writeups
have been left in the form of the original talks
 which were usually more concerned
with giving motivations and a point of view
 rather than conveying detailed proofs
or attempting to survey the considerably extensive literature on the subject Also
 a
glance at the references will show that many of the talks were based on preliminary
�and hence not yet refereed� versions of papers on the subject The published
versions of these papers should be consulted for the de�nitive statements of the
results
 for the details of their proofs
 and for more references

Most of the notes were taken by myself Missing and complementary notes were
contributed by P Belorousski
 C Faber
 B Fantechi
 W Fulton
 and S di Rocco

all of whom are warmly thanked here Many thanks are due to the speakers
 both
for preparing and delivering the talks
 and also for glancing through a preliminary
version of these notes and suggesting a number of corrections Some of the speakers
took the trouble of reworking the �les for their talks themselves
 and deserve a
particular note of gratitude both for saving me a great deal of work and for in�nitely
improving the �nal result

I am very grateful to the organizers of the wonderfully successful �����	 year at
the Mittag�Le�er institute
 and to NSF for partial support �under grant ���������
during the preparation of these notes

A preliminary version of these notes appeared as Mittag�Le�er Report No ��

�����	

Paolo Alu�
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�� INTRODUCTION�P� BELOROUSSKI� ������� �

Part I
Stable Maps and Quantum Cohomology

�� Introduction�P� Belorousski� �������

The aim is to go rather carefully through the de�nition of the quantum coho�
mology ring QH��X� of a variety X �satisfying suitable hypotheses� This is a
ring supported on H��X��Q��y��
 where y stands for a set of variables
 and whose
product is de�ned to re�ect sophisticated enumerative information about X The
de�nition of this product relies on Gromov�Witten invariants
 obtained by pulling
back classes from X to suitable moduli spaces and intersecting them there One
of our main objectives will be to state precise assumptions and results about the
existence and properties of these moduli spaces
 postponing the proofs of these
properties till after we have seen some enumerative applications

We will be following �F�P� rather closely The paper combines Fulton�s notes on
quantum cohomology �FultonSC� and Rahul Pandharipande�s notes on the moduli
spaces of stable maps� it is organized as follows�

�� Introduction�

���� Construction of the moduli spaces of maps� proof of the properties�

	� Gromov�Witten invariants�

�� De�nition of quantum cohomology�

�
��� Applications to enumerative geometry and more

We will go through �
 then jump to 	��� extracting properties from ��� without
proof
 then go back to ��� and the proofs of those properties

Background on moduli problems� One seeks to represent a contravariant
functor F � �Schemes� �� �Sets� associating to each S the set F �S� of equivalence
classes of families of a certain kind of objects over S

In the strongest possible sense
 one would look for a Fine moduli space� that is a
scheme X equipped with a universal family U �� X and representing the functor
That is
 �every family of the prescribed objects would be obtained by pull�back
of U from X

This requirement is in general too strong For example
 the functor Mg for
smooth genus�g curves does not have a �ne moduli space

The Coarse moduli space would be a scheme Y with a natural transformation
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from the functor F to the functor hY ! Hom��� Y �
 such that

��� F �SpecC � �! hY �C � as sets� and
��� Y satis�es the universal property of mapping uniquely to any other candi�

date Z �so that there exists a factorization F �� hY �� hZ�

Coarse moduli spaces for interesting objects do exist� eg
 Mg has a coarse
moduli space Mg �of dim �g � � for g � ��

We will deal with a whole hierarchy of moduli spaces
 prescribing points on
the curves �Mg�n�� or parametrizing maps of curves to a given X and satisfying
properties as detailed in the next lecture We will construct and study good com�
pacti�cations of these moduli spaces

�� Stable maps�T� Graber� �������

De�ning the product in the quantum cohomology ring will require counting ob�
jects of the form �C� p�� � � � � pn� f� where C is a smooth curve of a given genus
 pi are
prescribed smooth distinct points of C
 and f � C �� X is a map such that f�pi� �
prescribed loci
 and f��C� ! prescribed � � A�X Quantum cohomology can be
used for example to compute the number of degree�d rational curves in X ! P�

which contain �d� � general points
The general plan for these computations is the following�
��� Construct a compacti�cation of the appropriate moduli space�
��� Do intersection theory on that space�
��� Use this to de�ne QH��X� and solve enumerative problems

Definition� An n�pointed quasi�stable curve of genus g
 �C� p�� � � � � pn�
 will be
a projective
 reduced
 connected
 at worst nodal curve C
 with h��OC� ! g
 labeled
with n marked distinct smooth points pi

A family of n�pointed quasi�stable curves over a scheme S will be a �at
 projective
map C �� S with n sections p�� � � � � pn� S �� C such that each geometric �ber
�Cs� p��s�� � � � � pn�s�� is quasi�stable A family of maps to X will be a map C �� X

and isomorphisms of families are de�ned in the obvious way respecting the data
�and inducing the identity on the base space�

Definition� A stable map of an n�pointed quasi�stable curve to X consists of
the data �C� p�� � � � � pn� f� where �C� p�� � � � � pn� is as above
 and f � C �� X is such
that

��� all smooth irreducible rational components contracted to points in X have
at least � "special� points� and

��� all irreducible genus�� components contracted to points have at least � spe�
cial point

Here "special� means either marked
 or on the intersection of the component
with the closure of its complement Condition ��� is nearly vacuous
 in that it is a
restriction only on ��pointed
 genus�� curves which map to a point

The de�nition is devised so that every f � C �� X will have only �nite auto�
morphism group �where the notion of isomorphism of stable maps is de�ned in the
obvious way�

We work over C  The following theorems will be proved in these lectures�
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Theorem �� For any projective algebraic scheme X and every � � A�X there
exists a coarse �compacti�ed� projective moduli space� denoted Mg�n�X���� para�
metrizing stable maps �C� p�� � � � � pn� f� �with C of genus g� such that f��C� ! ��

For the moduli space to be reasonably well�behaved
 some condition on X is
required

Definition� A smooth projective variety X is called convex if for all maps
f � P� �� X
 H��f�TX� ! �

Important example� all homogeneous spaces are convex� so projective spaces

Grassmannians
 �ag manifolds
 etc are convex �To see that homogeneous !�
convex� if X is homogeneous
 then TX is generated by global sections
 so f�TX is
generated by global sections in P�� writing f�TX ! �O�di�
 we see all di � �
 and
this implies that there is no H��

Theorem �� If X is a smooth projective convex variety� and � � A�X� then
M��n�X��� is a variety of pure dimension

dim�X� #

Z
�

c��TX� # n� �

�if nonempty�� with at worst �nite quotient singularities�

Theorem �� The general element of M��n�X��� does correspond to a map of
an irreducible curve� The locus corresponding to reducible curves is a divisor with
normal crossings �up to �nite quotient singularities��

Note� a priori
 M��n�X��� might be disconnected The above statements hold
for every irreducible component� these are necessarily disjoint For X homoge�
neous
 it can be shown that M��n�X��� is in fact irreducible �Kim�Pandharipande

�Thomsen��

Examples� �The simplest example in all X� � ! � In this case
M g�n�X� �� !

X �M g�n

�IfX is an abelian variety �so it contains no rational curves�
 thenM ��n�X��� !
	 unless � ! �

�M����Pr� �� ! G��� r�
 the Grassmannian of lines in Pr Indeed
 there are no
marked points
 so no reducible curves can map stably in the above sense

�M����Pr� �� ! data of a line in Pr
 with a marked point Again
 no component

may contract because there aren�t enough marked points So M ����Pr� �� is the
tautological line over G��� r�

�M����P�� �� recovers the space of complete conics Indeed
 the general element
is a smooth conic �up to automorphisms
 a smooth conic has a unique parametriza�
tion�� this can degenerate to a pair of lines
 parametrized by a pair of intersecting
lines in the obvious way� if the two components of the domain map to the same
P� in P� we get a double line with a marked point �corresponding to the image of
the intersection of the two components�� and �nally we �nd double lines with two
marked points
 arising from double covers �rami�ed at the two points�
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	� Gromov
Witten invariants�J� Thomsen� �������

We work over C  For X a scheme
 � � A�X
 and g� n � �
 we have the functor
Mg�n�X��� from Algebraic Schemes to Sets
 de�ned by

Mg�n�X����S� !

�����
stable families of maps over S

from n�pointed
 genus�g curves to X


which represent �

�����
�isomorphism

A stable family as above will be denoted �� � C �� S� fpig��i�n� � � C �� X�� here

�i� � � C �� S is �at
 projective�
�ii� pi � S �� C are sections
 � 
 i 
 n�
�iii� each geometric �ber of �
 �s � Cs �� fsg is a connected
 nodal curve of arith�

metic genus g and marked with distinct nonsingular points p��s�� � � � � pn�s��
�iv� �s � S
 �s � Cs �� X is stable� contracted genus�� components have at least

� "special� �marked or singular� points� contracted genus�� components have
at least � special point�

�v� �s � S
 �s��Cs� ! �

From now on
 X is taken to be projective We will assume the following results�

Theorem �� There exists a projective coarse moduli space M g�n�X��� for the

functor Mg�n�X����

Theorem �� Assume X is nonsingular and convex� Then M��n�X��� is a �ne

moduli space for M��n�X��� away from curves with non�trivial automorphisms�
More precisely�

�i� M ��n�X��� is a locally normal projective variety of pure dimension

dimX #

Z
�

c��TX� # n� �

�if nonempty��
�ii� M ��n�X��� is locally a quotient of a nonsingular variety by a �nite group�

�iii� The closed points in M��n�X��� corresponding to irreducible curves form a

dense open subscheme M��n�X��� of M��n�X����

�iv� There exists a nonsingular �ne moduli space M
�

��n�X��� for automorphism�
free curves�

�v� M
�

��n�X��� is an open subset of M��n�X��� �dense if n � ���

�vi� If M��n���X��� �! 	� then there exists a map M��n�X���
�
��M��n���X���

�forgetting	 the �rst point� For s general in M��n���X���� Cs ! ����s� is

the curve corresponding to s� and the composition Cs ��M��n�X���
��
�� X

is the corresponding map to X� where �� denotes the �evaluation map	 at
the �rst point�

The evaluation maps �i
 � 
 i 
 n
 are de�ned as follows To give maps
�i � M��n�X��� �� X amounts to giving natural transformations

�i �M��n�X��� �� Hom��X� �
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at a set S
 �i�S� sends a stable family over S�

C
�

����� X��y
S

with sections p�� � � � � pn
 to the composition

S
pi
�� C

�
�� X

For S ! SpecC 
 that is for a single stable curve C
 this simply evaluates the map
� to X at pi � C

For a permutation � � Sn
 there is an automorphismofM��n�X��� interchanging
the points�

M ��n�X���
����
����M��n�X���

This is induced by the natural transformation sending a family

C
�

����� X��y
S

with sections p�� � � � � pn
 to the same diagram but with sections p����� � � � � p��n� It
is clear that

���i� ! �i � $���

From now on
 assume X is projective
 nonsingular and convex

Definition� �Gromov�Witten invariants� Given � � A�X
 and 	�� � � � � 	n �
A�X �the operational Chow ring�

R
A
will denote evaluation at A � A��
 de�ne

I��	� � � � 	n� !

Z
M��n�X���

����	�� � � � � � �
�
n�	n�

Remarks�
��� If the 	i are homogeneous
 I��	� � � � 	n� ! � if

P
i codim 	i �! dimM ��n�X����

��� Due to the presence of the Sn�action onM ��n�X���
 I��	� � � � 	n� is invariant
under permutation of the 	i�s

Lemma� Assume X is homogeneous� X ! G
P � and %�� � � � �%n � X �n � ��
are subvarieties� such that

P
codim�%i� ! dimM��n�X���� Then for a general

� ! �g�� � � � � gn� � Gn� the scheme�theoretic intersection

���� �g�%�� � � � � � �
��
n �gn%n�
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consists of reduced points supported on the locus M��n�X���� Further� the number

of points in this intersection equals I��&%� � � � &%n��

Proof� This follows from judicious use of Kleiman�Bertini �Kleiman� Let G
be a connected algebraic group
 and X a homogeneous G�variety
 Y�Z varieties
mapping to X�

Z��yg
Y

f
����� X

For � � G
 denote by Y � the image of the composition Y
f
�� X

�
�� X Then

��� There is a dense open subscheme G� of G such that
 for � � G�
 Y � �X Z
is either empty
 or of pure dimension

dimY # dimZ � dimX

��� Further
 if Y and Z are nonsingular
 then G� can be found so that Y ��X Z
is nonsingular

This is used four times in our proof of the Lemma Notations� % ! %��� � ��%n�
%� � % is the nonsingular locus� %sing is the singular locus of %� M��n�X���c is the

complement of M��n�X��� in M��n�X��� Four applications of �Kleiman��

�I� M��n�X�����y���������n�

% ����� Xn

�

for a general � � Gn
 %� �Xn M ��n�X��� is either empty
 or of dimension ��

�II� M��n�X�����y
%sing ����� Xn

�

for a general � � Gn
 %�sing �Xn M��n�X��� is either empty
 or of dimension � ��
hence
 it is necessarily empty That is
 we may assume that % ! %� is nonsingular�

�III� M��n�X���c��y
% ����� Xn

�

for a general � � Gn
 %� �Xn M��n�X���c is again empty
 or of dimension � ��
hence
 empty So the intersection is supported on M��n�X��� Finally

�IV� M��n�X�����y
%� ����� Xn

�
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for a general � � Gn
 %���XnM��n�X��� is smooth
 hence reduced
 of dimension �
�if nonempty�

Summarizing we have that
 for a general � ! �g�� � � � � gn� � G


���� �g�%�� � � � � � �
��
n �gn%n� ! %� �Xn M ��n�X���

is reduced
 of dimension �
 and supported on the nonsingular subset M��n�X���

To see that the number of points in this intersection equals I��&%� � � � &%n�
 observe
that we have the �ber square

���� �g�%�� � � � � � ���n �gn%n� ����� M��n�X��� � %���y ��y
M��n�X���

i��id���
������ M��n�X��� �Xn

with the bottom line a regular embedding
 of codimension ndimX As the dimen�
sions match
 and as ���� �g�%�� � � � � � ���n �gn%n� is reduced


����� �g�%�� � � � � � �
��
n �gn%n�� ! i��M��n�X��� � %��

where i� denotes the gysin map On the other hand
 i��M ��n�X����%� � ! ��g�%��
� � � � gn%n�
 where � is the composition

A��X��n �� A��X
n�

��
�� A��Xn�

��

��� A��M��n�X����
��M��n�X����
����������� A��M��n�X����

Tracing the de�nition
 ��g�%��� � ��gn%n� equals I���g�%��� � � � �gn%n���� �nally

�%i� ! �gi%i� and the result follows �

The Gromov�Witten invariants satisfy a number of general properties For ex�
ample� assume X is homogeneous
 and 	� � A��X� and n � � �or n � � if � �! ��
Then

I��	� � � � 	n� !

�Z
�

	�

	
I��	� � � � 	n�

Indeed
 consider  � M��n�X���
���forget�������� X �M ��n���X���� then write

��M��n�X���� ! �� � �M ��n���X���� # �

where � dominates a proper subset of M��n���X��� �Here we use that X is homo�

geneous
 so that A��X �M��n���X���� ! A��X� � A��M��n���X����� Pushing
forward doesn�t change degrees
 so

I��	� � � � 	n� !

Z
	M��n�X���


����	�� � � � � � �
�
n�	n�

!

Z
��	M��n�X���


	� � �����	�� � � � � � �
�
n�	n��

!

Z
���	M��n���X���
�	

	� � �����	�� � � � � � ��n�	n��

!

�Z
��
	�

	Z
	M��n���X���


����	�� � � � � � �
�
n�	n�
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by the projection formula� � is killed after push�forward to M��n���X���

!

�Z
��
	�

	
I��	� � � � 	n�

Now the claim is that �� ! � To see this
 consider a generic point pt ! �C� p�� � � � �
pn� �� of M��n���X��� Using Theorem ��vi� we get the �ber diagram

C ����� M��n�X���

���pt�

��y ��y�
X � fptg ����� X �M��n���X�����y ��yp�
fptg

j
����� M��n���X���

For a generic pt
 j is a regular embedding Therefore

j���M��n�X���� ! ��� pt��j
��M��n�X���� ! ��� pt���C� ! � � fptg

on the other hand


j���M��n�X���� ! j������M��n���X����#�� ! j'�����M��n���X����� ! ���fptg

�no contribution from �
 since it will miss a general pt� Hence ��fptg ! ���fptg

as needed

�� Associativity of the quantum product�K� Ranestad� �������

Usual notations� X is a variety
 � � A��X�
 	i � A��X�
 � is a map from
P� to X
 or from a tree of P��s� p�� � � � � pn are marked points
 �i�� ! ��pi� for
 �M��n�X���

Conditions on X�

��� X is smooth
 projective
 convex �that is� ��
 h��P�� ��TX� ! ���
��� the Chow and topological homology theories of X are isomorphic�
��� the e�ective cone in A��X� is f

Pp
i�� ai�i � ai �Z��� �i in the form ���P��g

The Gromov�Witten invariants are the intersection numbers

I��	� � � � 	n� !

Z
M��n�X���

����	�� � � � � � �
�
n�	n� �Z

We will need two properties of these numbers� a third one was stated and proved
in Thomsen�s lecture�

��� if � ! �
 so M��n�X� �� ! M��n �X
 then I��	�	�	�� !
R
X 	� � 	� � 	�
 and

I��	� � � � 	n� ! � for n � ��

��� if 	� ! �� I���� 	�� � � � � 	n� !



� n � � or � �! �R

X
	� � 	� otherwise
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Both of these follow easily from the projection formula
We can write the classical intersection product in a fancy way
 using these nota�

tions Pick generators T� ! �� T�� � � � � Tm for A�X
 set gij !
R
X
Ti � Tj 
 and let gij

be the inverse matrix of gij �the inverse exists by Poincar(e duality
 and since by as�
sumption ��� we have no torsion� Via the isomorphismA��X�X� ! A�X�A�X

the class of the diagonal ) � X �X is

�)� !
X

gijTi � Tj

Denoting by p�� p� the two projections
 we have then

Ti � Tj ! p���p
�
��Ti � Tj� �)�

! p��

��X
e�f

�Ti � Tj � Te�� gefTf

A
!
X
e�f

�Z
X

Ti � Tj � Te

	
gefTf

!
X
e�f

I��TiTjTe�g
efTf

With this understood
 set for 	 � A�X�

�	� !
X
n��

�

n'

X
�

I��	
n�

Writing 	 !
Pm

i�� yiTi
 this expands to

�	� !
X

n������nm��

X
�

I��T
n�
� � � �Tnmm �

yn��
n�'

� � �
ynmm
nm'

Lemma� This is a power series� In fact� for given n� I��	n� is nonzero only for
�nitely many ��

Proof� This uses assumptions ��� and ��� on X Since X is convex
 we have
h����TX� ! � for all maps � from P� to X Writing ��TX ! �dimX

i�� O�di� and
perhaps composing �rst � with a cover of P�
 we may assume all di � � Also

for ���P�� �! �
 the di�erential d� � TP� �� ��TX is injective
 so at least one di is
� � Representing an e�ective � as a nonnegative combination of push�forwards
of P��s
 we see that

R
�
c��TX � � � Also
 as the e�ective cone is �nitely generated

we see that for a given N there are only a �nite number of e�ective � for whichR
�
c��TX� 
 N  But if I��	n� is nonzero
 then dimX #

R
�
c��TX � # n � � !

dimM��n�X��� 
 n � codim 	 
 ndimX
 and this bounds
R
�
c��TX� �

Now we de�ne the quantum product  Consider the third partial derivatives

ijk �!
��

�yi�yj�yk

!
X

n������nm��

X
�

I��T
n�
� � � � Tnmm TiTjTk�

yn�� � � � ynmm
n�' � � � nm'

!
X
n

�

n'

X
�

I��	
nTiTjTk� �
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a power series in y�� � � � � ym� we set

Ti  Tj �!
X
e�f

ijeg
efTf � A�X �Q��y�� � � � � ym��

This product is clearly commutative
 and has T� ! � as unit by property ��� of the
invariants�

T�  Tj !
X
e�f

�jeg
efTf !

X
e�f

X
n��

�

n'

X
�

I��	
n�TjTe�g

efTf

!
X
e�f

I���TjTe�g
efTf !

X
ef

�Z
X

Tj � Te

	
gefTf

!
X
e�f

gjeg
efTf ! Tj

Associativity of � The quantum product de�ned above is associative To
check this
 �rst write out what it means�

�Ti  Tj �  Tk !

��X
e�f

ijeg
efTf

A  Tk !
X
e�f�c�d

ijeg
effkcg

cdTd

Ti  �Tj  Tk� ! Ti 

��X
e�f

jkeg
efTf

A !
X
e�f�c�d

jkeg
efifcg

cdTd

That is
 setting

F �ijjk�� !
X
e�f

ijeg
effk
 �

we need to show that
F �ijjk�� ! F �jkji�� ��

Expanding�

F �ijjk�� !
X

�����ni����e�f�m

�

n�'n�'
I���	

n�TiTjTe�g
ef I���	

n�TfTkT
�

Now
 the boundary ofM ! M��n�X��� consists of irreducible divisorsD ! D�A�B�
��� ���
 where AqB ! f�� � � � � ng
 and ��#�� ! � The general point of this divisor
has a description similar to the case of M ��n �see x��
 by glueing stable curves at a
point More precisely


D �!M��A	f
g�X���� �X M��B	f
g�X����

when A �! 	
 B �! 	
 with obvious notations Setting MA ! M��A	f
g�X����

etc we have the diagram

M
	

����� D
i

����� MA �C MB

�

��y �

��y ��y��
Xn 	�

����� Xn�� i�

����� Xn��

with the right square a �ber square Chasing this diagram gives�
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Lemma�

i��
������	�� � � � � � �

�
n�	n�� !

X
e�f

gef

�Y
a�A

��a�	a��
�

�Te�

��Y
b�B

��b�	b��
�

�Tf �

�
Now �x � � A�X
 	�� � � � � 	n � A�X
 integers q� r� s� t in f�� � � � � ng
 and put

G�qrjst� !
X

e�f �������AqB�f������ngq�r�As�t�B

I���
Y
a�A

	aTe�g
efI���

Y
b�B

	bTf �

By the Lemma


G�qrjst� !
XZ

D�A�B������

����	�� � � � � � ��n�	n� !

Z
D�qrjst�

����	�� � � � � � �
�
n�	n�

where we denote by D�qrjst� the sum of the relevant boundary divisors
Now for the key observation� denoting by � the composition of the forgetful

maps
M��n�X��� ��M��n ��M ��fq�r�s�tg

�! P�

one checks that D�qrjst� is the inverse image via � of the divisor of M��fq�r�s�tg

corresponding to the partition fq� rg � fs� tg �the convexity of X is used to show
that all components in the preimage appear with multiplicity one� In particular


D�qrjst� �! D�rsjqt�

up to linear equivalence
 since this equality holds in M��fq�r�s�tg
�! P�� and therefore

G�qrjst� ! G�rsjqt�

for all 	�� � � � � 	n Setting all but 	q� 	r� 	s� 	t equal to 	
 we have by de�nition

G�qrjst� !
X

e�f n��n��nni��

�
n� �

n� � �

	
I���	

n���	q	rTe�g
ef I���	

n���	s	tTf �

or
 by a shift of the indices�

G�qrjst� ! �n � ��'
X

e�f n��n��n��ni��

�

n�'n�'
I���	

n�	q	rTe�g
ef I���	

n�	s	tTf �

Therefore
 the equality of G�s saysX
e�f n��n��n��ni��

�

n�'n�'
I���	

n�	q	rTe�g
ef I���	

n�	s	tTf �

!
X

e�f n��n��n��ni��

�

n�'n�'
I���	

n�	r	sTe�g
efI���	

n�	q	tTf � �

setting 	q ! Ti
 	r ! Tj 
 	s ! Tk
 	t ! T
 and adding over n�X
e�f n��n���

�

n�'n�'
I���	

n�TiTjTe�g
ef I���	

n�TkT
Tf �

!
X

e�f n��n���

�

n�'n�'
I���	

n�TjTkTe�g
ef I���	

n�TiT
Tf � �

and �nally
 adding over all �� # �� ! ��

F �ijjk�� ! F �jkji��

as needed �
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�� Applications of QH� to enumerative
geometry�S�L� Kleiman� ������

Claude Itzykson
 in memoriam

The main reference for the following material is �F�P�
 especially x�� a secondary
reference is �DF�I� The material is organized into these sections�

�x�� Gromov
Witten invariants
�x�� The potential
�x�� The projective plane
�x�� Feynman diagrams
�x�� Surfaces in general
�x�� Del Pezzo and Hirzebruch surfaces

x�� Gromov
Witten invariants� Let X be a smooth irreducible projective
variety If X is
 in fact
 the quotient G
P of a reductive group G by a parabolic
subgroup P 
 then X is convex and its singular homology H��X�Z� is algebraic
As we have seen
 it follows that there are good moduli spaces M ! M��n�X��� of
marked Kontsevich�stable maps
 and that X has an associative quantum cohomol�
ogy ring QH��X� Later �in x�� we�ll see that conversely
 at least for surfaces
 if X
is convex and H��X�Z� is algebraic
 then
 for all practical purposes
 X ! G
P 

Let � � A�X �! H��X�Z� The moduli space M parameterizes maps of class ��

M �!

������C
�
�� X� p�� � � � � pn�

�������
C ! P� or a tree of P�s�

���C� ! �� pi � C�

and � is Kontsevich�stable

�����
�

isom

The expected dimension of M is

exp�dim�M � �! dimX #

Z
�

c��TX� # n� ��

Moreover
 there are evaluation maps �i � M � X
 which take an element of M as
above to ��pi� Note that
 if M is nonempty
 then � is e�ective� that is
 � is the
class of the image of a tree C of P�s

Let 	�� � � � � 	n � A�X �! H��X�Z� The corresponding Gromov
Witten invari�
ant is

I��	� � � � 	n� �!

��� ��
unless � is e�ective andP

dim	i ! exp�dim�M ��R
�
���	� � � � � � �

�
n	n� if so

Here � is the fundamental class of the moduli space� � �! �M � if X is convex� � is
the "virtual fundamental class� otherwise �Li�Tian�
 �B�F� and �Behrend� �see x� for
some examples� This class may even be fractional

At least in the case X ! G
P 
 we have

I��	� � � � 	n� ! ������ %� � � � � � �
��
n %n��
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where the %i are representatives
 in general position
 of the Poincar(e duals to the
	i In other words
 I� is the number of pointed maps � such that ���C� ! � and

�pi � %i Moreover
 the intersection on the right consists of general points of M 
In particular
 the corresponding C are each equal to P� Now
 it may be that the
general map � is not birational onto its image For example
 this is the case if
X ! P� and � ! d�X� with d � �
 or if X ! P��P� and � ! d�ruling� with d � �
However
 if the general map is not birational
 then the intersection would not be
�nite unless it�s empty� hence
 it�s empty
 and I��	� � � � 	n� vanishes Thus I� is
the number of irreducible rational curves in X �! G
P � of class � meeting the %i

In general
 the Gromov�Witten invariants possess the following three properties�

I��	� � � � 	n� !

�
�� if n � ��R
X
	� � 	� � 	�� if n ! �

�I�

I��� � 	� � � � 	n� !

�
�� if n � � or � �! ��R
X
	� � 	�� if n ! � and � ! �

�II�

If 	� is a divisor class �	� � A�X�
 then

I��	�	� � � � 	n� !

�Z
�

	�

	
I��	� � � � 	n���III�

x�� The potential� The potential is de�ned by the formula


*�	� !
X
n��

X
�

�

n'
I��	

n��

Take a graded basis of A�X with T� ! �
 with T�� � � � � Tp � A�X
 and with
Tp��� � � � � Tm of higher degree Write 	 !

P
yiTi
 and use the linearity of I�

to expand *�

*�y�� � � � � ym� !
X

n������nm��

X
�

I��T
n�
� � � �Tnmm �

yn��
n�'

� � �
ynmm
nm'

�

The right�hand side is a well�de�ned formal power series in Q��y�� if
 given 	n
 we
have I��	n� ! � for almost all � For example
 this is the case if the e�ective classes
lie in the cone generated by �nitely many � such that

R
�
c�TX � � �which is the

key ingredient in the �rst lemma in the preceding lecture of Ranestad�s� This
condition is satis�ed if X ! G
P 
 or more generally whenever �KX �! c�TX is
ample However
 this issue becomes unimportant when * is modi�ed as described
next �see �G�P
 x���

Break up the potential into two pieces
 * ! *cl #*qtm
 where *cl
 the classical
part
 is the contribution due to the condition � ! �
 and where *qtm
 the quantum
correction
 is the contribution coming from all nonzero � Property �I� of x� yields

*cl !
�

�'

Z
X

	� !
X

n������nm��

Z
X

Tn�� � � � � � Tnmm
yn��
n�'

� � �
ynmm
nm'

�
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Since the quantum product  �recalled below� involves only the third derivatives of
*
 we may modify * by terms of degree at most two So �I���III� imply that we
may replace *qtm by

% �!
X

np�������nm��

X
� ���

I��T
np��

p�� � � � Tnmm �

�
pY
i��

eyi
R
�
Ti

�
y
np��

p��

np��'
� � �

ynmm
nm'

�

which is a formal power series in yp��� � � � � ym and in new variables ey� � � � � � eyp

�with appropriate derivatives� and in their inverses The product
Qp
i�� e

R
�
yiTi may

be abbreviated to e
R
�
� as only the Ti in A�X give nonzero contributions to the

integral

Set *ijk �!
��*

�yi�yj�yk

 set �gef � �! �gef ��� for gef !

R
X
Te � Tf 
 and set

Ti  Tj �!
X
e�f

*ijeg
efTf �

It is immediate to check that this quantum product  is commutative
 with unit T�
It�s far less obvious that  is associative� see the preceding lecture for a proof

x	� The projective plane� As a �rst example
 which is simple yet gives the
general �avor
 let�s work out the above theory for X ! P� Let T�
 T�
 and T� be
the classes of X
 a line
 and a point Say � ! dT� and set � �! �

� �d � ���d � ��
Then

I��T
n�
� � ! the number Nd of ��nodal plane curves through n� points

! �� unless n� ! �d� �

For instance
 N� is simply the number of lines through two points
 namely
 �
Remarkably
 all the other Nd follow formally from this one' �This fact was noted
by Kontsevich �rst
 according to �DF�I
 p���
 and it has inspired the determination

via quantum cohomology
 of a lot of new geometric numbers�

With the above choice of the Ti
 we �nd

*cl !
�

�
y��y� #

�

�
y�y

�
�� and % !

X
d��

Nde
dy�

y�d���

��d� ��'
�

Moreover
 we have

�gef � !

�� � � �
� � �
� � �

A ! �gef ��

Hence
 Ti  Tj ! *ij�T� #*ij�T� #*ij�T� Therefore


T�  T� ! T� # %���T� # %���T��

T�  T� ! %���T� # %���T��

T�  T� ! %���T� # %���T��
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Straightforward computation now yields the formulas


�T�  T��  T� ! �%��� # %���%����T� # � � �

T�  �T�  T�� ! %���%���T� # � � �

So associativity implies the equation


%��� # %���%��� ! %���%����

Di�erentiating %
 we �nd

%��� !
X
d��

Nde
dy�

y�d���

��d� ��'
� %��� !

X
d��

dNde
dy�

y�d���

��d� ��'
�

%��� !
X
d��

d�Nde
dy�

y�d���

��d� ��'
� %��� !

X
d��

d�Nde
dy�

y�d���

��d� ��'
�

Multiplying
 we get

%���� !
X
d��

X
d��d��d

d��Nd�d
�
�Nd�e

dy�
y�d���

��d � ��'��d� ��'
�

%���%��� !
X
d��

X
d��d��d

d��Nd�d�Nd�e
dy�

y�d���

��d � ��'��d� ��'
�

Finally
 equating coe�cients yields Kontsevich�s celebrated recursion formula


Nd !
X

d��d��d

Nd�Nd�

�
d��d

�
�

��d � ��'

��d� ��'��d� ��'
� d��d�

��d� ��'

��d � ��'��d� ��'

�
�

The following table gives the �rst �ve values of the number Nd of rational plane
curves of degree d �with � nodes� through �d� � points�

d � � � � �
Nd � � �� ��� �	���
� � � � � �

�d� � � � � �� ��

The �rst three values of Nd have been known for a long time The fourth was
found �after a lot of work� by Zeuthen in ��	� The �fth number was found as
above by Kontsevich in December ���� �it had already been found implicitly via
more traditional means by Ran and by Vainsencher�

Along the same lines
 we can work out the cases of P� and of the quadric threefold
Q� in P� �the details are found in �F�P
 x��� and the case of the point�line incidence
variety I� in P��P� �the details are found in �DF�I
 pp�������� It is also possible
to handle conditions of tangency by using the associativity of an appropriate gen�
eralized quantum cohomology ring This was done to some extent by Di Francesco
and Itzykson in �DF�I
 pp��������� and in full by Ernstr�om and Kennedy in �E�K�
On the other hand
 Pandharipande �P� worked with conditions of tangency by using
intersection theory on M��n�Pr� without the power of associativity
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x�� Feynman diagrams� Feynman diagrams can be used as an e�ective mne�
monic device for writing down the associativity equations e�ciently The sum


F �i� jjk� l� �!
X
e�f

*ijeg
ef*fkl�

is represented by the diagram


kj

li

Heuristically
 i and j are coupled on the left
 and k and l are coupled on the right
Each couple can be in a number of intermediate �states
 which are indexed by
e and f 
 and quanti�ed by *ije and *fkl Each pair of states is correlated by a
�propagator
 which is represented by the horizontal link
 and quanti�ed by gef 
The total ���point correlation is represented by the diagram
 and quanti�ed by
the above sum F �i� jjk� l�

The same ��point correlation can be decomposed in a second way into a complete
set of intermediate states The corresponding diagram is

i

j k

l

So the corresponding sum is F �j� kjl� i� In physics
 the duality relation of topolog�
ical �eld theory is symbolized by an equation
 with the �rst diagram above on the
left and the second on the right This duality relation corresponds to the following
associativity equation�

A�i� j� k� l� � F �i� jjk� l� ! F �j� kjl� i��

�This di�erential equation was called a WDVV equation after E Witten
 R Dijk�
graaf
 H Verlinde and E Verlinde by B Dubrovin� Every associativity equation
arises in this way for suitable values of i� j� k� l However
 many of the equations
are equivalent
 and others are trivially satis�ed
 as we�ll now see

The *ije are symmetric in i� j� e
 and the gef are symmetric in e� f  So a simple
formal calculation yields the following equivalences of equations�

A�i� j� k� l� � A�j� k� l� i� � A�k� l� i� j� � A�l� i� j� k� �

A�i� l� k� j� � A�j� i� l� k� � A�k� j� i� l� � A�l� k� j� i��



APPLICATIONS OF QH� TO ENUMERATIVE GEOMETRY�S�L� KLEIMAN ��

To obtain each of these eight equations
 pick one of the four indices and read
progressively around either one of the above diagrams either counterclockwise or
clockwise

Similarly
 there are two more groups of eight equivalent equations
 and they
correspond to the following two duality relations�

i l

jk

i l

k j

i

j

k

l

i k

lj

If all four of i� j� k� l are distinct
 then there are twenty�four possible equations

and they divide into the above three groups of eight equivalent equations If only
three indices are distinct
 say i ! j
 then there is
 up to equivalence
 only one non�
trivial associativity equation A�i� i� k� l�
 and it corresponds to the duality relation


i

k

l

i

i

k

l

i

The equations of the other two groups are trivially satis�ed because of the symmetry
of the *ije If only two indices are distinct
 say i ! j and k ! l
 then there is again

up to equivalence
 only one nontrivial associativity equation A�i� i� k� k�
 and it
corresponds to the duality relation


i

ki

i

ki

k
k

If three or four indices coincide
 then the resulting equations are automatically
satis�ed The same happens if one of the indices is � Indeed
 %�jk ! �� so null
indices matter only for *cl However
 the classical product is already associative'

Consequently
 if the rank of A��X� is � # m
 then the total number of basic
associativity equations is

�

�
m

�

	
#m

�
m� �

�

	
#

�
m

�

	
!

m�m� ���m� �m# ��

�
�

For example
 for m ! �� � � � � 	
 the numbers are �
 �
 ��
 ��
 ���
 ��� Thus
 if X
is P��P� or P�
 then m is �
 and the number of basic equations is �
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Thus
 given A��X�
 including the anticanonical class �KX 
 and a suitable num�
ber of initial conditions
 it is a formal matter to set up the associativity equations
and then to solve for the Gromov�Witten invariants An algorithm to do so was
recently developed and implemented as a ����K� C�program
 farsta
 by Andrew
Kresch

x�� Surfaces in general� Again
 let X be a smooth irreducible projective va�
riety of any dimension
 and suppose that H��X�Z� is algebraic Then in particular
H�n���X�Z� ! � So the universal�coe�cient theorem implies that H�n���X�Z� !
� and that H�n�X�Z� is torsion�free

By Hodge theory
 H��X� C � ! H��OX� �H��+�
X �� so H��OX� ! � Further


H��X� C � ! H��OX��H��+�
X� �H��+�

X��

and the algebraic cycles map into H��+�
X � They span all of H��X� C � by assump�

tion Hence H��OX� ! �
Consider the exponential sequence�

� ��ZX �� OX �� O�X �� ��

It yields the long exact sequence�

H��OX� �� H��O�X� �� H��X�Z��� H��OX��

The extreme terms vanish So we get

Pic�X� ! H��O�X� ��H��X�Z��

Thus Pic�X� is discrete and torsion�free In particular
 if X is a surface� and if �
is given in A�X �! H��X�Z�
 then the divisors D of class �Poincar(e dual to� � are
linearly equivalent

Let � � P� � X be a map that�s birational onto its image Form the sequence


� �� TP� �� ��TX �� N���
where N� is the dual of Ker���+�

X � +�
P�
�
�
 This sequence must be of the form


� �� O���
u
�� O�a� �O�b� �� O�c��

say with a � b Since the map u is nonzero
 so is its composition with the projection
to O�a� or else with that to O�b�� hence
 a � � or b � � Therefore
 a � � since
a � b Similarly
 c � a or c � b� hence c � b Further
 if X is convex
 then b � �
and so also c � �

Suppose that X is a convex surface Set D �! ��P� Then N� ! O���D� So
D� � � as c � � Furthermore
 h�KX �Di � � with �KX ! c�TX as a � � and
b � � In particular
 there are no �����curves Hence X is relatively minimal
Therefore
 if X is rational
 then X ! P� or X ! Fe �the Hirzebruch surface� In
the latter case
 X ! P��P� necessarily
 because Fe has a section of square �e If
X is irrational
 then KX is nef and so
 since h�KX �Di � �
 there are no rational
curves on X

In sum� if X is a convex surface with H��X�Z� algebraic
 then either X ! P�
 or
X ! P��P� �and in both these cases X ! G
P �
 or else X has no rational curves'
In other words
 for surfaces
 the requirement of convexity is rather restrictive for
the applications of quantum cohomology to enumerative geometry
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From now on� X is a surface with H��X�Z� algebraic
 but X is not necessarily
convex Given � � A�X
 set

k��� �! h�KX � �i !

