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Preface

These are transcripts of notes taken at (some of) the lectures given at the
Mittag-LefHler institute during the first semester of the 1996/97 year on Enumer-
ative geometry and its interaction with theoretical physics. The first part of this
collection consists of notes from talks on the basics of quantum cohomology, as
developed in [F-P]. These talks formed the main body of the Tuesday seminar se-
ries at the Institute. The second part treats more advanced topics in quantum
cohomology, which were primarily addressed in the Thursday seminar series. The
third part consists of background material and related topics and contains material
from both of these two series. An appendix, kindly provided by A. Kresch, gives a
description of his C-program farsta for quantum cohomology computations.

These notes are meant as a series of snapshots of quantum cohomology as seen
by the speakers at the time of their lectures. The reader should bear in mind that
quantum cohomology is a growing and rapidly changing field; as any snapshot of
a moving target, these notes are unavoidably a little blurry. Many of the writeups
have been left in the form of the original talks, which were usually more concerned
with giving motivations and a point of view, rather than conveying detailed proofs
or attempting to survey the considerably extensive literature on the subject. Also, a
glance at the references will show that many of the talks were based on preliminary
(and hence not yet refereed) versions of papers on the subject. The published
versions of these papers should be consulted for the definitive statements of the
results, for the details of their proofs, and for more references.

Most of the notes were taken by myself. Missing and complementary notes were
contributed by P. Belorousski, C. Faber, B. Fantechi, W. Fulton, and S. di Rocco,
all of whom are warmly thanked here. Many thanks are due to the speakers, both
for preparing and delivering the talks, and also for glancing through a preliminary
version of these notes and suggesting a number of corrections. Some of the speakers
took the trouble of reworking the files for their talks themselves, and deserve a
particular note of gratitude both for saving me a great deal of work and for infinitely
improving the final result.

[ am very grateful to the organizers of the wonderfully successful 1996/7 year at
the Mittag-LefHer institute, and to NSF for partial support (under grant #9500843)
during the preparation of these notes.

A preliminary version of these notes appeared as Mittag-Leffler Report No. 10,
1996/7.

Paolo Aluffi
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1. INTRODUCTION—P. BELOROUSSKI, 9/10/96 1

Part 1
Stable Maps and Quantum Cohomology

1. Introduction—P. Belorousski, 9/10/96

The aim is to go rather carefully through the definition of the quantum coho-
mology ring QH*(X) of a variety X (satisfying suitable hypotheses). This is a
ring supported on H*(X) ® Q[[y]], where y stands for a set of variables, and whose
product is defined to reflect sophisticated enumerative information about X. The
definition of this product relies on Gromov-Witten invariants, obtained by pulling
back classes from X to suitable moduli spaces and intersecting them there. One
of our main objectives will be to state precise assumptions and results about the
existence and properties of these moduli spaces, postponing the proofs of these
properties till after we have seen some enumerative applications.

We will be following [F-P] rather closely. The paper combines Fulton’s notes on
quantum cohomology [FultonSC| and Rahul Pandharipande’s notes on the moduli
spaces of stable maps; it is organized as follows:

0: Introduction;

1-6: Construction of the moduli spaces of maps; proof of the properties;

7: Gromov-Witten invariants;

8: Definition of quantum cohomology;

9,10: Applications to enumerative geometry and more.

We will go through 0, then jump to 7-10 extracting properties from 1-6 without
proof, then go back to 1-6 and the proofs of those properties.

Background on moduli problems. One seeks to represent a contravariant
functor F : (Schemes) — (Sets) associating to each S the set F(S) of equivalence
classes of families of a certain kind of objects over S.

In the strongest possible sense, one would look for a Fine moduli space, that is a
scheme X equipped with a universal family U — X and representing the functor.
That is, “every” family of the prescribed objects would be obtained by pull-back
of U from X.

This requirement is in general too strong. For example, the functor M, for
smooth genus-¢g curves does not have a fine moduli space.

The Coarse moduli space would be a scheme Y with a natural transformation
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from the functor F' to the functor hy = Hom(—,Y), such that
(1) F(SpecC) = hy(C) as sets; and
(2) Y satisfies the universal property of mapping uniquely to any other candi-
date Z (so that there exists a factorization F' — hy — hy).

Coarse moduli spaces for interesting objects do exist: e.g., M, has a coarse
moduli space M, (of dim. 3¢ — 3 for ¢ > 1).

We will deal with a whole hierarchy of moduli spaces, prescribing points on
the curves (M, ); or parametrizing maps of curves to a given X and satisfying
properties as detailed in the next lecture. We will construct and study good com-
pactifications of these moduli spaces.

2. Stable maps—T. Graber, 9/10/96

Defining the product in the quantum cohomology ring will require counting ob-
jects of the form (C, p1,...,pn, f) where C is a smooth curve of a given genus, p; are
prescribed smooth distinct points of C', and f: €' — X is a map such that f(p;) €
prescribed loci, and f,[C] = prescribed € A;X. Quantum cohomology can be
used for example to compute the number of degree-d rational curves in X = P?
which contain 3d — 1 general points.

The general plan for these computations is the following;:

(1) Construct a compactification of the appropriate moduli space;

(2) Do intersection theory on that space;

(3) Use this to define QH*(X) and solve enumerative problems.

DEFINITION. An n-pointed quasi-stable curve of genus ¢, (C, p1,...,pn), will be
a projective, reduced, connected, at worst nodal curve C', with h1(O¢) = ¢, labeled
with n marked distinct smooth points p;.

A family of n-pointed quasi-stable curves over a scheme S will be a flat, projective
map C — S with n sections p1,...,pn: S — C such that each geometric fiber
(Cs,p1(8),...,pn(s)) is quasi-stable. A family of maps to X will be a map C — X,
and isomorphisms of families are defined in the obvious way respecting the data
(and inducing the identity on the base space).

DEFINITION. A stable map of an n-pointed quasi-stable curve to X consists of
the data (C,p1,...,pn, f) where (C,py,...,py) is as above, and f: C — X is such
that

(1) all smooth irreducible rational components contracted to points in X have
at least 3 ‘special’ points; and

(2) all irreducible genus-1 components contracted to points have at least 1 spe-
cial point.

Here ‘special’ means either marked, or on the intersection of the component
with the closure of its complement. Condition (2) is nearly vacuous, in that it is a
restriction only on 0-pointed, genus-1 curves which map to a point.

The definition is devised so that every f : C' — X will have only finite auto-
morphism group (where the notion of isomorphism of stable maps is defined in the
obvious way).

We work over C. The following theorems will be proved in these lectures:
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THEOREM 1. For any projective algebraic scheme X and every 3 € A1 X there
exists a coarse (compactified) projective moduli space, denoted M, (X, ), para-
metrizing stable maps (C,p1,...,pn, f) (with C of genus g) such that f[C] = 3.

For the moduli space to be reasonably well-behaved, some condition on X is
required.

DEFINITION. A smooth projective variety X is called conwvez if for all maps
f:P'— X, H'Y(f*Tx)=0.

Important example: all homogeneous spaces are convex; so projective spaces,
Grassmannians, flag manifolds, etc. are convex. (To see that homogeneous —
convex: if X is homogeneous, then T'X is generated by global sections, so f*TX is
generated by global sections in P1; writing f*TX = ¢&O(d;), we see all d; > 0, and
this implies that there is no H'.)

THEOREM 2. If X s a smooth projective convex variety, and 3 € A1 X, then
Mo (X, ) is a variety of pure dimension

dim(X)—l—/ﬁcl(TX)—l—n—?)

(if nonempty), with at worst finite quotient singularities.

THEOREM 3. The general element of Mo (X, 3) does correspond to a map of
an irreductble curve. The locus corresponding to reducible curves 1s a divisor with
normal crossings (up to finite quotient singularities).

Note: a priori, Mg (X, 3) might be disconnected. The above statements hold
for every irreducible component; these are necessarily disjoint. For X homoge-
neous, it can be shown that My (X, 3) is in fact irreducible (Kim-Pandharipande,
[Thomsen]).

EXAMPLES. —The simplest example in all X: 3 = 0. In this case, M, ,(X,0) =
X XMy,

—1If X is an abelian variety (so it contains no rational curves), then My (X, 3) =
0 unless 5 = 0.

—M, (P, 1) = G(1,7), the Grassmannian of lines in P". Indeed, there are no
marked points, so no reducible curves can map stably in the above sense.

—M,1(P7,1) = data of a line in P", with a marked point. Again, no component
may contract because there aren’t enough marked points. So Mg 1(P",1) is the
tautological line over G(1,r).

—M, o(PP?, 2) recovers the space of complete conics. Indeed, the general element
is a smooth conic (up to automorphisms, a smooth conic has a unique parametriza-
tion); this can degenerate to a pair of lines, parametrized by a pair of intersecting
lines in the obvious way; if the two components of the domain map to the same
P! in P? we get a double line with a marked point (corresponding to the image of
the intersection of the two components); and finally we find double lines with two
marked points, arising from double covers (ramified at the two points).
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3. Gromov—Witten invariants—J. Thomsen, 9/24/96
We work over C. For X a scheme, § € A1 X, and ¢g,n > 0, we have the functor

My (X, ) from Algebraic Schemes to Sets, defined by

stable families of maps over S

M, (X, 8)(S) = < from n-pointed, genus-¢g curves to X,
which represent (3

/isomorphism

A stable family as above will be denoted (7 : C — S, {p;}i<i<n,pt : C — X); here
(i) 7:C — S is flat, projective;

(ii) p; : S — C are sections, 1 < i < n;

(iii) each geometric fiber of w, m, : Cs — {s} is a connected, nodal curve of arith-
metic genus g and marked with distinct nonsingular points p1(s),. .., pn(s);

(iv) Vs € S, ps : Cs — X is stable: contracted genus-0 components have at least
3 ‘special’ (marked or singular) points; contracted genus-1 components have
at least 1 special point;

(V) \V/S € S? /“LS*[CS] - ﬂ

From now on, X is taken to be projective. We will assume the following results:

THEOREM 1. There exists a projective coarse moduli space My (X, [3) for the
functor M, (X, ).

THEOREM 2. Assume X is nonsingular and conver. Then Mo (X, ) is a fine
moduli space for Mo (X, ) away from curves with non-trivial automorphisms.
More precisely:

(i) Mo n(X,3) is a locally normal projective variety of pure dimension
dim X + / a(Tx)+n—3
B

(if nonempty);

(i) Mo (X, 3) is locally a quotient of a nonsingular variety by a finite group;

(iii) The closed points in My (X, 3) corresponding to irreducible curves form a
dense open subscheme My (X, 3) of My (X, 3);

(iv) There exists a nonsingular fine moduli space H;n(X, 3) for automorphism-
free curves;

(v) M;m(X,ﬂ) is an open subset of Mo (X, ) (dense if n > 3);

(vi) If Mo n—1(X,B) # 0, then there exists a map Mo n(X,3) = My n—1(X, )
‘forgetting’ the first point. For s general in Mo ,—1(X, ), Cs = 771(s) 1s
the curve corresponding to s, and the composition Cs — My (X, 3) 2L X

18 the corresponding map to X, where p; denotes the ‘evaluation map’ at
the first point.

The evaluation maps p;, 1 < ¢ < n, are defined as follows. To give maps
pi: Mo n(X, ) — X amounts to giving natural transformations

ei : Mo,n(Xvﬂ) - HOIH(*,X)
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at a set S, 6;(5) sends a stable family over S:

c " . x

|

S

with sections pq,...,pn, to the composition

For S = SpecC, that is for a single stable curve C', this simply evaluates the map
pto X at p; € C.

For a permutation o € S,,, there is an automorphism of My (X, 3) interchanging
the points:

M07n(X, ﬂ) ﬂ) Mo,n(Xv 6)

This is induced by the natural transformation sending a family

c " . x

|

S

with sections pi,...,pn, to the same diagram but with sections py(1),. .., Po(n). It
is clear that

Poti) = pi© Z(0)

From now on, assume X is projective, nonsingular and convex.

DEFINITION. (Gromov-Witten invariants.) Given f € A1 X, and v1,...,v, €
A*X (the operational Chow ring; fA will denote evaluation at A € A,), define

Lt = [ g U upiin)
MO,n(Xvﬁ)

REMARKS.

(1) If the +; are homogeneous, Ig(v; - -+ 7,) = 0if ). codim~; # dimMom(X, B);

(2) Due to the presence of the S,-action on HOW(X, B), Ig(y1 -+ 7vn) is invariant
under permutation of the v,’s.

LEMMA. Assume X is homogeneous: X = G/P; and I'y,....I'y, C X (n > 3)
are subvarieties, such that Y codim(T';) = dim My o(X,3). Then for a general
o=1(g1,...,9n) € G", the scheme-theoretic intersection

pr (iT) NN p (galn)
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consists of reduced points supported on the locus My (X, 3). Further, the number
of points in this intersection equals Iz(I'y---T'y,).

PrROOF. This follows from judicious use of Kleiman-Bertini [Kleiman]. Let G
be a connected algebraic group, and X a homogeneous G-variety, Y, Z varieties

mapping to X:
Z

l“’
vy -4 x

For o € GG, denote by Y7 the image of the composition Y I X % X. Then

(1) There is a dense open subscheme G° of G such that, for 0 € G°, Y7 xx Z
is either empty, or of pure dimension

dimY +dimZ —dim X

(2) Further, if Y and Z are nonsingular, then G° can be found so that Y7 x x Z
is nonsingular.
This is used four times in our proof of the Lemma. Notations: I' = I'y x -+ x I'y;
I'° C T is the nonsingular locus; [y is the singular locus of I'; My (X, 3)° is the
complement of My (X, 3) in My (X, 3). Four applications of [Kleiman):

(D Mon(X. )
l(ﬂlw'wﬂn)
r —— X"

for a general ¢ € G™, T'? X xn Mg (X, ) is either empty, or of dimension 0;

(II) Mo,n(Xvﬂ)
Psing I X"

for a general ¢ € G", I'],

hence, it is necessarily empty. That is, we may assume that I' = I'° is nonsingular;

x xn My (X, 3) is either empty, or of dimension < 0;

(I11) My (X, 5)°
r —— X"

for a general 0 € G", I'7 xxn My (X, 5)¢ is again empty, or of dimension < 0;
hence, empty. So the intersection is supported on My (X, ). Finally

(V) Mo n(X, )

|

PO N XTL
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for a general 0 € G™, I'°? X xn My (X, ) is smooth, hence reduced, of dimension 0
(if nonempty).
Summarizing we have that, for a general o = (¢1,...,9,) € G,

P (D) NN pn (gal0) = T7 X x0 Mo o( X, 5)

is reduced, of dimension 0, and supported on the nonsingular subset My (X, 7).
To see that the number of points in this intersection equals Ig(Tl -T'), observe
that we have the fiber square

lol_l(glrl) -0 p;l(gnrn) — Mo,n(Xvﬂ) x I'?

l l

Mon(X,5) EEO T (XL B) % X7

with the bottom line a regular embedding, of codimension n dim X. As the dimen-
sions match, and as p; ' (g1T1) N -+ N py L (gnT'n) is reduced,

o7 (D) N0 p (g ln)] = ' (Mo (X, 3) x I7)

where i' denotes the gysin map. On the other hand, i'(M (X, 8)xT7) = (g1 Ty x
- X gnI'y ), where 1 is the composition

n(X,5)]

A(X)P  AL(X™) 25 AT(X7) £ A (W (X, 3)) D0n AL, ST L (X 8)

Tracing the definition, ¢)(¢g1T'1 X -+ x ¢,I'y) equals Ig((¢g1T1)Y - - (915 )"); finally,
[[;] = [¢:T';] and the result follows. O

The Gromov-Witten invariants satisfy a number of general properties. For ex-
ample: assume X is homogeneous, and v, € A'(X) and n >4 (or n > 1if 8 # 0).

Then
Ts(yr---ym) = (/ﬁ 71) Is(y2 -~ 7n)

p1 xforget.
_

Indeed, consider ¢ : Mo (X, 3)
Ox[Mo,u(X, B)] = 8" % [Mon-1(X, 8)] + a

where a dominates a proper subset of My ,—1(X, 3). (Here we use that X is homo-
geneous, so that A,(X x Hom_l(X,ﬂ)) = A(X)® A*(Hom_l(X,ﬂ)).) Pushing

forward doesn’t change degrees, so

X X My n-1(X, B); then write

Ls(y1 ) = /_ pH(1) U U ot ()
/ 1 % (p3(2) U U pi())
¢* MO n(X ﬁ)

/ 3 (p3(3) U+ U i)
B'x[Mo n—1(X,8)]+

(/ 71> p3(y2) U U ph(vn)
B’ [Mo,n—1(X,8)]
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by the projection formula: « is killed after push-forward to My ,,—1(X, 3)

:<//71>Iﬁ(72"'7n)

Now the claim is that 3’ = 3. To see this, consider a generic point pt = (C,pa, ...,
Pn, 1) of Mo n—1(X,3). Using Theorem 2(vi) we get the fiber diagram

C — Mo,n(Xvﬂ)

(mpt)l l(é

X x{pt} —— X x My n—1(X,0)

| |7

pt}  ——  Myu(X,5)
For a generic pt, j is a regular embedding. Therefore
7 0u[Moa(X, 8)) = (1, pt)3 [Mo,a(X, 8)] = (1, p1):[C) = B x {pt}
on the other hand,
70 [Mo,n(X, B)] = 51 (8" % [Mo,n1 (X, B)]+a) = 518" < [Mo,n-1(X, B)]) = 5> {pt}

(no contribution from «, since it will miss a general pt). Hence 8 x {pt} = 3’ x{pt},
as needed.

4. Associativity of the quantum product—K. Ranestad, 10/1/96

Usual notations: X is a variety, § € A;(X), v; € A*(X), p is a map from
P! to X, or from a tree of P's; py,...,p, are marked points, p;(x) = u(p;) for
* € M07n(X,ﬂ).

Conditions on X:

(1) X is smooth, projective, convex (that is: Vu, R (P!, u*Tx) = 0);

(2) the Chow and topological homology theories of X are isomorphic;

(3) the effective cone in A1 (X)is {38 a;3;i : a; € Z>o, B; in the form p,[P'}.

The Gromov-Witten invariants are the intersection numbers

Iﬁ(’yl---vn):/ pi(v1) U= Uprlyn) €Z
MO,n(X76)

We will need two properties of these numbers; a third one was stated and proved
in Thomsen’s lecture:

(1)if # =0, so Mom(X,O) = Mo,n x X, then Iy(y17273) = fX ~v1 U~z U~s, and
Io(y1 -+ -n) =0 for n > 3;

0 n>3orF#0

fX ~v2 U 3 otherwise
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Both of these follow easily from the projection formula.

We can write the classical intersection product in a fancy way, using these nota-
tions. Pick generators Ty = 1,T7,...,T,, for A*X, set g;; = fX T; UTj, and let g%
be the inverse matrix of ¢;; (the inverse exists by Poincaré duality, and since by as-
sumption (2) we have no torsion). Via the isomorphism A* (X x X ) = A*X ® A*X,
the class of the diagonal A C X x X is

[A]=) ¢"T 0T,
Denoting by p1, p2 the two projections, we have then
T, U T]‘ = pz*(pT(Ti U T]‘) U A)

=po | Y (TIUT;UT.) @ g/ Ty
e.f

:Z(/XTiUTjUTe>gefo
e, f

=Y I(TTT.)g ' Ty
e, f
With this understood, set for v € A* X:

1 n
sv) =) 3 > Is(y™)
n>3 B
Writing v = >, y; T}, this expands to

no
o= Y D LT T
ot tnm>3 B 0- Nm -

LEMMA. This is a power series. In fact, for given n, Ig(y™) is nonzero only for
finately many (3.

PROOF. This uses assumptions (1) and (3) on X. Since X is convex, we have
RY(u*Tx) = 0 for all maps p from P! to X. Writing p*Tx = G XO(d;) and
perhaps composing first x4 with a cover of P!, we may assume all d; > 0. Also,
for p.[P'] # 0, the differential dy : T — p*Tx is injective, so at least one d; is
> 2. Representing an effective J as a nonnegative combination of push-forwards
of PVs, we see that fﬁ c1(Tx) > 2. Also, as the effective cone is finitely generated
we see that for a given NV there are only a finite number of effective § for which
fﬁ c1(Tx) < N. But if I3(y") is nonzero, then dim X + fﬁ a(Tx)+n—3 =
dimMom(X,ﬂ) <n-codimvy < ndim X, and this bounds fﬁ a(Tx). O

Now we define the quantum product *. Consider the third partial derivatives
PR AL
=
Y 0yi0y; Oy

o 4 m
0

= Z Z Iﬂ(TOnO . T:QmTlT]Tk)i ' Ym

o
. N+
noteAnm>0 0 m

= % Y L("TTT)
E

7
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a power series in Yo, ..., Ym; we set
Ti *T] = Z¢ijegefo - A*X®Q[[y0,,ym]]
e, f

This product is clearly commutative, and has Ty = 1 as unit by property (2) of the

Ty + T} —quo]eg eSS ‘ZI[” 17T, )9 Ty

e,f n>0

= LOTT)g Ty = (/ T; U Te> g Ty
e f X

ef
— T =1T
Gjed f
e, f

Associativity of x. The quantum product defined above is associative. To

mvariants:

check this, first write out what it means:

(T Ty« T = | Y bijeg™ Ty | * T = Y bijeg™ 6 1eg®Tu
€7f e,f,c,d

T;+ (T + Ty) = Z%kd] = Y Gikeg Gireg™'T
e7f7c7d
That is, setting
Z]|k£ Z¢z]eg ¢fk£ )
e, f
we need to show that
F(ig|kt) = F(jkl|il) v
Expanding;:
N 1 n (& n
F(ij|kt) = > —— 15, (Y T T ) g I, (v Ty T Te)
nq. TLQ
61762;ni20;0§e7f§m

Now, the boundary of M = M ,,(X, 3) consists of irreducible divisors D = D(A, B,
B1, PB2), where AIIB = {1,...,n}, and 81 4+ 2 = . The general point of this divisor
has a description similar to the case of My, (see §3), by glueing stable curves at a
point. More precisely,

D = My augey(X, 1) xx My pugey(X, B2)
when A # (), B # (), with obvious notations. Setting M 4 = M07AU{.}(X, £1),

etc. we have the diagram

M 2 D ;MAX@MB

T |

! -/
(3

xXn o Xn—l—l Xn—|—2
with the right square a fiber square. Chasing this diagram gives:
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LEMMA.

i (p7(71) U= U ph(7m) def (H Pa(va)Pe(T. ) (H P () P.(Tf)>

acA beB
Now fix g € A; X, 71,...,’yn€A X, integers ¢,r, s,t in {1,...,n}, and put
Glgr|st) = > Lo, (] % Te)o T, (]| T)
e,f;81+82=8;AIB={1,...,n};q,r€A;s,tEB a€A beB
By the Lemma,

Glyrlsty =Y / P U= U gt () = / pH(31) U= U ot ()
D(A,B;$1,82) D(qr|st)

where we denote by D(gr|st) the sum of the relevant boundary divisors.
Now for the key observation: denoting by = the composition of the forgetful
maps
M07n(X,ﬂ) — MOW — MO,{q,r,s,t} = [Pl
one checks that D(qr|st) is the inverse image via 7 of the divisor of My (4.1
corresponding to the partition {q,r} U {s,t} (the convexity of X is used to show
that all components in the preimage appear with multiplicity one). In particular,

D(qr|st) = D(rs|qt)

up to linear equivalence, since this equality holds in My ¢, . 13 & P!; and therefore

G(qr|st) = G(rs|qt)
for all v1,...,vn. Setting all but 4, v,,vs,7: equal to v, we have by definition

n—4 — . e
G(qr|3t) = Z ( >Iﬁ1(7 1 qu,ere)g fIﬁ2(7 2737tTf)
n, — 2
e, fini+na=n;n;>2
or, by a shift of the indices:
1 "
G(QT|8t) = (TL — 4:)’ Z nlln ’Iﬂl ("y YqVr T ) fIﬁ2(7 2787tTf)

e, fini+na=n—4;n,;>0
Therefore, the equality of G’s says

1 . N
Z nq'ns ;Iﬁ1(7 7q7rTe)g fIﬁ2(’Y 273%5Tf)
e,fini+ns=n—4;n;>0
1 . N
- Z ! ;Iﬁ1(7 %%Te)g fIﬂ2(’Y 27q7tTf) ;
HARILD)

e,fini+na=n—4;n;>0
setting v, = T}, v» =T}, vs = Tk, 7¢ = T¢ and adding over n:

1
Z —— 1y "TTT. )9 15, (v Ty Tu Ty )
ny. TLQ

e,f;n17n2>0

1 N . .
= > ﬁfﬁl(v VT TR T g I, (v T T Ty)
1.2,

e, fim1,m2>0
and finally, adding over all g + 3 = 3:
F(ij|kt) = F(jklil)

as needed. O
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5. Applications of QH* to enumerative
geometry—S.L. Kleiman, 10/8/96

Claude Itzykson, in memoriam

The main reference for the following material is [F-P], especially §9; a secondary
reference is [DF-I]. The material is organized into these sections:

—=61. Gromov-Witten invariants
—82. The potential

—=63. The projective plane

—b84. Feynman diagrams

—=&5. Surfaces in general

—=66. Del Pezzo and Hirzebruch surfaces

§1. Gromov—Witten invariants. Let X be a smooth irreducible projective
variety. If X is, in fact, the quotient G/P of a reductive group G by a parabolic
subgroup P, then X is convex and its singular homology H,.(X,Z) is algebraic.
As we have seen, it follows that there are good moduli spaces M = M (X, 3) of
marked Kontsevich-stable maps, and that X has an associative quantum cohomol-
ogy ring QH*(X ). Later (in §5) we’ll see that conversely, at least for surfaces, if X
is convex and H,(X,Z) is algebraic, then, for all practical purposes, X = G/P.