Z
�

c��TX��

Let � be the class of a point If I���n� �! �
 then the equations


n � codim� ! exp�dim�M � ! dimX # k��� # n� ��

give the formula


n ! k��� � ��

because codim� ! � and dimX ! � Set therefore

N� �! I���
k�������

Normally
 N� is the number of curves of class � with pa��� nodes �so they�re
immersed P�s� that pass through k���� � points Recall that
 if � is not e�ective
�that is
 not the class of the image of a tree of P�s�
 then N� ! �� it is reasonable
to conjecture that
 if the arithmetic genus pa��� is strictly negative
 then again
N� ! �

As in x�
 replace the potential * by the sum *cl # % where

%�	� �!
X
� ���

N�e
R
�
� y

k�����
m

�k���� ��'
�

Write 	 ! 	� # 	� # 	� with 	i � Ai�X� Then

*cl !
X

i�j�k��

�

i'j'k'

Z
X

	i�	
j
�	

k
� �

For the integral to be nonzero
 necessarily j # �k ! �
 and so either k ! �
 j ! �

i ! � or k ! �
 j ! �
 i ! � So

*cl !
�

�

Z
	�	

�
� #

�

�

Z
	��	��

For � � i� j � m
 the duality relation

i
i

m
m

j

j

m

m
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corresponds to the associativity equation


A�i� j�m�m� �
X
e�f

*ijeg
ef*fmm !

X
e�f

*jmeg
ef*fmi�

On the left
 consider the terms with f ! m First
 *cl
mmm ! �� so *mmm ! %mmm

Next
 gem ! � if e �! �
 and g�m ! � Finally
 *ij� ! *cl
ij� ! gij  Hence there�s

only one nonzero term with f ! m
 and it�s equal to gij%mmm On the other hand

*cl
ije ! � unless e ! �
 and *cl

efm ! � unless e ! � and f ! � Therefore
 the
associativity equation yields a formula of the following form�

gij%mmm ! a certain quadratic polynomial in the %efm�

As in the case of P�
 this formula yields a recurrence relation of the following form�

gijN� !
X

�������

N��N�� 
�
 � 

�
�

Only one of these recurrence relations is needed to solve for the N�� however

the others serve to reduce the number of necessary initial conditions
 although
redundantly �For a further discussion of this matter whenever A�X is generated
by A�X
 see Kresch�s paper �Kresch��

x�� Del Pezzo and Hirzebruch surfaces� In this �nal section
 we�ll consider
two examples� the Del Pezzo surfaces
 and the Hirzebruch surfaces

A Del Pezzo surface is a smooth irreducible projective surface X such that
�KX is ample One such X is P��P�� it is also a Hirzebruch surface
 and will be
considered below Otherwise
 X is obtained by blowing up the plane at r points in
general position
 where � 
 r 
 � Note that X is not convex for r � � A natural
basis for A�X is fh� e�� � � � � erg where h is the pullback of the class of a line
 and ei
is the class of the ith exceptional divisor The potential * is a well�de�ned power
series because �KX is ample So the associativity equation A��� ��m�m� yields the
following recursion formula�

N� �
X

N��N�� h�� � ��ihh � ��i

�
hh � ��i

� k��� � �

k���� � 	

�
� hh � ��i

� k��� � �

k���� � �

��
�

Needless to say
 for r ! �
 we recover the formula of x� for the plane The case r ! �

where X is equal to a cubic surface in P�
 was worked out in detail by Di Francesco
and Itzykson in �DF�I
 x���� the general case was treated brie�y by Kontsevich
and Manin in �K�M
 x���� The case of arbitrary r �possibly greater than � where
�KX is not ample� was treated in depth by G�ottsche and Pandharipande in �G�P��
they also considered the enumerative signi�cance of the N�

The Hirzebruch surface of index e is the rational ruled surface


Fe �! P
�
OP� �OP� �e�

�
�

It has a unique section E over P� such that E� ! �e if e � � However
 F� is
P�� P�� in this case
 let E be any section Of course
 F� can be embedded as the
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quadric surface in P�
 and the latter was studied in some detail by Di Francesco
and Itzykson in �DF�I
 x��� The next surface F� is the blowup of P� at a single
point
 a Del Pezzo again

For any e
 a natural basis for A�X is given by the class �E� and that �F � of a
�ber For e � �
 there are in�nitely many classes � ! a�E� # b�F � having a� b � �
and given k��� However
 only �nitely many have pa��� � � Indeed


k��� ! ��� e�a # �b and pa��� ! �a � ����b � �� ae�
��

So
 if pa��� � � and a � �
 then �b � ae � �� hence
 if also k��� is given
 then a
is bounded
 and so b is bounded too So the conjecture of the preceding section
would imply that the potential * is a well�de�ned power series
 but this question
is unimportant when * is modi�ed as explained in x� The conjecture would also
provide some useful initial conditions
 but these conditions can also be obtained by
using a number of associativity equations

The associativity equation A��� �� �� �� yields the recursion formula


N� �
X

N��N�� h�� � ��ihE � ��i

�
hF � ��i

� k��� � �

k���� � 	

�
� hF � ��i

� k��� � �

k����� �

��
�

�This formula was worked out for the �rst time by Ragni Piene and the lecturer
in March of ����� It turns out experimentally that
 on writing N�a� b� e� for N�

where � ! a�E� # b�F � on Fe 
 we �nd the relation


N�a� b� e� ! N�a� b # a� e # ���

A conceptual explanation for it �explained to the lecturer by Sheldon Katz in Sep�
tember ����� is this� Fe degenerates into Fe�� 
 transforming F to F and E to
E # F 
 while leaving the quantum cohomology invariant

The enumerative signi�cance of the N� is
 of course
 nontrivial to establish On
the other hand
 there are more geometric computations of related numbers
 which
do not make use of quantum cohomology� Caporaso and Harris have obtained
numbers of irreducible rational curves of class � on F� 
 F� 
 F� and of a special � on
an arbitrary Fe  Following in their footsteps
 Vakil has obtained all the numbers of
both the reducible and irreducible curves on an arbitrary Fe �and the corresponding
numbers in arbitrary genus as well'� Abramovich and Bertram
 in work in progress

have been obtaining numbers by carefully studying the degeneration of Fe into Fe��

Here is a concrete example
 which illustrates some of the subtleties involved in the
enumeration �This example was explained to the lecturer by Dan Abramovich in
November ����� Consider F�  Note that k�a�E�#b�F �� ! �b
 which is independent
of a' Now
 take � �! ��E� # ��F � Then k���� � ! �� and

N� ! ���� ! ���� # � � ��� # � � � # �

where the four terms on the right arise as follows�

���� is the contribution of the irreducible curves of class � through �� general
points

� � ��� is the contribution of the curves breaking up as E union an irreducible
curve of class 	
 where 	 �! ��E� # ��F �
 through the �� points The latter
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curve meets E twice� h��E # �F � � Ei ! �� # � ! � So there are two
ways to partially normalize the curve into a tree of P�s There are ��� such
curves of class 	
 because N� ! ��� and N� ! ��� # � � �
 where � � � is the
contribution �to N� now'� of curves breaking up as E union a curve of class
� �! �E� # ��F � Indeed
 h� � �E�i ! �� # � ! �
 and therefore there are �
ways to attach a curve of class � to E Finally
 there are N curves of class
� through the �� points
 and N ! � because pa��� ! �

� � � is the contribution of curves splitting as ��E� # � where � �! �E� # ��F �
as before The two reduced components again meet in � points as the
intersection number h�E # �F � � Ei is � There are � ways to map a tree
of � P�s with � nodes onto each curve
 mapping the two extreme P�s to E

the connecting P� to the other component
 and the � nodes to � of the �
points Finally
 as before
 there is � curve of class � through the �� points

� is the contribution of the same curves as in the previous case
 but with a
tree of � P�s with � node and � P� mapping ��to�� to E It can be shown
that these form a component of M of the wrong dimension and contribution
�
 via an explicit analysis of the degeneration of Fe into Fe�� 

�� About M�X����I� Ciocan�Fontanine� ��������

We go back now to the proof of the properties of M��n�X��� that we used in
the enumerative geometry computations and the construction of QH� The plan
for this lecture is�
�x�� Overview of the construction of M g�n�X��� and of the proofs
�x� The idea behind the construction for X ! Pr

�x�� Begin the formal proofs

x�� Overview� Let X be a projective variety over C 
 � � A�X We have a
functor

Mg�n�X��� � fschemes
C g �� fSetsg

de�ned by

Mg�n�X����S� ! fisom classes of stable maps of genus g
 n�pointed curves
 etcg

We �rst list the results we need

Theorem �� There exists a projective coarse moduli space M g�n�X��� for this
functor�

The technical formulation of this statement is� there exists a projective scheme
M g�n�X��� together with a natural transformation of functors

 �Mg�n�X��� �� Hom���M g�n�X����

satisfying

��� �Spec�C �� is a bijection of sets�
��� If there is a � �Mg�n�X��� �� Hom��� Z�
 then there is a unique morphism

M g�n�X���
�
�� Z such that � ! ,	 � 
 with ,	 ! Hom��� 	��

If we assume in addition that X is nonsingular and convex
 and that g ! �
 then
we can say more� we have a local description of M ��n�X����
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Theorem ��

�i� M ��n�X��� is a locally normal projective variety of pure dimension

dimX #

Z
�

c��TX� # n� �

�ii� M ��n�X��� is locally a quotient of a smooth quasi�projective variety by a
�nite group�

�iii� M
�

��n�X��� ��automorphism�free locus� is smooth� with a universal family�

The boundary of M ��n�X��� is the complement of the subset parametrizing

irreducible curves� that is
 M��n�X��� �M��n�X���

Theorem �� The boundary of M��n�X��� is a normal crossing divisor� up to a
quotient by a �nite group�

Outline of the proofs�

��� Existence� First construct M g�n�Pr� d� and show that this is a projective

scheme Next
 for X projective choose an embedding X
i
�� Pr
 and show

that there exists a natural closed subscheme M g�n�X�d� � Mg�n�Pr� d��
then M g�n�X�d� ! qi���d�line�Mg�n�X��� The universality property of
the coarse moduli space will imply the independence of the space from the
chosen embedding

��� Local structure� Comes for free from the construction when X ! Pr
��� Boundary� Ditto

x�� Outline for X ! Pr� Let d� r � �
 and let �C� fpig� �� be a stable n�pointed
map to Pr
 with image of degree d

Choose coordinates �x� � � � � � xr� for Pr The map �C� fpig� �� determines and
is determined by the data of

�C� fpig�
 n�pointed quasi�stable�
a line bundle L on C
 that is L ! ��OPr ����
r # � general sections si ! ���xi�

This is what we would like to parametrize
A generic map �if there is one� will have transversal intersection with the coor�

dinate hyperplanes fxi ! �g
 away from fpig and from the nodes The divisor of
si consists then of distinct points fqi�� � � � � qidg� we get additional d�r # �� marked
points on C Assume C is generic�

Claim� ��r� d� �! ��� ��� � is stable if and only if �C� fpig� fqijg� is Deligne�
Mumford�Knudsen stable�

Proof� !� � Say that E � C
 E �! P�� if ��E� is a point
 we are done by
the stability of � Otherwise
 there are two cases� if E ! C
 all d�r # �� � � extra
marked points are on C� and if E �! C
 we have at least one node
 and �r # �� � �
of the new markings on E So every contracted component has at least � special
points
 as needed

The other direction is easier �
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Summing up
 the generic �C� fpig� �� determines a point in M g�m
 with m !
n # d�r # �� Note that there is a C � ambiguity in the choices of each of the
si
 modulo a C � by homogeneity That is
 given the points corresponding to the
sections �the information in the qij �s� there is still a �C � �r worth of additional
choices to be made

Further
 we have to take account of the permutations of the points in each
hyperplane section
 that is
 of the action of G ! Sd�� � ��Sd ! �Sd�r��
 where the
i�th factor permutes fqi�� � � � � qidg

What about nongeneric curves- All curves are generic for some choice of the
coordinates� a given choice gives a coordinate patch for an open in a cover of M 
Then we need to show that these coordinate patches do patch
 and a boundedness
result to show that the scheme is of �nite type Then we need to show that the
scheme is proper� and �nally that it is projective �this is technically harder�

Summarizing� we have to consider a �quotient of a� torus bundle over a subset
of Mg�m Which subset- �In the genus�� case
 we will end up with an open subset

of M��m� Let B � M g�m be the subset determined as above Remark� on C


the r divisors divsi are linearly equivalent� this puts a condition on M g�m
 as
we need the divisors fq��� � � � � q�dg
 � � � 
 fqr�� � � � � qrdg on C � B to be linearly
equivalent divisors �and very ample� In particular
 the degrees of these divisors on
a given component must be equal� in genus �
 this su�ces essentially to determine
everything
 as the number of points in a divisor determines its class In genus� �

the ambiguity is measured by the Jacobian� in practice
 we can�t get our hands on
the local structure of the resulting spaces

x	� Formal proofs� Say Pr ! PV 
 where V is an �r # ���dimensional complex
vector space� H��O���� ! V � Fix t ! ft�� � � � � trg
 a basis of V �

Definition �� A t�stable family of degree�d maps from n�pointed curves to Pr

consists of
�� � C �� S� fpigi�������n� fqijg��i�r���j�d� ��

such that

�i� �� � C �� S� fpig� �� is a stable family of degree�d maps from n�pointed
curves to Pr�

�ii� �� � C �� S� fpig� fqijg� is a stable m ! n# d�r # ���pointed curve�
�iii� ���ti� ! qi� # � � �# qid as e�ective Cartier divisors

Definition �� Mg�n�Pr� d� t� is the functor of t�rigid stable maps� that is


Mg�n�Pr� d� t��S� !fisomorphism classes of families over S as in De�nition �g

Proposition �� There exists a quasi�projective moduli space M g�n�Pr� d� t��
which is coarse for g � � and �ne and nonsingular for g ! ��

Proof� �Only for g ! �� Let M !M ��m� � � U ��M the universal family� pi


qij are sections of U �� M  As U is nonsingular
 qi� # � � � # qid determines a line
bundle Hi ! OU �qi� # � � � # qid� Denote by si a corresponding section
 that is a
"global equation� for qi� # � � �# qid

Denote by B � M the open subscheme determined by the property that for
b � B
 the geometric �ber Cb ! Ub will have degHi ! degHj on every component
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of Cb

UB
i

����� U

�B

��y ��y�
B

i
����� M

�Note� for g � �
 we would require instead that Hi �H
��
� "comes from the base�

for all i� Now ��B��i
�
�Hi �H

��
� � is a line bundle Gi on B
 and has an associated

C � �bundle �i � Yi �� B obtained by deleting the zero�section
Let then Y ! Y��B � � � �B Yr
 coming with projections �i � Y �� Yi
 � � Y �� B

Note that ��i Gi is canonically trivial

UY
�

����� UB
i

����� U

�Y

��y �B

��y ��y�
Y

�
����� B

i
����� M

Claim� On UY there is a canonical isomorphism ��i�Hi
�! � �i�H� !� L�

Pf� ��i
�
Hi � H��

� ! ����B�B�i
�
Hi � H��

� �since i
�
Hi � H��

� comes from B

��B�B� leaves it alone�
 which equals ��Y �

�Gi ! ��Y �
�
i �
�
i Gi
 and ��i Gi is canonically

trivial �

Now ��si generates �
�Hi
 for i ! �� � � � � r There exists a unique � � UY �� Pr

such that ��O��� ! L and ��ti ! ��si

Claim� ��Y � UY �� Y� fpig� fqijg� �� is a universal family over Y �

That is
 Y represents the functor of t�rigid stable maps

Pf� By construction it is a t�rigid stable family To show it is universal� pick
another ��S � CS �� S� fpig� fqijg� ��
 and show that there is a unique morphism

S �� Y such that this family is canonically isomorphic to the pull�back of UY  For
this
 �S � CS �� S is a family ofm�pointed curves
 in particular
 so there is a unique
� � S ��M �

CS
�

����� U

�S

��y ��y�
S

�
����� M

��Hi
�! ��OPr ���
 so S

�
�� M factors S

�
�� B �� M  There is a canonical isomor�

phism�

OS
�! �S��

�
Hi �H

��
�
�! ��Gi �

because of this
 there is a canonical isomorphism �S��
�
SN

�! N for all line bundles
N on S� in particular
 there are canonical isomorphisms

��Gi �! �S��
�
S�

�Gi ! �S��
�
��SGi ! �S��

�
��B�B�i

�
�Hi �H

��
� � �! �S��

�
�Hi �H

��
� �



	� PART I�STABLE MAPS AND QUANTUM COHOMOLOGY

Therefore there is a canonical S �� Y commuting in

S ��

�

���
��

��
��

Y
�

����
��
��
�

B

The pull�back of the universal family is the given family on S because at each step
all choices were canonical �

�� The construction of M ��n�Pr� d��J� Thomsen� �������

We �x n
 r
 d
 and only deal with the genus! � case Let V � ! H��Pr�OPr ����

and let t ! ft�� � � � � trg be a basis of V � Consider the functor

M��n�P
r� d� t� � Alg schemes over C �� Sets

sending S to the set of isomorphism classes of t�rigid families over S Here a t�rigid
family over S is an object

�� � C �� S� fpigi�������n� fqijg��i�r���j�d� � � C �� Pr�

where

�i� �� � C �� S� fpig� �� is a stable family of degree�d maps from n�pointed
genus�� curves to Pr�

�ii� �� � C �� S� fpig� fqijg� is a stable family of m ! �n # d�r # ����pointed
genus�� Deligne�Mumford stable curves�

�iii� ���ti� ! qi� # � � �# qid
 i ! �� � � � � r

Recall from Ciocan�Fontanine�s lecture�

Theorem� There exists a quasiprojective nonsingular variety M �t�� which is a
�ne moduli space with respect to M��n�Pr� d� t��

Our task is to patch these moduli spaces together into a spaceM ! M��n�Pr� d�
Suppose that we already have a �ne moduli space M for M��n�Pr� d� For a

t�rigid family �� � C �� S� fpig� fqijg� ��
 we consider the diagram

Di
���������

��

Di
��

��

Di
��

��

Di ! Z���ti�

��
C ��

��

UD ��

��

Ut ��

��

Utr ��

��

U
� ��

��

Pr

S �� D
� ��

FF
�

�
�
�
�
�
�
�

M t
�� M tr

�� M
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The map S ��M realizing the family via pull�back is not surjective
 as the curves
over S intersect the Di transversally �by rigidity�� so the map must factor through
the open subset

M tr ! fcurves intersecting the Di�s transversallyg

Similarly
 the map factors through the smaller open M t where the pi�s are distinct
from the Di�s
 and the Di�s intersect trivially

Next
 the qij de�ne a map from S to

D !
Y
i

���
�B�Di �M

t
� � � �M

t
Di� �z �

d

CA� big diagonals

� !
through which the map toM t also factors As D is independent of the t�rigid family
we started with
 it is a concrete realization of M �t�

Also
 Gd�r ! Sd � � � � � Sd� �z �
r��

acts on D over M t� and we claim that

D
Gd�r
��Gd�r

�����M t

is an isomorphism To see this �at least on closed �bers�
 look at the �ber over
s � S ��M t�

���i �s� ����� Di ����s� ����� D��y ��y�i ��y ��y�
fsg ����� M t fsg ����� M t

Clearly ���i �s� ! d points of intersection of ti with �the curve represented by� s�
and

����s� !
�
�x��� � � � � x�d� � � � � xr�� � � � � xrd�j xij distinct
 and fxijg ! ���i �s�

�
Summarizing
 the open M t of M �if the latter exists� must be isomorphic to
D
Gd�r ! M �t�
Gd�r So we should be able to construct M��n�Pr� d� by gluing

together M�t�
Gd�r
 where t runs through all bases of V �
Now

M �t�
Gd�r �

curves �ie
 points on M ��n�P
r� d�� which the hyperplanes ti

intersect transversally in distinct points and away from the

marked points

If t
�
is another basis


�M �t�
Gd�r �M �t
�
�
Gd�r �

curves which the hyperplanes ti and t�i

intersect transversally in distinct points �each�

and away from marked points

In order to control the patching
 we have to construct this intersection explicitly
�as we did for M �t�
Gd�r� a moment ago� This will be obtained as the quotient

by Gd�r �Gd�r of a suitable M �t� t
�
� In fact it is useful and not harder to consider

arbitrary ��nite� sets of bases at once�
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Definition� Let ft
g��
�h be a set of bases of V � Then

�� � C �� S� fpig��i�n� fqij
g��i�r���j�d���
�h� ��

is called a ft
g��
�h�rigid family if for all �


�� � C �� S� fpig��i�n� fqij
g��i�r���j�d� ��

is t
�rigid

Definition� De�ne a functor M�t�� � � � � th� from Algebraic Schemes to Sets
sending S to the set of isomorphism of ft
g��
�h�rigid families over S �where iso�
morphisms of families
 etc are de�ned in the usual way�

Theorem� There is a �ne moduli space M�t�� � � � � th� for this functor� carrying
a Gd�r � � � � �Gd�r�action�

The idea of course is that the intersection ��h
��M�t
�
Gd�r should correspond

to M �t�� � � � � th�
Gd�r � � � � �Gd�r

Proof of the Theorem� This is done by induction on h� the case h ! �
has already been done For h � �
 assume M�t�� � � � � th��� has been constructed
already
 let th ! �th�� � � � � thr� and consider

Di
��

��

Di
��

��

Di
��

��

Di � Z���thi�

��
UD ��

��

U�th� ��

��

Utr ��

��

U
� ��

��

Pr

D ��

���
�

�
�

�
�

�
�

�
M�t�� � � � � th����th�

�� M�t�� � � � � th���tr
�� M�t�� � � � � th���

�i� M �t�� � � � � th���tr �M �t�� � � � � th��� is the maximal open subscheme where
the sheaf of relative di�erentials +Di�M�t������th���

! ��

�ii� M �t�� � � � � th����th� � M �t�� � � � � th���tr is the maximal open subscheme
where the pi and the Di are distinct�

�iii� D !
Q
i��Di �M � � � �M Di�� big diag� where M !M �t�� � � � � th����th�

The natural projections D �� Di give the new sections qijh� M �t�� � � � � th� �! D
is the �ne moduli space for M�t�� � � � � th� The action of the group is the natural
one �

Note that there will be natural maps

M �t�� � � � � th�
�
t������th���

�
th

����������M �t�� � � � � th����th�
open
�� M �t�� � � � � th���

and

��� �
t������th���

�th
is �Gd�r�� � � � �Gd�r�h���equivariant�

��� M �t�� � � � � th�
�Gd�r�h �!M �t�� � � � � th����th�
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Now we can glue the spaces together The data of the gluing�
�M t !M �t�
Gd�r
 t running through all bases of V ��

�M tt�
 de�ned as M�t��t
�
�
Gd�r�

��tt� � M tt� ��M t�t
 isomorphisms induced from

M �t� t
�
�
Gd�r �Gd�r


����� M �t

�
� t�
Gd�r �Gd�r��y ��y

M �t��t
�
�
Gd�r !M tt�

�
tt
�

����� M t�t !M �t
�
��t�
Gd�r

Compatibility is checked on triple intersection The resulting scheme isM��n�Pr� d�

Next
 we will check that M ��n�Pr� d� is of �nite type over C 
Let S �M ��n�Pr� d�
 and let �C� fpig� �� be a corresponding curve De�ne

L ! �C�p� # � � �# pn� � ���OPr ����

Claim� L is ample�

Indeed
 let E � C be a component Then

�i� ��C�jE ! �E �O�nodes of C along E��
�ii� deg��C�p� # � � � # pn�jE� ! �� #� special points on E�
�iii� deg�LjE� ! �� # � special points on E # � dE � � �where dE !degree of

���E��

as needed One can in fact check that

Claim� L� is very ample� and h��C�L�� ! ��

De�ne
e �! degL� ! �degL ! ���� # n# �d�

then it follows from Riemann�Roch that h��C�L�� ! e#� Note that e is indepen�
dent of C

Denote by i � C �� Pe the embedding induced by L�
 and let 	 ! �i� �� � C ��
Pe�Pr The image of C in Pe�Pr has bidegree �e� d�

Look then at the Hilbert scheme H of genus�� curves in Pe � Pr
 of bidegree
�e� d�� this comes with a universal family W �� H Denote by Hn the space
W �H � � � �H W� �z �

n

� Hn is a �ne moduli space for families of curves of genus � and

bidegree �e� d�
 together with n sections It has a universal family Un�

C ����� Un ����� Pe�Pr �Hn ����� Pr��y ��y
SpecC ����� Hn

The space Hn is of �nite type over C� we want to deduce that M ��n�Pr� d� is then
also of �nite type
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Given a basis t of V �
 we let Hn�t � Hn be the open subscheme where the
elements of the basis intersect the curve transversally and in distinct points Let
Hb ! � t basis of V �Hn�t

�i� Hb is of �nite type
 so Hb can be covered by a �nite number of Hn�t�
�ii� by Bertini�s theorem
 every stable map from n�pointed genus�� curves to Pr

is induced from Hb

The conclusion is that there exist a �nite number t�� � � � � th of bases of V � such
that

M��n�P
r� d� ! �hi��M �ti�

The space M��n�Pr� d� is then of of �nite type
 since it is covered by �nitely many
schemes of �nite type

� M��n�X����E� Tj�tta� ��������

Our goal�

Theorem �� If X is projective� there exists a coarse moduli space M��n�X����

Theorem �� For X nonsingular and convex�

i� dimM��n�X��� ! dimX #
R
� c��TX� # n� ��

ii� M ��n�X��� is locally a quotient of a nonsingular variety by a �nite group�

Recall how this was done for X ! Pr� we constructed a �ne moduli space
M��n�Pr� d� t� for t�rigid maps
 where t ! ft�� � � � � trg is a basis for H��Pr�O����

This space M��n�Pr� d� t� is a �C ��r�bundle over an open B in M��m
 with m !

n# d�r # �� The group G ! �Sd�r�� acts on M��n�Pr� d� t�
 and the quotients as t

varies glue together
 giving M��n�Pr� d�

A� M��n�X���� Let X be a subvariety of Pr� X
i
�� Pr� let i�� ! d�line� There

exists a closed subscheme M��n�X��� t� � M ��n�Pr� d� t� such that for all families
of t�rigid stable maps � � C �� Pr over a base S
 �,� �� �,� in the commutative
diagram�

X

��
C ��

�

��

��

��hhhhhhhhhhhh U ��

��

Pr

S
���

�� ��J
J

J
J

J
J M��n�Pr� d� t�

M��n�X��� t�

OO

�with U the universal family
 and sections S �� C
 etc
 as usual�
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�

Proof� For � � C �� X and k � �
 H��C� ��O�k�� ! �� by base change

���

�O�k� is a vector bundle with �bers ����O�k�s ! H��Cs� ��O�k�� Let � � �
such that IX��� is generated by global sections With M ! M��n�Pr� d� t� in

H�IX���M

��

�

��NN
NN

NN
NN

NN
N

H�OPr ���M �� ����O���

we identify ��F � over s � S with ��FjCs Then ��Cs� � X �� s � Z ! the zero

scheme of f��F � � F � H�IX���g
Let then M��n�X��� t� ! fs � Z � ���Cs�� ! �g be the component of Z deter�

mined by � The group G acts onM��n�X��� t�� we constructM��n�X��� by gluing
the various quotients �

Note� this works also for general genus

B� Assume X is nonsingular and convex� Recall that X convex
�� �� � P� �� X
 H��P�� ��TX� ! �
 that is
�� �� � P� �� X
 ��TX ! �O�ni�� ni � �
Claim� this is equivalent to �� � C �� X
 C at worst nodal
 of arithmetic genus �


H��C���TX� ! �
The proof is by induction on the number of components If C ! C � � L
 and

C � � L ! fpg
 we have the exact sequence on C

� �� ��TX �� ��TXjC� � ��TXjL �� ��TXp �� � �

whose long exact sequence yields the vanishing of H����TX�

C� Local study of M ! M ��n�X��� t�� Let ��� � M 
 that is
 ��� is an object
�� � C �� X� pi� qij � For D ! Spec k���
����
 and d� ! the closed point of D


TM	�
 ! f� � D ��M j��d�� ! ���g

! space of �rst order deformations of �� � C �� X� pi� qij�

! space of �rst order deformations of �� � C �� X� pi� !� Def���

Let DefG��� be the space of �rst order deformations of �� � C �� X� pi�
 preserving
the combinatorial type G of C Then DefG��� � Def���
 and its codimension is

 q ! the number of nodes of C We will show that this is in fact an equality

Consider Hom�C�X� � �Cn n diag�
 containing the open subset Hst
� �C� de�ned

by fstable ��� p�� � � � � pn� � �im�� ! �g
 mapping to M��n�X��� Act on Hst
� �C�

with Aut�C��

Aut�C��Hst
� �C� �� Hst

� �C�

��� ��� p�� � � � � pn�� �� �� � ����p��� � � � � ��pn��

This action is not free
 but has �nite stabilizers
 giving (etale maps Aut�C� �� orbit
of ��� p�� � � � � pn�
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Relativize this construction� for a �at family C �� S of g ! � nodal curves

consider Cn ! C �S � � � �S C� �z �

n


 HomS�C�X � S� �S �Cn n diag� and its open sub�

set Hst
� �C�
 mapping �over S� to M��n�X��� t� AutS�C� acts �berwise with �nite

stabilizer on Hst
� �C�

Now HomS�C�X � S� is an open subset of the Hilbert scheme of graphs This
allows us to compute its tangent space and dimension� for � � Cs �� X


�THom�Cs�X�	�
 ! H��Cs� ��TX��
�for X nonsingular
 the dimension of all components of HomS�C�X �S� at ���

is at least the expected one
 that is dimH���TX � dimH���TX # dimS�
�by convexity
 H� ! � The dimension equals the expected one
The �bers of HomS�C�X � S� �� S have dimension H���TX� if S is smooth


HomS�C�X � S� �� S is smooth at ��� It follows that Hst
� �C� �� S is smooth at

���
 of relative dimension dimH���TX # n �.�
Again let DefG�C� be the space of �rst order deformations of C preserving the

combinatorial type G
 and consider the universal base space B of deformations of
C preserving G The space B can be seen to be smooth as follows Stabilize C
by replacing unstable components with marked points to get a marked curve Cst

in some M ��m The locus of curves in M ��m determined by the combinatorial type

of Cst is smooth �see Belorousski�s talk on M��n� Then B is a ball around Cst in
this locus Taking S ! B in the above
 and U �� B the universal curve
 we obtain
Hst
� �U� ��M��n�X��� over B Consider the diagram

� ���y ��y
H��C�TC� TAut�C�id DefG�C���y ��y """

� ����� H���TX � C n ����� THst
� �U�	�
 ����� TBC ����� ���y ��y ��y

� ����� Coker ����� DefG��� ����� DefG�C� ����� ���y ��y
� �

where the middle vertical map is the di�erential of Hst
� �U� �� M ��n�X��� By

Riemann�Roch and �.� we get�

dimDefG��� ! dimDefG�C� # dimH���TX # n� dimH��C�TC�

! �
X
jvj��

�jvj � ��� # �dimX #

Z
�

c�TX� # n� �
X
jvj��

��� jvj��

where the
P

is over the vertices v of G
 and jvj denotes valence This gives

dimDefG��� ! dimX #

Z
�

c�TX # n� �� q
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with q ! � nodes of C
Let C �� S be a smoothing of C
 with S smooth By �.� we have thatM��n�X���

is dense in M��n�X���
 hence dimM��n�X��� 
 dimDef��� Since Hst
� �P�� ��

M��n�X��� is surjective
 dimM��n�X��� ! dimX #
R
�
c��TX� #n� � Putting all

together


dimX �

Z
�

c��TX� � n� 
 � dimDef��� � dimDefG��� � q � dimX �

Z
�

c��TX� � n� 
 �

giving equalities through Therefore

dimTM��n�X��� t�	�
 ! dimM ��n�X��� t�

and the space is smooth
 as needed for Theorem �

D� Boundary� The boundary is studied by using the fact that M ��n�Pr� d� t�
is a �C �r �bundle over an open subset of M��m �where m ! n # d�r # ��� The

conclusion is that the boundary of M ��n�X��� t� is a divisor with normal crossings

�� The boundary of M��n�X����E� R�dland� ��������

Reminder of the construction� M ��n�X��� is obtained by gluing together quo�

tients M��n�X��� t�
Gd�r
 where M��n�X��� t� are closed subschemes of schemes

M��n�Pr� d� t�
 in turn obtained as �C � �r�covers of a Zariski�open B of M��m
 where

m ! n # d�r # �� The boundary �M��m of M��n�X���
 that is the subset corre�
sponding to maps from reducible curves
 will be constructed from the boundary of
M��m

Recall that �M��m is a normal�crossing divisor
 with componentsD�AjB�
 where
A � B ! f�� � � � �mg� points of D�AjB� correspond to curves C ! CA � CB with
CA � CB !point
 and CA� CB resp containing points marked from resp A�B

As B is Zariski�open in M��m
 the intersections D�AjB� � B will also be divi�

sors crossing normally
 and so will the pull�backs to M��n�Pr� d� t� Restricting to

M��n�X��� t�
 the intersection is transversal enough so that the restricted boundary
divisors still intersect with normal crossings �dimension count�

On the quotient M��n�X��� t�
Gd�r
 the boundary will be a normal crossing
divisor up to a �nite group

Let us describe the components of the boundary
For n ! �� �M����X��� ! ����A��BD��A� �B�
 where �A� �B are e�ective


and D��A� �B� consists of maps � from C ! CA � CB with CA � CB !point
 and
�jCA� �jCB resp represent �A� �B 

For n � �
 the situation is slightly more complicated �M����X��� is the union
of componentsD�A�B� �A� �B� where A�B ! f�� � � � � ng and A�B ! 	� �A� �B are
e�ective and adding up to �� if �A ! � then jAj � � and similarly for B �stability

condition�� and D�A�B� �A� �B� consists of maps C ! CA � CB
�
�� X where

a� CA � CB !point
 CA
 CB genus�� quasi�stable curves�
b� the markings from A �resp
 B� are on CA �resp
 CB��
c� �A ! �jCA
 �B ! �jCB represent �A
 �B
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By the dimension computations from the results on deformations
 one sees that
the set of curves with CA �! CB �! P� is dense in D�A�B� �A� �B�

Denote by K the divisorD�A�B� �A � �B�
 and byMA the spaceM ��A	f
g�X���

mapping to X by �A�C� !image of � �and similarly MB !etc� Then we claim
that K is "almost� the product MA �MB 

To be precise
 consider

eK ! MA �X MB ! ��A � �B�
���)X� �

Letting similarly

eK�X� tA� tB� !MA�X� tA� �X MB�X� tB�

with the evident groups GA
 GB acting on the factors
 the map eK�X� tA� tB�
GA�

GB �� K induces � � eK �� K If CA ! P�
 ��A� � MA�X� tA�
 we have

TMA
���A�� �! Def��A�� TMf
g���A��

�! H����ATX
TC��p��� �� TX��A�p���

Because ��ATX is generated by global sections
 the second map too is surjective
Hence the composition
 that is the di�erential of �A �resp
 �B�
 is surjective
 makingeK�X� tA� tB� smooth It follows that eK is locally normal
 with �nite quotient
singularities

To understand �
 consider A�B �! 	 and ��� � K
 corresponding to a reducible
curve C ! �Ci For qA � A and qB � B
 there is a unique path of components of C
from qA to qB �since the components of C form a tree� Find this path fCigi�������e

and order the components so that qA � C�
 qB � Ce Denote by xi the intersection
Ci � Ci��� and let CA�i be the closure of the connected component of C n fxig
containing qA �and de�ne CB�i similarly� This yields a sequence of splittings of C
into two components For some i we will have that ���CA�i� ! �A
 and necessarily
���CB�i� ! �B  Take the smallest such i �Note� if CA�j
 CA�j�� realize the same
class
 then there must be at least one extra marking on Cj
 by stability�

This shows how to decompose C ! CA � CB uniquely
 and in short that the

map � � eK �� K must be a bijection Moreover K normal
 � bijection !� �
isomorphism
 which is what we claimed

For A �! 	 or B �! 	
 or �A �! �B a similar discussion yields that � is bijective
almost everywhere
 hence birational

For A ! B ! 	 �so n ! �� and �A ! �B 
 the set of maps from curves with two
components is still dense in the correspondingD�� � � �
 but swapping the components
will make � generically � � � onto its image
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Part II
Topics in Quantum Cohomology

�� QH��flag��W� Fulton� ������

Two di�erent things can be called the quantum cohomology of a �ag manifold�
the large ring
 and the small ring

Large� involves the numbers of maps P�
f
�� X
 with prescribed f��P��
 that meet

given general Schubert varieties +�� � � � �+t�
Small� as above
 but t ! �

General story� Take a basis of the cohomology H�X ! A�X
 say T� ! ��
T�� � � � � Tp for A�� and Tp��� � � � � Tm for the rest For X a �ag manifold
 the basis
of classes of Schubert varieties is particularly e�ective� the product of two of these
classes is a positive combination of these classes

De�ne a power series�

�y�� � � � � ym� !
X

n������nm��

X
��A�X

I��T
n�
� � � �Tnmm � �

Y ynii
ni'

where I��T
n�
� � � � Tnmm � counts the number of maps f as above
 touching ni Ti�s and

with � ! f��P�� Note� T� and the divisor classes will "factor out� easily in this
de�nition
 as curves meet divisors predictably

Make H�X �Q��y�� � � � � ym�� into a Q��y���algebra by setting

Ti  Tj !
X

ijkg
k
T


where ijk ! ���
�yi�yj�yk


 and gk
 is the inverse of the matrix gk
 given by the ordinary

intersection product on X� gk
 !
R
X
Tk � T
 Note� for �ag manifolds
 the Schubert

basis diagonalizes the intersection product
 so this g is very simple

Theorem� The product  de�ned above is associative� with T� as unit element�

The associativity of  yields many relations between the I��s�
m�m����m��m���

� 

in fact Often these relations alone and essentially trivial enumerative results su�ce
to determine all the I��s
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Example� For X ! F��C ��
 H�X ! Z�x�� � � � � x��
�e�� � � � � e�� �ei� elementary
symmetric polynomial of degree i�� a Z�basis for the cohomology is given by the
Schubert polynomials Sw
 w � S� In principle one could write down the �� bil�
lion �'� equations arising from the above
 and derive the numbers� in practice
 this
is essentially undoable

The small QH� is de�ned similarly
 but using

ijk�y�� � � � � yp� ! ijk�y�� � � � � yp� �� � � � � ��

This  is easier to describe� ijk equals
R
X
TiTjTk #

P
� ��� I��TiTjTk�

Qp
i�� q

R
�
Ti

i 

with qi ! eyi 

The corresponding  makes QH�X ! H�X �Z�q�� � � � � qp� into a Z�q��algebra

Example� For X ! Gr��� C n�
 X ! F��C n�
 it is not too di�cult to obtain
QH�X ! Z�� � � � q�� � � � � qp�
�explicit ideal� But note� this does not compute even
the ��point numbers I��TiTjTk�� one needs �Quantum�Giambelli formulas for the
classes of Ti in QH�

More explicitly
 take X ! Gr��� C n�k�
��

H�X !Z���� � � � � �k�
�Y
��� � � � � Yn�

with �i ! ci�quotient bundle�
 and Si ! the determinant of the i � i matrix�BB�
�� �� � � � �i
� �� � � �

  

��

CCA Then�

QH�X !Z���� � � � � �k� q�
�S
��� � � � � Sn��� Sn # ����kq�

But again
 this alone does not give the numbers' What one still needs is a quantum
Giambelli Surprisingly
 this turns out to be the same recipe �with Young diagrams�
as for the ordinary Giambelli� no "quantum correction� is necessary

Everything else is formal from here
 and one can derive quantum�Pieri
 quantum
Littlewood�Richardson rules
 etc

For �ag manifolds
 H�F��C n� !Z�x�� � � � � xn�
�e�� � � � � en� with ei ! elementary
symmetric polynomials A basis consists of Schubert varieties Sw
 with w � Sn

corresponding to Schubert polynomials So there must exist integer coe�cients cwuv
such that Su �Sv !