Let 3 € A1 X := Hy(X,Z). The moduli space M parameterizes maps of class 3:

C = P! or a tree of Pls,

M:= S (C 5 Xipi,....pn) | 1a[C] = B, pi €C, /isom
and p 1s Kontsevich-stable

The ezpected dimension of M is

exp. dim(M) =dim X + / a(TX)+n-3.
Jé]

Moreover, there are evaluation maps p;: M — X, which take an element of M as
above to p(p;). Note that, if M is nonempty, then 3 is effective; that is, [ is the
class of the image of a tree C' of Pls.
Let v1,...,vn € A*X := H*(X,Z). The corresponding Gromov-Witten invari-
ant 1s
0 unless [ is effective and
Ig(y1 - n) i= ’ > dim y; = exp. dim(M );

Jopiri U Uphya, if so.
Here ¢ is the fundamental class of the moduli space: ¢ := [M] if X is convex; ¢ is
the ‘virtual fundamental class’ otherwise [Li-Tian], [B-F] and [Behrend] (see §6 for
some examples). This class may even be fractional.

At least in the case X = G/ P, we have

Is(vi--m) = #(p7 ' TN~ Np, Ty,
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where the I'; are representatives, in general position, of the Poincaré duals to the
vi. In other words, I3 is the number of pointed maps p such that p,[C] = § and
pp; € T;. Moreover, the intersection on the right consists of general points of M.
In particular, the corresponding C' are each equal to P!. Now, it may be that the
general map g is not birational onto its image. For example, this is the case if
X = P! and 8 = d[X] with d > 2, or if X = P! x P! and 8 = d[ruling] with d > 2.
However, if the general map is not birational, then the intersection would not be
finite unless it’s empty; hence, it’s empty, and Ig(7y1 ---75) vanishes. Thus Iz is
the number of irreducible rational curves in X (= G/P) of class  meeting the T';.

In general, the Gromov—Witten invariants possess the following three properties:

0 In( )_{O, ifn > 3;
o\ )= fX’YlU’YQU’Y;;, 1fn:3

0, if n>3orp#0;
Tn) =

(10 s fX’yQU’yg, ifn=3and g =0.

If v, is a divisor class (v, € A'X), then

(11T) Ig(y1y2 - yn) = (/ﬁ 71)1/3(72 T Tn)-

§2. The potential. The potential is defined by the formula,

IED I DT ACO!

n>3 f

Take a graded basis of A*X with T, = 1, with Ty,...,T, € A'X, and with
Tpt1,-.., T of higher degree. Write v = > y;T;, and use the linearity of Ig
to expand P:

no n

§ E ’ Y Ym "
(I)(y07'-'7ym): Iﬁ(TOnO...Tan)nO'...nm"
not-tn, >3 3 0 m

The right-hand side is a well-defined formal power series in Q[[y]] if, given ", we
have Ig(~4™) = 0 for almost all 3. For example, this is the case if the effective classes
lie in the cone generated by finitely many /3 such that fﬂ c1TX > 0 (which is the
key ingredient in the first lemma in the preceding lecture of Ranestad’s). This
condition is satisfied if X = G/P, or more generally whenever —Kx := ¢;TX is
ample. However, this issue becomes unimportant when ® is modified as described
next (see [G-P, §2]).

Break up the potential into two pieces, ® = ®° 4+ ®4'™  where &, the classical
part, is the contribution due to the condition 3 = 0, and where ®7'™, the quantum
correction, is the contribution coming from all nonzero 3. Property (I) of §1 yields

q)cl_i 3 _ Z TnoU...UTnmﬂ Yl
TJX not-tn,=37X ' me
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Since the quantum product * (recalled below) involves only the third derivatives of
&, we may modify ® by terms of degree at most two. So (I)—(III) imply that we
may replace ®4'™ by

P p41 n

i, T\ Yptl Ym"
Te= > > Is p"ﬁl---mw(lle”ﬁ ) T T
m!

n .
Mpsr g 23 B0 i=1 e

which is a formal power series in y,41,...,ymn and in new variables e¥',... e
(with appropriate derivatives) and in their inverses. The product [[%_; eJsy may

be abbreviated to e/ 7 as only the T; in A'X give nonzero contributions to the
integral.

PP
Set @, 1= m, set (g¢7) :=(gey) ™! for gey = Jx Te U Ty, and set
Ti * T]‘ = Z(I)ijegefo-
e f

It is immediate to check that this quantum product * is commutative, with unit 7.
It’s far less obvious that * is associative; see the preceding lecture for a proof.

§3. The projective plane. As a first example, which is simple yet gives the
general flavor, let’s work out the above theory for X = P2 Let Ty, T}, and T3 be
the classes of X, a line, and a point. Say # = dT} and set ¢ := %(d —1)(d —2).
Then

I3(T,"?) = the number Ny of é-nodal plane curves through ns points

=0, unless ny = 3d — 1.

For instance, Nj is simply the number of lines through two points, namely, 1
Remarkably, all the other Ny follow formally from this one! (This fact was noted
by Kontsevich first, according to [DF-I, p.82], and it has inspired the determination,
via quantum cohomology, of a lot of new geometric numbers.)

With the above choice of the T;, we find

1 1 y2d=1
cl _ ~. 2 - 2 dy.  J2
P —2y0y2—|—2y0y1, and I' = ZN@ Bd 1)
d>1
Moreover, we have
0 0 1
(ge) =0 1 0] =(g).
1 0 0

Hence, T; x T; = ®;;2T5 + ;111 + ®ij0T%. Therefore,

Ty+«Ty =T+ DTy + T To,
T+ Th = INTIVATE S RTTV AR
Ih +Th = Dooi Ty + D'a2aTh.
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Straightforward computation now yields the formulas,

(Ty *«Ty) « Ty = (Taoa + T'1110122)To + - ..
Ty« (T +Ty) = FiolionTo ...
So associativity implies the equation,
Po22 + T111T22 = Thialas.
Differentiating I', we find

3d—4 3d—3
Y Y
Toop = ) Nge®r 22 Tion = S dNjedvr 92
222 ; 1 Bd— ) 122 ; 1 Bd—3)
~ 242 ~ oyl
r — BNty 22 T — BN el 22
v = ' Nee (3d—2)p "M 2 A Nae (3d—1)!
d>1 d>1
Multiplying, we get
] yld—t
2 2 2 Y1 2
Tho=), D, diNadiNac (3d — 2)l(3d — 2)I"
dZZ d1+d2:d
y2d—t
INTRIRTO d3 Ng,dy Ny, e™ 2 :
111l 122 Z Z 14Vd, 024V d,€ (3d — 1)!(3d— 3)!
dZZ d1+d2:d

Finally, equating coefficients yields Kontsevich’s celebrated recursion formula,

(3d — 4)! (3d — 4)!

(3d—2)1(3d —2)! dids (3d—1)!(3d —3)!|"

Ne= > NuNa [dfdg
d1+d2:d

The following table gives the first five values of the number Ny of rational plane
curves of degree d (with ¢ nodes) through 3d — 1 points:

d 1 2 3 4 5)
Ng 1 1 12 620 87304
6 0 0 1 3 6

3d—-1 2 5 8 11 14

The first three values of N4y have been known for a long time. The fourth was
found (after a lot of work) by Zeuthen in 1873. The fifth number was found as
above by Kontsevich in December 1993 (it had already been found implicitly via
more traditional means by Ran and by Vainsencher).

Along the same lines, we can work out the cases of P? and of the quadric threefold
@? in P* (the details are found in [F-P, §9]) and the case of the point-line incidence
variety I? in P2 x P? (the details are found in [DF-I, pp.125-29]). It is also possible
to handle conditions of tangency by using the associativity of an appropriate gen-
eralized quantum cohomology ring. This was done to some extent by Di Francesco
and Itzykson in [DF-I, pp.103-105]) and in full by Ernstrém and Kennedy in [E-K].
On the other hand, Pandharipande [P] worked with conditions of tangency by using
intersection theory on Mg ,(P") without the power of associativity.
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§4. Feynman diagrams. Feynman diagrams can be used as an effective mne-
monic device for writing down the associativity equations efficiently. The sum,

Z ]|k Z Zq)z]eg (I)fklv

is represented by the diagram,
i I

J k

Heuristically, 2 and j are coupled on the left, and k£ and [ are coupled on the right.
Each couple can be in a number of intermediate “states,” which are indexed by
e and f, and quantified by ®;;. and ® ;. Each pair of states is correlated by a
“propagator,” which is represented by the horizontal link, and quantified by ¢¢/.
The total “4-point correlation” is represented by the diagram, and quantified by
the above sum F(i,j|k,1).

The same 4-point correlation can be decomposed in a second way into a complete
set of intermediate states. The corresponding diagram is

j k

So the corresponding sum is F(y, k|/,7). In physics, the duality relation of topolog-
ical field theory is symbolized by an equation, with the first diagram above on the
left and the second on the right. This duality relation corresponds to the following
associativity equation:

A, g, k1) F(i,jlk, 1) = F(3,k|l, 7).

(This differential equation was called a WDVV equation after E. Witten, R. Dijk-
graaf, H. Verlinde and E. Verlinde by B. Dubrovin.) Every associativity equation
arises in this way for suitable values of 7,5, k,I. However, many of the equations
are equivalent, and others are trivially satisfied, as we’ll now see.

The ®;;, are symmetric in ¢, j, ¢, and the ¢¢/ are symmetric in ¢, f. So a simple
formal calculation yields the following equivalences of equations:

AGi g kD) = Ak, 1L6) = Ak, Ld, ) = A(Li,j, k) =
AGi Lk, ) = A, 1L k) = Ak, j,6,1) = A(L k, j. ).
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To obtain each of these eight equations, pick one of the four indices and read
progressively around either one of the above diagrams either counterclockwise or
clockwise.

Similarly, there are two more groups of eight equivalent equations, and they
correspond to the following two duality relations:

- =< X

If all four of ¢, j, k, [ are distinct, then there are twenty-four possible equations,
and they divide into the above three groups of eight equivalent equations. If only
three indices are distinct, say ¢ = j, then there is, up to equivalence, only one non-
trivial associativity equation A(¢,¢, k, 1), and it corresponds to the duality relation,

i |
i |
i >—< k
i k
The equations of the other two groups are trivially satisfied because of the symmetry
of the ®;;.. If only two indices are distinct, say ¢« = j and k = [, then there is again,

up to equivalence, only one nontrivial associativity equation A(e,¢,k, k), and it
corresponds to the duality relation,

[ k
i k
i>—< k
[ k
If three or four indices coincide, then the resulting equations are automatically
satisfied. The same happens if one of the indices is 0. Indeed, I'g;z = 0; so null
indices matter only for ®°!. However, the classical product is already associative!

Consequently, if the rank of A*(X) is 1 + m, then the total number of basic
associativity equations is

(D) on(r57) () -mmm=ne

For example, for m = 2,...,7, the numbers are 1, 6, 21, 55, 120, 231. Thus, if X
is P! x P! or P?, then m is 3, and the number of basic equations is 6.
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Thus, given A*(X), including the anticanonical class —K x, and a suitable num-
ber of initial conditions, it is a formal matter to set up the associativity equations
and then to solve for the Gromov—Witten invariants. An algorithm to do so was
recently developed and implemented as a (200K) C-program, farsta, by Andrew
Kresch.

§5. Surfaces in general. Again, let X be a smooth irreducible projective va-
riety of any dimension, and suppose that H.(X,Z) is algebraic. Then in particular
Hs,41(X,Z) = 0. So the universal-coefficient theorem implies that H*"*1(X,Z) =
0 and that H*"(X,Z) is torsion-free.

By Hodge theory, H'(X,C) = HY(Ox) @& H(Qk); so H'(Ox) = 0. Further,

H'(X,C) = H'(Ox)® H'(Qx) & H'(QX),
and the algebraic cycles map into H*(2) ). They span all of H?(X, C) by assump-
tion. Hence H*(Ox) = 0.

Consider the exponential sequence:
0—Zx — Ox — O — 0.
It yields the long exact sequence:
H'(Ox) — H(O%) — H*(X,Z) — H*(Ox).
The extreme terms vanish. So we get
Pic(X) = H'(O%) == H*(X, 7).

Thus Pic(X) is discrete and torsion-free. In particular, if X is a surface, and if /3
is given in A; X := Hy(X,Z), then the divisors D of class (Poincaré dual to) 3 are
linearly equivalent.

Let : P! — X be a map that’s birational onto its image. Form the sequence,

0 — Tp — u*Tx _>NIM
(Where N, is the dual of Ker(p*Q% — Qg,) ) This sequence must be of the form,
0 — O2) % Oa) © O(b) — O(e),

say with @ > b. Since the map u is nonzero, so is its composition with the projection
to O(a) or else with that to O(b); hence, a > 2 or b > 2. Therefore, a > 2 since
a > b. Similarly, ¢ > a or ¢ > b; hence ¢ > b. Further, if X is convex, then 6 > 0
and so also ¢ > 0.

Suppose that X is a convex surface. Set D := p,P'. Then N, = O(u*D). So
D? > 0 as ¢ > 0. Furthermore, (—Kyx - D) > 2 with —Kx = ¢;Tx as a > 2 and
b > 0. In particular, there are no (—1)-curves. Hence X is relatively minimal.
Therefore, if X is rational, then X = P? or X = F, (the Hirzebruch surface). In
the latter case, X = P! x P! necessarily, because F, has a section of square —e. If
X is irrational, then Kx is nef and so, since (=R x - D) > 2, there are no rational
curves on X.

In sum, if X is a convex surface with H,(X,Z) algebraic, then either X = P? or
X = P! x P! (and in both these cases X = G/P), or else X has no rational curves!
In other words, for surfaces, the requirement of convexity is rather restrictive for
the applications of quantum cohomology to enumerative geometry.
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From now on, X is a surface with H,(X,Z) algebraic, but X is not necessarily
convex. Given € A1 X, set

KB) = (—-Kx - ) = /ﬁcl(TX).

Let 7 be the class of a point. If Ig(7™) # 0, then the equations,
n - codim 7 = exp. dim(M) = dim X + k(3) +n — 3,

give the formula,

because codim 7 = 2 and dim X = 2. Set therefore
Nﬁ = Iﬁ(ﬂ'k(ﬁ)_l).

Normally, Ng is the number of curves of class § with p,(3) nodes (so they're
immersed P!s) that pass through k() — 1 points. Recall that, if 3 is not effective
(that is, not the class of the image of a tree of P's), then N3 = 0; it is reasonable
to conjecture that, if the arithmetic genus p,(f) is strictly negative, then again
Nz =0.

As in §2, replace the potential ® by the sum ®¢ + I' where

k(8)—1

. sy Ym
T =3 Noel gy

Write v = v + 71 + 72 with v; € 4;(X). Then

1 L
(I)cl — 1] k‘

i+j+k=3

For the integral to be nonzero, necessarily 7 + 2k = 2, and so either k = 0, 7 = 2,
t=1lork=1;=0,1=2. So

L1 1
@125/707124'5/7372-

For 0 < 7,7 < m, the duality relation

i m
i m
,—>—<m

i m
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corresponds to the associativity equation,

A(ivjv m, m) : Z (I)ijegefq)fmm - Z (I)jmegefq)fmi-
e f e f
On the left, consider the terms with f = m. First, @%mm =0; 30 Prvmm = Ui -
Next, g™ = 0 if e # 0, and ¢°™ = 1. Finally, ®,;0 = CI)ZQ}O = ¢;;. Hence there’s
only one nonzero term with f = m, and it’s equal to ¢;;I'ymm. On the other hand,
CI)f}e = 0 unless e = 0, and @glfm = 0 unless e = 0 and f = 0. Therefore, the
associativity equation yields a formula of the following form:

Gi;U'mmm = a certain quadratic polynomial in the I'cfy,.

As in the case of P2, this formula yields a recurrence relation of the following form:

gijNﬂz Z NﬁlNﬂ2>l<{>l<—>l<}.
Br1+82=28

Only one of these recurrence relations is needed to solve for the Ng; however,
the others serve to reduce the number of necessary initial conditions, although
redundantly. (For a further discussion of this matter whenever A*X is generated

by A'X, see Kresch’s paper [Kresch].)

§6. Del Pezzo and Hirzebruch surfaces. In this final section, we’ll consider
two examples: the Del Pezzo surfaces, and the Hirzebruch surfaces.

A Del Pezzo surface is a smooth irreducible projective surface X such that
— Ky is ample. One such X is P! x P!; it is also a Hirzebruch surface, and will be
considered below. Otherwise, X is obtained by blowing up the plane at r points in
general position, where 0 < r < 8. Note that X is not convex for » > 0. A natural
basis for A'X is {h,e1,...,¢e,} where h is the pullback of the class of a line, and ¢;
is the class of the ith exceptional divisor. The potential ® is a well-defined power
series because — K x is ample. So the associativity equation A(1,1,m,m) yields the
following recursion formula:

)—<h'51>(

Ng = Np Np,(B1-Ba)(hfr) [<h .@2>(’f(ﬁ) —4 k(8) —4)] |

k(B1) —2 k(B2) —1

Needless to say, for r = 0, we recover the formula of §3 for the plane. The caser = 6,
where X is equal to a cubic surface in P?, was worked out in detail by Di Francesco
and Itzykson in [DF-I, §3.3]; the general case was treated briefly by Kontsevich
and Manin in [K-M, §5.2.3]. The case of arbitrary r (possibly greater than 8 where
—Kx is not ample) was treated in depth by Gottsche and Pandharipande in [G-P];
they also considered the enumerative significance of the Ng.

The Hirzebruch surface of index e is the rational ruled surface,
[Fe = P(O]pl ) O]pl (6)) .

It has a unique section E over P! such that E? = —e if e > 1. However, Fy is
P! x P!; in this case, let E be any section. Of course, Fy can be embedded as the
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quadric surface in P?, and the latter was studied in some detail by Di Francesco
and Itzykson in [DF-I, §3.2]. The next surface F; is the blowup of P? at a single
point, a Del Pezzo again.

For any e, a natural basis for A'X is given by the class [E] and that [F] of a
fiber. For ¢ > 2, there are infinitely many classes 3 = a[E] + b[F| having a,b > 0
and given k(). However, only finitely many have p,(3) > 0. Indeed,

E(B)=(2—¢€)a+2band p,(3) =(a —1)(2b—2 — ae)/2.

So, if po() > 0 and a > 2, then 2b — ae > 2; hence, if also k() is given, then a
is bounded, and so b is bounded too. So the conjecture of the preceding section
would imply that the potential ® is a well-defined power series, but this question
is unimportant when ® is modified as explained in §2. The conjecture would also
provide some useful initial conditions, but these conditions can also be obtained by
using a number of associativity equations.

The associativity equation A(1,2,3,3) yields the recursion formula,

k() — 4 o 4]

Ng =Y Ng Ng,(B1-B2){E - 1) [<F'ﬁ2>(k(ﬁ1) —2 k(B2) — 1

) =) (
(This formula was worked out for the first time by Ragni Piene and the lecturer
in March of 1994.) It turns out experimentally that, on writing N(a,b;e) for Ng
where = a[E] + b[F] on F., we find the relation,

N(a,b;e) = N(a,b+ a;e 4 2).

A conceptual explanation for it (explained to the lecturer by Sheldon Katz in Sep-
tember 1994) is this: F. degenerates into F.4o, transforming F' to F' and E to
E + F, while leaving the quantum cohomology invariant.

The enumerative significance of the Ny is, of course, nontrivial to establish. On
the other hand, there are more geometric computations of related numbers, which
do not make use of quantum cohomology: Caporaso and Harris have obtained
numbers of irreducible rational curves of class 3 on Fy, Fy, F3 and of a special  on
an arbitrary F.. Following in their footsteps, Vakil has obtained all the numbers of
both the reducible and irreducible curves on an arbitrary F. (and the corresponding
numbers in arbitrary genus as well!). Abramovich and Bertram, in work in progress,
have been obtaining numbers by carefully studying the degeneration of F, into F¢5.

Here is a concrete example, which illustrates some of the subtleties involved in the
enumeration. (This example was explained to the lecturer by Dan Abramovich in
November 1995.) Consider Fy. Note that k(a[E]+ b[F]) = 2b, which is independent
of a! Now, take 3 := 3[E] + 6[F]. Then k() —1 =11 and

Ng=3510=2232+2-636+6-140

where the four terms on the right arise as follows:

2232 1is the contribution of the irreducible curves of class 3 through 11 general
points.

2-636 is the contribution of the curves breaking up as E union an irreducible

curve of class v, where v := 2[E] + 6[F], through the 11 points. The latter
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curve meets E twice: ((2E + 6F)-E) = —4+ 6 = 2. So there are two
ways to partially normalize the curve into a tree of P's. There are 636 such
curves of class v, because N, = 640 and N, = 636 44 -1, where 4 - 1 is the
contribution (to N now!) of curves breaking up as E union a curve of class
6 := [E] 4+ 6[F]. Indeed, (¢ - [E]) = —2 4 6 = 4, and therefore there are 4
ways to attach a curve of class 6 to E. Finally, there are Ny curves of class
6 through the 11 points, and N5 = 1 because p,(6) = 0.

6 -1 is the contribution of curves splitting as 2[E]| 4+ 6 where ¢ := [E] + 6[F]
as before. The two reduced components again meet in 4 points as the
intersection number ((E 4 6F) - E) is 4. There are 6 ways to map a tree
of 3 P!'s with 2 nodes onto each curve, mapping the two extreme P's to E,
the connecting P! to the other component, and the 2 nodes to 2 of the 4
points. Finally, as before, there is 1 curve of class 6 through the 11 points.

0 is the contribution of the same curves as in the previous case, but with a
tree of 2 P's with 1 node and 1 P! mapping 2-to-1 to E. It can be shown
that these form a component of M of the wrong dimension and contribution
0, via an explicit analysis of the degeneration of F, into F.o.

6. About M(X,3)—I. Ciocan-Fontanine, 10/22/96

We go back now to the proof of the properties of My (X, 3) that we used in
the enumerative geometry computations and the construction of QH*. The plan
for this lecture is:

—8§1. Overview of the construction of M, (X, 3) and of the proofs
—=62. The 1dea behind the construction for X = P7
—=&3. Begin the formal proofs

§1. Overview. Let X be a projective variety over C, § € A1 X. We have a
functor

My (X, 8):  {schemes/C} — {Sets}
defined by
My (X, B)(S) = {isom. classes of stable maps of genus ¢, n-pointed curves, etc.}

We first list the results we need.

THEOREM 1. There ezists a projective coarse moduli space My (X, 3) for this
functor.

The technical formulation of this statement is: there exists a projective scheme
M, (X, ) together with a natural transformation of functors

¢ : M!],”(Xvﬂ) - Hom('vﬂ!]ﬂ?(Xvﬂ))

satisfying
(1) ¢(Spec(C)) is a bijection of sets;
(2) If there is a ¢ : My (X, 3) — Hom(-, Z), then there is a unique morphism
M, .(X,8) s Z such that ¢ = 4 0 ¢, with 4 = Hom(+,~)).
If we assume in addition that X is nonsingular and convex, and that ¢ = 0, then
we can say more: we have a local description of My (X, §):
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THEOREM 2.

(i) Mo n(X,3) is a locally normal projective variety of pure dimension
dim X + / a(Tx)+n—3
B

(i) Mo (X, 3) is locally a quotient of a smooth quasi-projective variety by a

finite group;
(iii) M;m(X,ﬂ) (=automorphism-free locus) is smooth, with a universal famaly.

The boundary of My (X, /) is the complement of the subset parametrizing
irreducible curves; that is, Mo (X, ) — My (X, B).

THEOREM 3. The boundary of Mg (X, 3) s a normal crossing divisor, up to a
quotient by a finite group.

Outline of the proofs:
(1) Emistence: First construct M, ,(P",d) and show that this is a projective

scheme. Next, for X projective choose an embedding X - P7, and show
that there exists a natural closed subscheme M, ,(X,d) C M, ,(P", d);
then M, ,(X,d) = Hi*ﬁ:d(line)ﬂg7n(X,ﬂ). The universality property of
the coarse moduli space will imply the independence of the space from the
chosen embedding.

(2) Local structure: Comes for free from the construction when X = P".

(3) Boundary: Ditto.

§2. Outline for X = P". Let d,r > 0, and let (C; {p;}, 1) be a stable n-pointed
map to P", with image of degree d.

Choose coordinates (g : -+ - : 2, ) for P”. The map (C;{p;}, ) determines and
is determined by the data of

(C,{p:i}), n-pointed quasi-stable;

a line bundle £ on C, that is £ = p*Op (1);

r + 1 general sections s; = p*(x;).

This is what we would like to parametrize.

A generic map (if there is one) will have transversal intersection with the coor-
dinate hyperplanes {x; = 0}, away from {p;} and from the nodes. The divisor of
s; consists then of distinct points {¢i1,...,¢ia}: we get additional d(r + 1) marked
points on C. Assume C' is generic:

CLAam. ((r,d) # (1,1)) p 1s stable if and only if (C;{p:i}.{qi;}) 1s Deligne-
Mumford- Knudsen stable.

PROOF. = : Say that E C C, E = P'; if u(F) is a point, we are done by
the stability of p. Otherwise, there are two cases: if E = C, all d(r +1) > 3 extra
marked points are on C'; and if E # C, we have at least one node, and (r +1) > 2
of the new markings on E. So every contracted component has at least 3 special
points, as needed.

The other direction is easier. [
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Summing up, the generic (C,{p;}, ) determines a point in M, ,, with m =
n 4+ d(r + 1). Note that there is a C* ambiguity in the choices of each of the
s;, modulo a C* by homogeneity. That is, given the points corresponding to the
sections (the information in the ¢;;’s) there is still a (C*)" worth of additional
choices to be made.

Further, we have to take account of the permutations of the points in each
hyperplane section, that is, of the action of G = Sy x -+ x Sy = (Sq)" !, where the
i-th factor permutes {¢;1,...,qid}-

What about nongeneric curves? All curves are generic for some choice of the
coordinates; a given choice gives a coordinate patch for an open in a cover of M.
Then we need to show that these coordinate patches do patch, and a boundedness
result to show that the scheme is of finite type. Then we need to show that the
scheme is proper; and finally that it is projective (this is technically harder).

Summarizing: we have to consider a (quotient of a) torus bundle over a subset
of M, m. Which subset? (In the genus-0 case, we will end up with an open subset
of Mo7m.) Let B C M%m be the subset determined as above. Remark: on C,
the r divisors divs; are linearly equivalent; this puts a condition on M, as
we need the divisors {qo1,..-,q0a}, ---, {¢r1,---,qra} on C € B to be linearly
equivalent divisors (and very ample). In particular, the degrees of these divisors on
a given component must be equal; in genus 0, this suffices essentially to determine
everything, as the number of points in a divisor determines its class. In genus> 0,
the ambiguity is measured by the Jacobian; in practice, we can’t get our hands on
the local structure of the resulting spaces.

§3. Formal proofs. Say P" = PV, where V is an (r + 1)-dimensional complex
vector space; H(O(1)) = V* Fix t = {to,...,t,}, a basis of V*.

DEFINITION 1. A t-stable family of degree-d maps from n-pointed curves to P”
consists of

(m:C — Si{piti=1,...n {¢ij bo<i<ri<j<d, 1)
such that

(i) (m : C — S, {pi}, ) is a stable family of degree-d maps from n-pointed
curves to P";
(ii) (7 :C — S;{pi}.{qij}) is a stable m = n + d(r 4+ 1)-pointed curve;
(iii) p*(t;) = g1 + -+ + ¢ia as effective Cartier divisors.

DEFINITION 2. M, ,(P",d,?) is the functor of #-rigid stable maps: that is,
M, o (P7,d,t)(S) ={isomorphism classes of families over S as in Definition 1}.

PROPOSITION 1. There ezists a quasi-projective moduli space M, (P, d,t),
which s coarse for g > 0 and fine and nonsingular for g = 0.

PROOF. (Only for g =0.) Let M = Mg ; 7 : U — M the universal family; p;,
¢ij are sections of U — M. As U is nonsingular, ¢;1 + - -+ + ¢;¢ determines a line
bundle H; = Op(¢i1 + -+ + ¢ia). Denote by s; a corresponding section, that is a
‘global equation’ for ¢;1 + -+ - + g;q.

Denote by B C M the open subscheme determined by the property that for
b € B, the geometric fiber Cj = U}, will have deg H; = deg H; on every component
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of Cj.

Ug —— U

B — M
(Note: for g > 0, we would require instead that H; @ Hy ' ‘comes from the base’
for all ¢.) Now (FB)*Z*(HZ‘ ® Ho_l) is a line bundle G; on B, and has an associated
C*-bundle 7; : Y; — B obtained by deleting the zero-section.
Let then Y =Y; xp--- xpY,, coming with projections p; : Y — Y;, 7: Y — B.
Note that 7,G; is canonically trivial.

Al
|
-

Uy Ug U
ﬂyl B lﬂ'
Y — ", B LM

CLAIM. On Uy there is a canonical isomorphism T*{*H; = 75" Hy =: L.

—x Tk — _ =% — . %k —
Pr. 7" H; @ H, b= Tr'rpTB«t Hi @ H, ! (since ¢ H; @ H, L comes from B,
Th TR, leaves it alone), which equals 73 7*G; = 7} pi7*G;, and 177G, is canonically
trivial. [

Now 7*s; generates 7*H;, for i = 0,...,r. There exists a unique p : Uy — P"
such that 4*O(1) = £ and p*t; = 7*s;.

Cram. (ry : Uy — Y, {pi}, {qi;}, 1) is @ universal family over Y.
That is, Y represents the functor of ¢-rigid stable maps.

PF. By construction it is a t-rigid stable family. To show it is universal: pick
another (s : Cs — S,{p:},{¢;},v), and show that there is a unique morphism
S — Y such that this family is canonically isomorphic to the pull-back of Uy-. For
this, 7 : Cs — S is a family of m-pointed curves, in particular, so there is a unique

A:S — M:

X
—

)
0

s l f

NH; 2 v Opr (1), 80 S 2, M factors § = B —s M. There is a canonical isomor-
phism:

=

A
—

Os Z s, N Hi @ Hy ' Z NG,

because of this, there is a canonical isomorphism 7s, 75N = N for all line bundles
N on S;in particular, there are canonical isomorphisms

NGy 2 g mEN G = o N T5Gi = e N TR, g (Hi @ Hy ') 2 me N (Hi @ Hy )
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Therefore there is a canonical S — Y commuting in

N

B

The pull-back of the universal family is the given family on S because at each step
all choices were canonical. [

7. The construction of M, ,(P",d)—J. Thomsen, 11/5/96

We fix n, r, d, and only deal with the genus= 0 case. Let V* = H°(P", Op- (1)),
and let t = {tg,...,t,} be a basis of V*. Consider the functor

Mo o(P7,d,t): Alg. schemes over C — Sets

sending S to the set of isomorphism classes of t-rigid families over S. Here a t-rigid
family over S is an object

(m:C — Si{piti=1,..n> 16ij bo<i<ri<j<d.p : C — P7)

where

(i) (m : C — S, {pi}, ) is a stable family of degree-d maps from n-pointed
genus-0 curves to P";
(ii) (7 : C — S, {pi},{qi;}) is a stable family of m = (n + d(r + 1))-pointed
genus-0 Deligne-Mumford stable curves;
(111) /,L*(ti) =qga1+ -+ qga, t=0,...,r.

Recall from Ciocan-Fontanine’s lecture:

THEOREM. There exists a quasiprojective nonsingular variety M (), which is a
fine moduli space with respect to My ,(P",d,1).

Our task is to patch these moduli spaces together into a space M = My ,(P", d).
Suppose that we already have a fine moduli space M for Mg ,(P",d). For a
t-rigid family (7 : C — S, {pi}, {¢ij}, 1), we consider the diagram

Di- - - —-—- - > D; D, D; = Z(p*t;)
Y
/
/
, p
C Up Uz U U P
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The map S — M realizing the family via pull-back is not surjective, as the curves
over S intersect the D; transversally (by rigidity): so the map must factor through
the open subset

M, = {curves intersecting the D,’s transversally}

Similarly, the map factors through the smaller open M7 where the p;’s are distinct
from the D;’s, and the D,’s intersect trivially.
Next, the ¢;; define a map from S to

D= H D; x5 --- x57. D; | — big diagonals

d

through which the map to M7 also factors. As D is independent of the #-rigid family
we started with, it is a concrete realization of M (7).
Also, Gg, = Sq X -+ x Sq acts on D over My; and we claim that
N—_— —

r+1

D/Gd,r MH?

is an isomorphism. To see this (at least on closed fibers), look at the fiber over

s€8S — My

7ri_1(3) ——— D; o 1(s) —— D
| = | v
{s} —— Mz {s} —— M7

Clearly 7;'(s) = d points of intersection of ¢; with (the curve represented by) s;
and

c,o_l(s) = {(:1;01, ey L0y L1y, Tyq)| @4 distinet, and {z;;} = 7Ti_1(8)}
Summarizing, the open M7 of M (if the latter exists) must be isomorphic to
D/Gar = M(f)/Gdﬂ,. So we should be able to construct Mom(ﬁ”, d) by gluing

together M(?)/Gq,r, where  runs through all bases of V'*.
Now

curves (i.e., points on My ,(P", d)) which the hyperplanes ¢;
M(%)/Ga,, < intersect transversally in distinct points and away from the

marked points

If 7 is another basis,
curves which the hyperplanes ¢; and ¢/
“M(t)/Ga.r 0 M(f/)/G(Lr” < intersect transversally in distinct points (each)
and away from marked points

In order to control the patching, we have to construct this intersection explicitly
(as we did for M(?)/Gg4,) a moment ago). This will be obtained as the quotient

by Ga,» X Ga, of a suitable H(f, f/). In fact it is useful and not harder to consider
arbitrary (finite) sets of bases at once:
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DEFINITION. Let {#;}1<¢<i be a set of bases of V*. Then

(m:C = S {pihici<n {gijcho<icri<i<di<e<n i)

is called a {#;}1<e<p-rigid famaly if for all ¢,

(m:C — S Apiti<i<n {gijefo<i<ri<i<ds 1)
is t,-rigid.
DEFINITION. Define a functor M(%y,...,%,) from Algebraic Schemes to Sets

sending S to the set of isomorphism of {t¢}1<¢<p-rigid families over S (where iso-
morphisms of families, etc. are defined in the usual way).

THEOREM. There is a fine moduli space M(%y,... 1) for this functor, carrying
a Ggr X -+ X Gq,r-action.

The idea of course is that the intersection “ﬂ?zlﬂ(fg)/Gd7r” should correspond
to M(tl, c. 7th)/Gd,r X oo X Gd,r-

PROOF OF THE THEOREM. This is done by induction on h; the case h = 1

has already been done. For h > 1, assume M(#,...,#,_1) has been constructed
already, let 1, = (tho,...,thr) and consider

D; D; D; Di = Z(p*th;)

4
;
;
4 A H
Z/ID ﬁ%u(th) Uy U ]P)r
;
;
;
7 - _ _ _ - _ _ — _
D———=>M(l1,... . tp—1)(tp) —>= M(tr,... th_1)tr —> M(l1,... th_1)

(i) M(f1,...,th—1) C M(%1,...,f4—1) is the maximal open subscheme where
Ee sheaf of relative diﬁientials QDi/W(ﬂ,...ih_ﬁ = 0;
(i1) M(t1,...,th—1)(tn) C M(t1,...,th—1)tr is the maximal open subscheme
where the p; and the D; are distinct; L
(111) D= Hz((Dl XM XM Dl) — big diag.) where M = M(El, R 7¥h—1)(¥h)-

The natural projections D — D; give the new sections ¢;jn; M(t1,...,t,) := D
is the fine moduli space for M(#;,...,%s). The action of the group is the natural
one. [

Note that there will be natural maps

— L t t [ _ _ [ _
Mt .. 5) ——" M(F ))& MR Fie)
and
(1) PrL Ty T 1S (Ggrh % - % (Gqr)p—1-equivariant;

(2) M(F1se . E)/(Gar)n 2 T (Er, . Fa1)(En)
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Now we can glue the spaces together. The data of the gluing:
o M7= M(t)/Gq,r, t running through all bases of V*;
e M+, defined as H(f)(f/)/G(Lr;

07 : My — My, isomorphisms induced from

ME,1))Gay x Ggr —=— M ,1))Gar % Ga,

l l

P! —-—

M@)E)/Gar = Mz —— Mp7=M(E)(#)/Ga,

Compatibility is checked on triple intersection. The resulting scheme is My ,,(P", d).

Next, we will check that Mg ,(P",d) is of finite type over C.
Let S € My o(P",d), and let (C;{p;}, i) be a corresponding curve. Define

L=wc(pr+ -+ pn) @p*(Op(3))

CraM. L s ample.

Indeed, let £ C C be a component. Then
(i) (wo)ip = wr ® O(nodes of C along E);
(ii) deg(we(p1 + -+ pn)ip) = —2 + # special points on E;
(ili) deg(Lyp) = —2 + # special points on E + 3dg > 0 (where dp =degree of
1+ E])

as needed. One can in fact check that
CLAIM. L? is very ample, and h'(C, L*) = 0.

Define
e:=degL* =2deg L =2(—~2+n + 3d)

then it follows from Riemann-Roch that 2°(C, £?) = e 4+ 1. Note that e is indepen-
dent of C.

Denote by i : C' — P¢ the embedding induced by £%, and let v = (i,u) : C —
P¢ x P7. The image of C' in P¢ x P" has bidegree (e, d).

Look then at the Hilbert scheme H of genus-0 curves in P¢ x P, of bidegree
(e,d); this comes with a universal family W — H. Denote by H, the space
W Xy -+ xgW; Hy, is a fine moduli space for families of curves of genus 0 and

bidegree (e, d), together with n sections. It has a universal family ,,:

C U, Pe x P" x H,, —— P"

l l

SpecC —— H,

The space H,, is of finite type over C; we want to deduce that My ,(P",d) is then
also of finite type.
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Given a basis t of V*, we let H,; C H, be the open subscheme where the
elements of the basis intersect the curve transversally and in distinct points. Let
Hy=U t basis of V* Hn,f‘

(i) Hp is of finite type, so Hy can be covered by a finite number of H, %
(ii) by Bertini’s theorem, every stable map from n-pointed genus-0 curves to P”
1s induced from Hp.

The conclusion is that there exist a finite number #;,...,%; of bases of V* such
that

Mo,a(P",d) = UL, JI(F:)

The space My ,(P",d) is then of of finite type, since it is covered by finitely many
schemes of finite type.

8. My .(X,3)—E. Tjstta, 11/12/96
Our goal:
THEOREM 1. If X is projective, there ewists a coarse moduli space Mo ,(X, 3).

THEOREM 2. For X nonsingular and convez:
i) dim My ,(X,3) = dim X + fﬁ a(TX)+n-—3;
ii) Mo n(X,[) is locally a quotient of a nonsingular variety by a finite group.

Recall how this was done for X = P": we constructed a fine moduli space
My o(P7,d,?) for t-rigid maps, where = {tg,...,%,} is a basis for H'(P",O(1)).
This space My ,(P",d,?) is a (C*)"-bundle over an open B in Mg, with m =
n+d(r +1). The group G = (S4)""! acts on My ,(P",d,), and the quotients as ¢
varies glue together, giving Mg (P, d).

A) My (X, B). Let X be a subvariety of P": X < P7; let ¢, = d[line]. There
exists a closed subscheme My (X, 3,f) C M ,(P",d,t) such that for all families
of t-rigid stable maps u : C — P over a base S, 3ji <= v in the commutative

diagram:
T
C= U P
S\%VMOW(PT, d,%)
S ]
MOW(Xvﬂvt)

(with U the universal family, and sections S — C, etc., as usual).
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PROOF. For  : C — X and k > 0, HY(C,u*O(k)) = 0; by base change,
Tep*O(k) is a vector bundle with fibers 7, u*O(k)s = H°(Cs, u*O(k)). Let £ > 0
such that Zx(() is generated by global sections. With M = M ,(P",d,?) in

HZx(0)y

|

HOO]}W (K)M e 7T*/,L*O(£)

we identify p(F) over s € S with u*Fj¢ . Then u(Cs) C X <= s € Z = the zero
scheme of {p(F): F € H'Zx(()}.

Let then Mo (X, 3,t) = {s € Z : [u(C5)] = B} be the component of Z deter-
mined by 3. The group G acts on Mg (X, 3,7); we construct My (X, 3) by gluing
the various quotients. [

Note: this works also for general genus.

B) Assume X is nonsingular and convex. Recall that X convex

— Vo:P!' — X, HY(PL o*TX) =0, that is

= Vo :P!' = X, o*TX = &O(n;),n; > 0.

Claim: this is equivalent to Vo : C' — X, C at worst nodal, of arithmetic genus 0,
HY(C,p*TX) = 0.

The proof is by induction on the number of components. If ¢ = C’ U L, and
C' N L = {p}, we have the exact sequence on C

0 — @ TX — " TX|r & TX|, — @*"TX, —0 ,

whose long exact sequence yields the vanishing of H'(p*TX).

C) Local study of M = M, (X, 3,%). Let [u] € M, that is, [] is an object
(u: C — X;pi,qij). For D = Speck[e]/(€?), and dy = the closed point of D,

TMyy ={¢: D — Mle(do) =[]}
= space of first order deformations of (p: C — X;p;, ¢i;)
= space of first order deformations of (p: C' — X;p;) =: Def(u)

Let Defg (1) be the space of first order deformations of (¢ : C — X;p;), preserving

the combinatorial type G of C'. Then Defg (i) C Def(u), and its codimension is

< ¢ = the number of nodes of C'. We will show that this is in fact an equality.
Consider Hom(C, X') x (C™ \ diag.), containing the open subset Hgt(C') defined

by {stable (¢;p1,...,pn) : [im¢] = 3}, mapping to My (X, 3). Act on Hét(C')
with Aut(C):

Aut(C) x Hgt(C') — Hgt(C')

(s (@3p1s -5 pn)) = (0o ¥s2p(p1), - - - ¥ (pn))

This action is not free, but has finite stabilizers, giving étale maps Aut(C) — orbit
of (¢;p1,-.-,Dn)-
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Relativize this construction: for a flat family C — S of ¢ = 0 nodal curves,

consider C" = C xg--- xgC, Homg(C, X x §) xs (C™ \ diag) and its open sub-
S—_— —

set Hgt(C), mapping (over S) to My (X, ,t). Auts(C) acts fiberwise with finite

stabilizer on Hgt(C).

Now Homg(C, X x ) is an open subset of the Hilbert scheme of graphs. This
allows us to compute its tangent space and dimension: for p: Cs — X,

—THom(Cs, X)) = H(Cs, p*TX);

—for X nonsingular, the dimension of all components of Homg(C, X x S) at [y]
is at least the expected one, that is dim H°py*TX — dim H' p*TX 4 dim S;

—by convexity, H! = 0. The dimension equals the expected one.

The fibers of Homg(C, X x S) — S have dimension H'u*TX; if S is smooth,
Homg(C, X x §) — S is smooth at [u]. It follows that H3'(C) — S is smooth at
[1], of relative dimension dim Hu*TX + n (*).

Again let Def(C) be the space of first order deformations of C' preserving the
combinatorial type G, and consider the universal base space B of deformations of
C preserving (G. The space B can be seen to be smooth as follows. Stabilize C'
by replacing unstable components with marked points to get a marked curve C*
in some MO,m- The locus of curves in MO,m determined by the combinatorial type
of C*' is smooth (see Belorousski’s talk on MO,n)- Then B is a ball around C*! in
this locus. Taking S = B in the above, and «/ — B the universal curve, we obtain

Hgt(U) — M.2(X,3) over B. Consider the diagram
0 0

HO(C, TC) —— TAut(C)ia Defa(C)
0 —— HO/,L*TX@(CTL _ THgt(U)[u] —— TB¢ — 0

0 —— Coker —— Defg(p) ——— Defg(C) —— 0

0 0
where the middle vertical map is the differential of Hgt(U) — Mo a(X,8). By

Riemann-Roch and (*) we get:
dim Defg(p) = dim Def(C) + dim H**TX +n — dim H°(C, TC)
= (> (o] —3))+(dimX+/clTX)+n—(2(3— v]))
o] >4 7 0] <3

where the > is over the vertices v of G, and |v| denotes valence. This gives

dim Defg (1) = dim X —I—/clTX +n—3—gq
B
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with ¢ = # nodes of C.
Let C — S be a smoothing of C', with S smooth. By (*) we have that My (X, )

is dense in My (X, ), hence dim My ,(X,3) < dimDef(u). Since Hgt(Pl) —
My (X, ) is surjective, dim My (X, 3) = dim X + fﬁ c1(TX)+n— 3. Putting all
together,

dimX—i—/cl(TX)—i—n—?)§dimDef(p) §dimDefg(p)+q:dimX+/cl(TX)—i—n—?) ,
B B

giving equalities through. Therefore
dlm TM07n(X, ﬂ, E)[N] = dlm M07n(X, ﬂ, E)

and the space is smooth, as needed for Theorem 2.

D) Boundary. The boundary is studied by using the fact that My ,(P7,d,?)
is a (C)"-bundle over an open subset of MO,m (where m = n 4+ d(r + 1)). The

conclusion is that the boundary of M (X, 3,7) is a divisor with normal crossings.

9. The boundary of M, ,(X,3)—E. Rgdland, 11/19/96

Reminder of the construction: My (X, 3) is obtained by gluing together quo-
tients Mo (X, 3,%)/Ga.r, where My (X, 3,%) are closed subschemes of schemes
My o(P7,d,?), in turn obtained as (C*)"-covers of a Zariski-open B of My ,, where
m = n +d(r +1). The boundary Mg ,,, of Mo (X, 3), that is the subset corre-
sponding to maps from reducible curves, will be constructed from the boundary of
M07m.

Recall that 9M ,, is a normal-crossing divisor, with components D(A|B), where
AUB ={1,...,m}: points of D(A|B) correspond to curves C = C4 U Cp with
C'4 N Cp =point, and C 4, Cp resp. containing points marked from resp. A, B.

As B is Zariski-open in Mg, the intersections D(A|B) N B will also be divi-
sors crossing normally, and so will the pull-backs to Mg ,,(P7,d,#). Restricting to
My (X, 3,%), the intersection is transversal enough so that the restricted boundary
divisors still intersect with normal crossings (dimension count).

On the quotient Mg (X, 3,%)/Gar, the boundary will be a normal crossing
divisor up to a finite group.

Let us describe the components of the boundary.

For n = 0: OMgo(X,3) = Us=p,+5D(B4,BB), where B4, p are effective,
and D(f4,3p) consists of maps p from C = C4 U Cp with C4 N Cp =point, and
il plcy Tesp. represent B, B, B

For n > 0, the situation is slightly more complicated. 9M g (X, ) is the union
of components D(A, B, 84, 8p) where AUB = {1,...,n} and ANB = 0; B34, fp are
effective and adding up to 3; if 4 = 0 then |A| > 2 and similarly for B (stability

condition); and D(A, B, S, ) consists of maps C = C4 UCp -5 X where
a) C4 NCp =point, C4, Cp genus-0 quasi-stable curves;
b) the markings from A (resp., B) are on C4 (resp., Cp);
¢) pa = ple,, iB = ploy represent B4, Bp.
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By the dimension computations from the results on deformations, one sees that
the set of curves with €4 & Cp = P! is dense in D(A, B, B34, 3B)-

Denote by K the divisor D(A, B, 34, 5p), and by M 4 the space M07AU{.}(X, 3),
mapping to X by pa(C) =image of e (and similarly Mp =etc.). Then we claim
that I is ‘almost’ the product M4 x Mp.

To be precise, consider

K = Ma xx Mp = (pa x pp)~(Ax)
Letting similarly
I?(X,EA,EB) = MA(X,EA) Xx MB(X,EB)

with the evident groups G 4, G p acting on the factors, the map IN&’(X,EA,EB)/GA X
Gp — K induces ¢ : K — K. If Cy =P, [ua] € HA(X,EA), we have

Trra([1a]) = Def(pa) = Targay([pa]) = H*(u4Tx /Te(—po)) — Tx(palpo))

Because p*Tx is generated by global sections, the second map too is surjective.
Hence the composition, that is the differential of p 4 (resp., pp), is surjective, making
IN&’(X,EA,EB) smooth. It follows that K is locally normal, with finite quotient
singularities.