P
cwuvSw� note� there is no known formula for the cwuv'

Fact� take any homogeneous presentation of H�X
 and �nd any q�deformation of
the relations that hold in QH� Then the "deformed� presentation computes QH�

�Fulton�Pandharipande�
For example
 take the above presentation for H�X
 X ! F��C n�� deform the

symmetric ei to their quantum counterpart Ei� then

QH�X !Z�x�� � � � � xn� q�� � � � � qn���
�E�� � � � � En�
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Here is an explicit description of the Ei For the ei
 consider n marked dots�

x� x� x� � � � xn
� � � � � � �

then the ordinary symmetric polynomials ei are the sum of all monomials in the
xj �s obtained by "covering� i dots For the Ei
 one labels pairs of adjacent dots by
qi�s�

x� x� x� � � � xn
� q� � q� � q� � � � qn�� �

and again one can write Ei as a sum of monomials corresponding to ways to "cover�
i dots� the qi�s �pairs of adjacent dots� must be disjoint
 and will have degree � in
the monomials So for example x�q�q� will be a monomial in E� �n � ��

There are quantum�Giambelli formula for quantum Schubert polynomials Sq
w

in QH�F��C n�
 and quantum�Monk formulas One remarkable thing about Sq
w�

almost all �but not all as in the Grassmannian case� of them have no quantum
correction

�� The small quantum cohomology of the
Grassmannian�R� Pandharipande� �������

Reference� A Bertram
 �Bertram�
G ! G�k� n� will denote the Grassmannian of k�spaces in C n 
 with tautological

sequence
� �� S �� C n �� Q �� �

First review the classical story

�I� Additive structure of H��G�Z�� Fix a �ag

� ! F� � F� � � � � � Fn ! C n

We have one Schubert cell for each non�increasing partition � ! ���� � � � � �k�� the
corresponding closed Schubert cell is

+� ! fV � dim�V � Fn�k�i�	i� � ig

and its class �+�� will be denoted by W�

Fact� fW�g is a Z�basis of H��G�Z��

�II� Multiplicative structure of H��G�Z�� Let �i be ci�Q�
 � 
 i 
 n � k

and de�ne formally polynomials Sj���� � � � � �n�k� by

�

� # ��t# ��t� # � � �
!

�X
j��

����jSjt
j

Notice that Sj��� ! cj� &S�� so necessarily Sj��� ! � for k # � 
 j 
 n in H��G��
we get a set of relations between the ��s as elements of H��G�
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Fact� This is a complete set of relations� that is�

H��G�Z��!Z���� � � � � �n�k�
�Sk��� � � � � Sn�

�III� Expressing W� as polynomials in the ��s� Giambelli�s formula� with
� ! ���� � � � � �k� as before�

W� ! j�	i�i�j j !

��������
�	� �	��� � � �
�	��� �	�


  

�	k�k�� �	k

��������
Also
 since the W��s give an integral basis for H��G�
 there must be integers c���

such that

W� �W� !
X

c���W�

There is in fact an explicit formula for the c���
 given by the Littlewood�Richardson
rule� A simpler case is for W�m��������� ! �m
 for which Pieri	s formula says that

W� � �m !
X

c��mW�

with the c��m all zero
 except if 	 can be obtained from � by adding m boxes to its
Young diagram
 but no two on the same column �see eg �Fulton�
 p ���� In the
latter
 case the coe�cient is �

Small quantum cohomology� Move now to the Quantum setting First
 de�
�ne the ��point Gromov�Witten invariants� the e�ective generator ofA�G�k� n� !Z
determines an identi�cation of A�G�k� n� with Z� let

Id�W�� �W�� �W��� !

�����
� of rational curves in G�k� n� of class d


meeting general translates of representatives of

+���+�� �+�� �if this number is �nite� � otherwise�

We will describe the quantum cohomology ring QH��G� ! QH��G�k� n�� by re�
tracing the classical steps

�I� Additive structure� Additively
 QH��G�k� n�� is the free Z�q��module
H��G� �Z Z�q� We have the obvious inclusion

H��G� �� QH��G�

W� ��W� � �

Via this inclusion
 the Schubert classes span a free basis of the quantum cohomology
as a Z�q��module
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�II� Quantum product� There is a �product which makes QH��G� an asso�
ciative
 commutative Z�q��algebra with unit�

W�� W�� !
X
d��

qd
X
�

Id�W�� �W���W��W��

where W�� is Poincar(e dual to W� For short
 we will write hW��W��W�id for
Id�W�� �W�� �W��

Remarks� �i� dimM����G� d� ! dn # dimG
 so in order for a term in the sum
not to be � it is necessary that

codimW�� # codimW�� # codimW� ! dn# dimG

In other words

codimW�� # codimW�� ! dn# codimW��

This shows that we can give a grading on QH��G� compatible with the codimension
grading on H� and with 
 if we take q to have degree n QH��G� is then a graded
ring

�ii� Since QH� is graded
 it is clear that only �nitely many d�s contribute to theP
d�� de�ning 
�iii� QH��G���Z�q�
�q�� �! H��G� That is
 the d ! � contribution to W�� W��

is the usual intersection product W�� �W�� in the Grassmannian �G� ! �� is the
unit element for both � and 

Example� G��� n� ! Pn�� Here �� is the class of a hyperplane
 �n�� is the
class of a point What is ��  �n��-

�As point and hyperplane do not meet in Pn
 the contribution in degree � is ��
�in degree �� h���n���ii� is nonzero only for k ! n� �� for i ! n� � it is the

number of lines through two points andmeeting a hyperplane
 ie
 h���n���n��i� !
��

�in degree d � �� h���n���iid ! � by grading considerations
 as qd then has
degree dn � n� � # �

Therefore ��  �n�� ! q�� ! q

Proposition� The classes ��� � � � � �n�k � QH��G�k� n�� generate it as an alge�
bra over Z�q��

Proof� Induction It su�ces to prove that H��G��� is contained in the subal�
gebra generated by ��� � � � � �n�k Consider then � � H��G�� if codim � ! �
 � is triv�
ially in this subalgebra For � of nonzero codimension �
 write � ! f���� � � � � �n�k�
in H� �that is
 "classically��� then we see that if computed in QH� �with  replacing
� � � �

��� f���� � � � � �n�k� ! � # qA� # q�A� # � � � # qfAf

with Ai � H��G� of lower codimension �by the grading� By induction the Ai�s are
in the subalgebra
 and hence so is � by ��� �
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Hence we have a surjection from the polynomial ring

Z�q� ��� � � � � �n�k� �� QH��G�

and we seek generators for the kernel Recall that the classical relations are the
Sk��� � � � � Sn� Sj has codimension j

Remark� If codimW�� # codimW�� 
 n � �
 then W�� W�� ! W�� �W��
This is again immediate from grading considerations
 as deg q ! n Therefore
 the
classical relations Sk��� � � � � Sn�� must still hold in QH�
 with  replacing �

What happens to Sn-
The de�nition of the Si�s yields the formal polynomial identity

Sn��� � ��Sn����� # ��Sn����� # � � � # ����n�k�n�kSk ! �

This holds in the polynomial ring
 so it must hold in QH� However
 we have just
seen that Sk�� ! � � � ! Sn�� ! � in QH�
 therefore

Sn��� # ����n�k�n�k  Sk ! � in QH��G�

Now

�n�k ! class of k�spaces containing a �xed line � C n �
Sk��� !W��� � � � � �� �z �

k

� ! class of k�spaces contained in a �xed �n� ���space � C n

�note that the classical Sk coincides with the quantum Sk by the above remark�
It is easy to conclude from this that the only nonzero contribution to �n�k  Sk

is
h�n�k W��� � � � � �� �z �

k

�W��� � � � � �� �z �
n�k

� i� ! �

and the conclusion is that �n�k  Sk ! q Therefore
 the relation involving Sn���
in QH� is

Sn��� # ����n�kq ! �

Rank considerations show that these relations are all there is
 and therefore

QH��G� !Z�q� ��� � � � � �n�k�
�Sk��� � � � � Sn��� Sn # ����n�kq�

This was �rst obtained by Witten
 and Siebert�Tian

�III�� Surprisingly
 Giambelli�s formula holds in QH�� that is
 for every parti�
tion � ! ���� � � � � �k�

W� !

��������
�	� �	��� � � �
�	��� �	�


  

�	k�k�� �	k

�������� � QH��G�k� n��

where of course  replaces � in computing the determinant This is due to Bertram

and we will sketch a proof of this fact here
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First
 we need an expression for products W�� W��  � � � W�m De�ne another
Gromov�Witten�type invariant
 by setting

hW�� � � �W�mW�id !

���������������������

� of solutions �if �nite� of the following

enumerative problem� �x general p�� � � � � pm�� � P
�


and general translates of +

 then count

the number of maps f � P� �� G with �f�P��� ! d


and mapping p� to +��
 � � � 
 pm to +�m


and pm�� to +�

�Note� these di�er from the usual invariants in that we are �xing the pi � P��

Proposition� W��  � � � W�m !
P

d�� q
d
P

� hW�� � � �W�mW�idW���

Proof� Let ei i ! �� � � � �m# � be the evaluations maps from M��m���G� d� to

G�k� n�
 and let � be the forgetful map M��m���G� d� �� M ��m�� Rephrasing the
de�nition of hW�� � � �W�mW�id
 we have

���e
�
�W�� � � � e

�
m��W�� ! hW�� � � �W�mW�id �M��m���

or
hW�� � � �W�mW�id ! e��W�� � � � e

�
m��W� � ��

���p��

for arbitrary p �M ��m��

Claim�

hW�� � � �W�mW�id !
X

d��d��d

X
�

#
W�� � � �W�m��W�

$
d�
hW��W�mW�id�

This follows by choosing a general p � D��� � � � �m� ��jm�m# ���
The Claim implies the proposition
 via an easy induction �

The "Quantum�Giambelli� formula will follow in the end by applying Kempf�
Laksov�s formula
 �K�L�
 which we recall here Let M be a nonsingular variety

and consider a bundle map C n �� En�k �note� not necessarily surjective� Also

�x a �ag � ! F� � � � � � Fn ! C n  Let Di�	i be the scheme�theoretic locus
where Fn�k�i�	i �� E has kernel of dimension � i Finally
 for � ! ���� � � � � �k�
let C� ! D��	� � � � � � Dk�	k  The formula states that if C� is pure of expected
dimension
 then �C�� is given by the Giambelli determinant�

�C�� !

��������
�	� �	��� � � �
�	��� �	�


  

�	k�k�� �	k

��������
with �j ! cj�E�
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Also
 we will need to use the Quot scheme �see for example �Str�mme�� Qd !
Quotk�d�C n

�
P�� parametrizes ��atly� exact sequences

� �� S �� C n� �� T �� �

of quotient sheaves on P�
 with rk�T � ! k
 deg�T � ! d There is a universal
sequence of sheaves on Qd �P��

� �� S �� C n� �� T �� � �

and we let Md � Qd be the largest open subset such that the restriction of this
universal sequence to Md �P� is in fact a sequence of vector bundles For x �Md

we have the exact sequence

� �� Sx �� C
n�
x �� Tx �� � �

of vector bundles on P�� dualize�

� �� T �x �� C nx �� S�x �� �

Thus we obtain from each x � Md a rank�k subbundle of the trivial n�bundle over
P�
 and hence a degree�d map P� �� G�n� k�� and conversely In other words
 we
can think of Quot as a compacti�cation of M����G� d�

Quot is a nonsingular variety of dimension dn# dimG�k� n�
Note� in the above universal sequence

� �� S �� C n� �� T �� � �

S is in fact locally free �while T is not�
Now consider the map

C n �� S�

on Qd�P� We will apply �K�L� to this map First
 de�ne "Schubert cycles� on Qd
Note� as seen above
 we have a map Md �P� �� G�k� n�� morally we would like to
choose p � P� and pull�back the usual Schubert cycles via

Qd � fpg � � KMd � fpg
ep
�� G�k� n�

but we have to be careful as we go through the rational map Schubert cycles can
be de�ned in Md � fpg by just setting W��p� ! e��p �+��� de�ne then

W��p� ! degeneracy locus in Qd of the corresponding bundle map C np �� S�p 

Remarks� �i� For any points p�� � � � � pN � P�
 and general translates of +��

� � � 
 +�N 


W���p�� � � � � �W�N �pN � �Md

is smooth of pure expected dimension
 by Kleiman�Bertini
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�ii� If p�� � � � � pN are distinct points in P�
 chooseN general �ags in C n in de�ning
the +��s� then

W���p�� � � � � �W�N �pN � � Qd

has pure expected dimension
 and

W���p�� � � � � �W�N �pN � �Md

is Zariski dense in it This is the main "moving lemma� in Bertram�s paper
�iii� Therefore
 we have an alternative de�nition for the new Gromov�Witten

invariants�
hW�� � � �W�mid ! ��W���p�� � � � � �W�N �pN ��

if the latter is �nite� indeed
 both Quot and M����G� d� are compacti�cations of

Md� by �ii�
 �W ! �W if �nite� so we may measure the intersection number in
M����G� d�
 which is the original de�nition of the invariants
 by computing in Quot

And now we get from �K�L� that �iv� �i�p� �! ci�S�p �jQd
is independent of p� and

that

�v� �W��p�� !

��������
�	��p� �	����p� � � �
�	����p� �	��p�


  

�	k�k���p� �	k�p�

�������� �

Now we are ready to prove Quantum�Giambelli Let )���� � QH��G� be Gi�
ambelli�s determinant �with �product� Extending h�id by linearity to hP ����W�id
for all homogeneous polynomials P 
 we have

)���� !
X
d��

qd
X
�

h)�����W�idW��

�using the last proposition� Now by the classical Giambelli the d ! � contribution
in the sum equals W�� so it is enough to show that

h)�����W�id ! � for d � �

Computing on Qd as in �iii��

h)�����W�id !

��������
�	��p�� �	����p�� � � �
�	����p�� �	��p��


  

�	k�k���pk� �	k�pk�

�������� �W��pk��� �

the �i�p� are independent of p by �iv�
 so we may choose p� ! � � � ! pk� by �v�
 the
determinant then evaluates a cycle W��

h)�����W�id !W��p�� �W��pk���

! � maps P� �� G with �f�P��� ! d
 and f�p�� � +�� f�pk��� � +�

The above intersection has pure expected dimension � However
 if it is non�
empty
 it must have dimension at least � �since the automorphism of P� with two
markings acts� Hence
 the intersection must be empty

This proves that the d � � contributions vanish
 and concludes the proof of the
Quantum�Giambelli formula
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	� Rational curves on complete intersections in toric
varieties �after Givental��V� Batyrev� �������

The starting point is the famous paper by Candelas
 de la Ossa et al�CDGP��
consider a hypersurface V� � P� of degree �� c��V�� ! � �that is
 V� is a Calabi�Yau
manifold� For each degree d
 one expects a �nite number nd of rational curves of
degree d �although this number was proved to be �nite only for relatively small d�
The mathematicians had shown that n� ! ��	�� n� ! ������
 and they were in
the process of computing n� �CDGP� claimed that they could compute the power
series

K�q� ! � #
�X
d��

ndd
� qd

�� qd

How- Let ��z� !
P�

n��
��n��
�n��� z

n� and � ! z �
�z � also
 consider the operator

D ! �� � �z��� # ����� # ����� # ����� # ��

Then ��z� ! � is the only regular solution at z ! �� there are three other solutions

with logarithmic singularities at z ! � Set

��z� �� !
X
n��

%���n # �� # ��

%�n# �# ���
zn��

and di�erentiate formally with respect to ��

�

��
��z� ��j��� ! ��z� ! �log z���z� # ��z� � ��o� ! �

Then

�.� K�q�

�
dq

q

	��
!

�

��� ��z����z�

�
dz

z

	��
with q ! exp ���z�

���z�
 This determines K�q�
 giving a "prediction� for the number nd

Later
 Kontsevich computed n�
 showing it agrees with this prediction Givental
�Givental� found ways to go further
 and managed to prove �.� rigorously Note� it
is very nontrivial that the nd found this way should be nonnegative integers�the
only known proof is via Givental�s work

Givental�s framework covers many other cases Denote by V
������
r � P
n a com�

plete intersection of hypersurfaces of degrees ��� � � � � �r Assume ��#� � �#�r 
 n#�
Three cases are distinguished�

��� �� # � � � # �r 
 n� �
��� �� # � � � # �r ! n
��� �� # � � � # �r ! n# � �Calabi�Yau�

Denote by R the pull�back�

R � H��Pn� �� H��V
������
r � �

for H � H��Pn� the hyperplane class
 R�H� usually generates PicX
In case ���� in the quantum cohomology ring QH��V
������
r�
 we have the follow�

ing relation�
Xn���r ! �
�� � � � �


r
r � q �X

P

i�r

�so that the ring is graded
 with deg q ! n# ��
P

�i�
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Examples� �i� Pk � Pn
 n ! r � k
 �� ! � � � ! �r ! �
 so this says xk�� ! q
�ii� G��� �� � P�� get X� � ��qX ! �
�iii� P��P� � P�� considerX only
 although here Pic!Z�Z� thenX���qX ! �

�For X�
 X� generators of Pic
 so that X ! X� #X�
 X�
i ! q�

In case ���
 one �nds the slightly more complicated

�
X #

rY
i��

�i'q

�n���r

!

rY
i��

�
ii q

�
X # �

rY
i��

�i'�q

�n�r

Example� P� �� P�
 embedded as a conic� so H �� O��� Then this says

�X # �q�� ! ��q�X # �q�

that is� X� ! �q�

Givental�s idea� de�ne and use "equivariant quantum cohomology�
Reminder of usual equivariant cohomology� Given a topological space X and

a Lie group G acting on X �typically G �! �S��r or �C � �r�
 de�ne an equivariant
cohomology ring H�

G�X� as follows� �nd a space EG which is contractible and on
which G acts freely� set BG ! EG
G� and de�ne

H�
G�X� ! H���X �EG�
G�

In particular
 H�
G�pt� ! H��BG�

Example� G ! S� Then EG ! S� �the "Hilbert sphere�� ! f�xi� �
P
jx�i j !

�� almost all xi ! �g Then H�
G�pt� ! H��EG
G� ! H��CP�� ! C �x�

Properties of equivariant cohomology�
��� A G�morphism f � X� �� X� induces a pull�back f� � H�

G�X�� �� H�
G�X��
 a

ring homomorphism
 homogeneous of degree �
��� A proper G�morphism f � X� �� X� induces a push�forward f� � H�

G�X�� ��
H�
G�X��
 homogeneous of degree dimX� � dimX�
In particular
 the map X �� pt de�nes an H�

G�pt� ! H��BG��module structure
on any H�

G�X�� if X is proper
 we also have a map H�
G�X� �� H�

G�pt� �analogous
to
R
�

Example� For G ! �S��r �or �C � �r�
 H�
G�pt� ! C �x� � � � � � xr � The

R
of classes

in H�
G�X� are polynomials in r variables for G ! S�

Example� X ! CP�
 G ! S� or C  Fix two points ���
 and correspond�
ing inclusions i�� i� to CP� Set X� ! i�����
 X� ! i����� � H�

G�CP
��� then

H�
G�CP

�� ! C �X� �X��
�X�X�� Here H�
G�pt� ! C ���� the indeterminate � acts

by multiplication by X� �X�

Back to Givental�s work Consider a map P� �� Pn
 given by �f� � � � � � fn� with
fi homogeneous in u� v
 of degree d �so that the image is a degree�d curve� Also
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let Vk be a hypersurface of degree k For n ! �
 a map as above is speci�ed by
��d# �� homogeneous coe�cient
 so we could take

L�d ! P
��d�����

as a naive moduli space of mappings Imposing that the image lies in a Vk for k ! �
amounts to ��d # �� conditions
 giving a virtual dimension of � for the subscheme
in P��d����� of such rational curves This accounts of course for the dim�� group
of automorphisms of P�� we can let nd ! the length of the scheme de�ned by these
conditions For situation ��� �

P
�i 
 n� ��
 this naive method in fact works �ne

Main Lemma� For Ld ! space of stable maps of degree �d� �� C �� P�� P�

there is a morphism � � Ld �� L�d For

C ! C� � C� � � � � � Ck Ci �! P
�

say C� has degree �d�� ��
 Ci map to P��fxig and have degree �di� �� with
P

di !
d � d� ��C� is given by �g�f�� � � � � g�f��
 where �fi� de�ne C� �� P� and g� !Q
�x � xi�
This can be done in every n P�n���d�� � P� � P�n����d�����
 where we think

of the left�hand term as parametrizing degree�d rational curves
 and the right�hand
term as parametrizing degree��d� �� curves with a P� tail Imposing the curve to
be on a degree�k Vk amounts to conditions bringing the dimension down to

� # �n# ��d� �� �k�d� �� # ��

If k 
 n� �
 this �the dimension of the moduli� is less than �n# �� k�dk � �� for
k ! n
 the numbers will be the same and there will be a contribution from these
curves

Bott residue formula� Assume a compact X has an S��for example��action
with �nitely many �xed points Also
 let E be an S��equivariant vector bundle
 of
rank ! dimX ! n Then Z

X

cn�E� !
X

x�XS�

Q
biQ
ai

where ai� bi � Zare the weights of the S��action on TxX and Ex respectively
 for

x � XS� 
In the context of enumerative geometry
 this was �rst used in �E�S� It motivated

Kontsevich�s work
Now �C � �n�� acts on Pn �as the maximal torus of PGL�n # ���
 and on Ld

The map Ld �� L�d is equivariant Now we have to choose a good basis for the
cohomology� unfortunately
 there is no natural choice� but this can be done in
equivariant cohomology Recall that the pull�back gives maps H�

G�X� �� H�
G�p� for

all p in X
 and for pi � XG in particular So we have a map

H�
G�X� ��

X
i

H�
G�pi�
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Theorem� �Atiyah�Bott� �Localization theorem�� This map is an isomorphism
after inversion of some element in H�

G�pt��

Example� Two �xed points� ��� for the action of S� on CP� This gives the
obvious map

H�
S� �CP

�� ! C �X� �X��
�X�X�� �� C �X� �� C �X� �

This is an isomorphism after inverting � ! X� �X�

This is the start of the rather tricky computation in Givental�s paper

Givental�s method can be generalized to all Calabi�Yau complete intersections
in toric varieties Note� for $ a fan
 P$ is not necessarily convex� for example
 P�

blown�up at a point already is not
There are predictions for the number of rational curves on Calabi�Yau complete

intersection For example
 V��� � P��P�� the N��d have some periodic properties
It�s not clear however what the physicists are counting

Also
 the relation between QH� and Hodge theory is still mysterious
Another possible generalization should be complete intersection in Grassman�

nians
 for which the moduli space of stable maps should have all the necessary
information �no mirror symmetry needed here�

Final comment� Givental does prove that nd � Z� so far
 however
 it is only a
"virtual� number To show that it is the actual number of rational curves may be
very di�cult� for example
 this is not the case already for V��� � P��P�

�� Equivariant QH� �after Givental��B� Kim� ���	���

Goal� to begin a study of the equivariant quantum cohomology ringQH�
G
 aiming

to understand Givental�s work
First
 recall the de�nition and basic properties of the classical equivariant coho�

mology ring H�
G Here

G is a connected compact Lie group�
X is an oriented smooth manifold or orbifold
 acted upon by G�
XG denotes the homotopic quotient
 de�ned by X �G EG
 where EG �� BG is

the universal G�bundle �X�GEG ! X�EG

 where �x� yg� � �gx� y� for x � X

y � EG
 g � G�

Definition� H�
G�X� �! H��XG� C �

Remark� X �G EG
�
�� BG is a �ber bundle
 with �ber X
 so �� gives H�

G�X�
an H��BG��module structure Suppose the Leray spectral sequence of XG �� BG
degenerates at E� ! H��X� � H��BG�
 so that H�

G�X� �! H��X� � H��BG� as
H��BG��modules �not as rings�� and we have the exact sequence

� �� I �H�
G�X� �� H�

G�X� �� H��X� �� �

with I ! �H��BG� ! ker�H��BG� �� H��pt�� �the augmented cohomology group�
�Note� the spectral sequence does degenerate in most algebro�geometric applica�
tions� Then

��� H�
G�X� is free over H��BG�� choose a basis fhig



�� PART II�TOPICS IN QUANTUM COHOMOLOGY

��� the composition � �� � �� H�
G�X� � H�

G�X�
	
�� H�

G�X�
���� H��BG� is

nondegenerate
 and det�gij !� hi� hj �� � C �a priori � H��BG� only�

Equivariant Gromov�Witten invariants� Let X be a convex variety
 acted upon
by G The evaluation�contraction diagrams

M��n�X�d�
evi����� X��y�

M ��n

pass to the homotopic quotients�

M��n�X�d�G
evi����� XG��y

M ��n �BG

�note M��n �BG ! �M ��n�G� the action of G is trivial here�
De�ne � � � � �n�d� H

�n
G �X� �� H��BG� by

� 	� � � � 	n �n�d!

Z
ev���	�� � � � � � ev

�
n�	n� � H��BG�

where
R

is the push�forward via M��n�X�d�G �� BG Next
 de�ne the potential
�up to quadratic terms�

�	� !
X
n�d

�

n'
� 	�n �n�d� H��BG� �

Choosing a basis fTig of H�
G�X� over H��BG�
 �	n� can be expanded as a

formal power series�

�G !��
X

yiTi� !
X

�� � � �
yn�� � � � ynrr
n�' � � �nr'

�note� here yi � H��BG�� For x� y � H��XG�
 de�ne x � y by

� x � y� z �! partial derivative of  in the directions x� y� z

�which speci�es it uniquely� One can prove that this � is �super��commutative

has a unit
 is associative
 and more

Exercise� Let S� � S� act on P� by �z� � z�� �� �e��isz� � e��itz�� Find G
of the quotient �Answer� QH�

G�P
�� ! C �u� v��� ���� q�
�u # v ! �� # ��� uv !

���� # q��

Applications� Computation of the small QH��F �
 for F a partial �ag manifold�
and Givental�s proof of the mirror conjecture in Calabi�Yau and Fano complete
intersections in Pn� � � � � �Pnr

For CPn we can state a "mirror theorem� Consider a degree�� hypersurface� the
cases to be considered will be � � n
 � ! n
 � ! n# �
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Theorem �Givental�� The quantum di�erential equation on CPn is hyperge�
ometric�

To clarify this statement
 let p ! c��O���� � H��Pn�
 and consider a H��Pn��
valued formal function f �

f�t� ! a��t�p
n # a��t�p

n�� # � � �# an�t� �

here et ! q
 where q is the quantum correction in QH��Pn� ! C �p� q�
�pn�� � q�
The "quantum di�erential equation� is

d

dt
f�t� � p  f�t� ! �

where  denotes the quantum product Note that the equation implies in particular
that � ddt �

n��a��t� ! qa��t� The statement is that solutions to this di�erential
equation have integral representations�

S�q� !

Z
��Yq

eu������un
du� � � � dun
d�u� � � �un�

where � ! du����dun
d�u����un�

is the n�form de�ned by du� � � � dun ! ��d�u� � � � un� �so
 � !

� �
�n���q

P
����iuidu� � � � � /dui � � � � dun� Also
 Yq ! ����q� with � � C n�� �� C � 


�u�� � � � � un� �� u� � � �un
 and % is some real n�dimensional cycle in Yq
Choose coordinates in Yq� u�� � � � � un
 so that u� !

q
u����un

� Yq ! C �u� �� � ��C
�
un



Choosing % !
Q

unit circles
 the integral above isZ
juij���i�������n

e
u������un�

q
u����un

du� � � � dun
u� � � �un

!
X qd

�d'�n��

up to a normalization factor This satis�es � ddt �
n�� � q ! � The other linearly

independent multi�valued solutions are obtained by di�erent choices of %
From the point of view of Morse theory� g ! �Re�F ! u� # � � � # un�� % !

the unstable submanifold of rg in a Riemannian metric in Yq One can show that
there are �n # �� real n�dimensional unstable submanifolds %
 and check that the
corresponding S�q� give a complete set of solutions for the quantum di�erential
equation

Next
 consider a general quintic Xq � P� The corresponding series is

X
d

��d�'

�d'��
zd �

For a degree�� hypersurface in PN
 with � � � 
 N #�
 this would be
P �
d��

�d��N�� z
d

The above S�q� should play the role of the � ! ��case of this expression
Let H � PN be a hypersurface of degree � 
 N # � Givental�s proof of the

mirror theorem for H amounts to the statement that the quantum di�erential
equation
 D��U�q�� ! �
 will essentially coincide with the di�erential equation
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D��V �z�� ! �
 satis�ed by
P �
d��

�d��N�� z
d Here "essentially� means up to a change of

coordinates and more� for � � N� z ! q� for � ! N 
 zd ! e�
�qqd� for the Calabi�Yau
case
 z !complicated

A problem to overcome in this proof� while for Pn we knew the QH�
 we do not
have as much for the generic hypersurface� hence
 we cannot explicitly produce the
quantum di�erential equation from the start There are however complete solu�
tions to the quantum di�erential equation in terms of intersections in M��n�X�d�
The intersection theory so far was non�equivariant� equivariant intersection theory
�equivariant under the action of the torus on Pn� can be used to compute these so�
lutions So in a sense
 although we do not have the quantum di�erential equation

we have its solutions This reduces the computation to a suitable �and complicated�P

over trees In fact
 for � � N the summation is simply a summation over chains

and yields recursion relations
 from which the quantum di�erential equation can be
recovered �and checked to agree with the non�Calabi�Yau mirror due to Givental�s
theory�

For � ! N 

P

trees is a sum over chains
 plus a correction� this correction can
be evaluated with relative ease

For � ! N # �

P

trees is a sum over chains
 plus several correction terms
Evaluating these is substantially harder

�� QH� of blow�ups of P��L� G�ottsche
and R� Pandharipande� ��������

Part I �L� G�ottsche�� Let Xr denote the blow�up of P� at r general points The
aim is to compute Gromov�Witten invariants of Xr
 and show their enumerative
signi�cance in some cases

Reminder on Gromov�Witten invariants� For X smooth and projective
 and
e�ective � � A�X
 there is a space M��n�X��� ! f�� � C �� X� p�� � � � � pn�g with
evaluation maps �i to X
 i ! �� � � � � n Then

I��	� � � � 	n� !

Z
	M��n�X���


���	� � � � � � �
�
n	n

Note that we are not assuming that X is convex �M��n�X���� is a natural funda�
mental class� the obvious one if X is convex� or a clever one otherwise
 for example
de�ned by means of the work of Behrend�Fantechi or Li�Tian

More notations�
�the �pull�back of the� hyperplane class in Xr will be denoted H�
�the classes of the exceptional divisors will be E� through Er�
�for � ! �a�� � � � � ar�
 �d� �� will be the divisor dH �

P
aiEi�

�nd�	 will be the expected dimension of M����X� �d� ���
 that is �d� ��
P

ai
Write

Nd�	 ! I�d�	���pt�
nd�� � �

since divisors factor out
 these are the only "interesting� Gromov�Witten numbers
Intuitively
 Nd�	 is the number of rational curves in Xr of class �d� �� through

nd�	 general points� that is
 the number of rational curves in P� of degree d
 with
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points of multiplicity ai at r given general points
 and passing through nd�	 more
general points

These numbers ought to satisfy the following properties�

�P�� N��	 ! � unless � ! ��� �� � � � �
i
��� � � � � �� !� ��i��

�P�� Nd�	 ! � if d � � and any ai � ��
�P�� Nd�	 ! Nd�	� for any permutation ��
�P�� Nd�	 ! Nd��	����
�P�� If nd�	 � �
 then Nd�	 ! Nd��	����
�P�� Nd�	 ! Nd��	� if �d�� ��� is obtained from �d� �� by a Cremona transforma�

tion
 that is
 if

d� ! �d� a� � a� � a� and

�� ! �d� a� � a�� d� a� � a�� d � a� � a�� a�� � � � � ar�

Further
 one number is "enumerative� �that is
 it does count the appropriate
number of rational curves� if so is the other

Proof of �P��� Blow�up p�
 p� and p�
 obtaining exceptional divisors Ei

and proper transforms Fi of the lines Li through them �L� through p� and p�

etc� Blow�down the Fi�s to points qi
 and let H be the pull�back of the hyper�
plane from the blow�down On the blow�up S there are two natural bases for Pic�
fH�E�� E�� E�g and fH�F�� F�� F�g
 with obvious relations

H ! �H �E� �E� �E� � F� ! H �E� �E� � etc

For x�� � � � � xr additional general points on S
 we may see the blow�up of S at
x�� � � � � xr both as the blow�up of P� at pi� xj and as the blow�up of �the other� P�

at qi� xj  From

dH � a�E� � � � � � arEr ! ��d � a� � a� � a��H � �d� a� � a��F� � � � �

one gets M����Xr� �d� ��� �!M ����Xr � �d�� ����
 from which �P�� follows �

Now the results are�

Theorem �� The Nd�	 are determined by simple recursion formulas�

Theorem �� The number of genus�� stable maps with image �d� �� through nd�	
general points is �nite� All of these maps are birational maps of P� onto the image�
Possibly counting multiplicities� Nd�	 is this number�

Theorem �� Assume one of the following�

��� nd�	 � ��
��� There is an i for which i � f�� �g�
��� r 
 ��

Then all curves count with multiplicity �� and each map is an immersion�
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Corollary� If d 
 ��� then Nd�	 is enumerative�

Roughly speaking
 the proof is in two parts First
 the associativity of the
quantum product determines the numbers Second
 assume nd�	 ! �� then the

space M����X� �d� ��� has dimension � and consists only of curves as in Theorem �

Under the conditions of Theorem �
 M����X� �d� ��� is smooth of dimension �
Digression on quantum cohomology for nonconvex varieties� Let X be a smooth

projective variety
 and B � H��X�Z� the cone of e�ective classes Choose aZ�basis
T�� T�� � � � � Tp� �z �

divisors

� Tp��� � � � � Tm ! fptg for H��X�Z�
 and let fT�i g be the dual basis


so that Ti � T�j ! �ij 
For variables q�� � � � � qp
 yp��� � � � � ym set

%�q� y� !
X

np�������nm��

X
��B�f�g

I��T
np��

p�� � � � Tnmm �q

R
�
T�

� � � � q
R
�
Tp

p

y
np��

p�� � � � ynmm
np��' � � �nm'

Note� we are "separating the ��s�
 so that there is no question of convergence �� is
reconstructed from

R
�
T�� � � � �

R
�
Tp by duality�

Thinking qi ! eyi 
 set �i �!

�������
qi

�

�qi
i ! �� � � � � p

�

�yi
i ! p# �� � � � �m


 and %abc ! �a�b�c%

We get a Q��q� q��� y���algebra structure on the free Q��q� q��� y���module gener�
ated by the Ti
 by de�ning

Ti  Tj ! �Ti � Tj� #
mX
r��

%ijrT
�
r

Fact� this is associative This is shown by combining the properties of the virtual
fundamental classes with the arguments for associativity from the convex case

Back to Xr now Here choose T� ! �
 T� ! H
 Ti�� ! Ei
 Tm ! fptg So

%�q� y� !
X
d�	

Nd�	q
d
�q

a�
� � � � qarr��

y
nd��
m

nd�	'

Ti  Tj ! �Ti � Tj�Tm #
mX
s��

�s%ijsTs # %ijmT�

with �s ! � if s ! �
 �� if s � �

Lemma�

�g�m�� %mmm !
m��X
s��

�s
�
%��sm � %��s%smm

�
and� for i ! �� � � � � r # � ! m�

�g�i � ��� %iim � %��m !
m��X
s��

�s
�
%��is � %��s%iis

�
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Proof� For g�m�
 look at the coe�cient of T� in

�T�  T��  Tm � T�  �T�  Tm� �

for g�i� ��
 look at the coe�cient of T� in

�T�  T��  Ti � T�  �T�  Ti� � �

Notation�

� �d� �� �! f��d�� ��� �d�� 	�� � both are �! ��

the sum is �d� ��� nd��� � �� nd��� � �� bi 
 d�
 ci 
 d�g

�where the bi are the components of �
 and the ci are components of 	 With this

the basic recursion is given by

Theorem� The Nd�	 are determined by

N����������� ! ��N���	i
 ! �

and� if nd�	 � ��

Nd�� �
X

��d����di��

Nd���Nd���

�
d�d� �

X
bici

��
d�d�

� nd�� � 


nd��� � �

�
� d��

�nd�� � 


nd���

��

if nd�	 � ��

d�a�iNd�� � �d� � �a�i � ����Nd����i�

�
X

��d����i���di��

Nd���Nd���

�
d�d� �

X
bici

� �
d�d�bici � d��c

�
i

� � nd��
nd���

�

Proof outline� g�i� translates into something similar to R�i�� use this to prove
�P�� After �P�� is proved
 g�i� does give R�i�
 and g�m� gives R�m� �P����P��
are proved by induction
 using the recursions �

Remark� Feeding the recursions into a computer
 one can crunch out many
examples For all cases worked out so far
 it so happens that two numbers are
equal if and only if they must be equal by �P����P��

Part II �R� Pandharipande�� Notations as in G�ottsche�s talk� we have nd�	 � �

d � �� � ! ���� � � � � �r�
 with �i � �� Xr� etc The enumerative geometry problem
we consider is�

count the number of maps �v� �M����Xr � �d� ��� incident to nd�	 general points�
In this lecture we address the following results�
�I� The number of solutions is �nite� all are birational maps from P� to the image

in Xr� Nd�	 � the number of solutions � �
�II� Let at least one of the following two conditions hold�

�i� nd�	 � ��
�ii� �i � f�� �g for some i

Then Nd�	 is the number of solutions Moreover
 they are immersions of P� to Xr

�questions� are they immersions to P�-�
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Step �� The trick we use is the �Elliptic herding method �Harris�Caporaso

Koll(ar�

Let �d� �� �! �
 satisfying nd�	 � � Then M����Xr� �d� ��� ! 	

Proof� Assume d � �
 and let Br ! P�� � � � �P�� �z �
r

� diagonals Consider the

"universal blow�up� Xr
�
�� Br
 whose �ber over �b�� � � � � br� is the blow�up Xb of P�

at b ! �b�� � � � � br�

Let M����Xr� �d� ��� be the ��relative space of maps Let � � M������ �d� ��� ��
Br be the natural map Assume � is generically surjective Since � is proper
 it
must then be surjective That is
 specializing �b�� � � � � br� we get stable curves in
the limit

Now "herd� b�� � � � � br to lie on a smooth elliptic curve� we get a stable map
� � C �� Xb
 with bi �smooth elliptic curve E � P�

Simple numerology gives C � ���c��TXb
� ! �d�

P
�i ! nd�	 # � 
 �

Now the proper transform E of E is a section of TXb
and the stable curve cannot

have components on E If C ! �Ci
 Ci � ��E � �� so necessarily C � ��E ! �
Pushing forward
 we get a stable curve which intersects E only along the blow�up
points This leads to a contradiction since the points are general �

Step �� Suppose �d� �� satis�es nd�	 � � Every map ��� � M����Xr � �d� ���
incident to nd�	 general points in Xr is a birational map P� �� Xr� moreover
 it is
"simply incident� to the points

Proof� This is easy using Step � We need to show that� the domain of � is
irreducible� � is birational onto its image� and it is simply incident to the points
These are all shown by proving that failing any of these would contradict Step � For
example
 suppose that such a solution map has reducible source� � � C ! �Ci ��
Xr There must be at least two components mapping nontrivially by � �no marked
points
 so the tails must survive by stability� Let then C��d�� ���� � � � � Cs�ds� �s�
be the components that are not collapsed
 with s � � Note that nd�	 ! s � � #Ps

i�� ndi�	i �
Ps

i�� ndi�	i  Also
 C goes through the nd�	 points� let pi !number of
points contained in ��Ci� Then

Ps
i�� pi � nd�	 �every point is in one of C�� � � � � Cs�

�
Ps

i�� ndi�	i  Then there must be a j such that pj � ndj�	j � and this contradicts
Step � Indeed
 consider the map ��j from Cj to the blow�up of Xr at the pj points
in ��Cj� The image has class �dj � ��j �m�� � � � �mpj ��� the virtual dimension would
be

ndj �	j �
X

mi 
 ndj �	j � pj � �

and the moduli space for this problem is empty by Step �
The other two parts to the argument are similar� the extra condition leads to

negative virtual dimension �

Step 	� Reduce to expected dimension � For this
 blow�up the nd�	 �general�
points producing a Xr�nd��  The solutions to the original problem come from

M����Xr�nd�� � �d� ��� �� � � � � ��� The recursions from G�ottsche�s section show that
Nd�	 ! Nd��	���������� so we may reduce to the case in which the expected dimension
is � �note� the Xr�nd�� �s are even less convex than Xr'�
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Step �� Assume nd�	 ! � Then M����Xr � �d� ��� is pure of dimension � �not
claiming here nonsingular or nonempty�

Proof� By Step �
 we know M ����Xr� �d� ��� equals the locus M
�

����Xr � �d� ���

of birational maps P� �� Xr Consider the normal sheaf sequence

� �� TP� �� ��TXr
�� NXrjP� �� �

The Zariski tangent space to ��� in M����Xr � �d� ��� is H��P��NXrjP� �� the degree
of the normal bundle is �d�

P
�i � � ! nd�	 � � � �

This does not mean that NXr�P� has no sections� but we have the torsion sequence

� �� Torsion �� NXrP
� �� Free �� � �

the free part must have negative
 and the torsion part positive
 degree The tangent
space H��P��NXrjP� � is equal to H��P�� torsion� It follows that the moduli space
is of pure dimension � �

This concludes the proof of part I We can only outline the proof to part II� if
nd�	 ! �
 and �i � f�� �g for some i
 then M ����Xr � �d� ��� is nonsingular
 and each
curve is immersed

What is easy to see is that the nonsingularity of M ����Xr � �d� ��� is equivalent
to each curve being immersed Indeed
 re�ning the argument above
 the degree of
NXr�P� must be �� So H��NXr�P� � ! � if and only if NXr�P� is locally free
 if and
only if the curve is immersed

By considering deformations of exceptional points b�� � � � � br
 cohomological con�
ditions on relevant normal sequences are obtained These are enough to force the
immersion condition However
 the relevant deformation argument works through
only if there is at least one nonsingular or double point in the list
 and this translates
into the condition on � �

�� Quantum Schubert polynomials�W� Fulton� �������

This is in a sense a continuation of the �rst talk in this series
 on the �small�
quantum cohomology ring of �ag varieties The starting remark is that beyond
an abstract description of QH�
 a Giambelli formula is needed to perform any
computation
 both in the classical and in the quantum case

Review of the classical case� Notations� X ! F��C n� ! fL
 � L� � L� �
� � � � Ln ! C ng denotes a �ag manifold� we have the universal �ag of bundles

U� � U� � � � � � Un ! VX

over X
 with V ! C n � let xi ! �c��Ui
Ui���� then

H�X �!Z�x�� � � � � xn�
�e
n
� � � � � � e

n
n�

where eki ! i�th elementary symmetric polynomial in x�� � � � � xk  The reason for this
is that we have a mapZ�x�� � � � � xn�
�en� � � � � � e

n
n� �� H�X since eni ! ����ici�VX� !
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� inH�X� to see �!
 realizingX as a sequence of Pr�bundles shows that rkH�X ! n'
as needed

Bases for H�X over Z�

�i� xI ! xi�� � � �x
in
n 
 with ij 
 n� j �so that in ! � necessarily� This basis is

preferred by algebraists
�ii� eJ ! e�j� � � � e

n��
jn��


 with � 
 jp 
 p

�iii� Classes of Schubert varieties� �+w�
 with w � Sn� to describe +w
 �x a �ag
V
 and set

+w ! fL
 j dimLp � Vn���q � �fi 
 p jw�i� 
 qg�p� qg

+w is an irreducible subvariety of codimension ! ��w� ! �fi � j jw�i� �
w�j�g Of course this basis is preferred by geometers

Giambelli problem� write �+w� in Z�x�
� �
Solution� �Bernstein�Gelfand�Gelfand
 Demazure
 etc�

��� For w ! nn� � � � � � �
 �+w� !the class of a point ! xn��� xn��� � � � x�n���
��� Suppose w�i� � w�i#�� for some i Let w� ! w �si �where si !transposition

�i i # ���
 that is
 interchange the values of i and i # � Then

�+w� � ! �i�+w�

where �i is a di�erence operator


�iP !
P � si�P �

xi � xi��
�where si�P � ! P �� � � � xi��� xi� � � � ��

This recipe gives polynomials� denoted Sw�x�
 representing �+w� They have been
de�ned
 studied
 and called Schubert polynomials� by Lascoux and Sch�utzenberger

Remark� For any u � Sn
 we have an operator �u� write u ! si� � � � si� in the
shortest possibly way� then �u ! �i� � � � � � �i�  These operators are independent
of the decomposition chosen for u
 provided this has the shortest possible length
The Schubert polynomials Sw can be written in terms of these operators

Examples� S�����n ! �
Ssi ! x� # � � �# xi ��i�+w� ! � if w�i� � w�i # ��� then Ssi cannot include any

xj for j � i
 must be linear
 etc�
n ! � �

���

x��x�
��

����
��
��
�� ��

��D
DD

DD
DD

DD

���
x�x�

��

��

���

x��

��

��
���
x�

��
��C

CC
CC

CC
CC

���
x� # x�

��
		xx
xx
xx
xx
x

���
�
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Proof� �Of ��� from the Solution� Let X�i� ! partial �ag manifold �forget Li�
The natural map X �� X�i� is a P��bundle
 P�Ui��
Ui��� �abusing notations�

X �X�i�X

p�

zzttt
tt
tt
tt
t

p�

��JJ
JJ

JJ
JJ

JJ

X

��J
JJ

JJ
JJ

JJ
J X

zzttt
tt
tt
tt
t

X�i�

��� �p��� � �p��� � H�X �� H�X is �i�
��� p� maps p��� �+w� birationally onto +w� �with notations as above�

This implies �+w�� ! �i�+w�
 as needed �

Digression on Schubert polynomials� It is clear that Sw !
P

aIx
I 
 with

aI �Z In fact aI � �
 but we do not know a "geometric� reason for it Kohnert �in
his thesis� conjectured an intriguing formula for aI  The formula is best illustrated
in a simple example� take w ! ������ its diagram D�w� is obtained like this�

A move for such an arrangement consists of taking the box which is right�most in
its row
 and moving it up to the next available spot Now play the following game�
start with D�w�
 and make all possible legal moves
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List all results D
 each once
 and let xD !
Q
x�boxes in ith row of D
i  Then the claim

is that
Sw�x� !

X
xD �

In the example
 this gives

S����� ! x��x
�
� # x��x�x� # x��x

�
� # x��x� # x��x�

Although formulas for the aI �s have been proved
 Kohnert�s conjecture remains
open
�End of the digression�

Pieri problem� write the product of a general Schubert variety by a special one�
Ssi �Sw !-

Solution� �Monk
 Chevalley� This is
P
Sw� !

P
Swtab 
 where tab is the trans�

position a � b� the
P

is over a 
 i � b such that w�a� � w�b� and w�j� is not
between w�a� and w�b� for all j between a and b

Example� Ss� �S����� ! S����� #S�����

Ss� �S����� ! S����� #S����� #S�����

Remark� There must exist coe�cients cwuv such that Su �Sv !
P

cwuvSw By
geometry
 cwuv �Z�� No formula for all cwuv is even guessed'

Finally
 the basis of Schubert varieties behaves well with respect to the intersec�
tion pairing� Z

X

�+u� � �+w�v� ! �uv �

where w� ! nn � � � � � � �

Quantum version� Take variables q�� � � � � qn��
 corresponding to �+s� �� � � � �
�+sn���� and duals Yi ! �+w�si � Let K !Z�q�� � � � � qn��� �deg qi !

R
Yi
c��TX� ! ��

Definition� QH�X ! H�X �Z K as K�module� it is a K�algebra under

�V �  �W � ! �V � � �W � #
X
d���

qdId�V �W � +u��+w�u�

with appropriate positions �qd ! qd�� � � � qdn��

n�� 
 etc�

Problem� Present QH�� QH�X ! K�x�� � � � � xn�
�� � �- � � � �
For the relations
 it su�ces to �nd any deformations of en� � � � � � e

n
n which hold in

QH�X

Theorem �� �Givental�Kim� Ciocan�Fontanine�

QHX ! K�x�� � � � � xn�
�E
n
� � � � � � E

n
n�

where Ek
i ! ith �elementary quantum polynomial	 in k variables�

These quantum polynomials are

Ek
i !

X
�jIj�jJj�i� I�J �disjoint�

qIxJ �
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where qi "covers� i� i#� and xj covers j
 and I
 J are disjoint in the sense of covering
disjoint subsets of f�� � � � � kg For example


x� x� x� x� x� x� x� x� x�
 q� � q� � q� � q�  q�  q� � q� � q� �

q�q�x�x�x� is a summand in E�
� 

The original description of these polynomials was as follows� let A be the matrix

�BBBB�
x� q� � � � � �
�� x� q� � � � �

 

� � � xk�� qk��
� � � �� xk

CCCCA
Then det�� # �A� !

P
Ek
i �

i The two descriptions agree
 as they both satisfy the
recursion

Ek
i ! Ek��

i # xkE
k��
i�� # qk��E

k��
i�� �

Next
 c �� c� � gives an inclusion

H�X �� QH�X ! H�X �K

In the Grassmannian case
 Giambelli�s formula moves unchanged from the classical
to the quantum ring �see Pandharipande�s lecture on the Grassmannian�

Theorem �� �Quantum Giambelli	� �Fomin�Gelfand�Postnikov� based on a
result of Ciocan�Fontanine�� Write Sw !

P
nJweJ � with eJ ! e�j� � � � e

n��
jn��

and

njw � Z�note� the nJw are not necessarily positive� Then

�+w� !
X

nJwEJ � with EJ ! E�
j�
� � �En��

jn��

Theorem �� �Quantum Monk	� �same people� also D� Petersen�� With Sq
w �!P

nJwEJ �

Sq
si �S

q
w !

X
classical

S
q
wtab #

X
quantum

qcdS
q
wtcd �

the second
P

over all c 
 i � d such that w�c� � w�j� � w�d� for all j between c
and d� and where qcd ! qcqc�� � � � qd���

Proof� Here are four bases of QH�X over K�

�i� xI �
�ii� EJ �
�iii� �+w��
�iv� Sq

w
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We want to show that �iii� and �iv� are the same Let K� be the cone spanned
by all qM 
 and let QH� be the cone spanned by all qM � �+w�
 that is �K� � �+w�
Three facts�

�a� QH� is closed under multiplication�
�b� Each Ep

J is in QH�
 so each EJ is �this relies on Ciocan�Fontanine�s result�
Ep
J ! �+u� for u ! �p � j # �� p� j # �� � � � � p# ���
�c� This needs more notations� for F � QH�X
 de�ne � F � by any of the

following recipes�

expand in terms of basis �i�
 take coe�cient of xn��� xn��� � � �xn��� or
expand in terms of basis �iii�
 take coe�cient of �+w� �� or
expand in terms of basis �iv�
 take coe�cient of Sq

w�


�It is easy to see that these coincide� Remark� if F � QH�
 then � F �� K�
The statement is then that

� Sq
u �S

q
w�v

�! �uv

for all u� v This is harder than it looks
Also


Lemma� Fix k 

�
n
�

�
� For all w � Sn of length ��w� ! k� there exist aw � ��

with
P


�w��k awS
q
w � QH��

Given �a�
 �b�
 �c� and the Lemma
 we can prove Theorem ��
Fix w � Sn
 let k ! ��w�
 and for � 


�
n
�

�
let �� !

�
n
�

�
� �

��� �+w� ! Sq
w #

P

�k P
w
 with P
w !

P

�v��
 cvwS

q
v

We have to show that all P
w ! �
 or equivalently that � P
w �Sq
v �! � for all v

with ��v� ! ��� or
 equivalently
 that

� P
w �EJ �! � for all J with jJ j ! ��

��� Now

� P
w �EJ �!�
X

+w �Ej �� K� �

But QH� �
P

w awS
q
w !

P
aw�+w��

P
w�
 awP
w
 so �

P
w�
 awP
w � QH�
 and

�
X

aw � P
w �EJ �� K� �

It follows � P
w �EJ �! �
 as needed �

Remark� �c� can be proved in the form �c��� � EI �EJ �! � if jIj# jJ j �
�
n
�

�


Comments on the algebra� De�ne operators X�� � � � �Xn on K�x�� � � � � xn� by

Xk ! xk �
X
i�k

qik�tik #
X
j�k

qkj�tkj

��� These operators commute
 and commute with the �enp �s
��� �f � K�x�
 there is a unique F � K�X�� � � � �Xn� with F ��� ! f 
��� If f ! eJ 
 then F ! EJ � if f ! Sw�x�
 then F ! Sq

w�X�
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The algebra of these operators streamlines the proofs considerably For example

Quantum Monk amounts to proving

�X� # � � � #Xi�S
q
w�X� !

X
classical

S
q
wtab�X� #

X
quantum

qcdS
q
wtcd�X� �

and this is shown by evaluating at � and applying the above and the classical Monk

Example� Finally
 here are the quantum Schubert polynomials for n ! ��

���

x��x� # q�x�

yyss
ss
ss
ss
ss

��J
JJ

JJ
JJ

JJ

���
x�x� # q�

��

���

x�� � q�

��
���
x�

��LL
LL

LL
LL

LL
LL

LL
���

x� # x�

yysss
ss
ss
ss
ss

���
�

�� The small QH��ring of �ag manifolds� I
�I� Ciocan�Fontanine� ��������

Fix an n�dimensional complex vector space V  We will use the following nota�
tions �di�ering slightly from Fulton�s notations��

F ! F��V � will be the manifold of �ags fU� � � � � � Un�� � V g� VF will denote
V �OF � there are tautological bundles

E� � � � � � En�� ! En ! VF � Ln�� � � � �� L�

on F 
 with Li ! VF 
En�i We let xi be c��ker�Li �� Li���� Fact �see Fulton�s
lecture��

H��F � !Z�x�� � � � � xn�
�e
n
� � � � � � e

n
n�

with eki ! the i�th symmetric polynomial in x�� � � � � xk
Next
 �x a reference �ag V� � � � � � Vn�� � V  For w � Sn �!the symmetric

group�
 let
rw�q� p� ! �fi 
 q � w�i� 
 pg and set

+w ! fy � F
 rky�Vp �OF �� Lq� 
 rw�q� p���q� pg

The set +w is irreducible
 of �C ��codimension ��w� ! length of w ! the number of
"inversions� in w We will denote by +w also the corresponding elements in H�F
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and H�F  The set f+w � w � Sng forms an additive basis for H��F � Further
 we
have the duality Z

F

+w+w�v ! �wv

where w� is the permutation of maximal length
 that is
 w��i� ! n# �� i
The Giambelli formula tells us that +w ! Sw�x� in H��F �
 with Sw�x� !the

corresponding Schubert polynomial
 as de�ned in Fulton�s lecture
For si ! �i� i # ��
 the set f+s� � � � � �+sn��g is a basis for H��F � Aiming to

quantize the situation
 we let Yi be +w�si 
 so that fY�� � � � � Yn��g gives a basis
for H��F �
 and let indeterminates qi correspond to the Yi We consider the ring
K !Z�q�� � � � � qn��� and de�ne the �small� quantum cohomology ring of F to be

QH��F � ! H��F ��Z K

as a K�module
 with product

+u  +v !
X

qdId�+u+v+w�+w�w

where d ! �d�� � � � � dn���
 q
d !

Q
qdii 
 etc Note� F is a linear section of the

Segre embedding of the product of the relevant Grassmannians in their Pl�ucker
embedding� +si is the pull�back of O��� from the ith Grassmannians In particular

the +si are nef
 and it follows that if f � C �� F is a map from a curve
 then
f��C� !

P
diYi
 with all di � �

Next
 we operate on polynomials P �x� q� by replacing the intersection � with
� that is
 we leave the qi�s alone
 and we replace monomials in the x�s with the
corresponding quantum products Note that as it turns out that +si ! Ssi�x� !
x� # � � � # xi ! ei�
 we have xi ! +si � +si��  So
 for example
 P ! q�x�x� yields
/P ! q��+s�  �+s� � +s��� We want to write the +�s in terms of this operation�
that is


the Quantum Giambelli problem is then to �nd Sq
w�x� q� such that dSq

w ! +w
Necessarily
 Sq

w ! Sw# a quantum correction� that is
 Sq
w�x� �� ! Sw

A presentation of QH� is given by Z�x�� � � � � xn� q�� � � � � qn���
Iq
 where Iq is the
ideal generated by "quantum perturbations of the eni � It will follow from Theorem �
below that these can be taken to be the polynomials En

� � � � � � E
n
n �

Ek
i ! ith elementary quantum symmetric polynomial in x�� � � � � xk� q�� � � � � qk��

�see also Fulton�s lecture� These can be de�ned in terms of the characteristic
polynomial of �BBBB�

x� q� � � � � �
�� x� q� � � � �

 

� � � xk�� qk��
� � � �� xk

CCCCA �
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and satisfy the recursion

�.� Ek
i ! Ek��

i # xkE
k��
i�� # qk��E

k��
i��

Since eki ! ek��i #xke
k��
i�� 
 writing E

k
i ! eki #

qEk
i 
 we have that �.� is equivalent to

�..� qEk
i ! qEk��

i # xk
qEk��

i�� # qk��
qEk��

i�� �

Now denote by Ak
i the class represented by eki in H��F �
 � 
 i 
 k 
 n We have

Ak
i !

�
+	i�k k � n

� k ! n

with �i�k ! the cycle �k � i# �� � � � � k # ��

Theorem �� cEk
i ! Ak

i in QH��F ��

In particular
 cEn
i ! � in QH��F �� that is
 En

i � Iq as promised
Theorem � will follow from

Theorem �� �Geometric formulation of a special case of the Quantum Monk
formula��

+sj  +	i�k ! �classical term� # �jkqj+	i�k�sj !

�
classical j �! k

classical # qk+	i���k�� j ! k

Proof� �Of Theorem �
 assuming Theorem �� This is done by induction on k
The statement is trivial for k ! � !� i ! �� e�� ! E�

� ! x� Assume proven for

 �k � ��� then

beki ! dek��i # �xke
k��
i�� ! dek��i # xk 

dek��i��

! Ak��
i � �qEk��

i # xk A
k��
i�� � xk 

�qEk��
i��

! Ak��
i � �qEk��

i # xk A
k��
i�� �

�xkqE
k��
i��

Now by Theorem �

xk A
k��
i�� ! +sk  +	i���k�� � +sk��  +	i���k��

! Ak
i �Ak��

i � qk��+	i���k��

and therefore beki ! Ak
i �
�qEk��

i � qk�� bEk��
i�� �

�xkqE
k��
i��

! Ak
i �

cBk
i

with Bk
i ! qEk��

i # xk
qEk��

i�� # qk��E
k��
i�� ! qEk

i by the recursion That is


cEk
i ! beki # dqEk

i ! Ak
i �

completing the induction �
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� The small QH��ring of �ag manifolds II
�I� Ciocan�Fontanine� ��������

Plan� as much as we can of the following

��� What�s left to prove�
��� Homd and its compacti�cation HQd�
��� Three�point �GW� numbers Id�+w�+w�+w�� via HQd�
��� Structure of the boundary�
��� Proof of the moving lemma�
��� Idea for computing Id�� � � ��
��� Proof of "special� Quantum�Monk formula�
�	� General Quantum�Monk formula

��� From the �rst lecture� V �! C n 
 F ! F �V � ! the space of complete �ags in V 
Universal quotients� VF ! V �OF �� Qn�� �� � � � �� Q��
Fixed reference �ag� V� � V� � � � � � Vn ! V 
Every w � Sn determines a rank function


rw�q� p� ! �fi � i 
 q�w�i� 
 pg

The corresponding Schubert variety is +w ! frk�Vp � O �� Qq� 
 rw�q� p��q� pg�
that is
 the degeneracy locus of the universal quotients
 using rw for degeneracy
conditions

The codimension of +w is the length of w
 denoted ��w�
If si denotes the transposition �i� i # ��
 then f+sig gives a �group� basis for

H��F �
The quantum product is de�ned by

+w�  +w� !
X
d

qdId�+w�+w�+w��+w�w�

where d ! �d�� � � � � dn���
 q ! �q�� � � � � qn���
 and w� is the longest permutation
+w�w is "Poincar(e dual� to +w
Then we have to show the following ��Special Quantum�Monk	 ��

+sj  +	i�k !

�
classical � j �! k

classical # qk+	i���k�� � j ! k

with �i�k ! sk�i�� � � � sk

��� Equivalent formulation�

Id�+sj+	i�k+w� !



� d ! ek
 and w ! w��i���k��

� otherwise

Here ek ! ��� � � � � �
k
� �� � � � � ��

The idea is to compute the three�point functions geometrically
 that is as inter�
section numbers on some compacti�cation of Homd
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We will denote Hd �! Homd�P
�� F � !M����F� d�
 that is

Hd ! f�f � � f � P� �� F� f��P
�� !

X
di+w�sig

We will use a compacti�cation other than M����F� d�
Since F is homogeneous
 Hd will be smooth of dimension

�
n
�

�
#�

P
di We have

the evaluation map P��Hd �� F 
 �t� �f �� �� f�t� For �xed distinct t�� t�� t� � P�


Id�+w�+w�+w�� ! �f�f � � f�ti� � +wi � i ! �� �� �g �

We set +w�t� �! ev���+w� � ftg �Hd
 so heuristically

Id�+w�+w�+w�� ! �f+w��t�� � +w��t�� � +w��t��g

Explicitly


+w�t� ! frk�Vp �O �� ev�Qq� 
 rw�q� p��p� qg � ftg �Hd

Idea �Bertram�� Compactify Hd so that there exist natural vector bundle exten�
sions of ev�Qq across the boundary
 and use the same conditions to de�ne +w�t��s
there

The data of ff � P� �� F� dg determines a sequence of surjections fVP� ��
Ln�� �� � � � �� L�g with rkLi ! i
 degLi ! di Dualize this sequence
 and get

S� � S� � � � � � Sn�� � V �
P�

with rkSi ! i
 and degSi ! �di And next consider the surjections

V �P� �� V �P�
S� �� � � � �� V �P� 
Sn��

Degenerate this to get HQd
 then set

+w�t� �! frk�Vp �O �� S�q � 
 rw�q� p�g � ftg �HQd �

The Si are de�ned below�

S� � � � � � Sn�� �� V � �OP��HQ
d

Theorem �� �Laumon� C
F� Kim� �i� HQd is a smooth� irreducible projective

variety of dimension
�
n
�

�
# �

P
di� containing Hd as an open dense subscheme�

There exists a universal sequence of quotients

V � �OP��HQ
d
�� Tk�� �� � � � �� T�

with Ti �at over HQd and �xed relative Hilbert polynomial

��Ti�m�� ! �m# ��i# dn�i

�This is an �extension	 of Grothendieck	s quot�schemes��
�ii� Si �! ker�V � �� Jn�i� are vector bundles on P��HQd� there are injections

of sheaves
S� � � � � � Sn�� � V �

�which may degenerate as maps of vector bundles��

��� The following results show that we can use HQd to de�ne Id�+w�+w�+w���
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Theorem �� ��Moving Lemma	� �i� �w�� � � � � wN � Sn� t�� � � � � tN � P�� and
general g�� � � � � gN � SLn� the intersection �Ni��gi+wi�ti� is either empty� or of
pure codimension

P
��wi� in Hd�

�ii� If in addition the ti	s are distinct� then �gi+wi�ti� is either empty� or of
codimension

P
��wi� in HQd� and equals the closure of the �+ in �i��

In particular
 when the codimension is maximal �that is
 when the intersection
consists of points� it all happens in the open part
 so it counts what it is supposed
to count

Corollary �� The class of +w�t� in A
�w��HQd� is independent of t and the
�xed �ag V
 � V �

Corollary �� If
P

��wi� !
�
n
�

�
# �

P
di and t�� � � � � tN are distinct� then the

number of intersection points of general translates is given by

� �Ni�� +wi�ti� !

Z
HQ

d

�+w��t��� � � � � � �+wN �tN ��

So we de�ne

h+w� � � �+wN id !

�����
Z
HQ

d

� � � if
X

��wi� !

�
n

�

	
# �

X
di

� otherwise

�Di�erence with the usual GW� here we take a �xed
 albeit general
 con�guration
of points in P��

Corollary �� h+w�+w�id ! � for d �! ��

�Indeed
 if we get one we must get a whole C � of intersections�
However
 since ev does not extend to HQd
 a di�erent strategy is needed to prove

�ii� We need to analyze the restriction of �+wi�ti� to the boundary
 and show that
it has "large enough� codimension

���� Structure of the boundary Recall the universal sequence on P��HQd�

� �� Sd� �� � � � �� Sdn�� �� V �
P��HQ

d
�� T d

n�� �� � � � �� T d
�

Hd is the largest open subscheme in HQd such that on P��Hd all these maps are
nondegenerate as vector bundle maps

Next
 we "stratify� according to the degeneracies of the map
 more precisely

according to the ranks of T d
i 

Idea� how to construct V �
P�
�� Tn�� �� � � � �� T� on P� with assigned Hilbert

polynomials and with prescribed ranks at t � P�- Let rkt Tn�i ! n � i # ei
 with
ei � �� start with S� � � � � � Sn�� � V �

P�

 a point in HQd�e
 together with

quotients Si�t� �� C ei �t� Let eSi ! ker�Si �� C ei �t��
 a vector bundle of rank i and

degree �di on P�
 and a subsheaf of V �
P�
 If we want eSi �� V � to factor through
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eSi��
 we should start with quotients Si�t� �� Cei�t� together with compatible maps

C ei �t� �� C ei�� �t� Set then Tn�i ! V �
eSi
The following construction and theorem are a globalization of this idea
 showing

also that every degeneration is obtained by the above construction
Let e ! �e�� � � � � en��� such that � 
 ei 
 min�i� di�
 and ei� ei�� 
 � Consider

the universal sequence

� �� Sd�e� �� � � � �� Sd�en�� �� V �P��HQ
d�e

Let Gi
�i�� P� � HQd�e be the Grassmann bundle of ei�dimensional quotients of

Sd�ei 
 with universal sequence

� �� Ki �� ��i S
d�e
i �� Qi �� �

and set
Xe ! G� �P��HQ

d�e
� � � �P��HQ

d�e
Gn�� �

De�ne Ue � Xe as the subset where Ki �� Qi�� vanishes
 and Ki �� V � is injective
as a vector bundle map

Theorem �� �i� Ue is irreducible� Cohen�Macaulay� of dimension � #
�
n
�

�
#

�
P

di �
P

ei �
P

ei�ei � ei���� The projection � � Ue �� P��HQd�e is �at� and

its image contains P��Hd�e�
�ii� There exist maps he � Ue �� HQd satisfying

�a� if rk�t�x� T
d
n�i ! n� i# ei� then x � he�Ue��

�b� the restriction of he to �
���P��Hd�e� is an isomorphism onto its image�

Examples� �� ei ! ��� � � � � �� �
i
� �� � � � � �� Then Xei is a Pi���bundle over P� �

HQd�ei
and Uei is a section over an open set
 that is
 � � Uei �� P

��HQd�ei
is an

open immersion
�� n ! �
 d ! ��� �� We have the strata D�
 D� from above and a codimen�

sion � stratum E ! h������U������� U����� ! X����� ! &P�S�����
� �� h����� maps U�����

isomorphically onto E

Lemma �� h��e �+w�t�� ! ����P��+w�t�� � e+e
w�t�

where e+e
w�t� � Ue�t� �! ����ftg � HQd�e� is de�ned by frk�Vp � O �� K�

q � 

rw�q� p�� �p� qg

On Ue�t� we have the �ag of quotients

V� ! O � K�
n�� � K�

n�� � � � �� K�
�

with rkK�
i ! i � ei
 implying that some of these maps are isomorphisms Let

k ! �fi � eig De�ne a partition of ��� n� as follows� i� ! �
 ij ! minfiji � ei �
ij�� � eij��g
 ik�� ! n Let nj ! ij � eij 
 ie
 i � �ij � ij�� � �� !� rkK�

i is nj

�constant� Since the matrix �rw�q� p�� has nondecreasing columns
 e+e
w is de�ned

by frk�Vp �O� �� K�
j 
 rw�ij � p�� j ! �� � � � � k� �pg
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Let F �n�� � � � � nk� V � be the partial �ag variety parametrizing �ags of quotients
of V 
 with ranks given by the ni and with universal sequence

�.� V �O� Qnk � � � �� Qn�

There exists a e�t� � Ue�t� �� F �n�� � � � � nk� V � such that

V �O� K�
ikY � � �� K�

i�

is e�t�� of �.�
 and e+e
w ! ��e �t��Dw�e�
 with Dw�e de�ned by the "same� degener�

ation condition in F �n�� � � � � nk� V �

Lemma �� Dw�e is irreducible� of codimension a� satisfying a � ��w��
P

ei�

Lemma �� Let e be as above� and assume e �! �� Then

�i�
P

ei�ei � ei��� � ��
�ii� We have equality in �i� if and only if e ! ek
 ! ��� � � � � �� �

k
� � � � � �



� �� � � � � ��

for some � 
 k 
 � 
 n� ��
�iii� Let e ! ek
 as above� and w � Sn any permutation� Dw�e as in Lemma �

Then a ! ��w��
P

ei ! ��w�� ���k#�� if and only if w�k� � maxfw�k#
��� � � � � w��# ��g�

Remark� �ii� and �iii� will be used for the proof of Quantum Monk

���� Proof of Theorem � �ii� This is done by induction on d� for d ! ��� � � � � ��

HQd ! Hd ! F 
 OK Assume then d �! �

Let c !
P

��wi� It is enough to show that he�Ue�� ��+wi �ti�� has codimension
� c in HQd for every e Now he is birational onto its image
 hence it su�ces to

prove that the codimension of �h��e �+wi �ti�� in Ue is greater than

c� �dimHQd � dimUe� ! c# ��
X

ei �
X

ei�ei � ei���

By Lemma �


�h��e �+wi�ti�� ! ������P��+wi�ti� � e+e
wi�ti���

e+e
wi�ti� is supported on Ue�ti� ! ����ftig � HQd�e� and t�� � � � � tN are distinct 


hence there are only two types of nonempty intersections�

�.� �Ni���
���P�� +wi�ti��

and

�..� �N��i�� ����P�� +wi�ti�� � e+e
wN �tN �

The estimate for �.� is immediate by induction �as � is �at� As for �..�
 write

W ! �N��i�� ����ftNg � +wi�ti��
 so �..�! W � e+e
wN �tN � The codimension of W
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in Ue�tN � is
PN��

i�� ��wi� ! c� ��wN � Now use Kleiman�s theorem to deduce that
the codimension of �..� in Ue�tN � is c� ��wN � # a
 and then

codimUe �..� ! �# c� ��wN�# a � �# c�
X

ei � �# c�
X

ei�
X

ei�ei� ei���

as needed �the �rst inequality by Lemma �
 the second by Lemma ��i�� �

���� h+si �+w�+w�id !- �with � # ��w� # ��w�� !
�
n
�

�
# �

P
di�

This is ��+si �u� � +w�v� � +w��t�� for u� v� t � P� distinct� that is
Z
HQ

d

�+si�u�� � �+w�v�� � �+w��t��

Suppose that when u ! v
 Z �! +si�u� � +w�u� � +w�t� is still top�codimensional
Then h+si �+w�+w�id !the length of Z However
 Z is supported in the boundary'
�this follows from the moving lemma� In fact
 one can be much more precise�

Proposition�

�i� Z is either empty� or has pure codimension
�
n
�

�
# �

P
di in HQd�

�ii� Z is contained in �ek�hek��Uek��u��� with ek
 as in Lemma ��ii�� and k 

i 
 ��

�iii� If Z � hek��Uek��u�� �! 	� then w satis�es the condition of Lemma ��iii��
w�k� � maxfw�k # ��� � � � � w�� # ��g�

Proof� The same argument as in the Moving lemma gives that �.� and �..�
are empty
 as now we have top codimension One additional case�

e+e
si
�u� � e+e

w�u� � ����fug � +w��t�� � Ue�u�

Since ��si� ! �
 we can gain at most one dimension� the strict inequality may
become an equality

�ii�
 �iii� follow from Lemma ��ii�
 �iii� �

���� Proof of Quantum Monk Denote by �i�k the product sk�i�� � � � sk#
+sj �+	i�k �+w�

$
d
! length�Z�

The only index ek
 for which �i�k satis�es condition �iii� above is ek ! ekk Hence

by �ii� above
 Z is empty when j �! k

Assume j ! k Then Z ! hek�W � � hek�Uek�u��
 with W ! e+ek
sk
�u� �+e

	i�k
�u��

����fug�+w��t�� Recall that � � Uek �u� �� fug�HQd�ek
is an open immersion

One checks easily that e+ek
sk
�u� ! Uek�u� and e+e

	i�k
�u� ! +	i���k�� �u� � Uek �u�� so

W ! 	 unless d�ek ! � and w� is the "dual� permutation w� ��i���k�� In this case
Uek�u� ! fug � F and W ! fptg� moreover hek is an isomophism onto its image
Hence Z ! fptg
 lengthZ ! �
 as needed �
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�� Enumerative geometry for hyperelliptic curves�T� Graber� �������

Question� How many hyperelliptic curves of genus g
 degree d in P� pass
through ��d # �� general points-

Strategy� The data of a map from a hyperelliptic curve C to P� is almost the
same as the data of a map P� �� H���P��
 the Hilbert scheme of pairs of points in
P� Lifting such a map�

C ����� X ����� P���y���

��y���
P� ����� H���P��

one gets a honest hyperelliptic curve in P� if the bottom map does not land in the
diagonal

Here is the plan�

I Calculate the genus � Gromov�Witten invariants of H ! H���P���
�associativity�
�geometry of H
 "virtual� considerations �H is not convex�

II Relate the GW�invariants to enumerative geometry�
�use natural PGL��� action to control moduli spaces�
�understand virtual contributions

Geometry of H� Points of H correspond to either pairs of points in P�
 or
points with tangent directions� so there will always be exactly one line containing
a given one This gives a map

� � H �� P�
�

and �����L�� ! Sym�L �! P� In fact
 H �! P�Sym�TP�� This description allows
us to calculate most standard invariants of H In particular
 the Chow ring A��H�
is generated by divisors�

T� ! ���O����
T� !fset of subschemes incident to a �xed lineg

These span the nef cone A dual basis is given by
B� !fsubschemes supported at a �xed pointg�
B� !line in a �ber of ��

so the e�ective curves are of the form �a� b� ! aB� # bB� with a� b � �
Given a hyperelliptic plane curve C as above
 we can recover the degree and genus

of C from the homology class �a� b� of the associated rational curve in H If C has
degree d and genus g
 then intersecting with T� gives d ! b To recover the genus
of C
 note that the branch points of the hyperelliptic involution correspond exactly
to the intersections of the rational curve with )
 the divisor in H parametrizing
non�reduced subschemes It is easy to show that ) ! ��T��T�� We conclude that
�g # � ! �a� b� �) ! �b � �a so g ! b � a� �

Looking at H �� P�
 the diagonal ) is realized as a conic bundle inside H�
) ! P�TP�� �� P�Sym�TP�� by Veronese The Chow ring A��)� is generated by
T� and �

�T� Curves in ) are of the form �a� b� with b even
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Next
 c��TH� ! �T� Hence
 the expected dimension of M����H� �a� b�� is �b #
�� � ! �b# �� in particular
 it does not depend on the genus of �a� b�

Review of GW invariants�

I��	� � � � 	n� !