To understand i, consider A, B # () and [u] € K, corresponding to a reducible
curve C = UC;. For ¢4 € A and ¢p € B, there is a unique path of components of C'
from ¢4 to ¢p (since the components of C' form a tree). Find this path {C;}i=1,.. .
and order the components so that ¢4 € Cy, ¢p € C.. Denote by x; the intersection
C; N Citq; and let C4; be the closure of the connected component of C'\ {z;}
containing ¢4 (and define C'p ; similarly). This yields a sequence of splittings of C
into two components. For some ¢ we will have that p,[C4 ;] = B4, and necessarily
t«[CB;i] = Pp. Take the smallest such ¢. (Note: if C'4 ;, C4, j4+1 realize the same
class, then there must be at least one extra marking on C;, by stability.)

This shows how to decompose €' = C'4 U Cp uniquely, and in short that the
map v : K — K must be a bijection. Moreover K normal, ¢ bijection = 1)
isomorphism, which is what we claimed.

For A # ) or B # 0, or 34 # (p a similar discussion yields that i is bijective
almost everywhere, hence birational.

For A=B =10 (son=0)and 84 = fp, the set of maps from curves with two
components is still dense in the corresponding D(. .. ), but swapping the components
will make i) generically 2 : 1 onto its image.
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Part 11

Topics in Quantum Cohomology

1. QH*(flag)—W. Fulton, 9/5/96

Two different things can be called the quantum cohomology of a flag manifold:
the large ring, and the small ring.

Large: involves the numbers of maps P! EN X, with prescribed f,[P!], that meet
given general Schubert varieties Q4,...,y;
Small: as above, but t = 3.

General story. Take a basis of the cohomology H*X = A*X| say Ty = 1;
Ti,...,T, for A'; and Tpt1,..., T for the rest. For X a flag manifold, the basis
of classes of Schubert varieties is particularly effective: the product of two of these
classes is a positive combination of these classes.

Define a power series:

(Yo, Ym) = Z Z I(Tre - Ty Yi'

n;!
no+-+n, >3 fEAX

where Ig(T'° --- Ty ) counts the number of maps f as above, touching n; T;’s and
with 3 = f.[P!]. Note: Ty and the divisor classes will “factor out’ easily in this
definition, as curves meet divisors predictably.

Make H*X @ Q[[yo, - - -, ym]] into a Q[[y]]-algebra by setting

T+ Ty =Y bijkg™'Ts

3

where ¢;;; = , and ¢*¢ is the inverse of the matrix ¢z, given by the ordinary

9”9
9y; 9y; Oy
intersection product on X: gr¢ = fX Ty - Ty. Note: for flag manifolds, the Schubert

basis diagonalizes the intersection product, so this ¢ is very simple.

THEOREM. The product * defined above s associative, with Ty as unit element.

2
The associativity of * yields many relations between the Ig’s: m(m_l)(én _m+2),

in fact. Often these relations alone and essentially trivial enumerative results suffice
to determine all the I3’s.
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ExXAMPLE. For X = F((C%), H*X = Z[x1,...,%6]/(e1,...,¢6) (€;: elementary
symmetric polynomial of degree ¢); a Z-basis for the cohomology is given by the
Schubert polynomauals Sy, w € S¢. In principle one could write down the 35 bil-
lion (1) equations arising from the above, and derive the numbers; in practice, this
is essentially undoable.

The small QH* is defined similarly, but using

¢ijk(y07"-7yp) = </5ijk(yo,---,yp,0,...,0)

This ¢ is easier to describe: Eijk equals [ T;T; Ty + > pz0 Ls(TiT;T) - qifﬁ Ti7

with ¢; = e¥i.
The corresponding * makes QH*X = H*X @ Z[q, . .., qp| into a Z[g]-algebra.

EXAMPLE. For X = Gr((,C"), X = F((C"), it is not too difficult to obtain
QH*X =7Z[....q1,-..,qp]/(explicit ideal). But note: this does not compute even
the 3-point numbers I3(T; 1Ty ): one needs “Quantum-Giambelli” formulas for the
classes of T; in QH*.

More explicitly, take X = Gr(¢, C*=k+0):

H*X:Z[O’l,...,O'k]/(n+1,...,Yn)

with o; = ¢;(quotient bundle), and S; = the determinant of the 7 x ¢ matrix
g1 g9 Ce g;
1 g1
. Then:
a1

QH*X = Z[O’l, e ,O'k,q]/(54+1, .. .,Sn_l,Sn + (—1)kq)

But again, this alone does not give the numbers! What one still needs is a quantum
Giambelli. Surprisingly, this turns out to be the same recipe (with Young diagrams)
as for the ordinary Giambelli: no ‘quantum correction’ is necessary.

Everything else is formal from here, and one can derive quantum-Pieri, quantum
Littlewood-Richardson rules, etc.

For flag manifolds, H*FU(C") = Z[x1,...,xn]/(e1,...,en) with e; = elementary
symmetric polynomials. A basis consists of Schubert varieties &,,, with w € 9,,
corresponding to Schubert polynomials. So there must exist integer coefficients ¢,
such that &, - &, = Y ¢? &,; note: there is no known formula for the ¢!

Fact: take any homogeneous presentation of H* X, and find any ¢-deformation of
the relations that hold in QH*. Then the ‘deformed’ presentation computes Q) H*
(Fulton-Pandharipande).

For example, take the above presentation for H*X, X = F((C"); deform the

symmetric ¢; to their quantum counterpart F;; then

QH*X:Z[l’l,...,l’n,ql,...,qn_l]/(El,...,En)
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Here is an explicit description of the E;. For the ¢;, consider n marked dots:

1 iz T3 Tn
[ ] [ ] [ ] [ ]

then the ordinary symmetric polynomials ¢; are the sum of all monomials in the
x;’s obtained by ‘covering’ ¢ dots. For the Ej, one labels pairs of adjacent dots by
gi’s:

1 iz T3 Ce Tn

®* g1 ® gz ® (g3 ... (Gp-1

and again one can write E; as a sum of monomials corresponding to ways to ‘cover’
i dots; the ¢;’s (pairs of adjacent dots) must be disjoint, and will have degree 2 in
the monomials. So for example #1¢2¢4 will be a monomial in Es (n > 5).

There are quantum-Giambelli formula for quantum Schubert polynomials &Y,
in QH*F((C™), and quantum-Monk formulas. One remarkable thing about &% :
almost all (but not all as in the Grassmannian case) of them have no quantum
correction.

2. The small quantum cohomology of the
Grassmannian—R. Pandharipande, 9/19/96

Reference: A. Bertram, [Bertram].
G = G(k,n) will denote the Grassmannian of k-spaces in C", with tautological
sequence

0—-5—-C"—=Q—0
First review the classical story.

(I) Additive structure of H*(G,Z). Fix a flag
O=FKhCckhC---CF,=C"

We have one Schubert cell for each non-increasing partition A = (aq,...,ag): the
corresponding closed Schubert cell is

Qy = {V : d1m(V N Fn—k—l—i—ai) > Z}
and its class [Q2,] will be denoted by Wi.

Fact. {Wh} is a Z-basis of H*(G,7Z).

(IT) Multiplicative structure of H*(G,Z). Let o; be ¢;(Q), 1 <i <n —k,
and define formally polynomials S;(oy,...,0n,—k) by

1 o
— 1V S
1+oit+o9t2 + ... Z( )'5;

J=0

Notice that S;(o) = ¢;(5); so necessarily S;(0) =0 for k+1 <j <nin H*(G):

we get a set of relations between the o’s as elements of H*(G).
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FAacT. This is a complete set of relations; that 1s,

H(G,Z) = Zlov,....0n-1]/(Skst---Sn)

(IIT) Expressing W) as polynomials in the o’s. Giambelli’s formula: with
A= (a1,...,qa;) as before:

Ual O-Q1+1
O-QQ_l O-QQ
Wi = |oa;+i—j| =
Oap—k+1 Oy,

Also, since the Wy’s give an integral basis for H*(G), there must be integers c}u
such that

W W =Y W,

There is in fact an explicit formula for the c}u, given by the Littlewood-Richardson
rule. A simpler case is for Wy, ... 0) = Om, for which Pieri’s formula says that

_ ¥
Wy -om = CxmWo

with the ¢}, all zero, except if 4 can be obtained from A by adding m boxes to its
Young diagram, but no two on the same column (see e.g. [Fulton], p. 264). In the
latter, case the coefficient is 1.

Small quantum cohomology. Move now to the Quantum setting. First, de-
fine the 3-point Gromov-Witten invariants: the effective generator of 41G(k,n) = Z
determines an identification of A;G(k,n) with Z; let

# of rational curves in G(k,n) of class d,
L(Wh,,Wy,, Wy,) = { meeting general translates of representatives of
Qx,, Dy, Qy; (if this number is finite; 0 otherwise)

We will describe the quantum cohomology ring QH*(G) = QH*(G(k,n)) by re-

tracing the classical steps.

(I) Additive structure. Additively, QH*(G(k,n)) is the free Z[g]-module
H*(G) @z Z|q]. We have the obvious inclusion

H*(G) — QH*(G)
Wiy— Wya®1

Via this inclusion, the Schubert classes span a free basis of the quantum cohomology
as a Z[q]-module.
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(IT) Quantum product. There is a *-product which makes QH*(G) an asso-
ciative, commutative Z[g]-algebra with unit:

W, =D g Zfd (W, Wi, W) W
d>0

where W; is Poincaré dual to W,. For short, we will write (Wyx, Wy, W), for
Id(W)q ) W)\w WN)

REMARKS. (i) dim My 3(G,d) = dn + dim G, so in order for a term in the sum
not to be 0 it is necessary that

codim Wy, + codim Wy, + codim W, = dn 4+ dim G

In other words,

codim Wy, + codim W), = dn + codim W

This shows that we can give a grading on QH*(G) compatible with the codimension
grading on H* and with *, if we take ¢ to have degree n. QH*(G) is then a graded
ring.

(ii) Since QH* is graded, it is clear that only finitely many d’s contribute to the
> 4>o defining *.

(iii) QH*(G)®(Z[q)/(q)) = H*(G). That is, the d = 0 contribution to Wy, * W,
is the usual intersection product Wy, - Wy, in the Grassmannian. [G] = o¢ is the
unit element for both - and *.

EXAMPLE. G(1,n) = P"~1. Here oy is the class of a hyperplane, o,_1 is the
class of a point. What is oy * 0,17

—As point and hyperplane do not meet in P”, the contribution in degree 0 is 0;

—in degree 1: (010,-10;), is nonzero only for k =n — 1; for t = n — 1 it is the
number of lines through two points and meeting a hyperplane, i.e., (010,—10p—1), =
L

—in degree d > 1: (010,-107),; = 0 by grading considerations, as g% then has

degree dn >n — 1+ 1.

Therefore oy * 0,1 = qog = q.

PROPOSITION. The classes 01,...,0n_ € QH*(G(k,n)) generate it as an alge-
bra over Z[q].

PROOF. Induction. It suffices to prove that H*(G)®1 is contained in the subal-
gebra generated by o1, ...,0,—k. Consider then £ € H*(G); if codim € = 0, £ is triv-
ially in this subalgebra. For ¢ of nonzero codimension ¢, write £ = f(o1,...,0n—k)
in H* (that is, ‘classically’); then we see that if computed in QH* (with * replacmg

(1) f(alvaan—k):§+qA1+q2A2_|_+quf

with A; € H*(G) of lower codimension (by the grading). By induction the A;’s are
in the subalgebra, and hence so is € by (1). O
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Hence we have a surjection from the polynomial ring
Zlq,01,...,0n—k] — QH*(G)

and we seek generators for the kernel. Recall that the classical relations are the
Sk+1,-.-,9; S; has codimension j.

REMARK. If codim Wy, + codim Wy, < n — 1, then Wy, « Wy, = Wy, - Wa,.
This is again immediate from grading considerations, as deg ¢ = n. Therefore, the
classical relations Sgy1,...,S,-1 must still hold in QH*, with * replacing -.

What happens to 5,7
The definition of the S;’s yields the formal polynomial identity

Sn(a) - Ulsn—l(a) + UZSn—Z(U) +---+ (_1)n_k0'n—k5k =0

This holds in the polynomial ring, so it must hold in QH*. However, we have just
seen that Sg11 =+ = S,-1 = 01in QH*, therefore

Sp(a)+(=1)"F o, 1+ Sy =0 in QH*(G).

Now,

on—k = class of k-spaces containing a fixed line C C";

Sk(o) = W(L = class of k-spaces contained in a fixed (n — 1)-space C C”

—_——
k

(note that the classical Sy coincides with the quantum S by the above remark).

It is easy to conclude from this that the only nonzero contribution to o,_x * Sk
18

(Tn—t W(l,...,l)W(l,...,l) )=1
—_—— —_——

k n—k

and the conclusion is that o,_; * S; = ¢. Therefore, the relation involving S,(o)
in QH” is
Salo)+(=1)"Fg=0

Rank considerations show that these relations are all there is, and therefore
QH*(G)=1Z[g.01,....00—k]/(Skt1, .-+ Sn=1. 5 + (=1)""Fq)

This was first obtained by Witten, and Siebert-Tian.

(III). Surprisingly, Giambelli’s formula holds in QH*: that is, for every parti-
tion A = (aq,...,qx)

Tay Tay+1
O-QQ_l O-QQ ¥
Wy = . . € QH(G(k,n))
Oap—k+1 Oy,

where of course * replaces - in computing the determinant. This is due to Bertram,
and we will sketch a proof of this fact here.



QUANTUM COHOMOLOGY OF GRASSMANNIANS—R. PANDHARIPANDE 41

First, we need an expression for products Wy, * Wy, *---* Wy . Define another
Gromov-Witten-type invariant, by setting

# of solutions (if finite) of the following
enumerative problem: fix general py, ..., pmy1 € P,
and general translates of {2,, then count

the number of maps f : P! — G with [f(P')] = d,
and mapping p1 to Qx,, ..., pm to Qy,_,

Wy . W, W), =

and pp41 to Q.

(Note: these differ from the usual invariants in that we are fixing the p; € P'.)
PROPOSITION. Wy, # -+« Wy = o q¢¢ S (W, W, W), W

PROOF. Let ¢; i = 1,...,m + 1 be the evaluations maps from My ,,41(G,d) to
G(k,n), and let 7 be the forgetful map My pm41(G,d) — M07m+1. Rephrasing the
definition of (W, ... Wi, W), we have

Te(efWa, e W) = (W, . W, W) [Mo mat]

or

<W)\1 s W)\mWN>d = GTW)\l e e:ﬁn—l—lwll : [F_l(p)]
for arbitrary p € M07m+1.

CLAIM.

(W W, W)y = Y > (W W, W), (W, W),
di+do=d v

This follows by choosing a general p € D(12...(m — 1)jm(m + 1)).
The Claim implies the proposition, via an easy induction. [

The ‘Quantum-Giambelli” formula will follow in the end by applying Kempf-
Laksov’s formula, [K-L], which we recall here. Let M be a nonsingular variety,
and consider a bundle map C* — E"~* (note: not necessarily surjective). Also,
fix aflag0 = Fy C --- C F, = C". Let D;,; be the scheme-theoretic locus
where Fy,_p4i—o; — E has kernel of dimension > 7. Finally, for A = (aq,..., o)
let Cx = Di,a1 N+ N Dgq,. The formula states that if C'y is pure of expected
dimension, then [C}] is given by the Giambelli determinant:

Ual O-Q1+1
O-QQ_l O-QQ
[CA] =
Oap—k+1 Oy,

with 0; = ¢;(E).
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Also, we will need to use the Quot scheme (see for example [Strgmme]) Qq =
Quoty, 4(C"* /P! parametrizes (flatly) exact sequences

0—-S—-C""—=T—0

of quotient sheaves on P!, with rk(T) = k, deg(T) = d. There is a universal
sequence of sheaves on Qg x P!

0—-8S—->C"" =7 =0

Y

and we let My C Qg be the largest open subset such that the restriction of this
universal sequence to My x P! is in fact a sequence of vector bundles. For x € My
we have the exact sequence

0—-8 —-C", -7, —0 |,
of vector bundles on P!; dualize:
0—-7 —C", =S8, —0

Thus we obtain from each z € My a rank-k subbundle of the trivial n-bundle over
P!, and hence a degree-d map P! — G(n, k); and conversely. In other words, we
can think of Quot as a compactification of My 3(G, d).

Quot is a nonsingular variety of dimension dn + dim G(k, n).

Note: in the above universal sequence

0—-S—-C"" =T —=0

Y

S is in fact locally free (while 7 is not).
Now consider the map

CcC" — S*

on Qg x P. We will apply [K-L] to this map. First, define ‘Schubert cycles’ on Qg.
Note: as seen above, we have a map My x P! — G(k,n); morally we would like to
choose p € P! and pull-back the usual Schubert cycles via

Qu x {p} —> My x {p} = G(k,n)

but we have to be careful as we go through the rational map. Schubert cycles can

be defined in My x {p} by just setting Wi(p) = e;l(QA); define then
Wa(p) = degeneracy locus in Qg of the corresponding bundle map C, — S,

REMARKS. (i) For any points p1,...,py € P!, and general translates of Qy,,
cee,
b N

Wi, (p1) NN Wiy (pn) C My

is smooth of pure expected dimension, by Kleiman-Bertini.
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(i) If py1, ..., pn are distinct points in P!, choose N general flags in C" in defining
the 2)’s; then L L
Wi (pr) NN Wy (py) C Qu

has pure expected dimension, and
Wi (p1) 0N Wiy (py) C My

is Zariski dense in it. This is the main ‘moving lemma’ in Bertram’s paper.
(iii) Therefore, we have an alternative definition for the new Gromov-Witten
invariants:

Wy W) = #Wa(p) 0 0 W (pn)
if the latter is finite: indeed, both Quot and Mg 3(G,d) are compactifications of
My; by (ii), "W = NW if finite; so we may measure the intersection number in
M, 3(G, d), which is the original definition of the invariants, by computing in Quot.
And now we get from [K-L] that (iv) 7;(p) := ¢i(S, )|q, is independent of p; and
that

Ua1(p) Eaﬁ-l(p)
1(p) 502(29)

Eak_k+1(p) Oy, (p)
Now we are ready to prove Quantum-Giambelli. Let Ax(o) € QH*(G) be Gi-
ambelli’s determinant (with *-product). Extending (-), by linearity to (P(c), W),
for all homogeneous polynomials P, we have

Z q Z ) W)y Wa

d>0
(using the last proposition). Now by the classical Giambelli the d = 0 contribution
in the sum equals Wjy; so it is enough to show that

(Ax(0),W,), =0 ford>1.

Computing on Q4 as in (iii):

<A)\(U),WN>dZ 0'a2—:1(p2) Faz(l?z) 'Wu(pk—l—l) :

Eak—k-l-l(pk) Eak(pk)
the 7;(p) are independent of p by (iv), so we may choose p; = --- = pg; by (v), the
determinant then evaluates a cycle Wy:

(Ar(0). W)y = Wa(p1) - TWo(pisr)
— # maps P! — G with [f(P")] = d. and f(p1) € ., f(prs1) €

The above intersection has pure expected dimension 0. However, if it is non-
empty, it must have dimension at least 1 (since the automorphism of P! with two
markings acts). Hence, the intersection must be empty.

This proves that the d > 1 contributions vanish, and concludes the proof of the
Quantum-Giambelli formula.
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3. Rational curves on complete intersections in toric
varieties (after Givental)—V. Batyrev, 9/26/96

The starting point is the famous paper by Candelas, de la Ossa et al.[CDGP]:
consider a hypersurface Vs C P* of degree 5; ¢1(Vs) = 0 (that is, V5 is a Calabi-Yau
manifold). For each degree d, one expects a finite number ny of rational curves of
degree d (although this number was proved to be finite only for relatively small d).
The mathematicians had shown that ny = 2875; ny = 609250, and they were in
the process of computing nz. [CDGP] claimed that they could compute the power
series

e d
K(g)=5+) nad’- - -
d=1

How? Let ¢o(2) = oo, %Z”, and 8 = Z%; also, consider the operator

D = 6* — 52(560 + 1)(50 + 2)(50 + 3)(56 + 4)

Then ¢o(z) = 0 is the only regular solution at z = 0; there are three other solutions,
with logarithmic singularities at z = 0. Set

L'(5(n+e)+1) ..
%(Z’e):; E——

and differentiate formally with respect to e:

o 0(z€llemo = 61(2) = (log 2)60(2) + (), (o) =0
Then

) 9 <%>® - TR (d_>®

with ¢ = exp z;gig This determines K (q), giving a ‘prediction’ for the number nq.

Later, Kontsevich computed ny, showing it agrees with this prediction. Givental
[Givental] found ways to go further, and managed to prove (*) rigorously. Note: it
is very nontrivial that the ny found this way should be nonnegative integers—the
only known proof is via Givental’s work.

Givental’s framework covers many other cases. Denote by V;, ., CP" a com-
plete intersection of hypersurfaces of degrees (1, ..., ¢,. Assume {1 +---+(, < n+1.
Three cases are distinguished:

(1) t44+--+0, <n-—1
(2) l14+--+l-=n
(3) 41 4+---+{, =n+1(Calabi-Yau).
Denote by R the pull-back:
R:HYP") — H*(Ve, _0.) 5

for H € H*(P") the hyperplane class, R(H) usually generates PicX.
In case (1): in the quantum cohomology ring QH*(Vy, ... ¢, ), we have the follow-
ing relation:

Xrtlor =l X R G
(so that the ring is graded, with degg =n+1—>_¢;).
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EXAMPLES. (i) PFC P, n=7r —Fk, {; =--- = {, =1, so this says 2! = ¢.

(i) G(2,4) C P® get X° —22¢X = 0.

(iii) P' x P! € P3: consider X only, although here Pic= Z$Z; then X?—4¢X = 0.
(For Xy, X5 generators of Pic, so that X = X + X3, X7 = ¢.)

In case (2), one finds the slightly more complicated

-7

r n+l—r r r n
(X + H&!q) = Hﬁfiq (X + (H &!)q)
=1 =1 =1
ExXAMPLE. P! < P% embedded as a conic; so H — O(2). Then this says

(X +2¢)° = 2%¢(X +2¢9)

that is: X2 = 4¢2.

Givental’s idea: define and use ‘equivariant quantum cohomology’.

Remander of usual equivariant cohomology. Given a topological space X and
a Lie group G acting on X (typically G = (S1)" or (C*)"), define an equivariant
cohomology ring HE(X) as follows: find a space EG which is contractible and on
which G acts freely; set BG = EG/G; and define

H,(X) = H'(X x BG)/G)

In particular, H:(pt) = H*(BG).

EXAMPLE. G = S'. Then EG = S (the ‘Hilbert sphere’) = {(z;) : > |2?| =
1, almost all 2; = 0}. Then Hi(pt) = H*(EG/G) = H*(CP*>) = Clz].

Properties of equivariant cohomology.

(1) A G-morphism f : X1 — X5 induces a pull-back f*: H5(Xy) — HE(Xq), a
ring homomorphism, homogeneous of degree 0.

(2) A proper G-morphism f : X; — X induces a push-forward f* : H:(X;) —
H{(X32), homogeneous of degree dim X5 — dim X7.

In particular, the map X — pt defines an H}(pt) = H*(BG)-module structure
on any H}(X); if X is proper, we also have a map H} (X ) — H(pt) (analogous

to [).

EXAMPLE. For G = (S')" (or (C*)"), H¢(pt) = Clzy,...,x,]. The [ of classes
in HY(X) are polynomials in r variables for G = S*.

EXAMPLE. X = CP!, G = S! or C. Fix two points 0,00, and correspond-
ing inclusions ig, i to CP'. Set X = i0,[1], Xoo = tocs[l] € HE(CPY); then
H:(CP') = C[Xy,Xoo|/(XoXo). Here Hi(pt) = C[A]; the indeterminate h acts
by multiplication by Xy — X .

Back to Givental’s work. Consider a map P! — P”, given by (fo :---: f,) with
fi homogeneous in u,v, of degree d (so that the image is a degree-d curve). Also,
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let Vi be a hypersurface of degree k. For n = 4, a map as above is specified by
5(d + 1) homogeneous coefficient, so we could take

I = pod+1)—1

as a naive moduli space of mappings. Imposing that the image lies in a Vi, for k =5
amounts to (5d 4+ 1) conditions, giving a virtual dimension of 3 for the subscheme
in P30+ =1 of such rational curves. This accounts of course for the dim-3 group
of automorphisms of P'; we can let ng = the length of the scheme defined by these
conditions. For situation (1) (> ¢; < n — 1), this naive method in fact works fine.

Main Lemma. For L; = space of stable maps of degree (d,1) C' — P* x P!,
there is a morphism p : Ly — L. For

C=CoUC,U---UCy C; = P!

say Co has degree (d',1), C; map to P* x {z;} and have degree (d;,0) with >_d; =
d—d. u(C)is given by (gofo,-..,g0fs), where (f;) define Cy — P* and ¢y =
[T(x — ;).