Z
����	�� � � � � � �

�
n�	n�

with usual notations
 where the
R

is taken on a fundamental class which equals

�M��n�X���� if X is convex If X is not convex �which is the case at hand�
 the
R

must be taken over a V � A��M ��n�X��� of the expected dimension Heuristically


I��� � � � ! �f���� �%�� � � � � �
��
n �%n� � V g

with evident notations
First reconstruction theorem �from �K�M��� if A��X� is generated by divisors


then all genus � GW�invariants of X can be determined from the ��point numbers
I��	�	��

So we look at I�a�b��	�	�� The class 	� imposes at most � conditions on curves�
two classes impose at most � conditions However
 if b � � then the expected
dimension is � 	
 so the only ��point numbers come from curve classes �a� �� or
�a� ��

Start with �a� ���curves These lie in )
 since �a� �� �) ! ��a � � Curves ��� ��
are �bers of the map ) �� P� given by support In other words
 all representatives
of this class are of the form originally described So the moduli spaceM����H� ��� ���
is isomorphic to P� with universal curve ) Curves of type �a� �� are a�sheeted
covers of such �bers The expected dimension for �a� �� curves is � � � # � ! �� so
we consider I�a����	� for 	 � A��H� A��H� is ��dimensional
 we�ll just look at �
elements here

Candidates for 	�
T� !fall subschemes incident to a �xed pointg�
T� !fsubschemes contained in a �xed lineg
I�a����T�� ! I������T�� ! � becauses T� really imposes two conditions That is
 if

we look in M����H� ��� ��� ! P�
 the virtual class is an element V of A� The locus
corresponding to curves meeting a representative of T� is just a single point
 though

so they don�t intersect Similarly
 an �a� �� curve will meet a representative cycle
for T� if and only if the ��� �� curve that it covers meets it
 so again the codimension
is too high �There is a second class in A��H� which gives a zero GW�invariant for
the same reason�

For T� we actually have to worry about the virtual class It is easy to see that
I������T�� ! deg�V �
 the degree of the virtual class
We can actually compute this virtual number �although it will also follow from as�

sociativity�� consider again ) � H� ) is made of �ags
 and hence it is homogeneous
M��n�)� �a� ��� maps isomorphically to M ��n�H� �a� ��� since curves of class �a� ��

in H are automatically contained in ) We want to �nd V � A��M ��n�H� �a� ���

U
f

����� ) ����� H��y
M��n�H� �a� ���
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By the fancy de�nition
 V ! ctop�R���f
��N�� Here N denotes the normal bundle

of ) in H In the ��� �� case we have a �ne moduli space
 so we can actually
compute this Chern class using Grothendieck�Riemann�Roch �The answer is ��
For �a� �� with a � � we would have to bring in stacks
 and we can do it otherwise
anyway

Next
 consider I�a����	�	�� For a � �
 �a� ���) � �
 so have at least a component
in ) However
 the second index is not even
 so these curves are all reducible
Curves of type �a� �� map to lines in P�� they will consist of a ��� �� curve
 meeting
) in two points
 with a total �a� �� attached� we glue an �a�� �� at the �rst point
and an �a�� �� at the second
 with a� # a� ! a Because we have such an explicit
description of the moduli space
 we can identify the space

f���� �%�� � �
��
� �%��g

which occurs in the interpretation of the GW�invariants �Actually we will just
identify the image of this locus in the ��pointed space�

Example� I�a����pt class� T�� The point class should be thought of as a pair

of points
 fp� qg in P�
 and T� corresponds to a choice of line l in P� Since fp� qg is
not contained in )
 the ��� �� component must hit this point This determines both
the �ber of � in which this line lives
 and �xes one point through which it must
pass Another point is determined by the fact that one of the �ai� �� components
must meet the T� As these can be attached only at points of intersection of the
��� �� curve with )
 it follows that the curve must contain a double point supported
at the intersection of l and pq The choice of a� and a� as well as the choice of
particular ai�sheeted covers has no e�ect on the incidence relation we are concerned
with
 except for the condition that a� must be non�zero �a� is the degree of the
curve glued at the special intersection point�

The moduli space of solutions splits up into connected components determined
by the partition of a between the two intersection points Once this is decided
 all
that remains is to choose at each point an ai sheeted cover of P� and a particular
point of that cover to glue to the ��� �� curve We denote the space of such data
by M�ai� �M�a� is naturally isomorphic to a �ber of the evaluation map from
M����P�� a� to P��

The moduli space of solutions is

qa��a��aa���a���M�a���M�a�� �

if either a� or a� is � �
 the corresponding component has positive dimension
 and
again we need to understand the virtual class in A��M�a���M�a��� Because the
virtual class is constructed from the deformation theory of the stable map
 and
because the deformations of our �a� �� curve naturally split into deformations of
the �a�� �� and �a�� �� curves
 it follows that this virtual class splits as Va� � Va�  In
conclusion


Ia���pt� T�� !
X

a��a��a�a����a���

Va� � Va�

Similar phenomena happen in many cases In the end
 the only unknowns are
Vai and I�a����T��
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Now
 remarkably as usual
 the associativity equations are enough to compute�������
I�a����T�� ! �
a�

Va !



� if a ! �� �

� otherwise

From this
 all numbers can be computed

Enumerative signi�cance� The number I�a�b��T
�b��
� � should count hyperel�

liptic curves through ��d#�� points Unfortunately
 this is not literally true Since
H is not convex
 there will be unwanted contributions to this GW�invariant We
have unusually good control over these contributions for H however
 because of the
action of PGL��� Observe that H is almost homogeneous� the PGL��� action has
only two orbits So TH is generated by global sections outside ) For f � P� �� H
with image not contained in the diagonal
 f��TH� is generically generated by global
sections
 hence it is generated by global sections Therefore
 H��f�TH� ! �� H
is almost convex In a neighborhood of such �f �
 M��n�� � � � is of the expected di�
mension The same holds for reducible curves
 as long as no component lies in
)

For f � P� �� ) � H representing a class �a� b�
 observe that ) is homogeneous�
the dimension at such �f � is computed to be �a # b This is � �b# � if and only if
a � b
 that is if and only if �a� b� �) � �

One could hope that if b � a
 then M����H� �a� b�� has the expected dimension
However this is not the case
 as one can have a curve consisting of two components
C�
 C�
 and an f mapping C� to ) and with f��C�� ! �a�� b��
 f��C�� ! �a�� b���
b ! b� # b� � a ! a� # a� doesn�t prevent a� � b�
 in which case �f � moves too
much

However
 most of the extraneous components do not contribute This is because
curves in ) do not hit enough points

Example� C ! C��C� Need to hit ��b�#b��#� T��s Say C� moves correctly�
then C� can only hit �b� # � T��s This leaves �b� for C� Now a rational curve in
) gives rise to a nonreduced subvariety of P� supported on a rational curve The
degree of the subscheme is b�
 so this rational curve has degree b�
� This curve
can then hit only �

�b� � � points
 � �b�

One exception� b� ! �
 �a� b� ! �a�� b� # �a�� �� We get solutions here This is
fairly clear Because the expected dimension doesn�t depend on a
 and since the
dimension of the locus of irreducible curves is equal to the expected dimension

we should see �nitely many irreducible curves in class �a�� b� satisfying the desired
incidence conditions for any a� Such a curve will meet ) in ��b � a�� points At
each of these points you can glue on a �ci� �� curve in such a way that a�#

P
ci ! a

Any such partition of a gives a component of the moduli space which looks like

qM�c�� �M�c�� � � � � �M�cn��

The deformation theory for these curves is identical to the deformation theory
on the similar moduli spaces we saw earlier So again the virtual class splits up
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across the factors
 giving a contribution
P

Vc�Vc� � � �Vcn  In fact
 all ci ! �� � �else
Vci ! �� Because of this
 we can identify all solutions to the enumerative problem
which the GW�invariant is actually solving Namely
 we get the irreducible curves
of type �a� b� that we want
 but we also get the irreducible solutions of type �a�� b�
for all a� � b decorated with ��� �� curves at exactly �a � a�� of the points of
intersection of the irreducible curve with )

So� de�ne

E�a�b��T
�d��
� � ! �firreducible curves of type �a� b� meeting the cycles

and transverse to )g

that is the number of honest hyperelliptic curves of degree d ! b and genus b�a��
through ��d # �� points in P� The result is that

I�a�b��T
�d��
� � !

aX
i��

�
�b � �a# �i

i

	
E�a�i�b�

and this relation can be inverted to �nd the E�a�b� in terms of the I�a�b� For
example
 for genus�� curves of degree d through ��d# �� points
 we �nd �	 curves
for d ! �
 ����� for d ! �
 �����	�	 for d ! �
 and so on

For genus � and �
 extra care has to be taken to account for "extra� g���s
 as
maps P� �� H parametrize a choice of hyperelliptic curve in P� and a choice of
hyperelliptic involution

��� Quantum di�erential equations and equivariant
quantum cohomology� I�R� Pandharipande� ���	���

Example� C � �equivariant GW�invariants of P� Let C � act on P� by

t ��

�� ta

tb

tc

A
and let e� ! a#b#c
 e� ! ab#ac#bc
 e� ! abc Finite�dimensional approximation
of EC � �� BC � � EC �n ! P�O��a�� O��b� � O��c�� �� BC �n ! Pn A module
basis of the �ordinary� equivariant cohomology of P� over H�

C�
! C �t� is�����

�

T� ! � ! c��OP ����

T� ! ��

The equivariant pairing matrix is

�gef � !

�� � � �
� � e�t
� e�t �e�� � e��t�

A
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So we can compute �gef � Proceed as usual
 setting up a "quantum equivariant
potential�

% !
X
d��

X
k��

Id�T
�d���k
� �edy�

y�d���k�

��d� � # k�'

By dimension reasoning
 Id�T
�d���k
� � ! Nd�kt

k with Nd�k numbers Associativity
as in the usual story� read the coe�cient of T� in �T� T��  T� ! T�  �T� T�� and
obtain

%��� ! %���� � %���%��� # �e�t%��� � �e�� # e��t
�%��� # �e�e� � e��t

�%���

Then �nd equations for the Nd�k�s� for d � �
 k � �
 �d� k� �! ��� ��


Nd�k !
X

d��d���k��k���d��d��dk��k��k

Nd��k�Nd��k�d�d��

�

�
d�d�

�
�d� � # k

�d� � � # k�

	
� d��

�
�d� � # k

�d� � � # k�

	�
# �e�dNd�k�� � �e�� # e��d

�Nd�k�� # �e�e� � e��d
�Nd�k��

The old equation is just a subrecursion here �k ! �� set Nd�k ! � if k � �� This
equation determines all the numbers recursively
 from N��� ! � For example

N��� ! �e�

Note� the Nd�k are symmetric functions of degree k in a� b� c

Dubrovin formalism� Let S be a trivial bundle over M ! Rn
 with sections
/s�� � � � � /sm which trivialize it We consider a connection r � H��S� �� H��S�+�

M�

that is a map on C� sections
 satisfying

r�f � s� ! frs # s � df

for f a function Vector �elds �
�xi

determine covariant derivatives ri ! r �
�xi

by

contracting rs by �
�xi


In local coordinates
 we may write

r�/sj� ! %kij/sk � dxi

�omitting obvious
P

�
 and for gj/sj � H��S�

ri�g
j/sj� !

�gj

�xi
/sj # %kijg

j/sk

We can think of a connection as a way of lifting vector �elds fromM to S �that is
 a
distribution in the sense of Frobenius�� for each point s � S
 we have n independent
vectors in TsS�

�

�xp
��

�

�xp
� %kpjsj

�

�sk

�in coordinates x�� � � � � xn� s�� � � � � sm on S�
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Now we want sections s for which rs ! � We get Frobenius integrability
conditions� if L�
 L� are vector �elds in the distribution
 then �L��L�� must also
be in it This is where the curvature comes up� denoting by Lp the lift of �

�xp
is

�Lp� Lq� the lift of a vector �eld- Computation�

�Lp� Lq� !

�
�

�

�xp
%kqj #

�

�xq
%kpj # %
pj%

k
q
 � %
qj%

k
p


%
sj

�

�sk

No x�term
 so the part in f g must be � for integrability This term is denoted by
Rk
jpq
 the coe�cients of the curvature form in local coordinates

Dubrovin� Apply this to M ! V ! H��X� �say C coe�cients�
 with basis
T�� � � � � Tm
 and S ! TV � the trivial bundle with �ber V  The coordinates on the
manifold V will be denoted yi
 and �i will be coordinates on the �ber There is a
metric on TV � �gij� ! h�i� �j i De�ne a connection by setting

ri�j ! *ijeg
�ek��k

that is by prescribing Christo�el symbols %kij ! *ijeg
ek Here * is the GW poten�

tial
 that is X
n��

�

n'

X
�

I��	
�n�

Now compute the curvature �Rk
jpq� and impose its vanishing �that is
 the integra�

bility condition�� �
�yp

%kqj !
�
�yq

%kpj comes for free from the de�nition
 and the rest
says

*pjeg
e
*q
f ! *qjeg

e
*p
f

�times the invertible matrix �gfh�� This are just the WDVV equations'
So at least formally there are parallel sections Givental �in one part of �Given�

tal�� writes down such sections His goal in doing this� operators that kill these
sections will give relations in QH�

Givental� r� ! �d�
P

�p	�dt	�
Here � is just a parameter� p�� � � � � pn form a basis of H ! H�X
 and for its

�trivial� tangent bundle TH �same notation� r� acts H��TH � �� H��TH � +��
We will obtain sections 	 !

P
tipi
 with coordinates �t� ! �t�� � � � � tn� Consider

vector �elds F � H��TH�
 in coordinates�

F �t� !

�� F�

Fn

A !
X

F jpj

Covariant derivatives�

r��i�F �t�� !
X
k

�
�
�F k

�ti
� *ijeg

ekF j

	
pk
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�so r��i�pj� ! �pi  pj 
 the quantum product� If � ! �
 r� is a honest connec�
tion� else
 strictly speaking
 r� is only a connection �up to scalar � but the same
Frobenius equations hold

Consider now P� ! PC� � C � acts by

�
t�

t�

	
 Equivariant cohomology�

H�
C�
P� ! C �p���
�p� � p�� In terms of the basis f�� pg
 �gef � !

�
� �
� �

	
 Given

polynomials f�p���
 g�p���
 we have an equivariant pairing hf� gi � H�
C� ! C ��� In

fact
 one checks that

hf� gi !
�

��i

Z
fg dp

p�p� ��

Over C ��� we can take the basis p
�
� ��p

�

 for which the intersection form diagonalizes

to

�
�
�

�

� � �
�

	


Back to our manifold X
 V ! H�X
 r on TV  We want sections s with rs !
� Look then at X � P�
 C � acting trivially on X and as above on P�� and use
equivariant GW invariants on X �P� The equivariant cohomology is

H�
C� �X �P�� ! H�X �C C �p���
�p�p � ���

Look for a C ����module basis� we have fpig forH�X� and over C ���
 we have pi�
p
�



pi �
��p
�

 Write

� ! ���� t� !
X

ti�pi �
p

�
� # �i�pi �

�� p

�
�

for elements of H�
C�
�X �P�� �C 	�
 C ��� Then the equivariant intersection pairing

is nice�

h����i ! h��� t�� �� �� t��i !
ht� t�i � h�� � �i

�

where ht� t�i ! h
P

tipi�
P

t�ipii and h�� �
�i ! h

P
�ipi�

P
� �ipii are both calculated

on X alone
In fact
 for more equivariant classes
 the equivariant push�forward is given byZ

� � �� � ��� !
�
R
X
t � t� � t���� �

R
X
� � � � � � ���

�

Here � �s and t�s do not mix because p�� � p� in the numerator kills the poles
 so
the residue is �

Next
 consider the following function G of �t� ���� q� q���

G !
X
n��

X
�

X
d

�

n'
q�qd�I

equiv�
n����d���

�n�

Here ��� d� is a curve class of X � P� in the evident fashion
 and � is written in
terms of � etc
 as above Note that the q�qd� terms "pull apart� the curve classes�
that�s what Givental always does Write

G ! G��� # q�G
��� # q��G

��� # � � �
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Claim� G��� !
*�t� q� � *��� q�

�
� with * ! ordinary GW�potential on X�

This comes down to the preceding equations for the equivariant push�forward
Another basis
 eg without �
�
 would not simplify so much

Next
 set �	� !
��G���

��	���


Claim� Fix �� Set F !
P

	 �	�g
	jpj � Then

��
�

���
F ! p��� �  F

�
�

�t�
F ! p��t�  F

�Warning� typo in �Givental�� t and � are swapped�
Note� the entries of F involve p	�s
 and p�p	 !

P
power series�var�pf  �p��� � 

means� set the variable to � in the power series That is
 say F !
P

F ipi� now
p� 

P
F ipi !

P
F ip�  pi� p�  pi !

P
*�ieg

efpf  So we can de�ne p��� �  F to
be

P
i�e�f F

i*�ie�� �gefpf 
 and similarly for p��t�  F 
The F given by the last Claim are the "parallel sections�
 but they involve � �s

and t�s
To prove the claim
 one essentially uses the fact that G satis�es the equivariant

WDVV equation for X �P�

��� Quantum di�erential equations and equivariant
quantum cohomology� II�R� Pandharipande� ��������

Review of the previous lecture� X is a variety� V ! H��X� C �� we have a natural
identi�cation V �! TV � fp�� � � � � pNg is a basis of V 
 and ��� � � � � �N the correspond�
ing basis of TV � we let ti be coordinates on V  We have de�ned a connection "up
to scalar��

r� ! �d�
X
	

�p	�dt	�

acting in the following way� for a vector �eld F �t� !

�� F�

FN

A !
P

F jpj !
P

F j�j 


we have the covariant derivative

r��iF !
X
k

�
�
�F k

�ti
� *ijeg

ekF j

	
�k

where * denotes the GW�potential
We have seen that * satis�es the WDVV equations �� the corresponding

formal connection is �at We are looking for solutions of r��iF ! � �i� that is
 �i� k

�
�

�ti
F k ! *ijeg

ekF j
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Givental�s approach� to get solutions
 consider X �P� with C � acting on the P�

factor by �t� � t�� Fact�

H�
C�P

� ! C �p���
�p� � p��

We found a better basis here
 over C ���� p
�
 ��� p�
�

Remark� By localization� the equivariant cohomology of P� is essentially con�
centrated at ���� this basis is the natural one from this point of view

We then have a basis for H�
C�
�X � P�� ! H�X � C �p���
�p� � p��� pi � p
�


pi � ��� p�
� So we write � � H�
C�
�X �P�� as

� !
X

ti

&
pi �

p

�

'
#
X

�i

�
pi �

�� p

�

	
Next
 consider the equivariant GW�potential G�t� ���� q� q��� we expand it in terms
of powers of the P��curve class�

G ! G��� # q�G
��� # q�oG

��� # � � �

We have seen that

�I� G��� !
*�t� q� � *��� q�

�

 the usual GW�potential�

�II� letting �ab �!
��G���

��a�tb
and F �!

P
a �abg

aj�j 
 then we have the two equations

�������
��

�

���
F ! ���� �  F

�
�

�t�
F ! ���t�  F

�end of the review�

Localization� Let Y be a manifold with a C � action
 and denote by Y C
�

the
set of �xed points We have �� � H�

C� �Y � �� H�
C� as usual
 and also H�

C� �Y
C
�

� �!
H��Y C

�

��H�
C�

since the action is trivial on Y C
�

 The equivariant inclusion Y C
�

��
Y gives a diagram

� � H�C � �Y � ��

��

� � H�
C�
�Y C

�

� ! H��Y C
�

��H�
C�

tti i i i i i i i i

��� � H�
C�

The diagonal arrow can be �lled in� it works � ��

Z
Y C�

�

ceqtopN

 where N !normal

bundle of Y C
�

in Y 
That is
 ��� can be evaluated on �xed points In this sense
 equivariant coho�

mology is "concentrated at the �xed points�
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Equivariant GW�invariants�

In�d��

(
pa

�
�� p

�

	
� pb

&p
�

'
� ��n

)
is the equivariant push�forward of � from Y ! M��n���X�P�� d#��
 where ��d#�� 
stands for the sum of a class d from the X factor and of the class of a point from
P�
 and �with evident notations�

� ! e��

�
pa

�
�� p

�

		
� e��

&
pb

&p
�

''
� e����n times

The idea is to compute the �xed point locus Y C
�


 then use localization to compute
the push�forward

What is Y C
�

- We want the class to be � on the P� factor
 so a map P� �� X�P�

must travel up exactly once� and must go straight up for a �xed point �else a surface
is swept� Next


ood1

d 2

I 1PX x 

n1

n
2

0

n

pa��� � p�
�� must sit on the ��plane
 and pb�p
�� must sit on �� the other n !
n� # n� points can be split arbitrarily among the two planes This describes Y C

�


Count the conditions� two nodes �along the vertical component�
 �xed at � and

�� total of four conditions
 so expect codimY Y C
�

to be � As for the normal
bundle
 the tangent representation is t at �
 corresponding to ��� and t�� at �

corresponding to �� smoothing the nodes
 we get �� # c��� at �
 and � # c��� at
� The localization formula gives then the push�forward asZ

Y C�

�

������# c������ # c����

This is all modulo a slight lie� Y C
�

is not codimension � everywhere All n points
may be concentrated on one of the planes
 leaving no nodes at the other plane� the
two possibilities give two codimension � components
 with normal bundles whose
classes are resp

����� # c���� � ������# c����

Putting all together
 In�d�� h� � � i is the sum of three terms �one from cod �
 two
from cod ��
 involving only "ordinary� GW�invariants of X The �rst term is

X �

���
n'

n�'n�'
In����d�

(
pa � �

�n�
p�

��# c���

)
g��

�

In����d�

(
pb � t

�n�
p��

��# c���

)
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where the
P

is over d� # d� ! d�n� # n� ! n� �d�� n�� �! ��� ��� �d�� n�� �! ��� ���

the g��
�

factor makes sure the vertical component goes straight up� the point at �
equals the point at � The second and third term are similar�

�

���
ga�g

���In���d

(
pb � t

�n p��

�# c���

)
#

�

���
In���d

(
pa � �

�n p�
��# c���

)
g��

�

g��b

To simplify notations
 de�ne a new function�

�ef �t��� ! gef #
X

n����n�d��������

X
d

�

n'
In���d

(
pt
�# c

� t�n � pa

)

Then in short localization gives

����ab !
X
����

�a�������g
����b���t���

�note� typos in �Givental��
Now recall that � must satisfy equations �II� �from the review��

��
�

���
�abg

ak�k ! p��� �  �abg
ak�k

Substituting the expression obtained above into this�

��
�

���
�a�������g

��������t���g
ak�k ! p��� �  �a�������g

����b���t���g
ak�k

Taking out the invertible part�

��
�

���
�a�������g

	k�k ! p��� �  �a�������g
	k�k

or
 after �� ���

�
�

���
�a������g

	k�k ! p��� �  �a������g
	k�k

From this
 one can obtain n independent solutions

A di�erent approach is obtained via Gravitational descendents� going back to
Witten We have de�ned ordinary GW�invariants byZ

	Mg�n�X���


e���	�� � � � � � e
�
n�	n�
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with notations as usual �in particular
 with due care if X is non convex
 g � �

etc� We can more generally de�ne invariantsZ

	Mg�n�X���


e���	�� � � � � � e
�
n�	n� � c	�� � � � � � c	nn

where ci !�rst Chern class of i�th cotangent line Notation�

In�� h�	�� ��� � � � �	n� �n�i !

Z
	Mg�n�X���


Y
e�i �	i� � c

	i
i

The ordinary GW�invariants satisfy properties�

�I� Fundamental class� In���� h	� � � � 	n � �i ! � if n � � or � �! �
 n � ��
�II� Divisor� for 	 � H��X�
 In���� h	� � � � 	n � 	i !

R
�
	 � In�� h	� � � � 	ni

Now the fancier invariants satisfy upgraded properties�

�I� Fundamental class�

In���� h�	�� ��� � � � �	n� �n���� ��i !
nX
i��

In�� h�	�� ��� � � � �	i� �i � �� � � � �	n� �n�i

�of course
 setting to � terms involving negative ��components��
�II� Divisor� for 	 � H��X�


In���� h�	�� ��� � � � �	n� �n��	� ��i !

Z
�

	 � In�� h�	�� ��� � � � �	n� �n�i

#

nX
i��

In�� h�	�� ��� � � � �	i � 	� �i � �� � � � �	n� �n�i

The underlying reason why these hold� consider the map forgetting the �n#���st
point�

� � M��n���X��� ��M ��n�X���

At the �rst point
 we have c�
 ��c�� one can show that

c� ! ��c� # �D��n���

where D��n�� is the divisor obtained by splitting �on � � components� the points
as ��� n # ��j��� � � � � n�
 and the class as �j�

For g ! �
 the fancier invariants also satisfy suitable WDVV equations As in
the ordinary GW�case
 the splitting axiom and the linear equivalence in M��� yield
recursive relations for the invariants

The claim is that the fundamental class and divisor properties
 plus the upgraded
WDVV
 imply that the function �ef �t��� de�ned above is a solution of the main
di�erential equation This gives a second
 and non�equivariant proof
 of the main
theorem

In �Dubrovin�
 all this is seen from an axiomatic point of view There a recon�
struction theorem for g ! � is stated�
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Proposition� The tree�level gravitational descendents can be uniquely recon�
structed from the tree�level system of Gromov�Witten invariants�

Sketch of proof� Seek an inductive scheme

In�� h�	�� ��� � � � �	n� �n�i

!
X

�either lower curve class
 or fewer cotangent line classes�

For this� the gravitational descendents are obtained by integrating

e���	��c
	�
� � � � e�n�	n�c

	n
n

over M��n�X��� Instead
 integrate

e���	��c
	�
� � � � e�n�	n�c

	n
n � e�n���H� � e�n���H� � e�n�����

�withH !hyperplane class� overM ��n���X��� If we are not yet done
 then some of
the �i is �! �
 say �n Apply then the basic linear equivalence D���j��� � D���j���
with �� ! e�n�	n�c

	n
n 
 �� ! e�n���H�
 �� ! e�n���H�
 and �� ! e�n����� This

makes the induction click �

��� Quantum double Schubert polynomials�W� Fulton� ��������

This is joint work with Ciocan�Fontanine
Reminder on quantum Schubert polynomials �after Fomin�Gel�fand�Postnikov��

for w � Sn
 we can de�ne a polynomial Sq
w�x�
 as follows Quantum elementary

symmetric polynomials are de�ned by Ei�x�� � � � � xp� �!
P

products of vertices and
edges which cover exactly i vertices once in

x� x� x� � � � xp
� q� � q� � q� � � � qp�� �

�deg xi ! ��deg qi ! �� Clearly Ei�x�� � � � � xp� specialize to the usual elementary
symmetric polynomials ei�x�� � � � � xp� as the qj �� �

Definition� Write the usual Schubert polynomial corresponding to w � Sn as

Sw�x� !
X

aJeJ �x�

with aJ � Z
 and denoting eJ �x� ! ej� �x��ej� �x�� x�� � � � ejn�� �x�� � � � � xn���
 with
� 
 ji 
 i Set analogously EJ�x� ! Ej��x�� � � �Ejn���x�� � � � � xn���� then de�ne

Sq
w�x� !

X
aJEJ�x�

The theorem �"Quantum Giambelli�
 see the previous lecture on quantum Schu�
bert polynomials� is that these Sq

w�x� represent the Schubert varieties in the quan�
tum cohomology of �ag manifolds
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Now for the classical Schubert polynomials there is a concrete description� write
w ! w�si� � � � si� in the shortest possible way
 where w� ! n�n � �� � � � � is the
"longest� permutation
 si is the transposition �i� i#��
 and � ! ��w��� ��w� Then

Sw�x� ! �xi� � � � � � �
x
i� �Sw��x��

where Sw��x� ! xn��� xn��� � � �x� and �xi �P � !
P � sxi �P �

xi � xi��
�see also previous lec�

tures� The goal here is to �nd a similar formula for Sq
w�x�

The idea comes from the following notion There exist "double Schubert polyno�
mials� Sw�x� y�
 obtained as

Sw�x� y� ! �xi� � � � � � �
x
i� �Sw��x� y��

with Sw��x� y� !
Q
i�j�n�xi#yj� �note� in the usual de�nition
 one �nds� instead

of #� It would seem as if the yj are useless� on the contrary�

Fact� Sw�x� y� ! Sw���y� x��

Equivalently
 write w ! sj� � � � sj�w� again in the shortest possible way� then

Sw�x� y� ! �yj� � � � � � �
y
j�
�Sw� �x� y��

Definition� With w as above
 de�ne quantum double Schubert polynomials by

Sw�x� y� q� ! �yj� � � � � � �
y
j�
�Sw� �x� y� q��

where

Sw��x� y� q� !
n��Y
p��

Ep�x� # yn�p� � � � � xp # yn�p�

Note that Sw�x� y� �� ! Sw�x� y� by de�nition The interesting fact is that

Theorem� Sw�x� �� q� ! Sq
w�x��

Proof� Claim� Sw�x� y� q� !
P

aJ �y�EJ �x� with aJ �y� �Z�y�
Granted this
 Sw�x� �� q� !

P
aJ ���EJ �x�
 and the aJ ��� are the right coe��

cients to give Sq
w�x� since Sw�x� ! Sw�x� �� �� !

P
aJ ���ej �x�

So we only need to prove the Claim

Proof of the Claim� ��� True for w ! w�� use that

Ep�x� # yn�p� � � � � xp # yn�p� !

pX
i��

Ei�x� � � � xp��yn�p�
p�i

which is clear from the de�nition
��� The �yi �s only work on the coe�cients aJ �y� �
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Geometric origin� On the hyperquot scheme�P� we have

E� � � � � � En�� � V �� Qn�� �� � � � �� Q�

where the Ei�s are subbundles of V 
 the Qi�s are bundles
 but the maps on the right
are not necessarily surjective We want the locus +�w where heuristically

�rk�Ep �� Qq� 
 �fi 
 q�w�i� 
 pg 

If each V �� Qi is surjective
 then �+�w� ! Sw�x� y�
 where xi
 yi denote �up to sign�
the class of successive quotients of the Qj �s
 Ej �s respectively When the maps are
not surjective
 higher Chern classes of the Qi�s must be used

For +�w�

 we need the locus where E� �� Qn�� vanishes� this is

ctop�E
�
� �Qn��� !

n��X
i��

ci�Qn���y
n���i
� ! En���x� # y�� � � � � xn�� # y��

On this locus� look further where E�
E� �� Qn�� vanishes A computation gives
that this is En���x� # y�� � � � � xn�� # y��
 and so on

Remark� here x� # � � � # xi ! c��Qi�
 and qi ! c��Qi�� � Qi�� all other Chern
classes are determined by c��s and c��s This must be a special property of the
universal bundles on the hyperquot scheme
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Part III
Related Material

�� Mirror symmetry and string�theoretic
Hodge numbers�V� Batyrev� �������

Problems arise in trying to de�ne and compute QH��X� when X is singular�
for example
 for the "small� QH� one does not expect the variables q�� � � � � qr to be
de�ned as generators of H��X�� one expects more parameters
 corresponding to a
larger �conjectural� "string�theoretic�Hst�X� This lecture deals with the problem of
de�ning mirror symmetry for singular varieties
 and more speci�cally with suitable
Hodge numbers displaying the symmetry

x�� Mirror symmetry� First a reminder of a basic example Let A be the
abelian group �Z
�n# ��Z��n��
 of order �n# ��n�� Consider the nondegenerate
bilinear form � �� � �� A �A ��Z
�n# ��Zgiven by

h���� � � � � �n���� ���� � � � � �n���i !
X

�i�i mod �n# ��

B denotes the diagonal Z
�n# ��Z �� A� note that B is isotropic� hB�Bi ! �
De�ne G ! B�
B
 another abelian group
 of order �n#��n� and restrict the pairing
to G�G ��Z
�n# ��Z

Now move to algebraic geometry Consider the Fermat hypersurface n � Pn��

de�ned by
P

zn��
i ! �� G acts naturally on n
 by ��� zi� �� e��i	zi

Statement� For all H � G� and denoting by H� the complement of H with
respect to the pairing in G� the physicists claim that

�n
H��
�
n
H

�
�

are mirror�symmetric�

Example� n ! �
 H ! �� then G ! �Z
�Z��
 and the claim is that � and
�
G are mirror�symmetric

Note� in this case � is smooth
 but �
G is singular

Another statement� if V 
 V � are smooth n�dimensional Calabi�Yau
 and mirror
symmetric
 then hn�p�q�V � ! hp�q�V �� for all p� q



MIRROR SYMMETRY AND STRING�THEORETIC HODGE NUMBERS ��

How to state this if V or V � are singular- First natural conjecture� the equality
of Hodge numbers should hold for some minimal desingularization We expect that
n
H
 n
H� have �nice desingularizations displaying mirror symmetry of Hodge
numbers In fact
 this has been proved for n ! �

How to control the "minimality� of a desingularization-

Definition� X Gorenstein variety
 KX canonical divisor A resolution � � Y ��
X is crepant if ��KX ! KY 

�In general
 KY ! ��KX #
P

aiEi
 with Ei the components of the exceptional
divisors The ai�s are called "discrepancies�� so ai ! � � there are no discrepancies
� the resolution is crepant This terminology is due to Miles Reid�

Note� if Z � Y �both nonsingular� and Y � ! B�ZY 
 with exceptional divisor E

then KY � ! ��KY #�codimZ � ��E Unless Y � is isomorphic to Y 
 codimZ � � �
�� so "crepancy� guarantees the minimality of the resolutions in the sense that
blowing�up inessential loci will not give crepant desingularizations

x�� E�polynomials� Assume that X is quasi�projective Then the cohomology
with compact support H�

c �X� has a mixed Hodge structure
 and we may de�ne

ep�q�X� !
X
k

����khp�q�H�
c �X��

Definition� E�X�u� v� !
P

p�q e
p�q�X�upvq

Properties�

��� If X ! qXi
 then E�X�u� v� !
P

E�Xi�u� v�
��� Y �� X locally trivial in the Zariski topology
 with �ber F !�

E�Y �u� v� ! E�F �u� v� �E�X�u� v�

�Note� ��� does fail unless one has Zariski�local triviality�
Now assume that � � Y �� X is a resolution of singularities of X
 with Y smooth

and compact Then ep�q�Y � ! ����p�qhp�q�Y � by the purity of the Hodge structure
of Y � so knowing E�Y �u� v� amounts to knowing the Hodge numbers of Y  On the
other hand
 say that we have a strati�cation X ! qXi with the analytic singularity
of X constant along Xi
 and ����Xi� �� Xi Zariski�locally trivial� then one ought
to be able to compute E�Y �u� v�

Question� Assume that � � Y �� X is a crepant resolution For x � X
 what
is E�����x��u� v�-

This question can be "localized� for quotient singularities as follows� for G �
SL�n� C �
 X ! C n
G
 let � � X be the image of � � C n  If � � Y �� X is a
minimal desingularization
 what is E��������u� v�-

An answer to this could be pasted into an answer to the global question if X has
quotient singularities and Y �� X is crepant Note that crepant resolutions do not
necessarily exist�

Example� n ! �
 G �! Z
�Zgenerated by ������������� Then C n
G does
not have crepant resolutions �Crepant resolutions do exist for n � ��

However
 if two crepant resolutions exist then their E�polynomial will have to
be the same �see below�
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x	 Orbifold Euler number� �Dixon
 Vafa
 Witten
 � � � � Say a group G acts
on a variety X� then

e�X�G� !
�

jGj

X
�g�h��gh�hg

e�Xg �Xh�

is the "orbifold� or string�theoretic Euler number
 denoted est�X
G�

Note� the conventional Euler number of the quotient would instead be e�X
G� !
�
jGj

P
g e�X

g� The string�theoretic Euler number should encode more information

Example� est�C n
G� ! � of conjugacy classes
 while e�C n
G� ! �

Now for V 
 V � smooth n�dimensional mirror�symmetric Calabi�Yau
 one has
e�V � ! ����ne�V �� The physicists propose that for quotient varieties this should
hold for dst Supporting that this is the right notion
 we have

Theorem� est�n
H� ! ����nest�n
H��

Now back to the local question from x�

Expectation� E��������u� v� !
P

��conj� classes with weight j��uv�j

Here the weight of a conjugacy class is de�ned as follows� for g � G
 write g in
terms of roots of �� g ! diag�e��i	� � � � � � e��i	n � with � 
 �j � � We are assuming

G � SL
 so e��i
P

	j ! �
 and hence
P

�j is a nonnegative integer We let the
weight of g be this integer

It is not hard to check that the "expectation� is correct for ��dimensional quotient
singularities The exceptional divisor over a singularity is then a chain of say m
rational curves
 and one checks that the E�polynomial of such a chain is indeed
� # �m� ��uv as prescribed by the above formula

Also
 the "expectation� makes sense regardless of whether a crepant resolution
should exist or not For the singularity C �
������������� we get � # �uv��� and
more generally
 for C �n
Z� one �nds � # �uv�n

Finally
 for "toric resolutions� one can formulate a precise results�

Theorem� For toric �complete intersection� Calabi�Yau� mirror pairs V � V ��

unEst�V �u��� v� ! ����nEst�V
��u� v�

where Est is computed from the �expected	 E�polynomial of �bers of a resolution� as
given above�

If we denote by hp�qst �V � the coe�cient of upvq in Est
 the Theorem formulates
then this case of mirror symmetry as the equality of "string�theoretic� Hodge num�
bers

hp�qst �V � ! hp�qst �V ��
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x�� Number theory �p�adic �elds�� �Only very rough ideas here�
The "expectation� is a true formula'
To prove this
 one may either use an approach via in�nite dimensional geometry

�suggested by M Kontsevich�
 or p�adic integration theory on Qp This is analogue
to Lebesgue integration on R or C 
 with Haar measure normalized by ��Zp� ! �

A Weil� the integral of a volume form along the maximal compact subset X�Zp�

of a variety X de�ned over Qp will be
�X�Zp�

jpjdimX


Now say that V� V � are birational As integration is insensitive to proper subva�
rieties
 and V 
 V � are biregularly isomorphic away from proper subvarieties
 we will
get the same number of points for V 
 V � over Zp Via the Weil conjectures
 this in
some sense explains why one should expect the same cohomological properties for
V and V � If Y �� X is a crepant resolution
 a volume form + on X will extend
with same zeros and poles on Y independently of the speci�c crepant resolution
�by de�nition of crepant�
 and from this one can understand why one should get
the same E for di�erent resolutions

x�� Extending to more general singularities� Suppose X has log terminal
singularities Can we de�ne a string�theoretic E�polynomial for X-

Let � � Y �� X be any resolution
 with D�� � � � �Dr exceptional divisors Write
KY ! ��KX #

P
i�I aiDi
 with I ! �� � � � � r For J � I
 de�ne

DJ ! �j�JDj � D�
J ! DJ ��i�JDi

and D� ! Y � �i�JDj 
Then Y ! qJ�ID�

J  We de�ne then

Definition�

est�X� !
X
J�I

e�D�
J �

��Y
j�J

�

aj # �

A
This agrees with the previous est for quotient singularities

Theorem� This number does not depend on the resolution�

It is immediate to check that blowing up a given resolution at a point
 for exam�
ple
 does not change the number de�ned above The present proof of this Theorem
however is not so naive
 and again uses p�adic integration

This est seems the right candidate to use in a more general formulation of mirror
symmetry

�� M ��n�P� Belorousski� �������

References for this material are �Knudsen�
 �Keel�
 and �for a di�erent construc�
tion� �Kapranov�

We denote by M��n the space parametrizing ordered n�tuples of distinct points
on P� modulo projective transformations� we work over C 
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x�� Naive compacti�cations of M��n� The �rst observation is that any three
points of any ordered n�tuple of distinct points in P� �say
 the last three� can be
placed at �
 �
 � by means of a unique projective transformation The position of
the other n�� points determines then the n�tuple up to projective transformation

with the only constraint that they should be distinct from each other
 and distinct
from �
 �
 �

n ! �� M��� !�!point�

n ! �� M���
�! P�� f�� ���g�

more generally
 M��n
�! �P�� f�� ���g�n��� diagonals
 or alternatively

M��n
�! �C � f�� �g�n��� diagonals

Naive compacti�cations of these spaces are then �P��n��
 or Pn��� neither of
these is adequate in the sense that points at the boundary are not "geometrically
meaningful� For example
 the natural action of Sn on M��n does not extend to an
action on these compacti�cations

Example� Consider the ��tuple of points

�p�� p�� p�� p�� p�� ! ��� ���� t� t��

for t �! �
 then let t approach � In the naive compacti�cations
 p� and p� both
approach p� However
 if we take p�
 p�
 p� to be the points �xed at �� ��� by

applying z �� z���t�
z�t� 
 the ��tuple becomes

�p�� p�� p�� p�� p�� ! ��� �
��t

� �� t� ����

and as t approaches � this time the points p�
 p� and p� come together That is

the geometric interpretation of the limiting con�guration depends on the choice of
three �xed points

x�� The moduli problem and Knudsen�s construction�

Definition� A stable n�pointed curve of genus � is a connected projective nodal
curve C with n distinct smooth marked points pi
 with dimH��C�OC� ! �
 and
such that each component of C has at least � special points

Here special means singular or marked We will denote an n�pointed curve by
�C� p�� � � � � pn�

The stability condition implies that the curve has no nontrivial automorphisms
�xing the marked points

Remark� For a connected nodal curve


genus !
X

gi # ��nodes� � ��components� # �

where gi denotes the genus of the i�th irreducible component Therefore genus!
� !� gi ! � for all i
 and ��nodes� � ��components� ! � In particular
 all
components of C are necessarily copies of P�
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In fact
 these components form a tree It is convenient to introduce the dual
graph of a stable curve
 by setting

vertices ! fcomponents of Cg

edges ! fnodesg

tails ! fmarked pointsg

In this terminology
 a "vertex� is an internal vertex of the graph
 while a "tail� is a
boundary vertex
 with an edge attaching it to the rest of the graph For example

here is a schematic representation of a 	�pointed stable curve and of the associated
graph�

1

2

3

4

5

6

7
1

2
3

4
5

6

7

In terms of the graph of C
 genus! � !� the graph is a tree� and stability
!� the valence �ie the number of edges attached to it� of each internal vertex is
at least �

Definition� A family of n�pointed stable curves of genus � over a base scheme

S is a �at projective morphism C
�
�� S with n sections ��� � � � � �n � S �� C such

that
�Cs� ���s�� � � � � �n�s��

is a reduced stable n�pointed curve of genus � for all s � S Here Cs denotes the
�ber of C over s � S


Morphisms of families over a given base scheme are de�ned in the obvious way�
the moduli problem is de�ned by the �contravariant� functor associating to each
scheme the set of equivalence classes �up to isomorphism� of all families de�ned
over it

Theorem� There exists a projective smooth algebraic variety M��n� which is the
�ne moduli space for n�pointed stable genus�� curves�

That is
 for all schemes S there is a natural bijection�
Isom classes of families of n�pointed

stable curves of genus zero over S

%
� Hom�S�M��n�

We sketch the proof given by Knudsen

Proof sketch� Induction on n For n ! �
M���
�!point
 since ��pointed stable

curves are necessarily irreducible The universal family C� ��M��� will be P�
 with
� marked points
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Key observation� Cn �!M��n�� '
For the construction of the universal family
 look �rst at the case n ! � We

have the diagram

C� ����� C� �M���
C�

������ P��P���y ��y ��y
M��� M��� ! C�

������ P�

There are three obvious sections on C��M���
C�� a fourth one is given by the diagonal�

OO

OO

0 1

0

1

∆

the �bers are ��pointed curves
 but we have to separate the diagonal from the
sections at the points ��� ��
 ��� ��
 ������ we blow�up C� �M���

C� at the three

intersection points
 and this produces C�
Note that the e�ect of the blow�up is to sprout out a new component �an excep�

tional divisor� on which the  glued points will separate
The inductive step for higher n is analogous Assuming Cn �� M��n has been

constructed
 take M��n�� to be Cn
 start by considering Cn �M��n
Cn
 and blow up

the intersections of the diagonal with the basic sections and with the singular loci
of the �bers The centers of blow�up might not be regularly embedded
 so one will
need to resolve the singularities introduced by blow�up� a minimal desingularization
will yield Cn�� �

The fact that M��n is a �ne moduli space yields

Corollary �� Sn acts on M��n by permuting the points�

Also
 we may index the points by arbitrary �nite sets� if jAj � �
 denote by
M��A the corresponding M��jAj From Knudsen�s proof one can derive

Corollary �� Given B � A� jAj � �� there is a contraction morphism
M��A ��M��B�

Example� Say A ! f�� � � � � ng
 B ! f�� � � � � n��g� we get a morphismM��n ��
M��n�� forgetting the n�th point If the n�th point is on a component with only �
special points
 just forgetting it would destabilize the component� in practice
 the
e�ect of the operation is to contract such a component�

k
k

n
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Of course
 the algebra behind this is not as simple as the set�theoretic description

Remark� Changing the order in which you forget two di�erent points gives two
possible compositions

M��n ��M ��n�� ��M��n��

The resulting maps M ��n �� M��n�� must however coincide
 since they clearly
agree on the open locus M��n

Taking this observation further
 we see that for any ��tuple of distinct indices
i� j� k� � in f�� � � � � ng there is a �unique� map

M��n ��M��fi�j�k�
g
�! P�

forgetting all the other points

x	� Geometry of M ��n�

Fact� The boundary of the compacti�cation M��n �� M ��n is a divisor with
normal crossings�

For all partitions A q B ! f�� � � � � ng with jAj � �
 jBj � �
 we have a divisor
D�AjB� at the boundary
 whose general point corresponds to a curve of the type

A B

The points at the "boundary� of D�AjB� correspond to possible degenerations�

A B

The intersection of any number of these D�AjB��s is either empty or smooth
M��n has a strati�cation by locally closed loci indexed by the combinatorial type
of the degeneration

More precisely
 the combinatorial type of a curve is simply its dual graph �with
marked tails�

Example� In M��� �of dimension ���

1 2

3

4

6

5

7

8 9
Dual:

2

3
4

5

8

9

6

7

1
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All curves with this combinatorial type form a stratum in M��� The closure of this
stratum is

D���j� � � � �� �D����j� � � � �� �D�� � � � �j� � � � �� �D�� � � � 	j���

The boundary cycles �ie the closures of the strata� are themselves products of
M��k�s for k � n For example


D�AjB� �! M��A	f�g �M��f�g	B

where we think of  as the points at which the A�stable curve and the B�stable
curve are glued

In other words
 for every k� � there is a morphism

M��k�� �M��
�� ��M��k�


and the image of this map is one of the boundary divisors in the target

Examples� M���
�! P��

oo

1
3 2

4

1
4 2

0
1=D(13 | 24)

1
2

3
4

1

3

M���� blow�up P�� P� at � general points �as seen in Knudsen�s proof in the last
section� Equivalently
 one can blow�up P� at � general points
 since blowing�up P�

at two points is the same as blowing�up P��P� at � point

One gets the same answer by considering Procesi�s compacti�cation for this
con�guration There will be � exceptional divisors
 plus the proper transforms of
the six lines through the points
 which will give � more �����curves The blow�up
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of P� at four general points is a Del Pezzo surface of degree �ve
 embedded into
P� by the system of cubics through the four points The �� special curves become
lines in this embedding

These �� lines are the boundary divisors of M ���
 which are indexed as D�AjB�

by the
�
�
�

�
! �� subsets A
 jAj ! �
 of f�� � � � � �g The incidence of the D�AjB��s is

represented by the following graph�

Finally
 M��� is the universal curve over M���
�! P��

OO0 1

the � special �bers give � exceptional curves� plus the � sections
 for a total of ��

x�� Chow ring of M��n� We can obtain some geometrically transparent rela�
tions in the ring as follows�

�a� D�AjB� ! D�BjA��
�b� the choice of distinct i� j� k� � in f�� � � � � ng gives a map p � M ��n ��M���

�! P��

1

0

i
j k

l

i

j
l

k

D�ijjk�� ! D�ikjj�� up to rational equivalence in P�
 hence

p�D�ijjk�� ! p�D�ikjj��
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in A�M��n That is
 X
i�j�Ak�
�B

D�AjB� !
X

i�k�Aj�
�B

D�AjB�

�c� D�AjB� �D�CjD� ! � unless the curves corresponding to the general points
in the divisors have common degenerations
 that is unless one of the four sets
A�B�C�D contains one of the others �ie
 the common re�nement of the two par�
titions consists of � rather than � sets� For example
 A ! f�� �g
 B ! f�� �� �g

C ! f�� �g
 D ! f�� �� �g�

1

2 3
4

5 1

3
2

4

5

there is no common degeneration to

so D���j���� �D���j���� ! �
The D�AjB��s generate the Chow ring of M��n multiplicatively Surprisingly�

Theorem� �a�� �b�� �c� are the only relations in the Chow ring of M ��n� There�
fore�

A�M��n !Z�D�AjB�� AqB ! f�� � � � � ng� jAj � �� jBj � ��
��a�� �b�� �c��

Also� H�M ��n
�! A�M��n�

These results are due to Sean Keel
 �Keel�

	� Quantum cohomology� old and new�Z� Ran� �������

Lemma� Consider a ��dimensional irreducible closed subvariety V of the PN

parametrizing plane curves of a given degree d� Suppose V parametrizes rational
curves� i�e�� a general point C � V corresponds to an irreducible rational curve�
Then V has a degenerate member� there exists a reducible or multiple C� � V �

Note that the bound "�� is sharp� the P� of lines has no degenerate members

Proof� Pick general points a� b in P�
 and consider a one�parameter subfamily
B of V consisting of curves through a
 b The total space of B gives

X
F

����� P�

�

��y
B
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where F is a morphism and X �� B is a blown�up P��bundle We may assume
that F is relatively minimal
 ie
 there are no vertical �����curves E such that
F �E� !pt The general �ber of � is a P�� the special �bers are trees of P��s Each
of these has at least two ends� these are �����curves
 so F is not constant along
them

Claim� there must exist at least one degenerate �ber
Indeed
 otherwise � is a P��bundle� there would be sections F���a� ! Sa


F���b� ! Sb Let then L ! F ��line�� as F is generically �nite
 L� � �� L � Sa ! ��
L � Sb ! � By the Hodge index theorem
 S�

a � � and S�
b � � But Sa � Sb is a

multiple of the class of the �ber
 hence

� ! �Sa � Sb�
� ! S�

a # S�
b � � �

contradiction �

Now we could try to get a formula from this situation for deg V ! degF 
 by
relating it to the number of degenerate �bers containing either one or both of Sa

Sb Using ideas from quantum cohomology
 one should get

d� degV #
X
W

deg�W � �degC��
� !

X
W

deg���W � �degC�� � �degC��

where W ranges over "boundary components� of V � W parametrizes curves of the
form C� � C� where

either C� is a ��parameter family
 and deg�W ! � fC� � C�� C� contains �
general pointsg


or fC�g and fC�g are each a ��parameter family
 and deg���W ! �fC� � C� �
C� contains a general point
 and C� contains a general pointsg

So much for the "new� methods� move now to the "old� method
 degenerating the
target

Vd� denotes the Severi variety of nodal plane curves of degree d with � nodes

Vd� is locally closed in P�
d��
� ���� its dimension is�
d# �

�

	
� �� � ! �d# g � � �

where g ! �d����d���
� � � is the genus We denote by Nd� the degree of Vd�

Consider the blow�up

S ! B����p�C �P
� ����� C �P�

�

��y
C

� is a �at family
 and ����t� ! P� for t �! �� ������ ! S� ! S� � S�
 with
S� ! B�pP�
 and S� ! P�

The intersection E ! S� � S� sits in S� as the exceptional curve
 and in S� as a
line
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The blow�up sits in �C �P���P�� so there is another map S �� P� We have

S

�
���

��
��

��
b� �� C �P�

pr�



xx
xx
xx
xx
x

C

with b�jS� ! identity
 and b�jS� ! a P��bundle over image ! E �! P�
Now consider Vd� as a family of curves on the general �ber of �
 and take the

limit as t� � As a cycle


Vd� ��
X

m���V �d� e
�
d� ��
���

where� � is a partition
 � ! ���� � � � � �r�
 �i ! � of blocks of size i� the weight of �
is j�j !

P
i�i
 and here e ! j�j� m��� !

Q
i
i � the

P
is over �
 ��
 �� satisfyingX

�i� ���i # �� # �� ! �

The di�erent � correspond to the strata of divisors of degree j�j in P�� � �Pr
i��

Pd�
j�� iQij 

V �d� e
�
d� ��
��� is the set of all C� � C� such that Ci � Si has �i nodes
 and
is smooth near E� C� �E ! C� � E ! divisor of type � in E �! P�

Note� the Ci are not necessarily irreducible�this makes the degrees easier to
compute

Next
 the sought degree Nd� is the number of curves C � V �d� �� containing N

general points p�� � � � � pN 
 where N ! �d����d���
� � � � � Specialize p�� � � � � pN to

N� points on S� and N� points on S�
 N� #N� ! N  To avoid trivial solutions

assume

N� � d# � �avoids limit components where C� ! d rulings�
N� � �
One choice� make N� as large as possible
 ie
 choose N� ! d# � In this case


either e ! d � � or else C contains a component not meeting E� call it C���� this
would come from a proper component of C itself
 so C must be reducible This
cannot happen if � � d

For the rest of the discussion
 assume e ! d� � Then C� � jdH � �d� ��Ej on
S�
 and

C� !
�X
i��

Ri # C���

with Ri rulings
 and C��� � j�d � ���H � �d � �� � ��Ej a smooth rational curve
�One can in fact view this as a degeneration in the plane�

We need to express the condition C��E ! C� �E Let P� be the set of divisors
of type � on E ! P�
 and P � !

Q
P
i P � maps birationally to P� The condition

C� �E ! C� � E is equivalent to

�C� � E�C� �E� � )� � � � � �)r � P � � P � ! �P
� �P
��� � � � � �P
r �P
r�
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Now

��� �� � � � � ��r �

�
	 ��X
j��

Pj �P���j


A� � � � �

�
	 �rX
j��

Pj �P�r�j


A �

X
��������

P�
�
� P�

��

where �� ! ����� � � � �
 �
�� ! ����� � � � � �
 and �� # ��� ! ���� # ���� � � � � �

Write Cm � E !
PP

iQm
ij 
 m ! �� � Fix Q�

ij 
 j ! �� � � � � ��i
 and Q�
ij 
 j !

��i # �� � � � � ��i # ���i ! �i De�ne

V�d�e���n������ ! fnodal curves C� with � nodes
 and

C�� line ! D�xed
�� #D��� 
 D��� of general type �

��
 j��j# j���j ! eg

There is an analogous locus Ve���������  Also
 we set Nd��������� ! deg Vd��������� 

etc

Remark� From ��
 the condition C� �E ! C� �E is numerically equivalent to

C� � V�d�d������n������ � C� � Vd�������� ����

for some ��� ��� such that �� # ��� ! �

Remark� Setting S��� !
P

�i for � ! ���� � � � �
 we have S����� ! �� �follows
from �conditions on C� ! dimfC�g�
 �� ! � � d# � # S����

Now we have ��� �xed
 mult � points on E� that C� must contain Let �� � j of
these lie on rulings contained in C� The j remaining rulings will pass through some

of the d#� interior points And j 
 ����  The number of choices is
P
���

j��

�

��

��j

��
d��
j

�


The remaining part of C�
 that is C���
 is smooth The remaining choice� degree
of variety of divisors of type ���� � ����� � j� ���� � � � � � on E
 equal to m������n������


with n��� de�ned as S����

�����
r�

! �
P


i��Q
�
i��



Putting everything together�

Nd�	 �
X

j�j�d��

m����

�
X

����������
i
������������

Nd���	�d���S�����n������ �

����X
j

m������n������
�d� �

j

�� ���
S������ j

�

Along the same lines one can obtain true recursion formulas

Remarks� On the right�hand�side there is precisely one term corresponding to
C� having � nodes� this corresponds to Nd������d��
 with the same leading term as
Nd��� One can then derive estimates for Nd� �Nd���

Fix �
 consider d as a variable Claim� as functions of d
 Nd� is a polynomial of
degree �� One �nds

Nd� �Nd��� � dNd����� � d���

There are exactly two further terms contributing to d���� for C� with one ruling

� ! �d���� and for C� smooth
 simply tangent to E at a unique point
 � ! �d��� ��

The leading and next�to�leading coe�cients of Nd� in d have been computed by
Y Choi �Choi��

a� !
�

�'
� a��� !

�� � �

�� � ��'

Finally
 note that rational curves are the hardest to treat from this approach
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�� Results and conjectures on the
tautological ring of Mg�C� Faber� ���	���

First
 recall Witten�s conjecture!Kontsevich�s theorem Consider M g�n and its

universal family Cg�n ! Mg�n�� �� M g�n Let � be the relative dualizing sheaf of
this map
 and denote the natural sections by �i
 i ! �� � � � � n We obtain n line
bundles Li ! ��i �

Witten�s conjecture is about the intersection numbers of the Li�

Definition� h�d� � � � �dki �! c��L��d� � � � c��Lk�dk on M g�k if
P

dj ! �g� �# k

and � otherwise �Note� so this carries the genus information�

The conjecture gives a complete recipe to compute these numbers The ingredi�
ents are

��� the string equation�
D
��
Qk
i�� �di

E
!
P

i� di��
h�d� � � � �di�� � � � �dki�

��� the dilaton equation�
D
��
Qk
i�� �di

E
! ��g � � # k�

DQk
i�� �di

E
�

��� a recursion �KdV�equation�� let T !
Qm
j�� �

ej
j � then for n � �

��n# ��
#
�n�

�
�T
$
!

�

�

#
�n���

�
�T
$
#

X
��aj�ej

mY
j��

�
ej
aj

	
�
�
h�n����T�i

#
���T�

$
# �

#
�n���

�
�T�

$#
���T�

$�
where T� !

Qm
j�� �

aj
j 
 and T ! T�T�

Witten showed that ��� and ��� hold� Kontsevich proved ��� �See �Witten�
 �Kont�
sevich���

For example
 this allows you to compute the intersection numbers of Mumford�s

classes �i on M g For the universal family Cg
�
��M g
 with relative dualizing sheaf

�
 let K ! c���� and �i ! ���K
i��� � AiM g �note� all Chow rings are taken with

Q�coe�cients�� here is a recipe for the intersection numbers of the �i�s� put

h�d����d��� � � � �dk��i !
X
���k

��

for
P

di ! �g � �
 where $k denotes the symmetric group
 and �� is de�ned as
follows� think of $k as acting on the k�tuple �d�� � � � � dk�� write � as a product of
disjoint cycles ���� � � ������ �including ��cycles� Then

�� ! �j	�j�j	�j � � � �j	����j

where j�j ! sum of the elements in the cycle �

Examples� k ! �� h��g��i ! ��g���
k ! �� a# b ! �g � �
 h�a���b��i ! �a�b # ��g���
k ! �� a# b# c ! �g � �
 h�a���b���c��i ! �a�b�c # �a�b�c # � � �# ���g��

�Alternative formulation
 due to Zagier� set �d� � � � �dk ! h�d��� � � � �dk��i� then

�abc���x ! �abc����x # �a�x�bc��� # �a�b�x�c���# � � �

allows us to translate from ��s to ��s�

Next
 let�s move to Mg by restricting the classes de�ned above
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Theorem� �g�� �! � in Ag���Mg��

This result should be compared with what was known before�
�� ! �g � � �! � for g ! ��
�� �! � for g ! �� M� contains complete curves
 �� is ample on M��
�� �! � for g ! � �Faber�s thesis
 a long calculation� A simple proof can be

obtained given that ��� and �� are proportional onM� OnMg we have �� ! ������
�� ! sum of boundary divisors� Showing ��� �! � on M� is equivalent to showing
������� �! � on M � �as we will see in the �rst part of the proof below� Now map
M� to A�� �ppav� by C �� JacC� the �i�s are pull�backs from A��
 and here
������� � ��� �! � since a multiple of �� embeds A�g in its Satake compacti�cation

Now back to the Theorem�

Proof �sketch�� Denote by E the locally free rank�g sheaf ����� on M g �that
is
 the Hodge bundle� Then observe that
 with �i �! ci�E�
 �g�g�� vanishes on

M g �Mg Indeed
 M g �Mg ! �
	g��

i�� )i
 with )� ! closure of the locus of nodal

genus��g � �� curves and
 for i � �
 )i ! closure of curves consisting of the union
of a genus�i and a genus��g� i� curve On �a �nite cover of� )�
 we have the exact
sequence

� �� Eg�� �� Eg �� O �� � �

so �g ! � on )�� on )i
 for i � ��

Eg ! Ei � Eg�i

and therefore �g ! �pr�i �i��pr
�
g�i�g�i�
 �g�� ! � � � � and �g�g�� ! � because in

every genus h
 ��h ! � And why is ��h ! �- Mumford shows that c�E��� ! c�E��

which implies it right away

�Alternate argument� �k � �
 ch�k�E� ! �� hence �� � �g
 ch
�E� ! ��
ch�g���E� ! �nonzero ���g�g�� must then vanish on M g � Mg since the com�
ponents here all have genus � g�

The conclusion is that �g�� �! � on Mg �� �g���g���g �! � on M g
Now we need Mumford�s expression for ch�E� obtained in �Mumford��

ch�g���E� ! ��! ��

*
��g�� #

�

�

g��X
h��

�ih���K
�g��
� �K�g��

� K� # � � �#K�g��
� �

+

Here i� � M g���� �� )� � Mg
 and Ki !cotangent at the ith point� for h � �


ih �Mh�� �Mg�h�� �� )h �Mg
 and K�
 K� are pull�backs from the factors
With this


�

��! ��
�g��ch�g���E� ! h�g����gi � h��g��i #

�

�

�g��X
j��

����j h��g���j�j�g��i

#
�

�

g��X
h��

�
����g�h h��h�g�g��i

#
���g�h���

$
# ����h h��h��i

#
���g�h��g�g��

$�
!

g'

�g����g�'
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using the recurrence relation for the � �s in Witten�s conjecture
This implies �g���g���g �! � on M g and concludes the proof �

Remark� The last
 computational step is still rather complicated� it requires
knowing certain "n�point functions� explicitly for n ! � �the n�point functions areP
h�d� � � � �dni x

d�
� � � �xdnn � There is a nice formula for the ��point function
 due to

Dijkgraaf� with � �w� !
P

n�� �nw
n


h��� �w�� �z�i ! exp

�
w� # z�

��

	X
n��

n'

��n # ��'

�
�

�
wz�w # z�

�n
�

In the proof
 I make use of an explicit formula that I found for the special ��point
function h� ��w�� �w�� �z�i �Recently
 Zagier found such a formula for the general
��point function� Details of the proof can be found in �Faber��

Next
 we move to a result of Looijenga �Looijenga�

Let Cng
�
��Mg be the n�fold �ber product of Cg�! Mg��� over Mg 
 and denote by

pri the projections onto the factors We let R��Cng � be the tautological ring of Cng �

for n ! � C�g ! Mg
 and R��Mg� �! the subring of A��Mg� generated by the �i
�restricted to Mg��

for n � �
 R��Cng � �! the subring of A��Cng � generated by the ���i
 and the
divisor classes Ki ! pr�iK and Dij ! �fxi ! xjg� �thinking of Cng as parametrizing
objects �C�x�� � � � � xn��

Theorem� �Looijenga� A degree�d element in R��Cng � is a linear combination
of classes of the irreducible components of�

�C�x�� � � � � xn� such that there is an f � C �� P� of degree 
 �g � � # n� with

�f����� 
 g # n� �� d� �f����� ! �� fx�� � � � � xng � f����� � f�����
�

Further� for d ! g # n � �� all the classes of these irreducible components are
proportional to the class of

Hn
g ! f�C�x�� � � � � xn� such that C is hyperelliptic�

and x� ! � � � ! xn is a Weierstrass point of Cg

Corollary� For d � g # n� �� Rd�Cng � ! ��

Corollary� For d ! g # n� �� Rd�Cng � is at most one�dimensional�

The �rst Theorem given above
 together with this last result
 imply that in fact
Rg�n���Cng � ! Q

Proof� �Sketch of the �rst part�
��� It is enough to prove the statement for the monomials in the Ki only We

have then to prove a statement as in the theorem
 but with deg f 
 g # n
��� Simple observation� if D� � D� are positive disjoint divisors on a curve C


then there is a � � C �� P� such that ���i� ! Di
 i ! ���� and if p � C occurs
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in Di with multiplicity mp
 � induces a map C ! T �i P
� ��
�� T �pC

�mp  This is not
canonical because � is not canonical But let R ! rami�cation outside � and �

and consider ��R� �x � so that

Q
z���R

z ! �� this determines � up to a �degR��th
root of unity

��� �Lemma �� in loccit� Relativize over a disk with generic point � and closed

point � Consider C �� ) with section )
x
�� C Let P be a relative pencil with

d�x� as a member
 and assume that P� is base�point�free C� �� P�� is rami�ed at
R� outside x� Specialize R� to R�
 obtain�

multx���R� !mult of x��� in the �xed part of P�

!� ��� � member D �! d�x� of P specializing to d�x����
 the degree of the moving
part of P� is 
 the number of ��valued points of fsupp�D�� � x���g

��� Let Z be the moduli space of tuples �C�x�� � � � � xn� x�D�P� with xi� x � C�
P a pencil on C
 with �n # g�x as a member� and D a degenerate member of the
pencil �so �supp�D� � n# g� with fx�� � � � � xng � supp�D�

Stratify Z by�

Zk ! fsupp�D� has 
 g # n� �� k points outside xg� so that

Zn�g�� ! f�C�x� � � � � x� �z �
n

� x� �n # g�x�Pg

Lemma� �k � g#n� �� Zk �Zk�� is quasi�a�ne of pure dimension ��g� �#
n� k�� and f�Ki ! � on Zk �Zk�� for i ! �� � � � � n�

��� De�ne Xk to be the union of the irreducible components of Zk that are not
contained in Zn�g��

�a� f � X� �� Cng is proper and surjective

�b� Claim �� f�Xk � Zn�g��� � f�Xk���

Namely
 for A � Xk � Zn�g��
 write A ! �C�x� � � � � x� x� �n # g�x� P �
 so that
f�A� ! �C�x� � � � � x�� by ���
 the moving part of P has degree 
 n # g � k � � so
that P has a member E �! �n # g�x with 
 n # g � k � � points outside x Then
B ! �C�x� � � � � x� x�E�P � � Zk��
 �� Zn�g��
 so � Xk��� f�A� ! f�B�
 proving
the claim

Now set Uk ! f���f�Xk�� f�Xk���� � Xk

Claim � Uk � Zk � Zk��

This is easy to see� Uk � Zn�g�� ! 	 �because a � Uk � Zn�g�� !� f�a� �
f�Xk���
 contradiction�� hence Uk � Zk�� ! 	 �because a � Uk � Zk�� !� a ��
Zn�g�� !� a � Xk��
 contradiction�

It follows that f�Ki ! � on Uk� f � Uk �� f�Xk� � f�Xk��� is proper
 onto

�nite
 hence Ki ! � on f�Xk� � f�Xk��� �using Q�coe�cients�

From this� all monomials of degree d in the Ki are supported on f�Xd�� by ���

this is enough to prove the �rst part of the theorem �

The results seen so far support a standing conjecture on the tautological ring of
Mg �
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Conjecture� ��� R��Mg� is Gorenstein with socle in degree �g � ��� That is�

�i� Rj�Mg� ! � for j � g � ��
�ii� Rg���Mg� �! Q�

�iii� there is a perfect pairing Ri�Mg��Rg���i�Mg� �� Rg���Mg�
�x
! Q�

�� ��� � � � � �	g��
 generate the ring� no relations up to degree �g
���
��� Explicit proportionality factors in degree �g � ���

As we have seen
 parts �i� and �ii� of ��� are now proved The rest of the
conjecture is still open
 although we have been able to check it for all g 
 �� �and we
have reduced it to a hard combinatorial problem for all g� A complete statement

and discussion of the evidence for this conjecture
 can be found in �Faber�

�� Counting rational curves on quintic 	�folds�S� Kleiman� ��������

This talk is a report on joint work with T Johnsen
 which was presented in
two papers
 �J�K� and alg�geom�������� The aim here is to place this work in
context
 to explain the main results
 and to give the �avor of the proofs The talk
is organized into these three sections�

I� Context
II� Strategy
III� Proofs

I� Context� Let F be a hypersurface in P� of degree � over the complex num�
bers Assume that F is general
 that is
 represented by a point in a suitable
Zariski�open set of P��� �By contrast
 F is called generic� if it�s represented by a
point in the intersection of countably many Zariski�open sets The latter condition
is necessary when we consider all degrees simultaneously
 but here we will consider
only small degrees�

Every irreducible rational curve C of degree d inP� is given by a parameterization
of the form
 �

���t� u�� � � � � ���t� u�
�
�

where �i is a homogeneous polynomial of degree d The smooth C form an open
set in Hilb�P��� denote it by Md Each parameterization is represented by a point
of an a�ne space
 and those parameterizations giving smooth curves of degree d
form an open subset
 which maps onto Md� hence Md is irreducible This a�ne
space has dimension ��d#��
 and the �ber over a C in Md has dimension �� hence


dimMd ! �d# ��

In fact
 it�s not hard to compute the dimensions of the cohomology groups of the
normal bundle NCP�� whence
 by the standard in�nitesimal theory of the Hilbert
scheme
 Md is smooth of dimension �d# �

An arbitrary C of degree d lies on F if and only if the polynomial in t� u


F ����t� u�� � � � � ���t� u���

is identically zero We expect this polynomial to be homogeneous of degree �d
 and
have �d#� coe�cients Their vanishing would impose �d#� conditions on C So

since dimMd ! �d# �
 we expect only �nitely many C on F  Denote the number
of smooth C on F by nd
 and the number of all C on F by n�d
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Schubert ������� The number of lines on F is n� ! ��	�

Clemens �����
 ���
 ����� After having proved that the Gri�ths group of F has
in�nite rational rank �that is
 the vector space �Gh�F �
Ga�F �� � Q is in�nite di�
mensional� when F is generic
 Clemens made the following series of conjectures
about the irreducible rational curves C of degree d on F �

�a� � 
 nd ��
�b� Each smooth C is in�nitesimally rigid on F 
�c� There are no singular C on F 
 and so nd ! n�d
�d� Any two C
 C � are disjoint
�e� nd ! �� � d � 

S� Katz ������� Conjectures �a� and �b� hold for d 
 	 The number of conics on
F is n� ! ���� ���
 which is of the form �� � � �  prescribed by �e�

Theorem � �Katz for d 
 	
 Nijsse and Johnsen�Kleiman for d ! �� ��� Con�
jectures �a� and �b� hold for d 
 ��

Vainsencher ������� Conjecture �c� is false In fact
 there are �	� ���� ��� six�nodal
plane quintic curves on F 
 arising from tangent ��planes These curves deform
to smooth irreducible curves �so they are not in�nitesimally rigid�� however
 the
corresponding maps P� �� F are rigid

Proposition � �Johnsen�Kleiman�� There are no ���nodal ���ics on F arising
from tangent quadric surfaces�

Theorem � �Johnsen�Kleiman�� In degree d at most �� the following variations
of Conjectures �c� and �d� hold�

�c�� There are no singular C on F � other than Vainsencher	s quintics�
�d�� Any two C� C � are disjoint if degC # degC � 
 � �including Vainsencher�s

quintics��

Ellingsrud
Str�mme �����
 ����� The number of twisted cubics on F is n� !
�	�� ���� �	� Note that � does not divide n�
 disproving part of Conjecture �e�

Candelas
de la Ossa
Green
Parkes ������� Mirror symmetry gives an algorithm
for �nding a suitably de�ned number n�d for all d The values for d 
 �� are given

and �� does divide n�d for d 
 ��

Lian
Yau ������� If � does not divide d
 then �� divides n�d
 as de�ned in �CDGP�
It�s not ruled out that �� always divides n�d

Kontsevich ������� Set Nd �! ctopEd
 where Ed is the vector bundle on M����P�� d�
obtained as ���O��� via the diagram


M����P�� d�
�

����� P���y�
M����P�� d�

Kontsevich computed N�
 and it leads to the same n�� computed in �CDGP�
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Note that there�s a positive�dimensional locus in the zero set of the section of
Ed de�ned by F 
 namely


fmaps � � P� �� C � F of degree kg�

It has dimension ��k � �� To get from Nd to n�d
 use residual intersection theory

which yields the formula


Nd !
X
kjd

n�d�k

k�
�

This number n�d is
 however
 not yet proved to be equal to the one computed by
the physicists in �CDGP�� however
 it is equal to the number of irreducible C on F
if the latter number is �nite

II� Strategy� In two words
 the strategy �due to Clemens and Katz� is this�
count constants Namely
 form the incidence variety


Id �! f�C�F �jC � Fg �Md �P
����

The naive count of parameterizations above shows that every component of Id has
dimension at least ���

Theorem 
 �Clemens�Katz�� For all d� there is a pair �C�F � in Id with F
smooth along C� and with C smooth and in�nitesimally rigid� in fact�

NCF ! OP� �����OP� �����

Corollary � �Katz�� If Id is irreducible for a given d� then Conjectures �a�
and �b� hold for this d�

Proof� The projection Id �� P��� is smooth and �nite at a Clemens
Katz pair
�C�F �
 that is
 a pair given by the theorem Therefore
 the projection is smooth
and �nite over a generic F if Id is irreducible �

Theorem � �Katz for d 
 	
 Nijsse and Johnsen�Kleiman for d ! �� ��� The
incidence variety Id is irreducible for d 
 ��

Corollary � �Johnsen�Kleiman�� A smooth C on F of degree d at most � has
the following properties�

��� C spans a d�plane if d 
 �� otherwise� it spans P��
��� C is of maximal rank� that is� for each k� the restriction map�

�k � H
��OP	 �k�� �� H��OC�k���

is either injective or surjective or both�
��� For d ! �q # r with � 
 r � �� the restricted twisted sheaf of ��forms

decomposes as follows�

+�
P	 ���jC ! OP� ��q � ��r �OP� ��q�

��r�

Proof� The projection Id �� Md is surjective for d 
 � Properties �������
hold for a general C by direct computation and by results of Ballico�Ellia and
Verdier �
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Proposition  �Johnsen�Kleiman�� The incidence variety Id has the following
properties�

��� If d � ��� then the projection Id ��Md is not surjective�
��� If d � ��� then Id is reducible�
��� If d 
 ��� then there exists a unique component of Id covering Md� and it

has dimension ����

Proof� ��� Since �d#� � ��� for d � ��
 the restriction map �� is not surjective
Now
 the maximal rank theorem says that a general C in Md is of maximal rank
Hence
 �� is injective for a general C
 and so H��IC���� ! � where IC is the ideal
of C in P� Therefore
 a general C lies in no F 

��� Consider the locus of pairs �C�F � in Id such that C lies on a smooth quadric
surface This locus has dimension �d # ��� On the other hand
 a Clemens�Katz
pair lies in a �unique� component of Id of dimension ���

��� The maximal rank theorem implies that the locus


Id�� �! f�C�F � � IdjH
��IC���� ! �g�

is nonempty if and only if d 
 �� Its closure Id�� is the component in question
More details can be found at the beginning of the next section �

Conjecture � �Johnsen�Kleiman�� For d 
 ��� the complement I �d �! Id�Id��
does not cover P����

Proposition �� �Johnsen�Kleiman�� For d 
 ��� Conjecture � implies Con�
jectures �a�� �b� and Corollary 	�

Conjecture �� �Johnsen�Kleiman�� For d 
 ��� the component Id�� of Id
contains all the Clemens
Katz pairs �C�F ��

III� Proofs� Consider the projection � � Id �� Md
 and let C � Md The �ber
���C is equal to P

�
H��IC����

�
 To compute its dimension
 form the sequence


� �� IC �� OP	 �� OC �� ��

The associated long exact sequence


� �� H��IC���� �� H��OP	 ����
��
�� H��OC���� �� H��IC���� �� H��OP	 �����

in which the last term vanishes
 yields the formulas


dim���C ! h��IC���� � � ! ���� �d# h��IC�����

Set Md�i �! fC � Mdjh��IC���� ! ig and Id�i �! ���Md�i Then Md�� is open

and the maximal rank theorem implies that
 if d 
 ��
 then Md�� is nonempty Re�
call thatMd is irreducible Therefore
 if d 
 ��
 then Id�� is irreducible of dimension
���
 and its closure is the component in question in Part ��� of Proposition �

By a theorem of Gruson
 Lazarsfeld
 and Peskine
 if d 
 	
 then Md�� ! Md

and so Id is irreducible For d ! �� �
 we have to work a little harder
 and prove the
following lemma It implies that I �d �! Id � Id�� has dimension at most ��� Since
every component of Id must have dimension at least ���
 again Id is irreducible
Thus Theorem � holds
 and Theorem � follows because of Corollary �
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Lemma ��� For d ! �� �� if i � �� then codim�Md�i�Md� � i# ��

Proof� Assume d ! � Then dimM� ! ��� # �� � � ! �� Now
 the work of
Gruson
 Lazarsfeld
 and Peskine tells us that

h��IC���� !