This can be done in every n. P(r+Dd=1  pl — pr+D(d+D =1 where we think
of the left-hand term as parametrizing degree-d rational curves, and the right-hand
term as parametrizing degree-(d — 1) curves with a P! tail. Imposing the curve to
be on a degree-k Vi amounts to conditions bringing the dimension down to

l+(n+1)d—1—(k(d—1)+1)

If £ <n—1, this (the dimension of the moduli) is less than (n + 1 — k)dy — 1; for
k = n, the numbers will be the same and there will be a contribution from these
curves.

Bott residue formula. Assume a compact X has an S!(for example)-action

with finitely many fixed points. Also, let E be an S'-equivariant vector bundle, of
rank = dim X = n. Then

rexst

where a;,b; € Z are the weights of the S'-action on T, X and E, respectively, for
e XS,

In the context of enumerative geometry, this was first used in [E-S]. It motivated
Kontsevich’s work.

Now (C*)"_1 acts on P" (as the maximal torus of PGL(n + 1)), and on Ly.
The map Ly — L/ is equivariant. Now we have to choose a good basis for the
cohomology; unfortunately, there is no natural choice; but this can be done in
equivariant cohomology. Recall that the pull-back gives maps Hf(X) — Hf (p) for
all p in X, and for p; € X in particular. So we have a map

HE(X) = 3" Ho(p)
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THEOREM. (Atiyah-Bott, “Localization theorem”) This map is an isomorphism
after inversion of some element in H(pt).

EXAMPLE. Two fixed points: 0,00 for the action of S' on CP!. This gives the
obvious map

5 (CPY) = C[Xo, Xoo] /(X0 X o) — C[Xo] @ C[X oo ]

This is an isomorphism after inverting h = Xy — X .
This is the start of the rather tricky computation in Givental’s paper.

Givental’s method can be generalized to all Calabi-Yau complete intersections
in toric varieties. Note: for 3 a fan, PY is not necessarily convex; for example, P2
blown-up at a point already is not.

There are predictions for the number of rational curves on Calabi-Yau complete
intersection. For example, V3 3 C P? x P2 the Ny 4 have some periodic properties.
It’s not clear however what the physicists are counting.

Also, the relation between QQH* and Hodge theory is still mysterious.

Another possible generalization should be complete intersection in Grassman-
nians, for which the moduli space of stable maps should have all the necessary
information (no mirror symmetry needed here).

Final comment: Givental does prove that ng € Z; so far, however, it is only a
‘virtual’ number. To show that it is the actual number of rational curves may be
very difficult; for example, this is not the case already for V3 3 C P? x P2

4. Equivariant QH* (after Givental)—B. Kim, 10/3/96

Goal: to begin a study of the equivariant quantum cohomology ring Q H{,, aiming
to understand Givental’s work.

First, recall the definition and basic properties of the classical equivariant coho-
mology ring H},. Here

G is a connected compact Lie group;

X is an oriented smooth manifold or orbifold, acted upon by G;

X denotes the homotopic quotient, defined by X x¢ EG, where EG — BG is
the universal G-bundle (X x¢ EG = X x EG/ ., where (z,yg) ~ (gz,y) for v € X,
y € EG, g € G).

DEFINITION. H}(X) := H*(Xq,C).

REMARK. X xg EG = BG is a fiber bundle, with fiber X, so 7* gives HZ(X)
an H*(BG)-module structure. Suppose the Leray spectral sequence of X¢ — BG
degenerates at B, = H*(X) @ H*(BG), so that H:(X) 2 H*(X) @ H*(BG) as

H*(BG)-modules (not as rings); and we have the exact sequence

0—>I-H8(X) —>H8(X) —>H*(X) — 0

with I = H*(BG) = ker(H*(BG) — H*(pt)) (the augmented cohomology group).
(Note: the spectral sequence does degenerate in most algebro-geometric applica-
tions.) Then

(1) HE(X) is free over H*(BG); choose a basis {h;}
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(2) the composition < -,- >: HH(X) @ HL(X) = HLHX) =% H*(BG) is
nondegenerate, and det(g;; =< h;,hj >) € C (a priori € H*(BG) only).
Equwariant Gromov- Witten invariants. Let X be a convex variety, acted upon
by G. The evaluation/contraction diagrams

M07n(X, d) L

pass to the homotopic quotients:

Mo (X, d)¢ —— Xea

|

Mom x BG

(note Mo,n x BG = (Mom)(}: the action of G is trivial here).
Define < -+ >, 4 Hg"(X) — H*(BG) by

where [ is the push-forward via My (X,d)g — BG. Next, define the potential
(up to quadratic terms)

1 *
(1) =) — <" >na€ H'(BG)
n,d

Choosing a basis {T;} of H:(X) over H*(BG), ¢(y") can be expanded as a

formal power series:

nil--n,!

(note: here y; € H*(BG).) For x,y € H*(Xq), define x oy by
< xoy,z >= partial derivative of ¢ in the directions z,y, z

(which specifies it uniquely). One can prove that this o is (super-)commutative,
has a unit, is associative, and more.

EXERCISE. Let S! x S! act on P! by (21 : 29) = (e2™%2z; @ €2™2). Find é¢
of the quotient. (Answer: QHXA(P') = Clu,v,h1,li2,q]/(u +v = Iy + hy,uv =
hlhz + q))

Applications. Computation of the small QH*(F'), for F' a partial flag manifold;
and Givental’s proof of the mirror conjecture in Calabi-Yau and Fano complete
intersections in P x - x P"r.

For CP™ we can state a ‘mirror theorem’. Consider a degree-¢ hypersurface; the
cases to be considered will be { < n, { =n, { =n+ 1.
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THEOREM (GIVENTAL). The quantum differential equation on CP™ is hyperge-
ometric.

To clarify this statement, let p = ¢1(O(1)) € H*(P"), and consider a H*(P")-

valued formal function f:

f(t) = ao(t)p™ + a1 (t)p" 4 -+ an(t)

t

here e! = ¢, where ¢ is the quantum correction in QH*(P") = C[p, ¢]/(p"™" — q).

The ‘quantum differential equation’ is

T $0) —px (1) =

where * denotes the quantum product. Note that the equation implies in particular
that ( )"'H o(t) = qao(t). The statement is that solutions to this differential
equatlon have integral representations:

dug -+ -duy
S(q) = / ot tun
D= Jie, A1)

where w = 280U i the n-form defined by dug - - - du, = w A d(ug -+ up) (so, w =

d(uo-un)
_(71-1}71)11 S (1) uidug A . dug- A du ). Also, Y, = 771(¢) with = : C"*! — C*,
(Ugy .y Up) > Ug - U, and I' is some real n-dimensional cycle in Y.
Choose coordinates in Y,: wuy,...,uy,, so that ug = o . X x Gy

Choosing T' = [] unit circles, the integral above is

/ wr e+ du1 Z
€ 1 —_— = T
|ui|=1,i=1,...,n n

up to a normalization factor. This satisfies ( )"'H g = 0. The other linearly
independent multi-valued solutions are obtamed by different choices of T'.

From the point of view of Morse theory: ¢ = —Re(F = ug + -+ uy); I' =
the unstable submanifold of Vg in a Riemannian metric in Y. One can show that
there are (n + 1) real n-dimensional unstable submanifolds I', and check that the
corresponding S(¢) give a complete set of solutions for the quantum differential
equation.

Next, consider a general quintic X, C P*. The corresponding series is

(5d)! 4
Z (dl)? “

d

For a degree-{ hypersurface in P?, with 0 < ¢ < N + 1, this would be > (dvgiﬁl-l 24

The above S(¢) should play the role of the ¢ = 0-case of this expression.

Let H C PV be a hypersurface of degree ¢ < N + 1. Givental’s proof of the
mirror theorem for H amounts to the statement that the quantum differential
equation, D1(U(q)) = 0, will essentially coincide with the differential equation,
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Dy(V(z)) = 0, satisfied by > (d(!i%zd. Here ‘essentially’ means up to a change of
coordinates and more: for ¢ < N,z = ¢; for { = N, 2% = e7"1¢%; for the Calabi-Yau
case, z =complicated.

A problem to overcome in this proof: while for P we knew the QH*, we do not
have as much for the generic hypersurface; hence, we cannot explicitly produce the
quantum differential equation from the start. There are however complete solu-
tions to the quantum differential equation in terms of intersections in My (X, d).
The intersection theory so far was non-equivariant; equivariant intersection theory
(equivariant under the action of the torus on P") can be used to compute these so-
lutions. So in a sense, although we do not have the quantum differential equation,
we have its solutions. This reduces the computation to a suitable (and complicated)
> over trees. In fact, for ¢ < N the summation is simply a summation over chains,
and yields recursion relations, from which the quantum differential equation can be
recovered (and checked to agree with the non-Calabi-Yau mirror due to Givental’s
theory).

For { = N, > trees is a sum over chains, plus a correction; this correction can
be evaluated with relative ease.

For { = N + 1, > trees is a sum over chains, plus several correction terms.
Evaluating these is substantially harder.

5. QH* of blow-ups of P>—L. Gottsche
and R. Pandharipande, 10/17/96

Part I (L. Géttsche). Let X, denote the blow-up of P? at r general points. The
aim 1s to compute Gromov-Witten invariants of X,, and show their enumerative
significance in some cases.

Reminder on Gromov- Witten invariants. For X smooth and projective, and

effective 3 € A1 X, there is a space Mo (X, ) = {(pp: C — X;p1,...,pn)} with

evaluation maps p; to X, 2=1,...,n. Then
Ig(yr---m) = /_ piy YU pim
[MO,n(Xvﬂ)]

Note that we are not assuming that X is convex. [My (X, 3)] is a natural funda-
mental class: the obvious one if X is convex; or a clever one otherwise, for example
defined by means of the work of Behrend-Fantechi or Li-Tian.

More notations:

—the (pull-back of the) hyperplane class in X, will be denoted H;

—the classes of the exceptional divisors will be E;y through E,;

—for o = (ay,...,a,), (d, ) will be the divisor dH — > a; E;;

—ng o will be the expected dimension of M070(X, (d,a)), that is 3d — 1 — > «a;.
Write

Nd,a = I(d,a)((pt)ndya)

since divisors factor out, these are the only ‘interesting” Gromov-Witten numbers.

Intuitively, Ng o is the number of rational curves in X, of class (d, «) through
nd,o general points; that is, the number of rational curves in P? of degree d, with
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points of multiplicity a; at r given general points, and passing through ng , more
general points.
These numbers ought to satisfy the following properties:

(P1) Ng,o =0 unless a = (0,0,..., —Zl, o 0) ==

(P2) Nyjo=0if d >0 and any a; < 0;

(P3) Ny o = Ny, for any permutation o;

(P4) Nuo = N (o)

(P5) If ng,q >0, then Nyo = Ny (a,1):

(P6) Nyo = Ng o if (d',a') is obtained from (d,«) by a Cremona transforma-

tion, that is, if

d =2d—a; —ay —asz and
!
o =(d—ay —asz,d—a; —as,d—ay —az,aq,...,a,)

Further, one number is ‘enumerative’ (that is, it does count the appropriate
number of rational curves) if so is the other.

PrOOF oF (P6). Blow-up py, ps and ps, obtaining exceptional divisors Ej,
and proper transforms F; of the lines L; through them (L; through p; and ps,
etc.). Blow-down the F}’s to points ¢;, and let H be the pull-back of the hyper-
plane from the blow-down. On the blow-up S there are two natural bases for Pic:

{H,E\,E,,E3} and {H, Fy, F,, F3}, with obvious relations

HZQH—El—EQ—E;; 5 F1:H—E2—E3 5 etc.

For z4,...,z, additional general points on S, we may see the blow-up of S at
T4,...,7, both as the blow-up of P? at p;,x; and as the blow-up of (the other) P?
at ¢;, ;. From

dH—alEl—"'—arEr:(Qd—al—CL2—CL3)F—(CZ—CL2—CL3)F1—...

one gets M070(X,,, (d,a)) = M070(X,,, (d',a’)), from which (P6) follows. O
Now the results are:
THEOREM 1. The N4 o are determined by sumple recursion formulas.

THEOREM 2. The number of genus-0 stable maps with image (d, ) through ng
general points is finite. All of these maps are birational maps of P! onto the image.
Possibly counting multiplicities, Nq o s this number.

THEOREM 3. Assume one of the following:

(1) nd,a > 0,’
(2) There is an i for which ¢ € {1,2};
(3) r <8

Then all curves count with multiplicity 1, and each map 18 an immersion.
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COROLLARY. If d <10, then Ng o ts enumerative.

Roughly speaking, the proof is in two parts. First, the associativity of the
quantum product determines the numbers. Second, assume ng4, = 0; then the
space Mg o(X, (d, «)) has dimension 0 and consists only of curves as in Theorem 2.
Under the conditions of Theorem 3, My (X, (d, a)) is smooth of dimension 0.

Digression on quantum cohomology for nonconver varieties. Let X be a smooth
projective variety, and B C H2(X,Z) the cone of effective classes. Choose a Z-basis
To,Tvy. .., Ty, Tpg1y. .., Ty = {pt} for H*(X,Z), and let {T,'} be the dual basis,

—_————

divisors
so that T; - ij = 6;j.
For variables q1,...,¢p, Yp+1,--.,Ym set
Npt1 n
[T Lo ToYpta = Y
Doy = D X LY T’ g’ T
Npt1--"Nm-

Note: we are ‘separating the 3’s’, so that there is no question of convergence (f is
reconstructed from fﬁ Ty,..., fﬁ T, by duality).
0

2

Thinking ¢; = €Y, set 0; := , and 'gpe = 0,050, T.

r=p+1,....m

Jy;
We get a Q[[q, ¢!, y]]-algebra structure on the free Q[[¢, ¢~
ated by the T}, by defining

L y]]-module gener-

m
T+ Tp = (T, - Tj)+ Y _TipT)
r=1
Fact: this is associative. This is shown by combining the properties of the virtual
fundamental classes with the arguments for associativity from the convex case.

Back to X, now. Here choose Ty =1, T\ = H, T;11 = E;, T, = {pt}. So

Nd, a

d . Y
T(q.y) = > Naagiqs' - Qf+1#
d,o o

T+ Ty = (Ti T)Tm + Y €lijeTe + Tijn Tt

s=1
withe, =1if s =1, —1if s > 1.
LEMMA.
m—1
(g(m)) Pmmm — Z €s <P%3m - Pllsrsmm>
s=1
and, for1=2,....r+1=m,
m—1
(g(l - 1)) Pum - Fllm = Z €s <P%w - Pllsriis>

s=1
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PROOF. For g(m), look at the coefficient of Tj in
(Tl*Tl)*Tm—Tl*(Tl*Tm) )
for g(z — 1), look at the coefficient of T} in

(Tl*Tl)*Tl_Tl*(Tl*Tl) .0

Notation:

- (d,Oé) = {((dlvﬂ)v (d277)) : both are 7£ 0;
the sum is (d, a); ng, g > 0; ng, ~ > 0; b; < dy, ¢; <da}

where the b; are the components of 3, and the ¢; are components of y. Wi is
here the b th p ts of 3, and th p ts of 4. With this,
the basic recursion is given by

THEOREM. The N4 are determained by
Ni,..oo=1,Ng =1

and: if ngo > 3,

Nao= >, NasNay, (d1d2 B ZbiCi) <d1dz(nd’“ a 3) — d7 (nd’a - 3))

F(d,0),d; >0 ndy 6 — 1 n4, s
Zf nd,a Z 0;
d*aiNgo = (d* — (¢ —=1)*)Ny o_3

+ Z Na, ,86Nay ~ (d1d2 — Zbici) (d1d2bici — d%c?) (nd’a)
F(d,oe—[1]),d; >0 nd.,B

PROOF OUTLINE. ¢(¢) translates into something similar to R(¢); use this to prove
(P1). After (P1) is proved, ¢(i) does give R(¢), and g(m) gives R(m). (P2)—(P5)

are proved by induction, using the recursions. [

REMARK. Feeding the recursions into a computer, one can crunch out many
examples. For all cases worked out so far, it so happens that two numbers are
equal if and only if they must be equal by (P1)—(P6).

Part II (R. Pandharipande). Notations as in Gottsche’s talk: we have ng o > 0,
d>0; a=(a1,...,0.), with a; > 0; X,; etc. The enumerative geometry problem
we consider is:

count the number of maps [v] € Mo o(X,, (d,a)) incident to ng. general points.

In this lecture we address the following results:

(I) The number of solutions is finite; all are birational maps from P! to the image
in X,; Ng o > the number of solutions > 0.

(IT) Let at least one of the following two conditions hold:

(1) nd,a > 0;

(ii) «; € {1,2} for some 1.

Then Ny o is the number of solutions. Moreover, they are immersions of P! to X,
(questions: are they immersions to P??)
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Step 1. The trick we use is the “Elliptic herding” method (Harris—Caporaso,
Kollar).
Let (d,a) # 0, satisfying ng o < 0. Then M o(X,, (d,a)) = 0.

PROOF. Assume d > 0, and let B, = P? x --. x P?*— diagonals. Consider the
SN—_— —

‘universal blow-up’ X, = B,., whose fiber over (by,...,b,) is the blow-up X, of P?
at b= (by,...,0).

Let Mo o( X, (d,a)) be the m-relative space of maps. Let 7 : Mg o(, (d,a)) —
B, be the natural map. Assume 7 is generically surjective. Since 7 is proper, it

must then be surjective. That is, specializing (b1,...,b,) we get stable curves in
the limit.
Now ‘herd’ by,...,b, to lie on a smooth elliptic curve: we get a stable map

p: C — Xp, with b; €smooth elliptic curve £ C P2

Simple numerology gives C' - p*(¢1(Tx,) =3d — > a; =ngo+1 <0.

Now the proper transform E of £ is a section of Ty, and the stable curve cannot
have components on E. If ¢ = UC;, C; - p*E > 0; so necessarily C' - p*E = 0.
Pushing forward, we get a stable curve which intersects £ only along the blow-up
points. This leads to a contradiction since the points are general. [

Step 2. Suppose (d,«) satisfies ng > 0. Every map [u] € Mg o(X,,(d,«))
incident to ng . general points in X, is a birational map P! — X,; moreover, it is
‘simply incident’ to the points.

PRrOOF. This is easy using Step 1. We need to show that: the domain of p 1s
irreducible; p is birational onto its image; and it is simply incident to the points.
These are all shown by proving that failing any of these would contradict Step 1. For
example, suppose that such a solution map has reducible source: p: C = UC; —
X,. There must be at least two components mapping nontrivially by p (no marked
points, so the tails must survive by stability). Let then Ci(di,aq),...,Cs(ds, as)
be the components that are not collapsed, with s > 2. Note that ngo = s —1+
Ele Nd; a; > Ele Nd; a;- Also, C goes through the ng4 o points: let p; =number of
points contained in (C;). Then Y i_, p; > n4,o (every point is in one of C1, ..., Cy)
> > Nd;.a;- Then there must be a j such that p; > Nd;,a;; and this contradicts
Step 1. Indeed, consider the map /,L"j from C to the blow-up of X, at the p; points
in p(C;). The image has class (d;, (a;,m1,...,mp,)); the virtual dimension would

be
Ndja; — Zml < Ndja; —Pj <0

and the moduli space for this problem is empty by Step 1.
The other two parts to the argument are similar: the extra condition leads to
negative virtual dimension. [

Step 3. Reduce to expected dimension 0. For this, blow-up the nq o (general)
points producing a X,y,, .. The solutions to the original problem come from
H()’o(XH_ndﬂ (d,(a,1,...,1)). The recursions from Goéttsche’s section show that
Nd,a = Nay(a,1,...,1); 50 we may reduce to the case in which the expected dimension
is 0 (note: the X, 1,, s are even less convex than X,!).
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Step 4. Assume ng, = 0. Then M070(X,,,(d,oz)) is pure of dimension 0 (not
claiming here nonsingular or nonempty).

PROOF. By Step 2, we know M o(X,,(d,a)) equals the locus Mo#,o(Xra (d,a))

of birational maps P! — X,. Consider the normal sheaf sequence
0— Tp — u'Tx, — Nx pm — 0

The Zariski tangent space to [i] in Mg o(X,,(d, a)) is HO(P', Nx, p); the degree
of the normal bundle is 3d — Y a; —2 =n4, —1 < 0.
This does not mean that Ny p has no sections; but we have the torsion sequence

0 — Torsion — Nx m — Free — 0

the free part must have negative, and the torsion part positive, degree. The tangent
space HY(P', Nx m ) is equal to H°(P', torsion). It follows that the moduli space
is of pure dimension 0. [

This concludes the proof of part I. We can only outline the proof to part II: if
ng.o =0, and «; € {1,2} for some i, then Mg o(X,,(d,«)) is nonsingular, and each
curve is immersed.

What is easy to see is that the nonsingularity of My o(X,,(d,a)) is equivalent
to each curve being immersed. Indeed, refining the argument above, the degree of
Ny, p must be —1. So H*(Nx, p) = 0 if and only if Nx, g is locally free, if and
only if the curve is immersed.

By considering deformations of exceptional points by, ... , b, cohomological con-
ditions on relevant normal sequences are obtained. These are enough to force the
immersion condition. However, the relevant deformation argument works through
only if there is at least one nonsingular or double point in the list, and this translates
into the condition on «. O

6. Quantum Schubert polynomials—W. Fulton, 11/7/96

This is in a sense a continuation of the first talk in this series, on the (small)
quantum cohomology ring of flag varieties. The starting remark is that beyond
an abstract description of QH*, a Giambelli formula is needed to perform any
computation, both in the classical and in the quantum case.

Review of the classical case. Notations: X = F{(C") = {L. : Ly C Ly C
-+ C L, = C"} denotes a flag manifold; we have the universal flag of bundles

UvcU,c---cU,=Vx
over X, with V. =C"; let ©; = —¢1(U; /U;_1); then

H*X =27z, ..., x,)/(e], ... ep)

k

where e} = i-th elementary symmetric polynomial in zy, ..., 2. The reason for this

is that we have a map Z[x1,...,2,]/(el,...,e") — H*X since e = (—1)'c;(Vx) =

rTn
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0in H*X; to see 2, realizing X as a sequence of P"-bundles shows that rk H* X = n!
as needed.

Bases for H* X over Z:
(i) «f = l’il co-ztn with i; < n —j (so that 7, = 0 necessarily). This basis is
preferred by algebraists.
(i) es=ej ---ef ", with 0 < j, <p.
(iii) Classes of Schubert varieties: [, ], with w € Sy; to describe §,,, fix a flag

Ve and set
Qu =A{Le | dim L, N Vyup1—¢ > #{i < p|w(2) < ¢}Vp, ¢}
Q, is an irreducible subvariety of codimension = {(w) = #{i < j|w(i) >
w(j)}. Of course this basis is preferred by geometers.
Giambelli problem: write [Q,] in Z[z]/( ).

Solution: (Bernstein-Gelfand-Gelfand, Demazure, etc.)

(1) Forw=nn—1...21, [Q,] =the class of a point =z} 'zl % 2} _;

(2) Suppose w(z) > w(t+1) for some . Let w’ = w-s; (where s; =transposition
(17 + 1)), that is, interchange the values of ¢ and ¢ + 1. Then

[Qw’] = 0; [Qw]
where 0; is a difference operator,
P — s;(P)

Ty — Ti41

o;P = (where s;(P) = P(--- ,xiy1, 2, ))
This recipe gives polynomials, denoted &, (x), representing [€2,]. They have been
defined, studied, and called Schubert polynomials, by Lascoux and Schiitzenberger.

REMARK. For any u € §,, we have an operator J,: write u = s;, -+ s;, in the
shortest possibly way; then 0, = 0;; o -+- 0 J;,. These operators are independent
of the decomposition chosen for u, provided this has the shortest possible length.
The Schubert polynomials &,, can be written in terms of these operators.

EXAMPLES. &5, =1
Sy, =14+ (0[Qw] =0if w(i) <w(i+1); then &, cannot include any
xj for j > ¢, must be linear, etc.)
n=3:
321
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PROOF. (Of (2) from the Solution.) Let X (¢) = partial flag manifold (forget L;).
The natural map X — X(¢) is a Pbundle, P(U,4+1/U;—1) (abusing notations).

T
N

(1) (p1)so(p2)*: H*X — H*X is 0;;
(2) p1 maps p, () birationally onto €2, (with notations as above).
This implies [Q,/] = 0;[Q4], as needed. O

DIGRESSION ON SCHUBERT POLYNOMIALS. It is clear that &,, = ZCL[Q?I, with
ar € Z. In fact a; > 0, but we do not know a ‘geometric’ reason for it. Kohnert (in
his thesis) conjectured an intriguing formula for a;. The formula is best illustrated
in a simple example: take w = 31524, its diagram D(w) is obtained like this:

; e Bl |

® - |- I I I I

; I _J__L_J
. I I I I I
L4 | :_ I I I I I
: | - - -9
| . . — |
I J m o r |_1
f ?',___ | L I I I I I
f f 1 1 e B e e
I I @ |- | I I I I I
e _J__L_dJ__L_4

A move for such an arrangement consists of taking the box which is right-most in
its row, and moving it up to the next available spot. Now play the following game:
start with D(w), and make all possible legal moves

I
1
= f— -7 k- — - -
o o
-—> I
:____ o - N N B R
A R R T R —:
I I
'__I__I__I__I__I P O B . e e B
o | | | | o | | | ! o o
I__I__L__L__L_l —_—— e e -9 o
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. -th
List all results D, each once, and let 2 =[] x?boxes in i row of D “hen the claim

is that
Suwlr) = ZxD )

In the example, this gives
2.2 2 2.2 3 3
Gsi504 = 2775 + 2]0223 + 275 + 223 + 272

Although formulas for the a;’s have been proved, Kohnert’s conjecture remains
open.

(End of the digression)

Piery problem: write the product of a general Schubert variety by a special one:
GSi ° Gw :?

Solution: (Monk, Chevalley) This is >~ &y = > Sy, , where t4; is the trans-
position a < b; the > is over a < ¢ < b such that w(a) < w(b) and w(y) is not
between w(a) and w(b) for all j between a and b.

EXAMPLE. G, - G31524 = G32514 + Gua1523
Gs, - G31524 = G32514 + 651324 + Guais23

REMARK. There must exist coefficients c¢¥

w such that &, - 6, = > ¢ &,. By
geometry, ¢, € Z>g. No formula for all ¢}, is even guessed!

Finally, the basis of Schubert varieties behaves well with respect to the intersec-
tion pairing;:

[ 190 @ =000

where wg =nn —1... 21.

Quantum version. Take variables ¢i,...,¢,—1, corresponding to [Qs,],...,
[Qs,,_,]; and duals Y; = [Quys;]. Let K = Z]q1, ..., qn-1] (degq; = in a(TX)=2).

DEFINITION. QH*X = H*X ®z K as K-module; it is a K-algebra under
V1% W] = VIU VT4 Y " La(V - W - Q0[]
d=0

with appropriate positions (¢? = qfl e qi"__ll, etc.)

Problem: Present QH*: QH*X = K[xy,...,2,]/(...7...)
For the relations, it suffices to find any deformations of e, ..., el which hold in

QH*X.
THEOREM 1. (Guwental-Kim; Ciocan-Fontanine)
QHY = K[xy,...,x,)/(E},...,E")
where E¥ = it ‘elementary quantum polynomial’ in k variables.
These quantum polynomials are

EF = Z qreg

2|1|+|J|=i, I,J “disjoint’
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where ¢; ‘covers’ 7,141 and x; covers j, and I, J are disjoint in the sense of covering
disjoint subsets of {1,...,k}. For example,

€1 T2 T3 Tyq T Te €7 T8 T9
¥ ¢ ® g2 ® g3 O g4 * g5 * g O g7 ® gz @

(2GsT1T5%¢ 18 a summand in E?.
The original description of these polynomials was as follows: let A be the matrix

X1 q1 0 0
—1 iz q2 0

cee Tk—1 4k-—1
0 0 0 —1 Tk

Then det(1 +\A) = Y E¥\'. The two descriptions agree, as they both satisfy the

recursion

Elk = El‘k_l + xkEl‘k__ll + Qk—lEl‘k__zz

Next, ¢ — ¢ ® 1 gives an inclusion
HX SQH' X =H'X®K

In the Grassmannian case, Giambelli’s formula moves unchanged from the classical
to the quantum ring (see Pandharipande’s lecture on the Grassmannian).

THEOREM 2, ‘QUANTUM GIAMBELLI’. (Fomin-Gelfand-Postnikov, based on a

result of Ciocan-Fontanine.) Write &, = > nypey, with ey = el coeett

J1 jn—l and

njw € Z (note: the nj, are not necessarily positive). Then

[Qu] = ZanEJ, with By = E]ll R

In—1

THEOREM 3, ‘QUANTUM MONK’. (same people; also D. Petersen.) With &% :=
dngwEr,

6! -6l = Z ST Z RIS

classical quantum

the second ) over all ¢ <1 < d such that w(c) > w(j) > w(d) for all j between ¢
and d;' and where 9ed = 4ecfe+1 " 4d—1-

PROOF. Here are four bases of QH*X over K:

(i) a';

(i) Ey;
(i) [Qu];
(iv) &,
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We want to show that (zi2) and (iv) are the same. Let K4 be the cone spanned
by all ¢™, and let QH, be the cone spanned by all ¢™ - [Q,], that is BK - [Qu].
Three facts:

(a) QHy is closed under multiplication;

(b) Each EY is in QH, so each E is (this relies on Ciocan-Fontanine’s result:

(¢) This needs more notations: for F' € QH*X, define < F > by any of the
following recipes:

expand in terms of basis (i), take coefficient of x?_lxg_z ceeTp_1; O

expand in terms of basis (iii), take coefficient of [§2,,]; or
expand in terms of basis (iv), take coeflicient of &Y, .

(It is easy to see that these coincide.) Remark: if F € QH,, then < F >¢ K.
The statement is then that

< 61-61 ,>=0u

Wov

for all u,v. This is harder than it looks.
Also,

LEMMA. Fiz k < (g) For all w € S,, of length ((w) = k, there exist a, > 0,

Given (a), (b), (¢) and the Lemma, we can prove Theorem 2:

Fix w € Sy, let k = {(w), and for { < (g) let (' = (g) — L.

(1) [Qu] = &%, + Eé<k Py, with Ppy = Eé(v):é Couw 7.

We have to show that all Py, = 0, or equivalently that < Py, - &% >= 0 for all v
with {(v) = {'; or, equivalently, that

< Py -E;>=0 forall Jwith |[J| =/

(2) Now
<Py E;>=<) Q, E;j >€ K

But QHy 3 ), ¢Sy =3 aw[Qu] — >, p ¢wPrw, s0 =Y., twPrw € QH4, and
— aw < Pu-E;>€ Ky

It follows < Py, - E; >= 0, as needed. 0O
REMARK. (c) can be proved in the form (¢'): < Er- Ey >=0if [I|+|J| > (}).

Comments on the algebra. Define operators Xy,...,X,, on Klzy,...,z,] by
Xp = ap — Z 4ik Oy, + Z 4k O,
i<k >k

(1) These operators commute, and commute with the €,’s.
(2) Vf € KJz], there is a unique F € K[X;y,...,X,] with F(1) = f.
(3) If f=ey,then F=Epif f =&,(x), then FF = &L(X).
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The algebra of these operators streamlines the proofs considerably. For example,
Quantum Monk amounts to proving

(X1 4+ +X)8L(X) = Y 6L, () + D 4Gl (X)

classical quantum

and this is shown by evaluating at 1 and applying the above and the classical Monk.

ExXAMPLE. Finally, here are the quantum Schubert polynomials for n = 3:

321
2
TiT2 + q121

231 9
r1T2 + q1 T —q
213 132
T1 \ 1+ T2
1

7. The small QH*-ring of flag manifolds, I
—I. Ciocan-Fontanine, 11/14/96

Fix an n-dimensional complex vector space V. We will use the following nota-
tions (differing slightly from Fulton’s notations):

F = F{(V) will be the manifold of flags {U; C --- C U,—1 C V'}; Vi will denote
V @ Op; there are tautological bundles

EyC- - CEp1=FEy=Vp—» Ly —» -1

on F, with L; = Vp/E,_;. We let x; be ¢i(ker(L; — L;—1)). Fact (see Fulton’s
lecture):

H*(F)=2Zxy1,...,xq]/(el, ... en)

rTn

with ¥ = the i-th symmetric polynomial in x4, ..., z.
Next, fix a reference flag V4 C --- C V;,_1 C V. For w € S,, (=the symmetric
group), let

rw(q,p) = #{i < ¢:w(i) <p} and set
Qw = {y & F/ rky(Vp ® OF — Lq) S Tw(q7p)7\v/q7p}

The set Q,, is irreducible, of (C-)codimension {(w) = length of w = the number of
‘inversions’ in w. We will denote by ,, also the corresponding elements in H, F
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and H*F. The set {Q, : w € S, } forms an additive basis for H*(F'). Further, we

have the duality
/ Qwaov — 6wv
F

where wy is the permutation of maximal length, that is, wo(¢) =n + 1 — 1.

The Giambelli formula tells us that Q, = &, (x) in H*(F), with &, (x) =the
corresponding Schubert polynomial, as defined in Fulton’s lecture.

For s; = (i,i + 1), the set {Qs,,...,Qs,_,} is a basis for H?(F). Aiming to
quantize the situation, we let Y; be Qus,, so that {Y7,...,Y,_1} gives a basis
for Hy(F'), and let indeterminates ¢; correspond to the Y;. We consider the ring
K =7Z[q,...,qn-1] and define the (small) quantum cohomology ring of F to be

QH(F)=H"(F)2z K
as a W-module, with product

Qo Q=3 7T (22000 Qugw

where d = (dy,...,dn_1), 7@ = Hq;ii, etc. Note: F is a linear section of the
Segre embedding of the product of the relevant Grassmannians in their Plicker
embedding; 2, is the pull-back of O(1) from the :** Grassmannians. In particular,
the Qg are nef, and it follows that if f : ¢ — F is a map from a curve, then
f+[C] =>_d;Y;, with all d; > 0.

Next, we operate on polynomials P(x,¢) by replacing the intersection - with
x: that is, we leave the ¢;’s alone, and we replace monomials in the x’s with the
corresponding quantum products. Note that as it turns out that Q,, = G, (x) =
1+t = ei, we have x; = (5, — Qs,_,. So, for example, P = ¢qx1 25 yields
P = qa(Qs, * (Qs, — Q5,)). We want to write the Q’s in terms of this operation:
that is,

the Quantum Giambelli problem is then to find &% (x,¢) such that 65 = Q.
Necessarily, 6 = &, 4 a quantum correction; that is, G4 (x,0) = &,.

A presentation of QH* is given by Z[z1,...,%n,q1,- ., qn—1]/1, where I, is the
ideal generated by ‘quantum perturbations of the e’’. It will follow from Theorem 1
below that these can be taken to be the polynomials E}, ..., E:

Elk — ' elementary quantum symmetric polynomial in @1, . ... Tk, q1.-. .. qk—1
(see also Fulton’s lecture). These can be defined in terms of the characteristic
polynomial of

1 q1 0 Ce 0

—1 iz q2 ce 0

cee Tk—1 4k-—1
0 0 0 —1 Tk
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and satisfy the recursion

(%) EF = EF' 4 4B + o BN
Since e¥ = ef_l + xkef__ll, writing EF = e¥ + 1E¥ we have that (*) is equivalent to

() "Ef =BT i BT+ "By
Now denote by A¥ the class represented by ef in H*(F), 1 <i < k < n. We have

{Qai,k E<n

k _
Al = 0 k=n

7

with a; p = the cycle (k—¢+1,....k+1).
THEOREM 1. J/E} =AY in QH*(F).

In particular, E?‘ = 01in QH*(F); that is, E' € I, as promised.
Theorem 1 will follow from

THEOREM 2. (Geometric formulation of a special case of the Quantum Monk
formula.)

classical JF£k

Qs * Qo = (classical term) +0xqi Qa; ps; = { 1
: : j=

classical + qr <)

Qi1 k—1

PROOF. (Of Theorem 1, assuming Theorem 2.) This is done by induction on k.
The statement is trivial for k =1 = ¢ = 1: ¢} = E{ = x1. Assume proven for

< (k —1); then

o R B =
k-1 -1 _ k-1
e’ = €; —I—:Jckei_1 =e; + xp ke

k e k k
-1 -1 -1 -1
=A77 —9ET fapr AT —apx 1B
. —— ) —
-1 -1 -1 ~1
=A77 —9E;T tapx AT —apt BT
Now by Theorem 2
k—1
ok AT = Qg xQ —Q *

=AM — AT — @

Qi1 k—1 Sk—1 Qi1 k—1
Q2 k—2

and therefore

o~ e— e—

ef = Af —4E}' — qp 1 BT} — 2 BN
4B
with BF = qu_l + :z:quf__ll + qk_lEf__zz = qu by the recursion. That is,

Th kL apk 4k
Ef =e; +1E; = 4;

Y

completing the induction. [
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8. The small QH*-ring of flag manifolds II
—I. Ciocan-Fontanine, 11/21/96

Plan: as much as we can of the following

) What’s left to prove;
1) Homyz and its compactification HQ7;
2) Three point (GW) numbers I{(Qu, Qw, Qu, ) via HQ7;
3) Structure of the boundary;
4) Proof of the moving lemma;
5) Idea for computing I7(...);
6) Proof of ‘special’ Quantum Monk formula;
7) General Quantum-Monk formula.

(0
(
(
(
(
(
(

(

(0) From the first lecture: V 2 C", F = F(V) = the space of complete flags in V.
Universal quotients: Ve =V @ Op — Qp-1 — -+ — Q1;
Fixed reference flag: Vy C Vo, C---CV,, =V.

Every w € S,, determines a rank function,

rw(q,p) = #4{i 11 < g;w(i) < p}

The corresponding Schubert variety is Q, = {tk(V, @ O — Q) < ruw(q,p)Vq¢,p};
that is, the degeneracy locus of the universal quotients, using r,, for degeneracy
conditions.

The codimension of €, is the length of w, denoted ¢(w).

If s; denotes the transposition (¢,7 4+ 1), then {§;,} gives a (group) basis for
H?(F).

The quantum product is defined by

D, * D, = Z T Lo, Qo Qs ) g s

where d = (dy,...,dn—1), §= (q1,...,qn—1), and wq is the longest permutation.
Quow 18 ‘Poincaré dual’ to €2,.
Then we have to show the following ( ‘Special Quantum-Monk’):

, JFk
=k

classical

o 4 8oy, = { classical + ¢ )

Ai—1,k—1 ”
with a; ;. = Sk—it1 - Sk.

(1) Equivalent formulation:

d="ep, and w = woa;—1 k-1

otherwise

1
IE(QSJ Qai,ka) = { 0

HereEk:(0,...,%,0,...,0).

The idea i1s to compute the three-point functions geometrically, that is as inter-
section numbers on some compactification of Homs.
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We will denote Hy := Hom=(P!, F) = M, 3(F,d), that is
Hy =A{[f]: f: P! — F, f[P'] = Zdi@wosi}

We will use a compactification other than M 3(F,d).
Since F' is homogeneous, H will be smooth of dimension (g) +25 d;. We have
the evaluation map P! x Hy — F, (¢,[f]) — f(t). For fixed distinct t1,1,,t3 € P,

Ig(Quw, Qo Quy) = #{[f] : f(ti) € Qu, , i=1,2,3}
We set Q,(t) := ev™1(Qy) N {t} x Hy, so heuristically
IE(QUHQU&QUJB) - #{le (tl) N Qw2 (tl) N QUJS (tl)}
Explicitly,
Qu(t) = {rk(V, ® O — ev*Qq) < ruwlq,p)Vp, ¢} N {t} x Hy

Idea (Bertram): Compactify Hy so that there exist natural vector bundle exten-
sions of ev*(@), across the boundary, and use the same conditions to define €2,,(t)’s
there.

The data of {f : P! — F,d} determines a sequence of surjections {Vpm —
L,y — -+ — L} with tk L; = ¢, deg L; = d;. Dualize this sequence, and get

S1CS C-- C S C Vi
with rk S; = ¢, and deg S; = —d;. And next consider the surjections
Voo = Vi /S1— - — Vi /Shaa
Degenerate this to get H)7, then set
Qu(t) = {rk(V, ® 0 — 87) < rwlq,p)} N {t} x HQg
The S; are defined below:
SSc---CS,-1 — V*®O]P>1><”HQJ

THEOREM 1. (Laumon, C-F, Kim) (i) HQ7 is a smooth, irreducible projective
variety of dimension (g) + 2> d;, containing Hy as an open dense subscheme.
There exists a universal sequence of quotients

V@ Opsug, = Thm1 — - =T
with T; flat over HQ7 and fized relative Hilbert polynomial
\(Ti(m)) = (m + 1)i + dus

(This 1is an ‘extension’ of Grothendieck’s quot-schemes).
(11) Si := ker(V* — J,_;) are vector bundles on P! x HQ7; there are injections
of sheaves
S i C---CS,q cv*®

(which may degenerate as maps of vector bundles).

(2) The following results show that we can use HQ7 to define I5{( 2y, Qu, Quw, ):
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THEOREM 2. (‘Moving Lemma’) (i) Vwi,...,wn € Sy, t1,....tn € P!, and
general gi,...,gn € SL,, the intersection NN, giQu,(t;) is either empty, or of
pure codimension y_ ((w;) in H. B

(it) If in addition the t;’s are distinct, then Ng;Qy,(t;) s either empty, or of
codimension Y ((w;) i HQ7, and equals the closure of the NQ in (1).

In particular, when the codimension is maximal (that is, when the intersection
consists of points) it all happens in the open part, so it counts what it is supposed
to count.

COROLLARY 1. The class of Q,(t) in Aé(w)(HQJ) 18 wndependent of t and the
fized flag Vo C V.

COROLLARY 2. If > l(w;) = (g) + 2> d; and ty,...,tN are distinct, then the

number of intersection points of general translates is given by

40N, (1) = / T (1] U+ U [y (£0)]

HQ

So we define

(D Qg )7 = /H%... ifZg(wi):G‘)_l_QZdi

0 otherwise

(Difference with the usual GW: here we take a fixed, albeit general, configuration
of points in P1.)

COROLLARY 3. (Q4, Qu,)7 =0 for d £ 0.

(Indeed, if we get one we must get a whole C* of intersections.)

However, since ev does not extend to H(Q)7, a different strategy is needed to prove
(ii). We need to analyze the restriction of N€Q,,,(¢;) to the boundary, and show that
it has ‘large enough’ codimension.

(3): Structure of the boundary. Recall the universal sequence on P! x HQ7:
0= 80 = =8l = W, = Ty = = T

Hy is the largest open subscheme in HQ7 such that on P! x Hy all these maps are
nondegenerate as vector bundle maps.

Next, we ‘stratify’ according to the degeneracies of the map, more precisely
according to the ranks of T2,

Idea: how to construct Vi — T,y — --- — T} on P! with assigned Hilbert
polynomials and with prescribed ranks at ¢t € P'? Let tk;T,,_; = n — ¢ + ¢;, with
e; > 0; start with Sy C --- C S,—1 C Vi, a point in HQ5__, together with
quotients S;(t) — C% (t). Let §Z = ker(S; — C°(t)), a vector bundle of rank 7 and

degree —d; on P!, and a subsheaf of Vg . If we want S; — V* to factor through
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§i+1, we should start with quotients S;(¢) — C(t) together with compatible maps
Cei (t) — Ce+1(t). Set then T,,_; = V*/5;.

The following construction and theorem are a globalization of this idea, showing
also that every degeneration is obtained by the above construction.

Let € = (e1,...,en—1) such that 0 <e; < min(¢,d;), and e; —e;—; < 1. Consider
the universal sequence

d—e d—e¢ *
0—=8& "= =851 =V xHQ7__

Let G; =5 P! x HQ7_- be the Grassmann bundle of ¢;-dimensional quotients of

Sld_e, with universal sequence
- d—e
0K, -8 “— Qi —0

and set
Xg = G1 X pL XHQs__ " X pL XHQs_ Gn—l

Define Uz C X7 as the subset where K; — ;41 vanishes, and K; — V* is injective
as a vector bundle map.

THEOREM 3. (1) Uz s wrreducible, Cohen-Macaulay, of dimension 1 + (g) +
23 di — > ei — > ei(e; —ei—1). The projection 7 : Us — PP x HQ7_ - 1s flat, and
its image contains P1 x Hy _.

(1) There exist maps he : Us — HQ7 satisfying

(a) if ko T =n — i+ e, then @ € ha(lke);

(b) the restriction of he to m (P! x Hy__) is an isomorphism onto its image.

EXAMPLES. 1) € = (0,...,0,1,0,...,0). Then X, is a P*"L-bundle over P! x

HQ7_¢, and Uz, is a section over an open set, that is, 7 : Us;, — P! x HQ7_¢, is an
Open immersion.
2) n =3, d=(1,1). We have the strata Dy, Dy from above and a codimen-

sion 2 stratum E = hg y(Uq ) Uaqry = Xa) = IF’(S( 0)) h(1,1) maps U 1)

isomorphically onto FE.

LEMMA 1. hZY(Qu(1) = 771 (P x Q,(1)) U Q5,(1)

where @i(t) C Ue(t) := 71 ({t} x HQ7_;) is defined by {rk(V, ® O — K}) <

ruw(q,p), VP, q}.
On Uz(t) we have the flag of quotients

Vo=0—-K, |, »K:_,—»- - K

with rtk K} = 7 — ¢;, implying that some of these maps are isomorphisms. Let
k = #{i — e;}. Define a partition of [0,n] as follows: i¢ = 0, ¢; = min{e|i — e; >
ijo1 — €i;_y } thy1 = n. Let nj =45 — ey, de., ZE[],Z]_H—l] — rk K is n;
(constant). Since the matrix (ry(g,p)) has nondecreasing columns, QF, is defined

by {tk(V, @ O) — K7 <ry(1j,p), j =1,...,k, ¥p}.
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Let F(nq,...,nk, V) be the partial flag variety parametrizing flags of quotients
of V, with ranks given by the n; and with universal sequence

There exists a ¢z(t) : Ue(t) — F(nq,...,ng, V) such that

VO » K Y- - K}
is ¢z(t)* of (*), and (Nli = ¢-'(t)(Dwz), with D, z defined by the ‘same’ degener-

ation condition in F(ny,...,ng, V).
LEMMA 2. Dy, 7 is irreducible, of codimension a, satisfying a > ((w) — > e;.

LEMMA 3. Let € be as above, and assume € # 0. Then
(1) Deilei —eim1) 215
(ii) We have equality in (i) if and only if € = €x, = (0,...,0, %, ce %,0, ...,0)
for some 1 <k <{l0<n-—1;
(iii) Let € = €x¢ as above, and w € Sy, any permutation, Dy z as in Lemma 2.
Then a =0w)=> e; =Llw)—(L—k+1) if and only if w(k) > maz{w(k+
1),...,w(l+1)}.

Remark: (ii) and (iii) will be used for the proof of Quantum Monk.

(4): Proof of Theorem 1 (ii). This is done by induction on d: for d = (0,...,0),
HQ7 = Hy = F, OK. Assume then d # 0.

Let ¢ = > l(w;). It is enough to show that he(Usz) N (NQy, (i) has codimension
> ¢ in ‘HQ7 for every €. Now hg is birational onto its image, hence it suffices to
prove that the codimension of ﬂh;l(ﬂwi(ti)) in Uz is greater than

c— (dimHQ7 —dimUe) =c+1— Zei — Zei(ei —€i—1)

By Lemma 1,

NAZ Qs (1)) = N(T (P X Qi (1) U DS, (1))

€

ﬁil(tl) is supported on Ug(t;) = 71 ({t;} x HQ7_-) and t1,...,ty are distinct,
hence there are only two types of nonempty intersections:

(*) Ny 7 (P! x Qo (1)
and
(**) N 7 (P x Qs (1)) N Q5 ()

The estimate for (*) is immediate by induction (as = is flat). As for (**), write

W =N n  ({tn} % Qu,(t:)), so (FF)= W N @iN(tN). The codimension of W
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in Ug(ty) is Ef\;zl Uw;) = ¢ —l(wy). Now use Kleiman’s theorem to deduce that
the codimension of (**) in Uz(tn) is ¢ — l(wy) + a, and then

codimye (**) =1+c—lwy)+a > 1—|—c—Zel > 1‘|’C_Zez Z i—€i-1)

as needed (the first inequality by Lemma 2, the second by Lemma 3(i)). O

(5): (Qsi, Qu, Q)7 =7 (with 1+ l(w) + (w’) = (5) +23 dy).
This is #(Qs, (1) N Quw(v) N Qur () for u,v,t € P distinct; that is,

/ e, ()] U [ (0)] U [ ()]
HQ

Suppose that when u = v, Z := Qg (u) N Qy(u) N Qy(¢) is still top-codimensional.
Then (Qs;, Qw, Q)7 =the length of Z. However, Z is supported in the boundary!
(this follows from the moving lemma). In fact, one can be much more precise:

PROPOSITION.

(i) Z 1is either empty, or has pure codimension (g) + 2> d; i HQ;
(ii) Z 14s contained in Ug,, he,,(Us,,(v)), with €xe as in Lemma 3(i1), and k <

€kt '"€Le
1 < (;
(iii) If Z N he,,(Us,, (1)) 7E 0, then w satisfies the condition of Lemma 3(111):
w(k) > maz{w(k +1),...,w(l +1)}.