�����
�� if C spans P��

�� if C � P� and C �� a smooth quadric Q�

�� if C � a smooth quadric Q � P�

Hence dimM��� ! ���# ��� �#� ! ��� the �rst term in the middle is the number
of parameterized C in P�� the second is the number of reparameterizations
 and the
third is the number of P�s in P� Similarly
 we have

dimM��� ! dimfC � Qg #dimfQ � P�g# dimfP� � P�g

! �� # � # � ! ���

Assume d ! � By the work of Gruson
 Lazarsfeld
 and Peskine again and by an
extension of it due to d�Almeida
 there are �ve cases to consider�

h��IC���� 


���������������

�� C �� hyperplane
 has no 	�secants�

�� C � hyperplane
 has no 	�secants�

�� C �� hyperplane
 has 	�secants�

��� C � smooth quadric surface �so has 	�secants��

�� C � hyperplane
 �� smooth quadric
 has 	�secants

In fact
 equality holds in the �rst four cases
 and a certain amount of direct analysis
is required to handle the last two cases Given these bounds
 the assertion is
established by counting the number of C that appear in each of the �ve cases �

The proof of Theorem � is
 in spirit
 like that of Theorem � Namely
 we de�
compose a suitable incidence variety of pairs �C�F � into manageable locally closed
pieces
 whose dimensions we can bound from above using the work of Gruson

Lazarsfeld
 and Peskine and of d�Almeida We conclude that these pieces do not
cover P���
 and so a general F contains no C in question

For �c��
 the C in question are the singular irreducible rational curves of degree d
at most � Since we only need to prove crude bounds on dimensions
 we may work
with pieces of the space of parameterized C rather than the Hilbert scheme
 and
we do so to simplify the job On the other hand
 each C has a nonzero arithmetic
genus g
 which enters the scene via the Riemann�Roch theorem


h��OC���� ! �d# �� g # h��OC�����

So we must use the Castelnuovo�Halphen bounds on g in terms of d There are
many cases to analyze
 and the analysis is at times a bit tedious

For �d��
 the C in question are the reducible curves of degree d at most � with
two intersecting components A and B
 which are either both smooth curves with
the three properties listed in the corollary to Theorem � or else one is such a smooth
curve and the other is a six�nodal plane quintic The main ingredients in the proof
are the following two lemmas The �rst is proved via a direct case�by�case analysis

and the second is proved using Hirschowitz�s �m(ethode d�Horace in the case where
one of the components is a six�nodal plane quintic
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Lemma ��� We have codimfCj��A �B� � n# �g � n�

Lemma �
� We have h��IC���� ! ��

�� Operads and associativity of QH��P� Alu�� ��������

This lecture is prompted by a remark in x�� of �F�P�
 stating that the associativ�
ity of the quantum product is in a suitable sense equivalent to a certain map being
a morphism of operads� I will set up the de�nitions necessary to understand this
statement
 and give a sketchy indication of why it holds The plan is as follows�
�x�� Example
�x� Formal de�nition
�x�� The endomorphism operad of a vector space V � EndV
�x�� The moduli space operad� M� and its homology� H�M
�x�� Gromov�Witten numbers and Gromov�Witten classes
�x�� GW on X induce H�M�n� �� EndH�X�n�
�x�� Properties of GW and morphisms of operads

x�� Example� A �disk arrangement is a disjoint union of labeled disks within
the unit circle�

1

2

3

Let O�n� denote the set of all n�disk arrangements �n � �� Sn acts on O�n� by
relabeling the subdisks We can de�ne an operation

� � O�k� �O���� � � � � �O��k� �� O��� # � � �# �k�

by the following recipe� given �o�k�� o����� � � � � o��k�� in the source

�scale the unit circle in o��i� down to the size of the ith subdisk in o�k��
�replace the ith subdisk of o�k� with the resized o��i��
�remove the boundary of the resized o��i��
�label the total

P
�i subdisks in the natural way �starting from the �rst ��


etc�
For example
 � � O��� �O��� �O��� �� O��� acts�

1

2

3 4

1

2

1

1

2

3

We should think of each o�k� � O�k� as giving a di�erent "multiplication� from
O����� � � � �O��k� to O��� # � � �# �k�
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This system of operations
 for all k
 satis�es an obvious �associativity rule
Suppose given

�a disk arrangement o�k��
�k disk arrangements o����� � � � � o��k�� and
�for each i
 �i disk arrangements o�mi��� � � � � o�mi
i� �for a total of

P
i�jmij

subdisks�
Then we can do two di�erent things�
��rst apply � to each �o��i�� o�mi��� � � � � o�mi
i ��
 producing an o�

P
jmij� for

each i� then apply to �o�k�� o�
P

jm�j�� � � � � o�
P

jmkj��� or

��rst apply � to �o�k�� o����� � � � � o��k��
 obtaining an o�
P

�i�� then apply to
�o�
P

�i�� o�m���� � � � � o�mk
k��
It is clear that these two operations produce the same o�

P
ijmij� In other

words
 the following operadic diagram commutes�

O�k�� �O���� �
Q
j O�m�j�� � � � � � �O��k� �

Q
j O�mkj��

id��������
�������� � � �

shu�e

��y
�O�k� �O����� � � � �O��k�� �O�m��� � � � � �O�mk
l �

��id�����id
��������� � � �

� � � ����� O�k� �O�
P

j m�j� � � � � �O�
P

jmkj�
�

����� O�
P

ijmij�"""
� � � ����� O��� # � � �# �k� �O�m��� � � � � �O�mk
k �

�
����� O�

P
ijmij�

There is more structure in this simple example In O��� there is a special Q

that is the "unit disk inside the unit circle� It�s clear that this acts as a unit
 for
example in the sense that via O��� � O�n� �� O�n�
 for all o�n� � O�n� we have
�Q� o�n�� �� o�n� To state this in the proper generality
 we can say that there
exists a map q from the singleton
 that is the unit element Q for product in the
category of sets
 to O���� such that the following two unit diagrams commute�

Q�O�n�

q�id

��

 �� O�n� O�n� �Qn

id�qn

��

 �� O�n�

O��� �O�n�

��rrrrrrrrrr
O�n� �O���n

��qqqqqqqqqq

There is even more structure� there are two obvious equivariance properties
satis�ed by � under the action of the permutation groups on the O�n� These can
be expressed by two equivariance diagrams� which are conceptually elementary
but notationally demanding These are left to the reader to write out� or see �May�

for example

x�� Formal de�nition� Let S be a symmetric monoidal category �that is

S has an associative product with unit
 and shu�ing of factors gives canonical
isomorphisms� with product � and unit object Q Examples we will consider will
be

�Sets with product � and Q ! singleton�
�Topological Spaces
 with product � and Q ! singleton�
�Vector Spaces over a �eld k
 with product � and Q ! k
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Definition� An operad O in S consists of objects O�n� for all n � �
 a unit

map Q
q
�� O���
 a right action of the symmetric group Sn on O�n� for each n
 and

operations

� � O�k� �O���� � � � � �O��k� �� O��� # � � �# �k�

for k � �
 satisfying the operadic
 unit
 and equivariance diagrams of x�

Remark� O��� plays little r/ole in this de�nition
 and no r/ole in this lecture
 so
we will ignore it here

Morphisms of operads C �� O are de�ned in the natural way

More examples� � Cn�k� ! a�ne embeddings of k disjoint copies of the stan�
dard cube In in In �Cn�k� can be suitably topologized
 making this a topological
operad� This is a straightforward generalization of the �rst example
 and in some
sense it was the "�rst� operad It is called the Boardman�Vogt little n�cubes operad
�see �B�V� There are no "operads� there
 as the name had not yet entered into use�
there are however "PROPS�
 "cherry trees�
 etc� The name and formal de�nition
of operad were introduced by J P May
 �May�� A brief �pre�historical sketch on
operads is in �Stashe��
� Oriented trees� T �n� ! the set of trees with one root and n labeled tails For

example
 T ��� consists of

1 2 43

etc.

The operation is by "grafting� For example


T ��� � T ���� T ��� � T ��� �� T ��� acts

1

23
1 2 3 1 1 2

1 2 3

45 6

These are the "cherry trees� of �B�V� As graphs can be thought of as a general�
ization of trees
 so there is a corresponding generalization of the notion of operads

that is modular operads� introduced by Getzler and Kapranov

x	� The Endomorphism operad� Let V be a vector space �or more generally
an element of a category as above and with internal Hom�

Definition� The Endomorphism operad EndV of V is de�ned by setting

EndV �n� ! Hom�V �n� V � �
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The unit is the map k �� Hom�V� V � sending � to the identity� the action of Sn
is by permutation of the factors in V �n� and the operation

EndV �n�� EndV ���� � � � � � EndV ��n� �� EndV ��� # � � � # �n�

acts on basic tensors as follows� for �� �� � � � � � �n� in the source
 that is  �
Hom�V �n� V �
 �i � Hom�V �
i � V �
 the corresponding homomorphism V ��

P

i� ��

V is induced by

�v��� � � � � v�
�� � � � � vk�� � � � � vk
k� �� ����v��� � � � � v�
��� � � � � �n�vn�� � � � � vn
n��

The operad axioms should be clear for EndV 
 from the associativity of composition

Aside on terminology� If we have a morphism of operads C �� EndV 
 we may
say that "V is a C�algebra�
 or that we have de�ned an "action of C on V �
 or that
V is realized as a representation of C �again
 these notions may be de�ned not just
for vector spaces
 but for objects in any reasonable category� May�s original result
was that �a connected space admits an action of the little cube operad Cn if and
only if it has the homotopy type of an n�fold iterated loop space There are a
number of fancy�sounding terms that translate into �representation of �a certain�
operad � see several papers by T Kimura et al For example
 in �KSV� we read
that � � � � a conformal �eld theory at the tree level is equivalent to an algebra over
the operad of Riemann spheres with punctures Operads are increasingly relevant
to physics
 as are other �elds that I usually would not associate with physics In
the same paper
 I was surprised to read� �We recall the Deligne�Knudsen�Mumford
compacti�cation of M��n � � � see ���
��
��
��� or any review of two�dimensional
quantum �eld theory� 

x�� The moduli space operad�

Definition� The moduli space operadM is de�ned by settingM�n� !M��n��

for n � �
 and M��� !pt
 to be pictured as a P� with two marked points �that is

a component which will automatically contract to a point
 by the stability require�
ment�

The unit of M consists of the single point inM���� the action of Sn onM�n� !
M��n�� is by permutation of the �rst n points For the operation

� �M�k��M����� � � � �M��k� ��M��� # � � �# �k� �

say that �C�k��C����� � � � � C��k�� is in the source �that is
 C�k� is a stable �k #
���pointed rational curve
 etc� The operation joins C��i� to C�k� by identifying
the last
 "free� marked point of C��i� with the ith point of C�k� After collapsing
unstable components
 this produces a stable curve with ��� # � � �# �k� # � marked
points
 as needed A schematic representation of this operation on general points
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of the factors is�

. . .

. . .

. . .
1

k

k+1

C(l  )

C(l  )

C(k)

1

k

.

.

.

. . .

. . .

. . .

.

.

.

It is a good exercise to see what this operation does to the "combinatorial type� of
stable curves
 in the sense of Belorousski�s lecture on M��n

The sense in which M��� acts as a unit is by collapsing the corresponding tail�
for example
 via M����M�n� ��M�n�

. . .

y1
yn+11

2

. . .

contract

. . .

The operad M lives �for example� in the topological category We can get a
related operad in Vector Spaces over Q by taking homology� set

H�M�n� ! H��M�n��Q�

The operation is obtained by composing

H�M�k� �H�M���� � � � � �H�M��k�
K	unneth
������� H��M�k� �M���� � � � � �M��k��

H����
����� H�M�

X
�i�

Next
 the Gromov�Witten invariants on a variety X allow us to de�ne linear maps
H�M�n� �� EndH�X�n� for all n � � Then the properties of Gromov�Witten
invariants will imply that this is a map of operads

x�� Gromov�Witten invariants and classes� Reminder� for nice X and � �
A�X there is a space M��n�X��� and n evaluation maps ��� � � � � �n �M��n�X��� ��
X
 acting �i � �C� p�� � � � � pn� f� �� f�pi� The number associated with classes
	�� � � � � 	n � A�X is Z

M��n�X���

���	� � � � � � �
�
n	n

Now we need to shift the focus a little� �rst
 we want to consider the whole class
���	��� � ���

�
n	n �note� not gaining information
 according to the "�rst reconstruction

theorem� in �K�M��� second
 we transfer the class to M��n For this
 consider the
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diagram

M��n

M��n�X���
m �� Xn �M��n

��

��sssssssss

��
LL

LL
LL

LL
LL

Xn

Here ��� �m��C� p�� � � � � pn� f� ! �f�p��� � � � � f�pn��
 that is
 �� �m ! ���� � � � � �n��
we can then map 	� � � � � � 	n in H��Xn� to a class in M��n by pushing�forward
via ��� �m� the pull�back via ��� �m�

Definition� Call this class IX��n���	� � � � � � 	n�

This de�nition re�ects the motivic axiom of �K�M� Motivic here means that
the map H�Xn �� H�M��n is obtained via a correspondence
 that is a class in

H��Xn � M��n� For genus!�
 and nice X
 the image from M��n�X��� of the
fundamental class can be used for this purpose
 and this leads to the IX��n�� above In
other cases the situation is considerably more involved� the construction of Behrend
and Fantechi produces a good candidate in great generality

Remark� Our previous Gromov�Witten number is still
R
M��n

IX��n���	��� � ��	n�

Summarizing� the Gromov�Witten information is encoded in maps

IX��n�� � �H�X��n �� H��M��n�

We can also put all of them together if we want
 by taking as many copies of the
target as there are e�ective ��s�

IX��n � �H�X��n �� ���BH
��M ��n����

where B ! fe�ective ��sg
 and the product on the � respects the B�grading Put
it otherwise
 we should consider

IX��n � �H�X��n �� H��M ��n�

as a map between B�graded objects in order to carry along the information about
� We will do this implicitly in what follows�

x�� GW on X induce H�M�n� �� EndH�X�n�� At this point we have maps

�H�X��n �H�X �� H��M��n���

�	� � � � � � 	n� � 	n�� �� I�	� � � � � � 	n���

where I�	�� � � �� 	n��� ! ��I
X
��n�����	�� � � �� 	n��� �again
 source and target of

I are B�graded
 see x�� this will be hidden in the notations� Dualizing this map

we obtain a map

H��M��n��� ��Hom��H�X��n �H�X�Q�

! Hom��H�X��n� �H�X���

! Hom��H�X��n�H�X�
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by Poincar(e duality That is
 we now have a map

H�M�n� �� EndH�X�n�

for n � �
 which we proceed to write out explicitly
First
 Poincar(e duality works H�X �� �H�X�� by sending c to

R
X
c � � ! �c���

Say Ti form a basis for H�X
 and �gij � !
R
Ti �Tj 
 �gij� ! �gij��� as usual Then


writing c in terms of this basis�

c !
X

ciTi ��

�
Tj �� �c�Tj � !

Z
X

X
i

ciTi � Tj !
X
i

gijc
i

�
� and hence

ck !
X
i

�ki c
i !

X
ij

gjkgijc
i !

X
j

gjk�c�Tj � � or

c !
X
k

ckTk !
X
jk

gjk�c�Tj�Tk

Now start with Z � H�M�n� ! H�M��n�� ! �H�M��n����
 and get

Z ��

Z
Z

� ��

�
	� � � � � � 	n�� ��

Z
Z

I�	� � � � � � 	n���

	
� Hom��H�X��n���Q�

!

�
	� � � � � � 	n ��

Z
Z

I�	� � � � � � 	n � ��

	
� Hom��H�X��n� �H�X���

!

��	� � � � � � 	n ��
X
jk

gjk
Z
Z

I�	� � � � � � 	n � Tj�Tk

A
in Hom��H�X��n�H�X� ! EndH�X�n� This de�nes

H�M�n� �� EndH�X�n�

for all n � � For n ! �
 there is little choice�

H�M��� ! H��pt� ! Q �� Hom�H�X�H�X� ! EndH�X���

� �� identity

x�� Properties of Gromov�Witten invariants and morphisms of op�
erads� The �vague� claim is now that the general properties of Gromov�Witten
invariants amount to the fact that the maps

�.� H�M�n� �� EndH�X�n�

de�ned in x� preserve the operad structures on source and target�

Remark�Example� Both operads involved have in fact a little more structure

and this is also preserved On the End side
 we have

� � EndH�X�n� �� EndH�X�n� ��

� �� �	� � � � � � 	n�� �� ��	� � � � � � 	n�� � ���
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On the H�M side
 we have the maps induced in homology by the maps

 �M�n� ! M ��n�� ��M��n !M�n� ��

obtained by forgetting the last point �and collapsing unstable components��

n

n+1

n

Claim� The map H�M�� EndH�X de�ned above preserves this structure� that
is� the diagrams

H�M�n� ����� EndH�X�n�

�

��y ��y�
H�M�n� �� ����� EndH�X�n� ��

commute�

Proof� These �and all other analogous facts� should be straightforward from
the explicit formula given for �.� in x� Going �rst right and then down gives

Z ��

��	� � � � � � 	n ��
X
jk

gjk
Z
Z

I�	� � � � � � 	n � Tj�Tk

A
��

��	� � � � � � 	n�� ��
X
jk

gjk
Z
Z

I�	� � � � � � 	n�� � �� Tj�Tk

A �

going �rst down and then right gives

Z �� �Z ��

��	� � � � � � 	n�� ��
X
jk

gjk
Z
��Z

I�	� � � � � � 	n�� � Tj�Tk

A
Using that �gjk� is nonsingular
 reading components
 and replacing Tj by 	n we see
then that the commutativity of the diagrams is equivalent toZ

Z

I�	� � � � � � 	n � �� !

Z
��Z

I�	� � � � � � 	n�

for all Z � H�M��n�� and 	�� � � � � 	n � H�X This holds by the projection for�
mula
 and is essentially equivalent to property ��� of Gromov�Witten invariants in
Ranestad�s lecture �
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Concerning associativity
 writing that �� induces a morphism of operads also
amounts to the commutativity of certain diagrams Writing this out leads essen�
tially to the WDVV equations
 which also appeared in Ranestad�s lecture A key
formula from that lecture
 rewritten slightly to match notations
 reads

XZ
M��A�f�g

I���a�A�a� � T�� g
�m

Z
M��B�f�g

I�Tm � ��b�B�b�� �

Z
D�AjB�

I��c�A	B�c�

�for the notations
 see also Belorousski�s lecture on M��n And note that the
dependence on � is implicit in I once the relevant objects are B�graded
 see x��
the ��component of the left�hand�side is a

P
�������

of terms
R
I�� � � �

R
I�� � � � �

We want to show that this follows from the commutativity of one of the diagrams
expressing that �� is a morphism of operads Conversely
 these equalities and the
structure of the boundary of the spacesM��n ought to imply that all such diagrams
commute� but this seems substantially more involved
 and we will not attempt to
discuss it here

For jAj ! n�
 jBj ! n�
 with n�� n� � �
 consider

M�n���M�n�� �M���� � � � �M���� �z �
n���

��M�n� # n� � ��

. . .

.
.

.

n +1
2

. . .

.
.
.

n
2

n
1

contract

This map realizes the map

M��A	f
g �M��B	f
g ��M��A	B

whose image is the divisor D�AjB� of M��A	B Now take H� and apply ���

H�M�n�� �H�M�n�� �H�M�����n���� ����� H�M�n� # n� � ����y ��y
EndH�X�n��� EndH�X�n��� EndH�X�����n���� ����� EndH�X�n� # n� � ��

Assume �� induces a morphism of operads� then this diagram commutes Chase

�M��B	f
g�� �M��A	f
g�� �pt��n��� �

going �rst right and then down
 this maps to �D�AjB�� and then to

	� � � � � � 	n��n��� ��
X
jk

gjk
Z
D�AjB�

I�	� � � � � � 	n��n��� � Tj�Tk �
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going �rst down and then right
 it maps to�
B	X

jk

gjk
Z
MB�f�g

I�� � � � � � �� �z 
n�

� Tj�Tk



CA

�

�
�� � � � � � �n� ��

X
�m

g�m
Z
MA�f�g

I��� � � � � � �n� � T��Tm

�

� ��n��� �� �n���� � � � � � ��n��n��� �� �n��n����

and then �by the obvious linearity of I� to

�� � � � � � �n��n��� ��
X
jk

gjk

�X
�m

g�m
Z
MA�f�g

I��� � � � � � �n� � T��

�

Z
MB�f�g

I�Tm � �n��� � � � � � �n��n��� � Tj�Tk

�

Comparing the two results
 we see that we must haveXZ
MA�f�g

I�	��� � ��	n��T
�g

m

Z
MB�f�g

I�Tm�	n����� � ��	n��n����Tj�

!

Z
D�AjB�

I�	� � � � � � 	n��n��� � Tj�

for all 	�� � � � � 	n��n���
 and therefore �again by linearity of I�XZ
MA�f�g

I�	� � � � � � 	n� � T
� g

m

Z
MB�f�g

I�Tm � 	n��� � � � � � 	n��n��

!

Z
D�AjB�

I�	� � � � � � 	n��n��

which is our basic identity �

�� Axioms for Gromov�Witten invariants� I�B� Fantechi� ��������

We introduce and motivate the axioms from �K�M� for Gromov�Witten invari�
ants
 then discuss approaches for a construction of classes satisfying these axioms

with emphasis on Behrend�s work �B�M� This talk and the next one are a rough and
oversimpli�ed outline of the contents of �K�M� and �B�M� They contain intentional
mistakes �and probably unintentional ones as well�

Let X be a smooth complex projective variety

Definition� A system of Gromov�Witten classes on X is the datum
 for every
� � H��X� and for every g� n � � such that �g # n � �
 of a linear map

IXg�n�� � H��X��n �� H��M g�n�

satisfying the properties

�GW�� E�ectivity
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�GW�� Sn�equivariance
�GW�� Grading
�GW�� Fundamental class
�GW�� Divisors
�GW�� Mapping to a point �� ! ��
�GW�� Splitting
�GW	� Genus reduction
�GW�� Motivic axiom

A tree level system of Gromov�Witten classes is the same
 with g ! � �so the
genus reduction axiom becomes irrelevant�

Here H��X� ! H��X�Z�
 and cohomology is taken with Q�coe�cients
Idea behind the axioms� suppose we are in the best possible world� in particular


nontrivial �nite groups of automorphisms do not exist
 and for a generic map f �
C �� X
 h��f�TX� ! � �Note� this is never true if g�C� � �� Let Mg�n�X��� be
the moduli space of maps �as de�ned in previous lectures� What is its dimension
supposed to be- "Coarse� reasoning� look at the map M g�n�X��� �� M g�n
 and

pretend it simply forgets the extra data The dimension of M g�n is ��g � � # n��
we are pretending that there is no �or no generic� obstruction from H�
 so �by
Riemann�Roch� the �bers would have dimension

h��g�TX� ! ��f�TX� ! dimX��� g� # � � c��X� � hence

dimM g�n�X��� ! �dimX � ���� � g� # n# � c��X�

We call this number the expected dimension of Mg�n�X��� The natural map

M g�n�X��� �� Xn �M g�n �

gives �via Poincar(e duality� a class

cXg�n�� ! �Mg�n�X���� � H��Xn �Mg�n�

Consider the two projection

Xn �M g�n
q

����� M g�n

p

��y
Xn

and de�ne �note� H��Xn� ! H��X��n�

IXg�n�� ! q��p
���� � cXg�n���

�motivated by the intuitive enumerative meaning�
We will now state each of the axioms and "verify� some of them in the very

optimistic assumptions above
 in the hope to give an intuitive motivation for them

�GW�� Let H��X�� ! f� � H��X�
� �c��L� � � for all ample Lg Then IXg�n�� ! �

unless � � H��X�� Veri�cation� Mg�n�X��� is clearly empty unless either
� ! �
 or � is the class of an e�ective case In either case
 � � H��X��
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�GW�� IXg�n�� is Sn�equivariant

�GW�� deg IXg�n�� ! ���g � �� dimX # � � KX � Veri�cation� This is the degree

induced by the dimension estimate above �the "�� comes in passing from the
complex to the real dimension�

�GW�� Let � �M g�n�� ��M g�n be the map forgetting the last point �and stabiliz�
ing�� then IXg�n������ � �X� ! �� � IXg�n�� Moreover


IX������	� � 	� � �X� !

���
Z
X

	� � 	� if � ! �

� otherwise

�GW�� If 	 � H��X�
 then

��I
X
g�n������ � 	� ! �� � 	� IXg�n��

�GW�� �Case � ! �� M g�n�X� �� !M g�n �X Here

dimM g�n�X� �� ! �g � � # n# dimX

exp dimM g�n�X� �� ! �g � � # n# dimX�� � g�

do not match for g � � Now the obstruction space is�

T �
�C�x�f� ! H��C� f�TX� ! H��C�OC�� Tx�f�C� �

that is
 with

C
f

����� X

g

��y
M g�n�X� ��

�

T � ! R�g��f�TX� This has rank g dimX
 accounting for the di�erence
between actual and expected dimension Use T � then to "correct� the fun�
damental class�

cXg�n�� ! �M g�n�X� ��� � ctopT
� �

Note� in the real world
 C does not exist� this is one reason to consider
M g�n�X��� as a Deligne�Mumford stack� so it is a smooth
 �ne moduli
space
 can work with cohomology �with Q�coe�cients�
 etc De�ne

IXg�n�� ! p���p
�
���� � c

X
g�n���

where pi are the projections from M g�n �X
�GW�� Fix g�
 g�
 g
 n�
 n�
 n such that �gi#ni#� � �
 g ! g�# g�
 n ! n�#n�

Let � � Mg��n��� �M g��n��� ��Mg�n be the usual glueing map Then

���IXg�n�� ����� � ���n� �
X

�������

IXg��n������
�IXg��n������

����� � ���n�������n����� � ���n�
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where �)� is the class of the diagonal in X� �this can also be written in
terms of a basis and of the usual gab� Note that the sum is �nite
 by
e�ectivity

�GW	� Let � � Mg���n�� �� M g�n be the map joining two of the points and in�
creasing the genus Then

�� � IXg�n�� ! IXg���n������ � �)��

�GW�� There exists cXg�n�� � A��Xn �M g�n� such that

IXg�n�� ! q��p
���� � cXg�n���

with q
 p the projections
 as before

Remark� Once we take �GW�� for granted
 all other axioms can be formulated
in terms of cXg�n�� For example
 both �GW�� and �GW�� boil down to

cXg�n���� ! �idXn � ���cXg�n��

We now try to describe how to construct a system of classes cXg�n�� such that the
axioms hold

Constructions� If g ! � and X is convex
 then everything works �ne
 with
cX��n�� ! �M��n�X���� The expectation is that this should be the case whenever
the dimension equals the expected dimension Main problem�
de�ne �M g�n�X����virt � A��M g�n�X���� with the correct dimension and properties�

Symplectic approach� Deform enough data so that M g�n�X��� is of the correct
dimension This requires a sophisticated analysis Solutions have been given by
Fukaya�Ono �F�O�
 Li�Tian �Li�Tian��
 Siebert �Siebert�

Algebraic approach� Li � Tian	s method �Li�Tian� We �rst describe the situ�
ation locally in the euclidean topology Let M be a moduli space Usually from
deformation theory one has for all m � M an obstruction space OM�m Choose
m�
 and let T ! TM�m� 
 O ! OM�m�  Then there is a map of germs of ana�
lytic spaces f � �T� �� �� �O� �� such that �M�m�� ! f������ for m � �M�m��

TM�m ! ker df�m� and OM�m ! Coker df�m� Then Li and Tian de�ne a normal
cone

CM�T � O �M �

of pure dimension ! dimT 
 and T �invariant �berwise

Global story� Given ET
g
�� EO morphism of vector bundles over M 
 such that

TM�m ! ker g�m�
 OM�m ! Cokerg�m� �the obstruction complex�
 there is a cone
C � E� of pure dimension ! rkT 
 and we can de�ne

�M �virt ! �C� � �zero section of E��

Note dim�M �virt ! rkE� rkF ! dimT �m��dimO�m� �!expected dimension� for
all m
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The hard work goes now in de�ning everything rigorously and proving the inde�
pendence on the choices
 and the relevant properties

Behrend�Fantechi� For all m
 Cm comes from a cone in O�m�

��� The cone only depends only on the deformation functor�
��� invariance means it comes from �EO
ET � �stack quotient��

��� The stack is an easy version of the deformation functor
Result� given any M 
 Deligne�Mumford stack
 there exists a pure dimensional CM

�the intrinsic normal cone� see �B�F��� and given any ET �� EO
 the obstruction
complex CM �� �EO
ET � ! E yields a �M �virt ! �CM � � zero�section of E This
only depends on �EO
ET �
 ie
 on ET �� EO as an object in the derived category

There is also a relative version over any smooth Artin stack

Definition� For any g
 any n
 any X and any �
 let M ! Mg�n
 the moduli
stack of prestable curves of genus g with n marked points� M is a smooth Artin
stack
 containingM g�n as an open and proper subset �M is not separated� There is

a natural morphismM �!M g�n�X��� ��M
 sending �C� xi� f� to �C� xi� �without

stabilizing� Let C ��M be the universal curve
 and consider the diagram

C
f

����� X

p

��y
M

The complex Rp��f�TX�
 a well�de�ned object in the derived category
 is a relative
obstruction theory for M over M
 and yields a �Mg�n�X����

virt of the correct
dimension

This implies immediately �GW��
 �GW��
 �GW��
 �GW��� and �GW�� with a
little care To prove �GW�� and �GW��
 one must consider

M g�n���X���
�
��M g�n�X���

The map � is �at of relative dimension � Then one needs

�Mg�n���X����
virt ! ���Mg�n�X����

virt

This follows from properties of the relative intrinsic normal cone

To prove �GW�� and �GW	�
 and for any further work we will have to face
graphs and axioms from �B�M�

� Axioms for Gromov�Witten invariants� II�B� Fantechi� ���	����

This lecture is based on �B�M� and �Behrend� �the same disclaimer for the previ�
ous lecture applies here� Among the problems left open from the �rst lecture
 we
had the splitting axiom� dealing with the behavior of the Gromov�Witten classes
on sets of reducible curves This leads to considering more complicated curves
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Definition� A modular graph � is the datum of

��� a �nite set V of vertices�
��� a �nite set F of �ags�
��� a map � � F �� V �
��� an involution j � F �� F �denote f ! j�f��
��� �modular� a map
 the genus� g � V ��Z��

Notation� T ! set of tails ! ff � F
f ! fg� E ! set of edges ! fff� fg
f �! fg�
for v � V 
 Fv ! ff
�f ! vg

Definition� The topological realization of � 
 denoted j� j� start with a point for
every vertex� for every edge fe� eg glue ��� �� at �e
 �e� for every tail t
 glue ��� �� at
�t

Intuitive relation with pointed curves� every vertex v corresponds to a curve of
genus g�v�� for every edge we make the corresponding curves intersect transversally�
for every tail we put a marked point Hence a modular graph describes the structure
of a prestable curve

Definition� A vertex v of � is stable if �g�v� # �Fv � �

We will assume all vertices of all graphs under consideration to be stable

Example� An irreduciblen�pointed genus�g curve corresponds to a single vertex
v
 with g�v� ! g
 and F ! Fv ! f�� � � � � ng

Fix a smooth projective variety X over C 

Definition� Let � be a modular graph An X�marking of � is a map � �
V �� � �� H��X��

Definition� Fix ��� �� A prestable ��� ���map to X is the datum �Cv� xf � ��

where

��� �v � V �� �
 Cv is a prestable curve of genus g�v��
��� �f � F �� �
 xf � C�f �
��� � maps C ! qCv �� X so that ��xf � ! ��xf � for all f � F � and ���Cv� !

��v� � H��X��

Moreover
 �Cv� xf � �� is stable if �v � V 
 �Cv� fxfgf�Fv � �Cv � is a stable map

Remark� If X !pt
 � and � bear no information We speak then simply of a
� ��pre�stable curve

Remark� Note that the domain of a prestable ��� �� map has at least as many
irreducible components as the vertices of � 
 but it might have more �ie
 some curve
Cv may be reducible
 or singular�

Definition� A family of ��� ���prestable maps over S is the datum �Cv� xf � ��
where

��� Cv �� S is a �at proper map
 and � is a map C ! qCv �� X�
��� xf � S �� Cv is a section �for f � Fv�
 and � � xf ! � � xf �
��� �s � S
 the �ber of �Cv� xf � �� over s is a ��� ���prestable curve

Remark� Families of ��� �� �pre�stable maps pull�back� so we may consider the
corresponding functor
 as usual
 and as usual we wish to represent it
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Theorem� Let X be a projective variety� ��� �� an X�marked modular graph�

��� There exists a �ne moduli space M� �X��� for ��� ���stable maps to X�
M � �X��� is a proper� separated Deligne�Mumford stack of �nite type�

��� There exists a �ne moduli space M�� � for � �prestable curves� M�� � is a
smooth Artin stack�

For example
 for � a graph with a single vertex of genus g and n �ags around it

M � �X��� is our usual Mg�n�X���

Definition� Let ��� �� be a marked graph

��� ��� � ! ��j� j��
P

v�V ��� g�v�

��� g�� � ! �� ��� �
��� dim � ! ����� � #�T ��E
��� The class of � ! ��� � !