PROOF. The same argument as in the Moving lemma gives that (*) and (**)
are empty, as now we have top codimension. One additional case:

OF (u) N Q% (u) N~ ({u} x Qur(t)) C Us(u)

Since {(s;) = 1, we can gain at most one dimension; the strict inequality may
become an equality.
(ii), (iii) follow from Lemma 3(ii), (iii). O

(6): Proof of Quantum Monk. Denote by «; ; the product sp_;4q - - sg
<Qsj Qe Qu >E = length(Z2)

The only index €y, for which «; ;, satisfies condition (iii) above is € = €. Hence,
by (ii) above, Z is empty when j # k.

Assume j = k. Then Z = he, (W) C hg, (Uz, (1)), with W = @Eg (u)N Qi, u)n
7 ({u} x Qu(t)). Recall that 7 : Uz, (u) — {u} x HQ7_- 2, 1s an open immersion.
One checks easily that Qig (u) = Uz, (u) and QZ K(u) = Qaiy s () N Uz, (w); s0
W = 0 unless d —€; = 0 and w' is the ‘dual’ permutation wq - @;—1 1. In this case

Uz, (u) = {u} x F and W = {pt}; moreover hg, is an isomophism onto its image.
Hence Z = {pt}, length Z = 1, as needed. O
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9. Enumerative geometry for hyperelliptic curves—T. Graber, 12/5/96

Question. How many hyperelliptic curves of genus ¢, degree d in P? pass
through (3d + 1) general points?

Strategy. The data of a map from a hyperelliptic curve C' to P? is almost the
same as the data of a map P! — H(2,P?), the Hilbert scheme of pairs of points in
P2. Lifting such a map:

¢ —— X — P?

T

Pl —— H(2,P?%)

one gets a honest hyperelliptic curve in P? if the bottom map does not land in the
diagonal.
Here is the plan:

I. Calculate the genus 0 Gromov-Witten invariants of H = H(2,P?);
—associativity;
—geometry of H, ‘virtual’ considerations (H is not convex).

IT. Relate the GW-invariants to enumerative geometry;
—use natural PGL(3) action to control moduli spaces;
—understand virtual contributions.

Geometry of H. Points of H correspond to either pairs of points in P2, or
points with tangent directions: so there will always be exactly one line containing
a given one. This gives a map

T H — P
and 771([L]) = Sym?L = P2 In fact, H = P(Sym?TP?). This description allows

us to calculate most standard invariants of H. In particular, the Chow ring A*(H)
is generated by divisors:

T, = m*(0(1))

Ty ={set of subschemes incident to a fixed line}.

These span the nef cone. A dual basis is given by

B; ={subschemes supported at a fixed point};

B, =line in a fiber of 7;
so the effective curves are of the form (a,b) = aBy 4+ bB; with a,b > 0.

Given a hyperelliptic plane curve C' as above, we can recover the degree and genus
of C from the homology class (a, b) of the associated rational curve in H. If C has
degree d and genus ¢, then intersecting with 75 gives d = b. To recover the genus
of C', note that the branch points of the hyperelliptic involution correspond exactly
to the intersections of the rational curve with A, the divisor in H parametrizing
non-reduced subschemes. It is easy to show that A = 2(Ty —T). We conclude that
20+2=(a,b)-A=2b—2as0g=b—a—1.

Looking at H — P2, the diagonal A is realized as a conic bundle inside H:
A = P(TP?) — P(Sym?TP?) by Veronese. The Chow ring A*(A) is generated by
T, and %Tz. Curves in A are of the form (a,b) with b even.
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Next, ¢;(TH) = 3T,. Hence, the expected dimension of Mg o(H, (a,b)) is 3b +
4 — 3 = 3b+ 1; in particular, it does not depend on the genus of («a,b).
Review of GW invariants:

Ig(yi - n) = /,01‘(71) U= Upp(vn)

with usual notations, where the [ is taken on a fundamental class which equals
[Mo,(X,3)] if X is convex. If X is not convex (which is the case at hand), the [
must be taken over a V' € A,(Mg (X, 3) of the expected dimension. Heuristically,

Is(-- )= #{p7 (TN p (T NV}

with evident notations.

First reconstruction theorem (from [K-M]): if A*(X) is generated by divisors,
then all genus 0 GW-invariants of X can be determined from the 2-point numbers
Is(v172)-

So we look at I, 4)(7172). The class 41 imposes at most 3 conditions on curves;
two classes impose at most 6 conditions. However, if b > 2 then the expected
dimension is > 7, so the only 2-point numbers come from curve classes (a,0) or
(a,1).

Start with (a,0)-curves. These lie in A, since (a,0)- A = —2a < 0. Curves (1,0)
are fibers of the map A — P? given by support. In other words, all representatives
of this class are of the form originally described. So the moduli space M o(H,(1,0))
is isomorphic to P? with universal curve A. Curves of type (a,0) are a-sheeted
covers of such fibers. The expected dimension for (a,0) curvesis 3-04+1=1; so
we consider I(, g)(7y) for v € A*(H). A*(H) is 3-dimensional, we'll just look at 2
elements here.

Candidates for 7:

T, ={all subschemes incident to a fixed point};

T3 ={subschemes contained in a fixed line}.

Ia,0)(Ty) = I(1,0)(T4) = 0 becauses Ty really imposes two conditions. That is, if
we look in M o(H,(1,0)) = P2 the virtual class is an element V of A;. The locus
corresponding to curves meeting a representative of T} is just a single point, though,
so they don’t intersect. Similarly, an (a,0) curve will meet a representative cycle
for Ty if and only if the (1,0) curve that it covers meets it, so again the codimension
is too high. (There is a second class in A%(H) which gives a zero GW-invariant for
the same reason.)

For T3 we actually have to worry about the virtual class. It is easy to see that

I1,0)(T3) = deg(V), the degree of the virtual class.

We can actually compute this virtual number (although it will also follow from as-
sociativity): consider again A C H; A is made of flags, and hence it is homogeneous.
My (A, (a,0)) maps isomorphically to My ,(H,(a,0)) since curves of class (a,0)
in H are automatically contained in A. We want to find V € A;(M, ,(H,(a,0)).

u I LA H

|

HOW(H, (a,0))
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By the fancy definition, V' = cyop(R' 7, f*(N)). Here N denotes the normal bundle
of Ain H. In the (1,0) case we have a fine moduli space, so we can actually
compute this Chern class using Grothendieck-Riemann-Roch. (The answer is 3.)
For (a,0) with a > 2 we would have to bring in stacks, and we can do it otherwise
anyway.

Next, consider I(, 1)(7172). Fora > 1, (a,1)-A <0, so have at least a component
in A. However, the second index is not even, so these curves are all reducible.
Curves of type (a,1) map to lines in P%; they will consist of a (0,1) curve, meeting
A in two points, with a total (a,0) attached: we glue an (a1,0) at the first point
and an (az,0) at the second, with ay + az = a. Because we have such an explicit
description of the moduli space, we can identify the space

{p7"(T1) N p3 ' (T2)}

which occurs in the interpretation of the GW-invariants. (Actually we will just
identify the image of this locus in the 0-pointed space.)

EXAMPLE. I, 1)(pt. class,T3). The point class should be thought of as a pair
of points, {p, ¢} in P%, and T3 corresponds to a choice of line [ in P2, Since {p, ¢} is
not contained in A, the (0, 1) component must hit this point. This determines both
the fiber of m in which this line lives, and fixes one point through which it must
pass. Another point is determined by the fact that one of the (a;,0) components
must meet the T3. As these can be attached only at points of intersection of the
(0,1) curve with A, it follows that the curve must contain a double point supported
at the intersection of [ and pg. The choice of a; and ay as well as the choice of
particular a;-sheeted covers has no effect on the incidence relation we are concerned
with, except for the condition that a; must be non-zero. (a; is the degree of the
curve glued at the special intersection point.)

The moduli space of solutions splits up into connected components determined
by the partition of a between the two intersection points. Once this is decided, all
that remains is to choose at each point an a; sheeted cover of P! and a particular
point of that cover to glue to the (0,1) curve. We denote the space of such data
by M(a;). (M(a) is naturally isomorphic to a fiber of the evaluation map from
MOJ(PI,CL) to Pl)

The moduli space of solutions is

Ha1+a2=a;a1>0;a220M(a1) X M(a2) ;

if either ay or ay is > 1, the corresponding component has positive dimension, and
again we need to understand the virtual class in Ag(M(a1) x M(az)). Because the
virtual class is constructed from the deformation theory of the stable map, and
because the deformations of our (a,1) curve naturally split into deformations of
the (a1,0) and (az,0) curves, it follows that this virtual class splits as V,, - V,,. In
conclusion,

Loa(pt, Ts) = > Vi, Vi,

a1+as=a,a1>0,a2>0

Similar phenomena happen in many cases. In the end, the only unknowns are

Va, and I(a70)(T3).
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Now, remarkably as usual, the associativity equations are enough to compute

Iw0)(T3) =3/a”
1 ifa=0,1
Vo, = )
0 otherwise
From this, all numbers can be computed.

Enumerative significance. The number I(, ;)(T;*"") should count hyperel-
liptic curves through (3d+ 1) points. Unfortunately, this is not literally true. Since
H is not convex, there will be unwanted contributions to this GW-invariant. We
have unusually good control over these contributions for H however, because of the
action of PGL(3). Observe that H is almost homogeneous: the PGL(3) action has
only two orbits. So TH is generated by global sections outside A. For f: P! — H
with image not contained in the diagonal, f*(T H) is generically generated by global
sections, hence it is generated by global sections. Therefore, H'(f*TH) = 0: H
is almost convex. In a neighborhood of such [f], Mg (- ) is of the expected di-
mension. The same holds for reducible curves, as long as no component lies in
A.

For f: P! — A C H representing a class (a,b), observe that A is homogeneous;
the dimension at such [f] is computed to be 2a + b. This is > 3b 4 1 if and only if
a > b, that is if and only if (a,b) - A < 0.

One could hope that if b > a, then M o(H, (a,b)) has the expected dimension.
However this is not the case, as one can have a curve consisting of two components
Cy, Cy, and an f mapping Cz to A and with f.[C1] = (a1,b1), f[C2] = (az,b2):
b=1"> +by >a=a + ay doesn’t prevent ay > by, in which case [f] moves too
much.

However, most of the extraneous components do not contribute. This is because
curves in A do not hit enough points.

EXAMPLE. C = C7UC5. Need to hit 3(by +b2)+1 Ty’s. Say C moves correctly;
then C4 can only hit 36y + 1 T4’s. This leaves 3b, for C5. Now a rational curve in
A gives rise to a nonreduced subvariety of P? supported on a rational curve. The
degree of the subscheme is by, so this rational curve has degree by /2. This curve
can then hit only %bg — 1 points, < 3b,.

One exception: by = 0, (a,b) = (a1,b) + (a2,0). We get solutions here. This is
fairly clear. Because the expected dimension doesn’t depend on a, and since the
dimension of the locus of irreducible curves is equal to the expected dimension,
we should see finitely many irreducible curves in class (a1, b) satisfying the desired
incidence conditions for any a;. Such a curve will meet A in 2(b — ay) points. At
each of these points you can glue on a (¢;,0) curve in such a way that a; + > ¢; = a.
Any such partition of a gives a component of the moduli space which looks like

OM(cr) x M(cg) x -+ x M(ep).

The deformation theory for these curves is identical to the deformation theory
on the similar moduli spaces we saw earlier. So again the virtual class splits up
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across the factors, giving a contribution >V, V., --- V. . In fact, all ¢; = 0,1 (else
Ve, = 0). Because of this, we can identify all solutions to the enumerative problem
which the GW-invariant is actually solving. Namely, we get the irreducible curves
of type (a,b) that we want, but we also get the irreducible solutions of type (a1, b)
for all a3 < b decorated with (1,0) curves at exactly (a — ay) of the points of
intersection of the irreducible curve with A.

So: define

E(a7b)(de+1) = #{irreducible curves of type (a,b) meeting the cycles

and transverse to A}

that is the number of honest hyperelliptic curves of degree d = b and genus b—a—1
through (3d + 1) points in P2. The result is that

L /2b—2a+ 2
Tap (TP =) ( ' >E<a—i,b>

- 2
=0

and this relation can be inverted to find the E(,3) in terms of the I, . For
example, for genus-2 curves of degree d through (3d 4 1) points, we find 27 curves
for d = 4, 36855 for d = 5, 58444767 for d = 6, and so on.

For genus 0 and 1, extra care has to be taken to account for ‘extra’ gi’s, as
maps P! — H parametrize a choice of hyperelliptic curve in P? and a choice of
hyperelliptic involution.

10. Quantum differential equations and equivariant
quantum cohomology, I—R. Pandharipande, 12/3/96

Example. C*-equivariant GW-invariants of P2, Let C* act on P? by

ta
t— tb
tC

and let ¢y = a+b+c, e = ab+ac+be, e3 = abe. Finite-dimensional approximation
of EC* — BC*: EC;, = P(O(—a)® O(=b) & O(—c)) — BC;, = P". A module
basis of the (ordinary) equivariant cohomology of P? over Hf, = C[t] is

1
Ty = ¢ =a(0p(1)
T, = ¢

The equivariant pairing matrix is

0 O 1

(gef) = 0 1 61t
1 et (ef —eg)t?
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Proceed as usual, setting up a ‘quantum equivariant

So we can compute (g¢/).
d—1+4+k
vt

I = Z Z LT3+ yedus Y2
— !
>0 k>0 (3d —1+k)!

By dimension reasoning, I(Ts¢~1TF)
as in the usual story: read the coeflicient of Ty in (Ty * Ty )« Ty = Ty * (Th * T3) and

potential’

= Nd7ktk with Ng r numbers. Associativity

obtain
Ta2o = T}y — Ti1ilia2 + 26110120 — (ef + 62)t2F112 + (er1ez — 63)t3P111

Then find equations for the Ny ’s: for d > 0, £ > 0, (d, k) # (1,0),

Z Nd17k1Nd27k2d1d2'

Ngp =
d17d221;k17k2 20,d1+d2:d,k1+k2:k

3d—4+k of 3d—4+k
- |dyds —dj
3dy — 2+ k 3dy — 1+ Kk
+ 2e1dNg p—1 — (ef + 62)d2Nd,k—2 + (e1e2 — 63)d3Nd,k—3
The old equation is just a subrecursion here (k = 0; set Ng = 0if k < 0). This
equation determines all the numbers recursively, from N; o = 1. For example,

N171 = 261.
Note: the N4 are symmetric functions of degree k in a, b, c.

Dubrovin formalism. Let S be a trivial bundle over M = R", with sections
., 8m which trivialize it. We consider a connection V : H*(S) — H°(S®Q},),

81,..
that is a map on C'™ sections, satisfying

V(f-s)=fVs+sadf

9_ Jetermine covariant derivatives V; = V o by
dx;

for f a function. Vector fields -

contracting Vs by %.
In local coordinates, we may write

V(8;) =T ® d;

(omitting obvious Y.), and for ¢/3; € H(S)
. g’ . .
Vilg's;) =5 -8+ L5975

We can think of a connection as a way of lifting vector fields from M to S (that is, a
distribution in the sense of Frobenius): for each point s € S, we have n independent

vectors in 1S
0 0 0
— s~ Tk T
Oxy - Oxy Pi%I Dy
ySmoon S)

(in coordinates x1,..., &y, 81,...
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Now we want sections s for which Vs = 0. We get Frobenius integrability
conditions: if Ly, Lo are vector fields in the distribution, then [£;, L2] must also
be in it. This is where the curvature comes up: denoting by L, the lift of % is

r

L. L,| the lift of a vector field? Computation:
[ ps g p

a k a k 4 k 4 k a
[LP7L(]] = {—axprq] -I— axqrpj —I_ ijrqé — qurpé 8‘7@

No z-term, so the part in { } must be 0 for integrability. This term is denoted by
prq, the coefficients of the curvature form in local coordinates.

Dubrovin. Apply this to M =V = H*(X) (say C coeflicients), with basis
To,...., Ty, and S = Ty: the trivial bundle with fiber V. The coordinates on the
manifold V' will be denoted y;, and 9; will be coordinates on the fiber. There is a

metric on Tv: (g;;) = (0i,0;). Define a connection by setting
V0, = ®,5.9'°M 0y

that is by prescribing Christoffel symbols I’fj = ®;;.9°. Here ® is the GW poten-

tial, that is
1 n
> o} > Iy
B

n>3
Now compute the curvature (prq) and impose its vanishing (that is, the integra-
bility condition): aifl“ = 2 TF comes for free from the definition, and the rest
yp 4J — Byq PJ .

says
Bpjeg Byr = Pyjeg” Ppes
(times the invertible matrix (¢/")). This are just the WDVV equations!
So at least formally there are parallel sections. Givental (in one part of [Given-

tal]) writes down such sections. His goal in doing this: operators that kill these
sections will give relations in QH*.

Givental. Vj; = hd — ) (pa*)dtaA

Here © is just a parameter; pi,...,p, form a basis of H = H*X, and for its
(trivial) tangent bundle Ty (same notation). Vj acts H*(Ty) — H*(Tyg @ Q).

We will obtain sections v = > t;p;, with coordinates (t) = (#1,...,t,). Consider
vector fields F' € H°(Ty), in coordinates:

Fy

Fiy=| 1 | =3 Fip,
Fn

Covariant derivatives:

oF <
Vii(F(t) = Z (ha—t — (I)ijegekF]> Pk
k (3
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(so Vi,i(pj) = —pi * p;, the quantum product). If A = 1, Vj is a honest connec-
tion; else, strictly speaking, Vy is only a connection “up to scalar”; but the same
Frobenius equations hold.

0
Consider now P! = PC?; C* acts by (t t1>' Equivariant cohomology:

H. P! = Clp,1)/(p* — ph). In terms of the basis {1,p}, (gef) = <(1) 113> Given

polynomials f(p, k), g(p, h), we have an equivariant pairing (f,¢) € H5 = C[A]. In

fact, one checks that
190 = 2; / p(iﬂgilz;i)
Over C(h) we can take the basis £, hh;p, for which the intersection form diagonalizes
(i %)
Back to our manifold X, V = H*X, V on Ty. We want sections s with Vs =

0. Look then at X x P!, C* acting trivially on X and as above on P!; and use
equivariant GW invariants on X x P!. The equivariant cohomology is

HE (X x PY) = H*X @ Clp, B /(p(p — 1))
Look for a C[]-module basis: we have {p;} for H*X; and over C(%), we have p; @ £,
pi @ hh;p. Write

h —
Zt pi & ‘I’ Tz(pz & Tp)

for elements of H. (X x P') @cpp) C(h). Then the equivariant intersection pairing

1s nice:
(t,t"y — (r,7")

(pr9") = ((m 1), (7, 1)) = ———
where (t,t") = O tipi, > thp:) and (r,7') = (O 7ips, . 7lpi) are both calculated

on X alone.
In fact, for more equivariant classes, the equivariant push-forward is given by

/@Utp'ULp”: (thUt/Ut”)_h(fXTUT/UT//)

Here 7’s and t’s do not mix because p(h — p) in the numerator kills the poles, so
the residue is 0.
Next, consider the following function G of (¢, 7, h, ¢, qo):

6= 3 SN )
n>0 B d

Here (3,d) is a curve class of X x P! in the evident fashion, and ¢ is written in
terms of & etc., as above. Note that the ¢%¢f terms ‘pull apart’ the curve classes;
that’s what Givental always does. Write

G =G +¢GW + 2670 4 ...
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®(t,q) — 2(7,q)
h

This comes down to the preceding equations for the equivariant push—forward.
Another basis, e.g. without 1/k, would not simplify so much.
o2a)
aTaaTﬁ '

CLAIM. Fiz 3. Set F =" _0,39%p;. Then

Cram. GO = , with ® = ordinary GW-potential on X.

Next, set 0,5 =

0

0

(Warning: typo in [Givental]: t and 7 are swapped.)

Note: the entries of F' involve p,’s, and p,*p, = > power series(var.)ps. “p(7)”
means: set the variable to 7 in the power series. That is, say F = Y. F'p;; now
Py kS Fipi =3 Fip, #pi; py*pi = > @509 pp. So we can define p.(7) * F to
be Ei,e,f F'd.;.(1)g% ps, and similarly for p.(t) * F.

The F' given by the last Claim are the ‘parallel sections’, but they involve 7’s
and t’s.

To prove the claim, one essentially uses the fact that GG satisfies the equivariant

WDVYV equation for X x P!

11. Quantum differential equations and equivariant
quantum cohomology, II—R. Pandharipande, 12/10/96

Review of the previous lecture: X is a variety; V = H*(X, C); we have a natural
identification V = Ty; {p1,...,pn} is a basis of V, and 9, ...,0dn the correspond-
ing basis of Ty ; we let t; be coordinates on V. We have defined a connection ‘up
to scalar’:

Vi =hd = (pa*)dtah

F
acting in the following way: for a vector field F(t) = =Y Fip; = Fi9;,
Fy

we have the covariant derivative

OF* :
ViiF =) (ha—t - (I)ijegekF‘7> O
k (3

where ® denotes the GW-potential.
We have seen that & satisfies the WDVV equations <= the corresponding
formal connection is flat. We are looking for solutions of Vi, ;' = 0 V¢; that is, Ve, &

0
ot;

heFF = &, g"F
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Givental’s approach: to get solutions, consider X x P! with C* acting on the P!
factor by (% : t1). Fact:

HE&P' = Clp, B]/(p* — ph)

We found a better basis here, over C(%): p/h, (h — p)/h.

REMARK. By localization, the equivariant cohomology of P! is essentially con-
centrated at 0, co; this basis is the natural one from this point of view.

We then have a basis for H¥ (X x P') = H*X @ Clp, h]/(p* — ph): pi @ p/h,
pi @ (h—p)/h. So we write ¢ € HE. (X x P1) as

S S5

Next, consider the equivariant GW-potential G(¢, 7, h, ¢, qo); we expand it in terms
of powers of the Pl-curve class:

G =G 4 ¢GY 4+ 260 4 ...

We have seen that
(I)(tv Q) - (I)(Tv Q)

(I) GO = , the usual GW-potential;
2 (1) ‘
(IT) letting 044 := g G@t and F := ) 6,90}, then we have the two equations
TaUlp
0
hiF = 0,(t)*x F
ot,” 7

(end of the review)

Localization. Let Y be a manifold with a C* action, and denote by Y'C the
set of fixed points. We have m, : H\ (Y) — HE. as usual, and also Hf. (YC*) =
H*(YC* )@ H¢. since the action is trivial on YC . The equivariant inclusion vE
Y gives a diagram

weHC(Y)—>we HL(YT )= H* (Y )@ HE

l -
Tyw € He
. . . w
The diagonal arrow can be filled in: it works w +— —q > Where N =normal
YT* Ciop

bundle of Y& in Y.
That is, m,w can be evaluated on fixed points. In this sense, equivariant coho-
mology is ‘concentrated at the fixed points’.
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Equivariant GW-invariants.

o (52) ) -)

is the equivariant push-forward of w from Y = My ,,42(X xP!, d+1), where “(d+1)”
stands for the sum of a class d from the X factor and of the class of a point from
P!, and (with evident notations)

o= (F52) s () oo e

The idea is to compute the fixed point locus Y'© , then use localization to compute
the push-forward.

What is Y® ? We want the class to be 1 on the P! factor, so a map P! — X x P!
must travel up exactly once; and must go straight up for a fixed point (else a surface
is swept). Next,

X xIP!

v b »
/
\

n, <—/A'\_/d/ 0

pa((h — p)/h) must sit on the oo-plane, and py(p/h) must sit on 0; the other n =
ny 4 no points can be split arbitrarily among the two planes. This describes Y'© .

Count the conditions: two nodes (along the vertical component), fixed at 0 and
oo; total of four conditions, so expect codimy ¥Y'© to be 4. As for the normal
bundle, the tangent representation is ¢ at oo, corresponding to —h; and ¢+~ at 0,
corresponding to h; smoothing the nodes, we get —h + ¢(o00) at 0, and i + ¢(0) at
00. The localization formula gives then the push-forward as

w

Aw-%%—h+dWDm+C®D

This is all modulo a slight lie: Y is not codimension 4 everywhere. All n points
may be concentrated on one of the planes, leaving no nodes at the other plane: the
two possibilities give two codimension 3 components, with normal bundles whose
classes are resp.