P
v�V ��v�

��� dim��� �� ! dim�� � # ��� � dimX # ��� �c��TX�

Exercise� prove that M� has dimension ! dim�� �
There are natural maps

M � �X��� ��M�� � ��M �

given by �Cv� xf � �� �� �Cv� xf � �� �Cv� xf �stab

The expected dimension of M � �X��� is dim��� ��

Definition� An orientation for M over X is the datum
 for every X�marked
graph ��� ��
 of a class

I� �X��� � Adim���	�M � �X���

satisfying � compatibility axioms
 to be discussed shortly

An orientation determines a good system of Gromov�Witten classes
 in the sense
of the previous lecture
 as follows Omitting X from the notations for convenience

we have the diagram�

M �

M� ���
ev �� M� �XT ���

p�

��rrrrrrrrrrr

q�
��MM

MM
MM

MM
MM

XT ���

and we set eI� ��� ! ev�I� ���
 and de�ne

I	� � H��T �� � �� H��M � � by

I	� �	� ! p� �

&
q�� �	� � eI� ���' �



AXIOMS FOR GROMOV�WITTEN INVARIANTS� II�B� FANTECHI �	

We list the compatibility axioms and give for each of them a short
 informal
description

�BM�� Mapping to a point
�BM�� Products
�BM�� Cutting edges
�BM�� Forgetting tails
�BM�� Isogeny

�BM�� This is the case � ! � � �� ��� � ! �� The axiom is the obvious
generalization of the corresponding GW axiom �GW��

�BM�� If ��� �� is the "disjoint union� of ���� ��� and ���� ���
 then I� ��� !
I������� I�� ����

�BM�� Cutting an edge� the modular graph � is obtained from � by "cutting the
edge� fe� eg if V ��� ! V �� �
 F ��� ! F �� �
 �� ! �� 
 g� ! g� 
 and

j��f� !



j� �f� f �� fe� eg

f f � fe� eg

�so the edge fe� eg between internal vertices is replaced by two tails� We have the
cartesian diagram

M� ��� ����� M������y ��y
X

�
����� X�

where the �rst vertical map sends �Cv� xf � �� to ��x� e� ! ��x� e�
 while the second
sends �Cv� xf � �� to the pair ���x� e�� ��x� e�� The axiom states then that the
orientation for � comes from ��

I� ��� ! )��I����� �

This corresponds to gluing two curves at one marked point on each
�BM�� Forgetting tails� � is obtained from � by forgetting the tail t � T �� � if

V ��� ! V �� �
 F ��� ! F �� � � ftg
 j� ! j� 
 g� ! g� 
 �� ! �� �warning� we are
cheating a little because � here could become unstable� pretend it stays stable
 for
simplicity� This situation generalizes the map from M g�n forgetting one of the
marked points� we get a �at
 proper map

M� �X���
�
��M��X���

and the axiom states that
I� ��� ! ��I���� �

This corresponds to forgetting one of the marked points
�BM�� Isogeny� for simplicity
 we will consider here only the case of "contracting

an edge� The modular graph � is obtained from � by contracting the edge fe� eg
if F ��� ! F �� �� fe� eg
 �� ! �� 
 j� ! j� 
 and

�if fe� eg forms a loop in � 
 that is �e ! �e
 then V ��� ! V �� � and g���e� !
g� ��e� # ��
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�if fe� eg does not form a loop in � 
 V ��� ! �V �� � � f�e� �eg� � fg
 with
g��� ! g� ��e� # g� ��e�
�and g� ! g� on una�ected vertices�

This corresponds to the smoothing of a node
Further
 for � a marking on � consider all possible compatible markings �i on � 

We get a diagram
qiM � �X��i� ����� M��X�����y ��y

M�
�

����� M�

and the axiom �in a slightly simpli�ed form� prescribes thatX
I� ��i� ! �I���� �

As mentioned above
 it can be shown that an orientation de�nes a system of
Gromov�Witten classes satisfying the axioms �GW����GW�� of the previous lec�
ture For example
 the splitting axiom compares classes for Mg��n���
 M g��n���

with classes for M g�n with g ! g� # g� and n ! n� # n��

g
2

n n1 2g
1 g

n

These are related to each other by respectively cutting an edge or contracting it
from

n1 g
1

g
2

n2

Thus the "splitting axiom� �GW�� follows by judiciously applying �BM�� and
�BM�� Similarly


n+2 g-1 n
g
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are obtained by respectively cutting the loop
 or contracting it
 in

g-1

n

�BM�� and �BM�� can then be used to prove the "genus reduction axiom� �GW	�
for Gromov�Witten classes

Main result� �Behrend� The class de�ned by

I� ��� ! �M � ���� E


��	�

virt

gives an orientation for M over X�

In this statement
 ���virt is the �relative� virtual fundamental class in the sense of
the previous lecture
 and E
��	 is the relative obstruction theory over M� � E
��	 !
R���

�TX in

C
�

����� X

�

��y
M� �X���

�

where �C� ��X� is the universal family over M� �X���
This result produces then a system of Gromov�Witten classes satisfying the ax�

ioms from �K�M�
 for an arbitrary smooth
 projective variety X

�� Kapranov�s work on M��n�C� Faber� ��������

The reference for this is �Kapranov�� we work over C 

x�� The main result�

Theorem� Let p�� � � � � pn be n points in Pn�� in general position� Let V��p� !
V��p�� � � � � pn� be the space of Veronese curves in Pn�� through p�� � � � � pn� Then�

�a� V��p� �!M��n�
Consider V��p� as a subvariety of the Hilbert scheme H parametrizing all sub�

schemes of Pn��� let V �p� ! V �p�� � � � � pn� be the closure of V��p� in H� Then�
�b� V �p� �! M��n� The subschemes of Pn�� representing points of V �p� are�

considered together with the n points� stable n�pointed curves of genus ��
�c� Analogous statement for Chow variety instead of Hilbert scheme�

Remarks� In suitable coordinates
 pi ! ei ! �� � � � � � � � �
i
� � � � � � � �� for

� 
 i 
 n��
 and pn ! en ! �� � � � � � �� Also
 by a classical result of Castelnuovo

through any �n # �� points in Pn�� in general position passes a unique Veronese
curve
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x�� Discussion� Fix p�� � � � � pn in general position in Pn��
 M��n
�! V �p�

Claim� Every component of the curve C � V �p� is a Veronese curve in its span�

A more precise statement requires a few preliminaries�
�a� Let An�� be the con�guration of

�
n
�

�
hyperplanes 0ij 
 0ij !span offpkg


k �! i� j �i �! j� A face of An�� is a projective subspace which is the intersection
of some of the 0ij 

The hyperplanes in An�� are isomorphic to the projectivization of the hyper�
planes fti ! tjg in the subspace C n��� � C n with equation t� # � � � # tn ! � �The
"mirror� of the root system An���

�b� The faces in An�� correspond to equivalence relations on n ! f�� �� � � � � ng�
for a relation R
 0�R� ! �iRj0ij

�c� So there are exactly �n�� � � ��dimensional faces
 corresponding to equiva�
lence relations with exactly � equivalence classes �eg
 pi � fig q fn� figg�

�d� Intersecting 0ij with a face 0
 we obtain an Am
 with m ! dim0 # �
�e� Let T be a tree with tails �!endpoints� A�� � � � � An
 and let v�w be vertices

�possibly endpoints� of T  Let �v�w� be the unique geodesic from v to w De�ne
for v an internal vertex of T an equivalence relation �!v on n�

i �!v j �� v �� �Ai� Aj �

The equivalence classes of �!v correspond to the edges incident at v
�f� For e an edge in T 
 de�ne

i �!e j �� e �� �Ai� Aj �

Note� for each e
 this equivalence relation has exactly two equivalence classes
�g� With the above understood
 recall that every n�pointed stable curve corre�

sponds to a tree �see Belorousski�s lecture on M��n� Then the claim is�

Theorem� For C � V �p�� consider its tree T � Let v be an internal vertex of T �
and let Cv be the corresponding component of C� Then

��� Cv is a Veronese curve in its span � Cv �� � Cv � is the face of An��

corresponding to �!v� Its dimension is

�� equivalence classes������ edges incident to v���

��� special points on Cv���

��� Let e be an edge of T connecting internal vertices� that is� e corresponds
to a node z of C� Then z corresponds to the ��dimensional face of An��

corresponding to �!e� Therefore� the possible singular points of any C � V �p�
belong to a �xed �nite subset of �n�� � �� n points in Pn���

Next
 recall that for i ! �� � � � � n there is a map �i � M��n �� M��n�� for�
getting the i�th point Thus there must be corresponding maps V �p�� � � � � pn� ��
V �q�� � � � � qn���
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Claim� These are induced by the projections

Pn��� fpig � � KP
n��
i

This seems rather reasonable
Next
 there are basic line bundles Li whose �ber at C is T �xiC These can be

realized as follows� consider the map�

�i � V �p� �� Pn��i

sending C to the embedded tangent line to C at pi �which determines a point in
Pn�� under the i�th projection as above� Then Li ! ��i �OP

n��
i

���� Also
 we get

maps 	Li � M��n � � KPH��M��n�Li��
Results and comments�

��� dimH��M��n�Li� ! n� ��

��� 	Li is a birational morphism� 	Li ! �i after the identi�cation Pn��i !

P�H��M��n�Li���
��� �i can be decomposed explicitly into blow�ups� there are other constructions

for this
 due to Fulton�MacPherson and Keel�
��� the identi�cations induce rational maps Pn��i � � KPn��j � these turn out to

be Cremona transformations
��� Finally
 this gives an interpretation for the Witten � �numbers in genus ��

� �d� � � � �dn �!

Z
M��n

Y
i

c��Li�
di

with
P

di ! n�� This is the number of Veronese curves through a certain
assortment of points
 and tangent to certain codimension�di planes at these
points This might lead to a computation of these numbers �which are
however already known and rather easy to obtain�

Next
 we have the relative dualizing sheaf �C on a stable n�pointed curve C of
genus �� obtained by gluing �i on components Ci
 where the �i are regular on the
smooth part
 and at a point of intersection of two components they may have simple
poles with opposite residues By Knudsen�s work
 �C�x� # � � �# xn� is very ample

and has �n��� independent global sections Via the corresponding map C �� Pn��

the images pi of the xi are in general position �as shown by a computation�

Now for part �a� of the main theorem
 consider x�� � � � � xn distinct points on P�

and embed P� in Pn�� with �P� �x� # � � � # xn� By a projective transformation

the image is moved to a Veronese curve through p�� � � � � pn
 given points in general
position in Pn�� So each curve � M��n can be realized as stated If f is an
isomorphism of two n�pointed curves
 f induces an isomorphism of the �n � ���nd
symmetric products &Pn��
 hence of their duals Pn��
 �xing n generic points� it
follows that f is the identity This essentially establishes M��n

�! V��p�� � � � � pn�

For part �b�
 consider a stable n�pointed genus�� curve over any base S� C
�
�� S


with sections si We have an embedding of C in P�����C�S�s� # � � � # sn����

a projective bundle with n sections s�� � � � � sn
 in general position in every �ber
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Trivialize the situation by moving every �ber to pass through a �xed frame in
Pn�� The map � is �at
 so we get a map 	S�C from S to the Hilbert scheme H

such that C is the pull�back via 	S�C of the universal �at family of subschemes 1
over H�

C ����� 1

�

��y ��y
S

�S�C
����� H

Now for all S this determines a map

	S � Mor�S�M��n� ��Mor�S�H�

by sending a family C �which determines and is determined by a unique morphism
S �� M��n� to 	S�C In fact
 taking S ! M��n itself gives a map from this to H


and the dense open M��n of M��n maps to V��p� � H� so M��n maps to the closure
V �p� of V��p� in H
 and 	S must factor through

	S � Hom�S�M��n� �� Hom�S� V �p��

We want to show that this is a bijection for all S The injectivity follows from the
fact that every C is a pull�back from 1� for the surjectivity
 we have the diagram

C��n ����� 1

�

��y ��y
M ��n ����� V �p�

and since the �bers of 1 over V are stable n�pointed curves of genus �
 there must
be a map V �p� ��M��n as M��n is a �ne moduli space �

Note that we are assuming already that M ��n is a �ne moduli space� it would
be interesting to use the construction to show directly that V �p� is a �ne moduli
space

For �c� in the main theorem
 let C be the Chow variety� we have H �� C and
M��n

�! V �p� surjecting on the closure W �p� of V��p� in C� we would show that this
latter map is an isomorphism One proves that it is a set bijection
 then argues
that tangent vectors to V �p� �which is smooth� are not contracted in W �p�

x	� Problem� Let x��t�� � � � � xn�t� � C ��t�� be distinct formal Laurent series
in t Assume that for t �! �
 �P��x��t�� � � � � xn�t�� is a stable n�pointed curve in
M��n � M��n The limit limt���P��x��t�� � � � � xn�t�� is then a certain C � M��n�
the question is� can this C be determined-

Choosing a suitable coordinate on P�
 and multiplying by a common power of t if
necessary
 we may assume that xn�t� is identically�
 and that x��t�� � � � � xn���t� �
C ��t�� Baby example� something like

�t�� t�� �t�� �t����

Set�up� We de�ne a tree
 the "tree of in�nitely near points in C �� the vertices
will be pairs �m� f� with m �Z���
 and f a polynomial in C �t� of degree 
 m �the
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only polynomial of degree 
 �� is ��� the edges will be between pairs �m� f� and
�m# �� g� if and only if g agrees with f modulo tm��

The ends of this tree correspond to formal Taylor series � C ��t��
For �x��t�� � � � � xn���t���� as prescribed above
 look at the subtree T of the tree

T� of in�nitely near points in C obtained as the union of paths in T� connecting the
xi�t� and the root v� ! ���� ��� and let T � be the simplest topologically equivalent
version of T �where only internal vertices of degree � � survive� Then�

Claim� ��� T � is the tree of the limit curve�
�� to determine the isomorphism class of the limit� one needs the projective

equivalence class of the special points on every component Cv of C� This can be
read o� from T �� the edges departing from v correspond to the special points on
Cv� and each has a number naturally associated with it �� for the edge connecting
back towards the root� and the coe�cients of the next term in the Taylor series
represented by the other edges��

In the example above� �t�� t�� �t�� �t�����

oo

oo

t3

0

0+0 t

0+0 t+0 t 0+0 t+1 t
2

2t 3t3 3

1
2

5 4

3

2 p1

1
2

3
p

3
5

p

p
p

2

4

Exercise� For a slightly di�erent �avor
 take K ! Q�
 with ring of integersZ�

and determine the stable reduction �mod �� of �P�� �� �� �� �� �� �� �� 	� ��

��� Enumeration of rational curves�
after Kontsevich�C� Faber� �������

Three examples�

��� Rational curves on P�� Consider the map �k � M��k�P�� d� �� �P��k

de�ned by �k�C�xi� f� ! �f�xi��
 and let
Pd �!�frational curves on P� of degree d � �
 through ��d � �� generic pointsg
!degree of ��d��

!
R
M���d���P� �d�

Q�d��
i�� ��

�
c��O���i��

�
with evident notations

��� Rational curves on quintic threefolds� Let V be a threefold given by
a section Q of O��� on P� Consider

M����P�� d�
�

����� P���y�
Z� eQd� ! M����V� d�P���

�
����� M����P�� d�
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Here eQd is the section of Ed �! �����O���� determined by Q Note that Ed is a
vector bundle� for f � C �� P� a genus�� stable map
 H��C� f�O���� ! � Then
look at the number

Nd �!

Z
M�P	 �d�

c�d���Ed� �

this ought to count the cardinality of Z� eQd�
 that is the weighted number of rational
curves on a quintic threefold Problem� Nd 
� Z in general� however
 one can see
that

Nd !
X
kjd

k��No
d�k

with No
d counting the actual number of rational curves �without contributions of

multiple coverings from lower d�s
 see ���� This should be an integer

�	� Multiple coverings of rational curves on Calabi�Yau threefolds�
Consider a C�

�! P� on a Calabi�Yau threefold V with normal bundle O���� �
O���� The space M����V� d�C��� has a connected component M����C�� d�C��� �!
M����P�� d� Its dimension is ��d���
 while the virtual dimension is �� the obstruc�
tion sheaf Fd is the rank���d � �� vector bundle with �ber H��C� f��TV 
TC��� �!
C � � H��C� f��O������ at each point f � C �� C� �a degree�d stable map� By
de�nition
 the contribution of this component will be

Md �!

Z
M�P� �d�

c�d���Fd� �

Expectation� Md ! d�� �checked by Manin� This explains then the relation
between Nd�s and No

d �s
This relation can be inverted by using the M�obius function�

No
d !

X
kjd

��k�k��Nd�k

Goal of the lecture� to explain how Kontsevich ��Kontsevich�� computes in prin�
ciple the numbers Pd
 Nd
 Md The main tool is Bott	s formula�

Situation� X is a �smooth� complex projective manifold
 E is a holomorphic
vector bundle on X� a complex torus T �! C � � � � � � C � acts algebraically on
�X� E�

Fact� then XT is smooth On each connected component X� 
 E ! ���T�E
���


a decomposition into "eigenbundles� for characters � The same for the normal
bundles to the �xed loci� for N � �! TX
TX	 
 N � ! ���T������N ���

To write the formula
 we introduce the Chern roots of these bundles� ei for E�
e���i for E���� n���i for N ��� So

P
k�� ck�E� !

Q
i�� # ei�
 and so on

Now let P be a homogeneous polynomial of degree dimX in the Chern classes
ci�E� �considered as indeterminates of degree i�� that is
 a symmetric homogeneous
polynomial in the ei
 of degree dimX Bott�s formula then states thatZ

X

P �ei� !
X
�

Z
X	

P �e���i # ��Q
�n���i # ��

�
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Every character � de�nes a linear form on Lie�T �
 so the right�hand�side is
a rational function on Lie�T � �which is constant by the statement
 and equalsR
X
P �ei��
We will use Bott�s formula on orbifolds�

Description of �xed points of the natural action of T �! �C � �n�� on
M g�k�Pn� d�� This is induced from the action of T on Pn

Notation� pi
 i ! �� � � � � n # �
 are the �xed points of T on Pn We think of
T acting diagonally on �n # ���tuples of homogeneous coordinates
 so pi is the
projectivization of the i�th coordinate line in C n��  For i �! j
 let �ij ! �ji be the
line in Pn through pi and pj 

Suppose that the stable map f � C �� Pn represents a point of M g�k�Pn� d�T 
Then

��� f�C� is T �invariant
 so a union of lines �ij �points with � � nonzero coor�
dinates have � ��dimensional orbits��

��� the images of all marked and singular points
 and of all contracted compo�
nents
 are points pi�

��� a component C	 of V not contracted by f maps onto a line �ij 
 say with
degree d	 The map C	 �� �ij can only be rami�ed over pi and pj � by the
Hurwitz formula
 necessarily C	 has genus � and is totally rami�ed over pi
and pj  Note that in particular C	 is smooth� the map is f�z� � z�� ! �� �

� � � � zd�� � � � � � zd�� � � � � � ��

To each T ��xed �C�x�� � � � � xk� f� we associate a graph % �that is
 a ��dimensional
�nite CW�complex��

�a� Vertices v � Vert�%� correspond to connected components Cv of f���pi�
�note� Cv may be a point��

�b� Edges � � Edge�%� correspond to irreducible components C	 �of genus ��
mapping onto lines �ij 

So
 the edges � at a vertex v correspond to the non�contracted irreducible com�
ponents C	 having non�empty intersection with the connected component Cv The
two vertices connected by the edge � corresponding to a C	
 say mapping to �ij

correspond to the unique connected components Cvi�	 � f���pi�
 Cvj�	 � f���pj �
resp which contain C	 � f���pi�
 C	 � f���pj � resp Note that these two vertices
are distinct
 so % has no simple loops

In short
 % is made from C by contracting each Cv to a vertex v In particular

% is connected

�c� Labels on %� the vertices v get a number fv via f�Cv� ! pfv � the edges �
get labeled by the degree d	 of f � C	 �� �ij Further
 we de�ne gv �! the
arithmetic genus of the ��dimensional part of Cv� and Sv � f�� � � � � kg to be
the set of indices of marked points lying on Cv

Claim� The connected components of M g�k�Pn� d�T are naturally labeled by the
equivalence classes of connected graphs % �with speci�cations� such that

��� if an edge � connects the vertices u� v� then fu �! fv �in particular� % cannot
have simple loops��

��� �� ��%� #
P

v�Vert��� gv ! g�
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���
P

	�Edge��� d	 ! d�

��� qvSv ! f�� � � � � kg�

Kontsevich says �in words�� M g�k�Pn� d�� �!
�Q

vM gv�val�v���Sv

�

Aut�%� This

isn�t quite true
 as we will see

Now for the computation� Assumptions� ��� g ! �
 so all %�s are trees
 all
interior genera gv ! ��

��� for simplicity
 we forget the marked points �for the time being��
��� notation�

�a� M ! M�Pn� d� �n
 d are �xed��
�b� �E� for the class in the equivariant K�group with Q�coe�cients of a T �equi�

variant vector bundle E on M
�
�

K�
T �M

�
��Q �! K��M

�
��Q�T��

�c� ��� for the class of a trivial line bundle with T �action given by � � T� �Q

��� We systematically decompose �bers of vector bundles as formal linear com�
binations of other vector spaces
 in order to compute the characters First
 the
normal bundle�

�N
M


 � ! �TM �� �T
M


 �

�TM � ! �H��C� f�TPn �� #
X

y�C��C� �	���

�Ty�C
	� � Ty�C

���

#

�� X
y�C��C��	 ���

��Ty�C
	�� # �Ty�C

�����
X
	

�H��C	� TC���

A
�Recall� �i� no marked points� �ii� for one component
 this is OK� �iii� if we add
a component
 then we subtract an extra ��dimensional thing
 but we also add �
dimensions� � for smoothing the node
 and � for moving it Compare with �F�P��

�T
M


 � ! � #
X

y�C��C��	����	�� ��Edge

�Ty�C
	�� Ty�C

���

#
X

y�C��C��	����	 ��Edge

�Ty�C
	���

X
	��Edge

�H��C	� TC���

�Namely
 we can only smooth nodes for which both branches are contracted� we
can move a node only on a contracted component� and we have in�nitesimal auto�
morphisms only on contracted components� So


�N
M


 � ! �H��C� f�TPn �� # �Nabs

M

 � � where

�Nabs

M

 � !

X
y	���Edge

�Ty�C
	� � Ty�C

��� #
X

y	�Edge� ��Edge

�Ty�C
	� � Ty�C

���

#

�� X
y	�Edge

�Ty�C
	���

X
	�Edge

�H��C	� TC���

A
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The only nontrivial vector bundle term� Ty�C�� for � not an edge
 in the sec�
ond summand However
 this term has trivial character �which will simplify the
computation�

More notions and notations A �ag is an edge � with arrow� �v� ��
 v � Vert�%�
thought of as the source of the arrow This is unambiguous
 as % has no simple
loops For F ! �v� �� a �ag
 the weight of F is

wF �!
��fv � �fu �

d	

where u is the other vertex of � Here �i
 i ! �� � � � � n#�
 are the natural coordinates
on Lie�T �� wF is the character of T for the action on TC��Cv�C�  If F ! �u��� is
the dual �ag then of course wF ! �wF 

We need the following integral�

I�w�� � � � wk� �!

Z
M��k

�

wi # c��Txi �C��

!
X

di���
P

di�k��

kY
i��

w�di��i h�d� � � � �dki� �z �
�

�k����
d�����dk�

�Witten�s notation�

! �
X

w��i �k���
Y

w��i �

Recall that we are to compute integrals

Z
M

	

P �e���i # ��Q
i�n

���
i # ��

 We will see that

in all three examples the equivariant vector bundles are trivial as vector bundles�

e���i ! � always So P �� � � � is just a constant for the integral Similarly for many

of the n���i 
 but not for all� exactly the termsX
y	�Edge�� ��Edge

�Ty�C
	� � Ty�C

���

in �N � �written additively� are nontrivial bundles Writing multiplicatively
 and
putting it in the denominator
 we getZ

M



�Q
y	�Edge�� ��Edge�wF # c��Ty�C���

�with F ! �y� ��� as the only part that needs to be integrated

Now M
�
�! 

�Q
vM��val�v���Sv

�

Aut�%� ��

Q
v�val�v���M��val�v�
 forgetting

marked points and the action of Aut�%� So this becomes

Y
v�val�v���

�����
�� X
F��v�	�

w��F

Aval�v��� Y
F��v�	�

w��F

����� !�
Y

v�val�v���

��
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by the integral computed above
Now two remarkable steps recover the vertices of lower valence�

���
P

y	���Edge�Ty�C
	� � Ty�C

��� corresponds to the vertices with valency �

The contribution �to the denominator� is
Q
v�val�v����wF��v� # wF��v��

��

Since � �a # �
b �
�� �

a
�
b ! �

a�b
 this gives exactlyY
v�val�v���

��

��� �
P

	�Edge�H
��C	� TC��� ! �

P
	�Edge���wF �	�� # ��� # �wF �	���

! �
P

�ags F �wF �� ��edges���� On the other hand

P

y�	�Edge�Ty�C
	��

!
P

F��v�	��val�v����wF � All in all
 we get

�
X

F��v�	��val�v���

�wF �� ��edges����

The term ���edges���� will cancel out The rest gives
Q
wF 
 and after all wF !

�w��F ���wF ������� putting all together
 the contribution of �Nabs

M

� # ��edges���� is

�A�
Y
v

�����
�� X
F��v�	�

w��F

Aval�v��� Y
F��v�	�

w��F

�����
Next
 we examine �H��C� f�TPn �� We have a short exact sequence

� �� H��C� f�TPn � �� �	�EdgeH
��C	� f�TPn � �� �vTpfvP

n� C val�v��� �� �

�global sections are tuples of sections over edges
 that agree at each v for all edges
at v� To see what the middle term is
 recall that f on C	 is given via

Xi�f�z�� ! zd�� �Xj �f�z�� ! zd�� �Xk�f�z�� ! � �k �! i� j

for z ! �z� � z�� a coordinate on P� �! C	 mapping d	 � � onto �ij 
 and the Xi

homogeneous coordinates on Pn
A calculation shows that the following elements form a basis for H��C	� f�TPn ��

��� zaXi
�

�Xi
� d	 
 a 
 d	�

��� za� z
b
�

�
�Xk

a # b ! d	� � 
 a� b� k �! i� j�k � f�� � � � � n# �g�

There is a unique element with trivial T �action� Xi
�

�Xi

 yielding ��edges���� and

giving the promised cancellation

Now z corresponds to
�i��j
d�

! wF �F ! �v� �� with f�CV � ! pi�� Xk corresponds

to �k
 z� to �i
d	
 and z� to �j
d	
The third term in the short exact sequence gives

�� � val�v��
X
j ��fv

��fv � �j �
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�

since the elements Xfv
�

�Xj
with j �! fv form a basis of TpfvP

n In total
 we �nd

�B�

Y
	 joining v��v�

�����
&

d�
�fv���fv�

'�d�
����d���d	�'��

Y
k ��fv� �k ��fv�

Y
a�b�d�a�b��

�
a
d�
�fv� # b

d�
�fv� � �k

�����
�
Y
v

��Y
j ��fv

��fv � �j�

Aval�v���

Marked points� Claim� the only e�ect of allowing marked points is that in
term �A�
 val�v� must be replaced by val�v� # �Sv Also
 the graphs considered
must allow extra tails
 corresponding to the markings

The last contribution �C� we need to consider is the contribution of the vector
bundles E in the three examples� trivial bundles
 twisted with suitable characters

���
Q
v��fv �

��Sv �
��� The exact sequence

� �� H��C� f�O���� �� �	�EdgeH
��C	� f�O���� �� �vO���pfv � C

val�v��� �� �

is used to obtain

Y
	 joining v��v�

�� Y
a�b���a�b��d�

a�fv� # b�fv�
d	

AY
v

���fv �
��val�v�

��� Similarly


� �� �v�O����pfv � C
val�v���� �� H��C� f�O�����

�� �	�EdgeH
��C	� f�O����� �� �

yields��� Y
	 joining v��v�

�� Y
a�b���a�b��d�

a�fv� # b�fv�
d	

A �
Y
v

���fv �
val�v���

���
�

The �nal sum is X
��

�

Aut�/%�
�A��B��C�

where /% are the graphs with tails �for marked points�
 and as mentioned above �A�
has val�v� # �Sv instead of val�v� if there are marked points

This is what Kontsevich writes
One hitch� we are doing integrals over orbifolds
 so we should not forget au�

tomorphisms of general elements �maps� The order of this group is ��Aut�/%�� �
�
Q
	�Edge d	�� we then need to divide by this
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Moral� If you can formulate your favorite counting problem as the computation
of the degree of a Chern class on a Kontsevich space Mg�k�Pn� d�
 you have a good
chance of reducing it to a sum over graphs This should at least enable you to
calculate the �rst few cases by computer Also
 physicists and combinatorists have
tricks to do sums over trees and graphs

Examples� First example
 d ! � Since d	 � � and
P

	 d	 ! d ! �
 we can
only have one edge There are � ways to distribute the � marked points
 and �
di�erent labelings� ������
 ������
 ������ For ������� let w� be the �ag at �
 etc So
w� ! �� � ��
 w� ! �� � ��
 and

�A�! �w��� ��S����w��� ��S��� ! �����S����
�B�! ��

��������
�

�����
�

�����
�all valencies are ���

�C�! ������S�������S� 
Total for �������

�

��� � ������� � ������ � ���
���� # ��� � �����

�
�� !

��� # ����

��� � ������ � ���

Now take the corresponding terms for ������ and ������
 and discover the nice
identity

��� # ����

��� � ������ � ���
#

��� # ����

��� � ������ � ���
#

��� # ����

��� � ������ � ���
! � �

the number of lines through � points
The second example
 for d ! �
 also involves trees with a single edge Carefully

evaluating each term gives the total

���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

��� � ��� ��� � ��� ��� � ��� ��� � ��� ��� � ��� ��� � ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

��� � ��� ���� # ��� ��� � ��� ��� � ��� ��� � ��� ��� � ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

���� # ��� ���� # ��� ��� � ��� ��� � ��� ��� � ��� ��� � ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

��� � ��� ��� � ��� ���� # ��� ���� # ��� ��� � ��� ��� � ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

���� # ��� ��� � ��� ���� # ��� ���� # ��� ��� � ��� ��� � ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

���� # ��� ���� # ��� ���� # ��� ���� # ��� ��� � ��� ��� � ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

��� � ��� ��� � ��� ��� � ��� ���� # ��� ���� # ��� ���� # ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

���� # ��� ��� � ��� ��� � ��� ���� # ��� ���� # ��� ���� # ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

���� # ��� ���� # ��� ��� � ��� ���� # ��� ���� # ��� ���� # ���

#
���� �� ���� # ��� ���� # ���� ���� # ���� ��� # ����

���� # ��� ���� # ��� ���� # ��� ���� # ��� ���� # ��� ���� # ���
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�

which simpli�es to ��	�
 the number of lines on a quintic threefold

��� Equivariant cohomology�P� Belorousski� ��������

The basic reference is �A�B�� also
 see �Ginzburg�

General theory� Let G be a compact connected Lie group
 and consider its
universal principal bundle EG �� BG Here EG is a contractible space
 with a
free �right� G�action �this de�nes it uniquely up to homotopy�
 and BG ! EG
G
One often works with �nite�dimensional approximations BGN 
 EGN �which can
be chosen smooth and compact�

Let X be a smooth manifold with a smooth left G�action The following is what
is known as the Borel	s mixing construction� Consider EG�X �on which G acts

freely by ��� x�
g
�� ��g��� gx�� and the quotients�

EG ����� EG�X ����� X��y ��y ��y
BG

�
����� �EG�X�
G

�
����� X
G

XG �! �EG�X�
G is the homotopy quotient of X by G

Definition� The equivariant cohomology of X is H�
G�X� �! H��XG�

The map � � XG �� BG is a bundle with �ber X� in the associated Leray
spectral sequence
 Ep�q

� ! Hp�BG�Hq �X�� !� Hp�q�XG� In our case
 BG will
be simply connected and we will work over C 
 so by K�unneth Hp�BG�Hq �X�� �!
Hp�BG� �Hq�X�

Also
 we have a pull�back map �� � H��BG� �� H�
G�X�
 which gives H�

G�X� an
H��BG��module structure We will write H�

G for the coe�cient ring H��BG� !
H�
G�pt�
The map � is not a �bration For x a point in X
 Ox its orbit
 ����Ox� !

EG
Gx ! BGx
 where Gx is the stabilizer of x If G acts freely on X
 then �
is a homotopy equivalence
 and H�

G�X� �! H��X
G� In this sense
 equivariant
cohomology can say something new only if the action of G on X is not free to start
with

We also have the �ber inclusion over the base point of BG
 i � X �� XG
 and
the corresponding pull�back map i� � H�

G�X� �� H��X� Finally
 we have the
push�forward �� � H�

G�X� �� H��n
G � and a pairing

h�� �i � Hi
G�X� �Hj

G�X� �� Hi�j�n
G

with n ! dimX

We can say a lot more in the case of the Hamiltonian actions on symplectic
manifolds�

Reminder� A smooth manifold X�n is symplectic if it is endowed with a form
� � +��X� such that

��� � is closed�
��� the symplectic volume form �n
n' is nowhere � on X
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This gives C��X� a Lie algebra structure
 with the Poisson bracket ff� gg ! df�g�
as the Lie bracket
 after identifying df with a vector �eld via � C��X� is an
extension of the Lie subalgebra Vect��X� � Vect�X� of vector �elds preserving �

An action of a group G on X is symplectic if it preserves the form � We can ask
more� the action of G on X gives a homomorphism of Lie algebras g �� Vect�X�

and we can require that there be a lifting

C��X�

��
g ��

��x
x

x
x

x
Vect�X�

If such a lifting exists
 the action is called Hamiltonian �or Poisson�

Theorem� If X has a Hamiltonian action of G� then the Leray spectral sequence
degenerates at the second term� As a consequence� H�

G�X� is a free H�
G�module�

isomorphic to H��X� �H�
G�

Also� the restriction map i� � H�
G�X� �� H��X� is surjective� Furthermore� the

pairing h�� �i is non�degenerate� so we have an isomorphism

H�
G�X�


�� HomH�

G
�H�

G�X��H�
G�

Thus if the action is Hamiltonian we may pick a basis fh�� � � � � hmg of the free
H�
G�module H�

G�X�
 and get that det�hhi� hji� � H�
G
�! C �since the pairing is

nondegenerate
 the determinant must be invertible�
We will look at algebraic actions of reductive groups Fact� they are all Hamil�

tonian

Classifying spaces� First
 take G ! C �  Then EGN ! CN�� n f�g
 and
EGN �� BGN is simply the factor map CN�� nf�g �� PN In the limit
 EG �� BG
is the map C� n f�g �� P�

We can think of EG as the complement to the zero section in the total space of
O���� over P� We get H�

C�
! H��P�� ! C ���
 where deg� ! �
 � ! c��O����

For G ! Tn ! �C � �n
 EG ! �C� n f�g�n and BG ! �P��n The coe�cient ring
is H�

Tn ! C ��� � � � � ��n�
 with �i ! c��Oi����
For G ! GL�n� the �nite dimensional approximation is EGN ! Fr�n�N�
 the

bundle of n�frames in C n over the Grassmannian Gr�n�N� ! BGN  In the limit

EG �� BG is Fr�n��� �� Gr�n��� H�

G ! C �s� � � � � � sn�
 where si ! ci�Sn�
 with
Sn the universal subbundle over Gr�n��� Of course deg si ! �i We can think of
the si�s as the elementary symmetric functions �up to sign� in the �i�s�

C �s� � � � � � sn� ! C ��� � � � � ��n�
Sn � si ! ����isi����

Important example� T ! Tn�� ! �C � �n�� �� GL�n# �� acting on Pn�

�t�� � � � � tn� ��

�� t� � � � �
  

� � � � tn

A
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Here EG sits as the complement to the zero section in E ! O������ � � ��On����
over �P��n�� The homotopy quotient PnT is PE So

H�
T �P

n� ! C ��� � � � � ��n� y�
�y
n�� # ync��E� # � � �# cn���E��

! C ��� � � � � ��n� y�
�y � ��� � � � �y � �n�

The base ring here is C ��� � � � � ��n� as seen above
 and the module structure is the
one obvious from the presentation

Next note that this action has �n # �� �xed points� pk ! �� � � � � �
k
� � � � � � ��

The inclusion ik � pk �� Pn is equivariant
 so we have a push�forward on H�
T � ��

�ik�� � C ��� � � � � ��n� �� C ��� � � � � ��n� y�
�y � ��� � � � �y � �n�

What is this map- It corresponds to the embedding P�Ok����� �� P�E� of the
projectivisation of the k�th copy of O���� over �P��n�� Now if

� �� S �� E �� Q �� �

is an exact sequence of bundles over X
 then P�S� �� P�E� is the zero locus of
a section of p�Q � OP�E����
 where p denotes the projection P�E� �� X So

�P�S�� ! ctop�p�Q �OP�E�����

Using this
 it is straightforward to compute the class of P�Ok����� and �nd that
under �ik��

� �� �y � ��� � � � ��y � �k� � � � �y � �n�

What about the pull�back

�ik�
� � C ��� � � � � ��n� y�
�y � ��� � � � �y � �n� �� C ��� � � � � ��n� -

Here �i �� �i for all i� as for the image of y
 the OP�E���� restricts to O��� on
P�Ok����� This says that y �� �k

The composition

�ik�
��ik�� � C ��� � � � � ��n� �� C ��� � � � � ��n�

is given by

� �� ��k � ��� � � � ���k � �k� � � � ��k � �n�

Remark� this is precisely the equivariant top Chern class of the �equivariant� normal
bundle of pk in Pn

Localization� Let T be a torus acting onX �assume that we are in the algebraic
situation for simplicity�
 and let XT be the �xed point locus The inclusion XT �
X is equivariant
 so we have a H�

T �module restriction homomorphism H�
T �X� ��

H�
T �X

T �

Claim� This map is injective� and its cokernel is H�
T �torsion�

Hence
 it is an isomorphism after localization at a suitable f � H�
T  Since T acts

trivially on XT 
 we get H�
T �X

T � �! H��XT ��H�
T 
 and hence

H�
T �X� �! H��XT ��H�

T

after a suitable localization
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Appendix� The computer program farsta�A� Kresch

I Purpose

�DF�I�� Look at examples

For simple varieties


Given associativity relations # several N �s


derive more N �s

farsta� Automate this process

To obtain farsta

Go to http���www	math	uchicago	edu�
kresch

follow the link to farsta

uncompress
 untar
 and compile by typing make

Documentation �view with more
 print with lpr�

farsta�documentation

farsta�examples

�F�P�� X
 rkH�X ! m# �

Get �m� � �m� # �m� � �m�
� associativity relations�

each is an equation of formal power series

Isolating coe�cients
 each associativity relation yields a family of
relations in N �s

What farsta can do�

� From description of H�X and KX 
 derive associativity relations

� Given associativity relation and particular degree


derive equation among N �s

� Substitute known numbers� solve if equation reduces to just one unknown

� Store linear relations
 and do linear algebra to solve for N �s
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II Example

X ! P�

H�X !ZhT�� T�� T�� T�i

�KX ! �T�

Relations�

� relations R��R�

Eg

�R��
�

�
i h

�

�
%��� ! %���%��� � %���%���

where

% !
X

a��b��c

N�c� a� b� ecy�
ya�
a'

yb�
b'
�

Equating coe�cients of e�y� y� y� yields

N��� �� �� ! N��� �� ��N��� �� �� �N��� �� ����

Same relation
 coe�cient of e�y� y���

�

�
N��� �� �� !

�

�
N��� �� ��N��� �� ���

From these equations
 the numbers

N��� �� �� ! �

N��� �� �� ! �

N��� �� �� ! �

determine

N��� �� �� ! �

N��� �� �� ! ��
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Computer�

�A P�

dimP�� � � ��

basis H��P�� � � �y� y� y� y�

rank H��P�� � � ��

complex� codimy�� � � ��

complex� codimy�� � � ��

enter classical potential function�

���� y� � y� � y� y� y� � ���� y� �

rank PicP�� � � ��

PDB �� in H��P�� � � �y�

TP� � tangent bundle on P�

int B �� c �TP�� � � ��

�R �

�� �������� � G y��y��y� � � G y��y��y�

G y��y��y� � � G y��y��y� G y��y��y� � �

�N � � � �

�N � � � �

�N � � � �

�E � � � �

Relation �� � � � � gives N������ � �

�E � � � �

Relation �� � � � � gives N������ � �
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III Exhaustive search
try lots of E�s

�A P�


 �enter description of P� ��


�N � � � �

�X � � � �

� � � tells the computer to try exhaustively�

 relations � through �
 �ie
 all�

 curve class �T� through �T�

Relation �� � � � � gives N������ � �

Relation �� � � � � gives N������ � �

Relation �� � � � � gives N������ � �

Relation �� � � � � gives N������ � �

Relation �� � � � � gives N������ � �

Relation �� � � � � gives N������ � ��

Relation �� � � � � gives N������ � ��

Relation �� � � � � gives N������ � ���

� � �
Relation �� � � � � gives N������ � �

IV Linear algebra�

�L�

tells the computer to keep linear relationships among N �s in memory

Recursively substitutes and backsubstitutes to determine more N �s

Necessary
 eg
 for G��� ���
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V Observations�

� Specifying cone of e�ective classes is unimportant �

farsta �gures it out and gives zeros for none�ective � �even w�o any input'�

� Can change canonical class to get new solutions

� Can work with H� of an orbifold � any ring with Q�Poincar(e duality works

� Choice of basis can have big impact on performance

VI Performance �on a Sun SparcSTATION ����

 G��� �� m ! � �� relations
deg ! �� �� �� � in �� seconds

�all� most

 Hilb� P� m ! � ��� relations

��� �� 
 �d�� d�� 
 ��� �� in � minutes�
��� �� 
 �d�� d�� 
 ��� �� in �� hours�
��� �� 
 �d�� d�� 
 ��� �� in �� hours

 G��� �� m ! � ��� relations
� basis of Schubert cycles

�� out of ��� d ! � N �s in � seconds�
		� out of ��� d ! � N �s in � minutes�
��	� out of ���� d ! � N �s in � hours�
����� out of ����� d ! � N �s in ��� hours

 G��� �� m ! � � Tom Graber�s basis

About �� percent faster

 G��� �� m ! �� ���� relations

�	� out of �		 d ! � N �s in � minutes�
	�	� out of ���� d ! � N �s in �� hours

 G��� �� m ! �� ��	�� relations

Can�t even get started
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VII Limitations

 No odd cohomology

 No free parameters �

numbers only �rational
 multi�precision numerator and denominator�

 Memory limitations �

Linear expression bu�er tends to �ll up

 Practical limit on m ! rkH�X � ��

m � �� usually �ne�

�� 
 m 
 �� questionable�

m � �� probably hopeless
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 Italy
cffaber�math	okstate	edu fantechi�science	unitn	it
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Department of Mathematics ICTP
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