—1*(h+¢(0)) . —h(=h+c(e0))

Putting all together, I, 441 (---) is the sum of three terms (one from cod. 4, two
from cod. 3), involving only ‘ordinary’ GW-invariants of X. The first term is

1 n! P ' Pe
- I, g TIM N LpOn2 _ FC
Z —hZ nqlng! 12,41 <p 4 —h—l—c(oo)>g 2+2,d2 <pb —h—l—c(0)>
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where the > is over dy + d3 = d;ny + ne = n;(dy,n1) # (0,0),(dz,n2) # (0,0);
the g“/ factor makes sure the vertical component goes straight up: the point at 0
equals the point at co. The second and third term are similar:

1

e gugc I, pon_ P
—pzJacd +2,d <Pb h—|—c(0)>

1 pe '
L Copon_Pe N\ el
—I_ _hz +2,d <p T —h—|—C(OO)>g ge'db

To simplify notations, define a new function:

1 Pt n
ber(t.h) = gep + ) ZH"+27d<h+c't® 'p“>

n207(n7d)75(070) d

Then in short localization gives

—120u, = thae(,—h)g Yyt )

(note: typos in [Givental]).
Now recall that 6 must satisfy equations (II) (from the review):

a a a
—ha—Ty@abg ROk = poy(T) * Bupg™* Ok

Substituting the expression obtained above into this:
a EE/ a EE/ a
_haT Yae(T, —h)g* Yper(t, h)g "o, = py(7) % ae(T, —h)g Yper (t, h)g "o
.
Taking out the invertible part:
L e )y = —h)g*o
) Yae(T, —R)g*" O = py(T) * Yae(T, —N)g"" Ok
Ty

or, after h « —h:

0
ha—;/)ae(r, h)gakak = p(T) * Yac(T, h)gakak
T

From this, one can obtain n independent solutions.

A different approach is obtained via Gravitational descendents, going back to
Witten. We have defined ordinary GW-invariants by

[ CATTRRETEN
[Mg,n(X7ﬂ)]
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with notations as usual (in particular, with due care if X is non convex, g > 0,
etc.). We can more generally define invariants

/_ () U+ Ul (n) U et U U e
(Mg n(X,8)]

where ¢; =first Chern class of :-th cotangent line. Notation:

Lng (15 01) -+ (s an) :/— [eitiyue

[Mg,n(X7ﬂ)]

The ordinary GW-invariants satisfy properties:
(I) Fundamental class: Int18{(y1--n-1)=0in>3or f#0,n > 0;
(II) Divisor: for v € H*(X), Ing1,3 (i vn %) = [3 7 Ing (31 7m)-
Now the fancier invariants satisfy upgraded properties:

(I) Fundamental class:

Lntip (1, a1) -+ (m, an)(1,0) = an,ﬂ (i, aa) - (i, ai = 1) -+ (Y, )

(of course, setting to 0 terms involving negative a-components);

(IT) Divisor: for v € H*(X),
Lnti,p ((y1501) -+ (9m, an)(7,0)) :/ﬁ’V‘In,ﬁ (v, 01) (yn, o))

+an,ﬁ<(717041)"'(%'%Oéi — 1) (Y, an))

The underlying reason why these hold: consider the map forgetting the (n+1)-st
point:

v M07n+1(X,ﬂ) — Mo,n(Xvﬂ)

At the first point, we have ¢y, v*¢y: one can show that
c1 =v'er + D1y

where Dy 41 is the divisor obtained by splitting (on > 2 components) the points
as (1,n +1)|(2,...,n), and the class as 0|3.

For ¢ = 0, the fancier invariants also satisfy suitable WDVV equations. As in
the ordinary GW-case, the splitting axiom and the linear equivalence in M 4 yield
recursive relations for the invariants.

The claim is that the fundamental class and divisor properties, plus the upgraded
WDVYV, imply that the function t.f(t, ) defined above is a solution of the main
differential equation. This gives a second, and non-equivariant proof, of the main
theorem.

In [Dubrovin], all this is seen from an axiomatic point of view. There a recon-
struction theorem for ¢ = 0 is stated:
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PROPOSITION. The tree-level gravitational descendents can be uniquely recon-
structed from the tree-level system of Gromov- Witten invariants.

SKETCH OF PROOF. Seek an inductive scheme

Inﬁ <(717 al) o (7”7 an)>

= Z (either lower curve class, or fewer cotangent line classes)
For this: the gravitational descendents are obtained by integrating

er(y)ett - en(yn ey

over My (X, 3). Instead, integrate
e1(y)ett - en(ym)en™ Uen(H) Uepn o(H) Uepy5(1)

(with H =hyperplane class) over Mg ,+3(X, 3). If we are not yet done, then some of
the a; is # 0, say a,,. Apply then the basic linear equivalence D(12[34) ~ D(14]23)
with “1"= e} (yn)enn, “2"= e, (H), “3"= e}, 4(H), and “4”= e} _4(1). This
makes the induction click. O

12. Quantum double Schubert polynomials—W. Fulton, 12/12/96

This is joint work with Ciocan-Fontanine.

Reminder on quantum Schubert polynomials (after Fomin-Gel’fand-Postnikov):
for w € S,, we can define a polynomial &% (x), as follows. Quantum elementary
symmetric polynomials are defined by E;(x1,...,2,) := > products of vertices and
edges which cover exactly ¢ vertices once in

1 iz T3 Tp
° q1 ° q2 [ ] qs dp—1 L]

(degz; = 1,degq; = 2). Clearly E;(x1,...,x,) specialize to the usual elementary
symmetric polynomials e;(z1,...,z,) as the ¢; — 0.

DEFINITION. Write the usual Schubert polynomial corresponding to w € S,, as

Suwlr) = Z ayej(x)

with a; € Z, and denoting e j(z) = €;, (z1)ej, (21, 22) €5, ,(@1,...,2p—1), With
0 <j; <1i. Set analogously Ej(z) = Ej (x1)--- Ej,_,(21,...,2n—1); then define

&i(z) =) asEs(x)

The theorem (‘Quantum Giambelli’, see the previous lecture on quantum Schu-
bert polynomials) is that these &% (1) represent the Schubert varieties in the quan-
tum cohomology of flag manifolds.
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Now for the classical Schubert polynomials there is a concrete description: write
w = wys;, - S, in the shortest possible way, where wy = n(n — 1)---1 is the
‘longest’ permutation, s; is the transposition (¢,¢+ 1), and ¢ = {(wq) — {(w). Then

Su(z) =9, 000 (Guy(2))

P —s¥(P
where &, () = x?_lxg_z ---x1 and OF(P) = w (see also previous lec-
Ty — Ty—1

tures). The goal here is to find a similar formula for &% ().
The idea comes from the following notion. There exist ‘double Schubert polyno-
mials’ & (x,y), obtained as

Gw(xvy) = ai -0 ale(Gwo(xvy))

with Sy, (z,y) = Hl+]<n(:1; +y;) (note: in the usual definition, one finds — instead
of +). It would seem as if the y; are useless; on the contrary:

FACT. Gy(z,y) = Gyp-1(y, x).

Equivalently, write w = s;, - - - 5, wo again in the shortest possible way; then
Suwlz,y) = 8;; 0---0 8?1(6w0 (z,y))
DEFINITION. With w as above, define quantum double Schubert polynomaials by

Swlz,y,q) = 8;; 0---0 8?1(6w0 (x,v,9))

where
n—1

Suwol,y,q) = H Ep(x1 + Yn—ps- s Tp + Yn—p)
p=1
Note that &, (x,y,0) = Sy(x,y) by definition. The interesting fact is that
THEOREM. &,(2,0,¢) = &4 (x).

PrOOF. Claim: & (x,y,q) = > as(y)E (x) with as(y) € Z[y].
Granted this, G, (x,0,9) = > as(0)E (x), and the ay(0) are the right coeffi-
cients to give & (z) since G(x) = G(x,0,0) = > as(0)e;(x).

So we only need to prove the Claim.

PROOF OF THE CLAIM. (1) True for w = wy: use that

Ep(x1 4 Yn—ps-- -, Tp + Yn—p) = Z Ei(xy ... wp)(yn—p)p_i

which is clear from the definition.
(2) The 9!’s only work on the coefficients aj(y). O
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Geometric origin. On the hyperquot schemex P! we have
EyC- - CE1 CV = Qno1 — - — @

where the E;’s are subbundles of V', the );’s are bundles, but the maps on the right
are not necessarily surjective. We want the locus ! where heuristically

“tk(Ep — Qq) < #{i < ¢, w(1) < p}”

If each V' — @) is surjective, then [ ] = &, (x,y), where x;, y; denote (up to sign)
the class of successive quotients of the @);’s, E;’s respectively. When the maps are
not surjective, higher Chern classes of the ();’s must be used.

For ), , we need the locus where E; — ), vanishes; this is

n—1

Ctop(Elv @ Qn-1) = Ci(Qn—l)y?_l_i =FEn_ (1 4y, Tna1 + Y1)

=0

On this locus, look further where Ey/E; — @, 2 vanishes. A computation gives
that this is E,_2(x1 + y2,...,2n—2 + y2), and so on.

Remark: here @1 4+ --- 4+ 2; = ¢1(Q;), and ¢; = ¢2(Qi+1 — @;); all other Chern
classes are determined by ¢;’s and ¢3’s. This must be a special property of the
universal bundles on the hyperquot scheme.
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Part 111
Related Material

1. Mirror symmetry and string-theoretic
Hodge numbers—V. Batyrev, 9/12/96

Problems arise in trying to define and compute QH*(X) when X is singular:
for example, for the ‘small’ QH* one does not expect the variables ¢q,..., ¢, to be
defined as generators of H*(X); one expects more parameters, corresponding to a
larger (conjectural) ‘string-theoretic’ Hg (X ). This lecture deals with the problem of
defining mirror symmetry for singular varieties, and more specifically with suitable
Hodge numbers displaying the symmetry.

§1. Mirror symmetry. First a reminder of a basic example. Let A be the
abelian group (Z/(n + Z)Z)@’H’z, of order (n + 2)"+2. Consider the nondegenerate
bilinear form < -, >: A x A — Z/(n+ 2)Z given by

(o, vy ant1), (Bos- oo, Bryr)) = Zazﬂi mod (n + 2)

B denotes the diagonal Z/(n + 2)Z — A; note that B is isotropic: (B,B) = 0.
Define G = B1/B, another abelian group, of order (n+2)"; and restrict the pairing
to G xG—Z/(n+2)Z.

Now move to algebraic geometry. Consider the Fermat hypersurface ¢,, C P!
defined by 3 2"t = 0; G acts naturally on ¢, by («, ;) > €27z,

STATEMENT. For all H C G, and denoting by H* the complement of H with
respect to the pairing in G, the physicists claim that

are mirror-symmetric.

EXAMPLE. n = 3, H = 0: then G = (Z/5Z)3, and the claim is that ¢5 and
¢5/G are mirror-symmetric.
Note: in this case ¢5 is smooth, but ¢5/G is singular.

Another statement: if V', V' are smooth n-dimensional Calabi-Yau, and mirror
symmetric, then A" 7P 4(V) = hP4(V') for all p, q.
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How to state this if V or V' are singular? First natural conjecture: the equality
of Hodge numbers should hold for some minimal desingularization. We expect that
én/H, ¢/ H* have “nice” desingularizations displaying mirror symmetry of Hodge
numbers. In fact, this has been proved for n = 3.

How to control the ‘minimality’ of a desingularization?

DEFINITION. X Gorenstein variety, K x canonical divisor. A resolutionn7:Y —
X is crepant if 7" Kx = Ky .

(In general, Ky = 7*Kx + > a;E;, with E; the components of the exceptional
divisors. The a;’s are called ‘discrepancies’; so a; = 0 < there are no discrepancies
< the resolution is crepant. This terminology is due to Miles Reid.)

Note: if Z C Y (both nonsingular) and Y’ = B(zY, with exceptional divisor F,
then Ky, = 7* Ky + (codim Z — 1)E. Unless Y is isomorphic to Y, codim Z — 1 >
0; so ‘crepancy’ guarantees the minimality of the resolutions in the sense that
blowing-up inessential loci will not give crepant desingularizations.

§2. E-polynomials. Assume that X is quasi-projective. Then the cohomology
with compact support H}(X ) has a mixed Hodge structure, and we may define

P I(X) = D (—1)F RN I(H (X))

k

DEFINITION. E(X;u,v) =Y. e X)uPv?.

Pq

Properties:

(1) If X = 11X, then E(X;u,v)=> E(X;;u,v)
(2) Y — X locally trivial in the Zariski topology, with fiber I —
EY:u,v)=E(F;u,v)- E(X;u,v).
(Note: (2) does fail unless one has Zariski-local triviality.)

Now assume that 7 : Y — X is a resolution of singularities of X, with ¥ smooth
and compact. Then e”4(Y) = (—=1)PT1hP4(Y) by the purity of the Hodge structure
of Y; so knowing E(Y;u,v) amounts to knowing the Hodge numbers of Y. On the
other hand, say that we have a stratification X = I1.X; with the analytic singularity
of X constant along X;, and #~1(X;) — X, Zariski-locally trivial; then one ought
to be able to compute E(Y;u,v).

QUESTION. Assume that 7 : Y — X is a crepant resolution. For # € X, what
is BE(r~1(2);u,v)?

This question can be ‘localized’” for quotient singularities as follows: for G C
SL(n,C), X = C"/G, let 0 € X be the image of 0 € C". If 7 : ¥V — X is a
minimal desingularization, what is E(7~1(0);u,v)?

An answer to this could be pasted into an answer to the global question if X has
quotient singularities and Y — X is crepant. Note that crepant resolutions do not
necessarily exist:

EXAMPLE. n =4, G 2 Z /27 generated by (—1,—1,—1,—1). Then C"/G does

not have crepant resolutions. (Crepant resolutions do exist for n < 4.)

However, if two crepant resolutions exist then their E-polynomial will have to
be the same (see below).
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§3 Orbifold Euler number. (Dixon, Vafa, Witten, ... ) Say a group G acts
on a variety X; then

(X, G) = 15 Y «XInX")
G| (g:h):gh=hg

is the ‘orbifold’ or string-theoretic Euler number, denoted e (X/G).
Note: the conventional Euler number of the quotient would instead be e(X/G) =
|1?| >, ¢(X?). The string-theoretic Euler number should encode more information.

EXAMPLE. e4(C"/G) = # of conjugacy classes, while e(C"/G) = 1.

Now for V, V' smooth n-dimensional mirror-symmetric Calabi-Yau, one has
e(V) = (=1)"e(V'). The physicists propose that for quotient varieties this should
hold for dy;. Supporting that this is the right notion, we have

THEOREM. eg(dn/H) = (—1)"es(dn/HL)
Now back to the local question from §2.
EXPECTATION. E(771(0);u,v) = > #(conj. classes with weight j)(uv)?

Here the weight of a conjugacy class is defined as follows: for ¢ € GG, write ¢ in
terms of roots of 1: ¢ = diag(e?™1 ... 2™ ) with 0 < a; < 1. We are assuming
G C SL, so e?™ 2% =1, and hence > «j is a nonnegative integer. We let the
weight of g be this integer.

It is not hard to check that the ‘expectation’ is correct for 2-dimensional quotient
singularities. The exceptional divisor over a singularity is then a chain of say m
rational curves, and one checks that the E-polynomial of such a chain is indeed
1+ (m — 1)uv as prescribed by the above formula.

Also, the ‘expectation’ makes sense regardless of whether a crepant resolution
should exist or not. For the singularity C*/(—1,—1,—1,—1) we get 1 + (uv)?; and
more generally, for C*" /Z? one finds 1 + (uv)".

Finally, for ‘toric resolutions’ one can formulate a precise results:

THEOREM. For toric (complete intersection, Calabi-Yau) mirror pairs V, V':
u"Egq(Viu™tv) = (=1)"Ex(V';u,v)

where Eg 18 computed from the ‘expected’ E-polynomaal of fibers of a resolution, as
gqiven above.

If we denote by hZ? (V') the coefficient of uPv? in Eg, the Theorem formulates
then this case of mirror symmetry as the equality of ‘string-theoretic’ Hodge num-
bers

RV = BNV
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§4. Number theory (p-adic fields). (Only very rough ideas here)

The ‘expectation’ is a true formula!

To prove this, one may either use an approach via infinite dimensional geometry
(suggested by M. Kontsevich), or p-adic integration theory on @Q,. This is analogue
to Lebesgue integration on R or C, with Haar measure normalized by p(Z,) = 1.

A. Weil: the integral of a volume form along the maximal compact subset X(Z,)

of a variety X defined over Q, will be Tﬁg.i@.
p 1m

Now say that V.V’ are birational. As integration is insensitive to proper subva-
rieties, and V', V' are biregularly isomorphic away from proper subvarieties, we will
get the same number of points for V, V' over Z,. Via the Weil conjectures, this in
some sense explains why one should expect the same cohomological properties for
Vand V. If Y — X is a crepant resolution, a volume form 2 on X will extend
with same zeros and poles on Y independently of the specific crepant resolution
(by definition of crepant), and from this one can understand why one should get
the same FE for different resolutions.

§5. Extending to more general singularities. Suppose X has log terminal
singularities. Can we define a string-theoretic E-polynomial for X7
Let 7 : Y — X be any resolution, with Dy,..., D, exceptional divisors. Write

Ky =7*Kx 4+ ;c;aiDi, with I =1,...,r. For J C I, define
DjzmjejD]‘ , ?]:Dj—miEJDi

and Dy =Y — UieJD]‘.
Then Y = ;-1 D5. We define then

DEFINITION.

X =3 e05) ([T 5

Jci jeJ

This agrees with the previous ey for quotient singularities.
THEOREM. This number does not depend on the resolution.

It is immediate to check that blowing up a given resolution at a point, for exam-
ple, does not change the number defined above. The present proof of this Theorem
however is not so naive, and again uses p-adic integration.

This ey seems the right candidate to use in a more general formulation of mirror
symmetry.

2. M, ,—P. Belorousski, 9/17/96

References for this material are [Knudsen]|, [Keel], and (for a different construc-
tion) [Kapranov].

We denote by My , the space parametrizing ordered n-tuples of distinct points
on P! modulo projective transformations; we work over C.
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§1. Naive compactifications of M ,,. The first observation is that any three
points of any ordered n-tuple of distinct points in P! (say, the last three) can be
placed at 0, 1, oo by means of a unique projective transformation. The position of
the other n — 3 points determines then the n-tuple up to projective transformation,
with the only constraint that they should be distinct from each other, and distinct
from 0, 1, cc.

n = 3: My 3 ==point;

n=4: My, =P'—{0,1,00};

more generally, My , = (P! — {0,1,00})" %~ diagonals, or alternatively
My, = (C—{0,1})"3— diagonals.

Naive compactifications of these spaces are then (P')"73 or P"~3; neither of
these is adequate in the sense that points at the boundary are not ‘geometrically
meaningful’. For example, the natural action of S, on My , does not extend to an
action on these compactifications.

ExaMPLE. Consider the 5-tuple of points

(p17p27p37p47p5) - (07 17007t7t2)

for t # 0, then let ¢ approach 0. In the naive compactifications, py and ps both

approach p;. However, if we take py, ps, ps to be the points fixed at 0,1, 00 by

applying z — Zil__t;), the 5-tuple becomes

(p1,p2,ps,pasps) = (0, %H, 1—1,1,00)

and as t approaches 0 this time the points ps, ps and ps come together. That is,
the geometric interpretation of the limiting configuration depends on the choice of
three fixed points.

§2. The moduli problem and Knudsen’s construction.

DEFINITION. A stable n-pointed curve of genus 0 is a connected projective nodal
curve C' with n distinet smooth marked points p;, with dim H'(C,O¢) = 0, and
such that each component of C' has at least 3 special points.

Here special means singular or marked. We will denote an n-pointed curve by

(C,pl, e 7pn)
The stability condition implies that the curve has no nontrivial automorphisms
fixing the marked points.

REMARK. For a connected nodal curve,

genus = Z ¢i + (#nodes) — (#components) + 1

where ¢; denotes the genus of the i-th irreducible component. Therefore genus=
0 = ¢; = 0 for all ¢, and (#nodes) — (#components) = 1. In particular, all
components of C' are necessarily copies of P!,
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In fact, these components form a tree. It is convenient to introduce the dual
graph of a stable curve, by setting

vertices = {components of C'}
edges = {nodes}
tails = {marked points}

In this terminology, a ‘vertex’ is an internal vertex of the graph, while a ‘tail’ is a
boundary vertex, with an edge attaching it to the rest of the graph. For example,
here is a schematic representation of a 7-pointed stable curve and of the associated
graph:

In terms of the graph of C', genus= 0 = the graph is a tree; and stability
— the valence (i.e. the number of edges attached to it) of each internal vertex is
at least 3.

DEFINITION. A family of n-pointed stable curves of genus 0 over a base scheme
S is a flat projective morphism C = S with n sections oy,...,0, : S — C such
that

(Cs,01(8),...,00(8))

is a reduced stable n-pointed curve of genus 0 for all s € §. Here Cy denotes the

fiber of C over s € 5,

Morphisms of families over a given base scheme are defined in the obvious way;
the moduli problem is defined by the (contravariant) functor associating to each
scheme the set of equivalence classes (up to isomorphism) of all families defined
over it.

THEOREM. There exists a projective smooth algebraic variety M ,, which is the
fine moduli space for n-pointed stable genus-0 curves.

That is, for all schemes S there is a natural bijection

Isom. classes of families of n-pointed _
{ } — Hom(S, Mg »)

stable curves of genus zero over S

We sketch the proof given by Knudsen.

PROOF SKETCH. Induction on n. For n = 3, M{ 3 =point, since 3-pointed stable
curves are necessarily irreducible. The universal family C3 — M 3 will be P!, with
3 marked points.
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Key observation: C, = Mo,n—i—l !
For the construction of the universal family, look first at the case n = 4. We
have the diagram

C4 C3 XMO 5 C3 i Pl X Pl
MOA JE— MOA == C3 i Pl
There are three obvious sections on C3 37, . Cs; afourth one is given by the diagonal:

A

0 1 a

the fibers are 4-pointed curves, but we have to separate the diagonal from the
sections at the points (0,0), (1,1), (oo, 00); we blow-up Cs X W s C3 at the three
intersection points, and this produces Cy.

Note that the effect of the blow-up is to sprout out a new component (an excep-
tional divisor) on which the "glued” points will separate.

The inductive step for higher n is analogous. Assuming C,, — M, has been
constructed, take Mo,n—i—l to be C,, start by considering C, X o Cn, and blow up
the intersections of the diagonal with the basic sections and with the singular loci
of the fibers. The centers of blow-up might not be regularly embedded, so one will
need to resolve the singularities introduced by blow-up; a minimal desingularization
will yield Cp41. O

The fact that My, is a fine moduli space yields
COROLLARY 1. S, acts on My, by permuting the points.

Also, we may index the points by arbitrary finite sets: if |A| < oo, denote by
My, 4 the corresponding M | 4). From Knudsen’s proof one can derive

COROLLARY 2. Giwen B C A, |A| < oo, there is a contraction morphism
MO,A - MO,B-

EXAMPLE. Say A = {1,...,n}, B=1{1,...,n—1}; we get a morphism Mg, —
My -1 forgetting the n-th point. If the n-th point is on a component with only 3
special points, just forgetting it would destabilize the component; in practice, the
effect of the operation is to contract such a component:
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Of course, the algebra behind this is not as simple as the set-theoretic description.

REMARK. Changing the order in which you forget two different points gives two
possible compositions

Mo,n - Mo,n—l - Mo,n—z

The resulting maps Mo,n — Mom_g must however coincide, since they clearly
agree on the open locus My ,,.

Taking this observation further, we see that for any 4-tuple of distinct indices
i,7,k,0in {1,...,n} there is a (unique) map

Mo — My (i jgey =P
forgetting all the other points.
§3. Geometry of M ,.

FACT. The boundary of the compactification My, — My, is a divisor with
normal crossings.

For all partitions AIl B = {1,...,n} with |A] > 2, |B| > 2, we have a divisor
D(A|B) at the boundary, whose general point corresponds to a curve of the type

The points at the ‘boundary’ of D(A|B) correspond to possible degenerations:

A B

The intersection of any number of these D(A|B)’s is either empty or smooth.
My, has a stratification by locally closed loci indexed by the combinatorial type
of the degeneration.

More precisely, the combinatorial type of a curve is simply its dual graph (with

marked tails).

ExampLE. In M, 9 (of dimension 6):
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All curves with this combinatorial type form a stratum in M 9. The closure of this
stratum 1s

D(12[3---9)N D(123[4---9) N D(1---5|6---9) N D(1-- - 7|9)

The boundary cycles (i.e. the closures of the strata) are themselves products of
My i’s for k < n. For example,

D(A|B) = My augs} X My (+3uB
where we think of % as the points at which the A-stable curve and the B-stable
curve are glued.
In other words, for every k,{ there is a morphism

Mo,k+1 X M0,£+1 — Mo,k+é

and the image of this map is one of the boundary divisors in the target.

45, 2
1 3

EXAMPLES. Mg 4 = PL:

1=D(13 | 24)

1 3 3 2
2 4 1 4

M 5: blow-up P! x P! at 3 general points (as seen in Knudsen’s proof in the last
section). Equivalently, one can blow-up P? at 4 general points, since blowing-up P?
at two points is the same as blowing-up P x P! at 1 point.

One gets the same answer by considering Procesi’s compactification for this
configuration. There will be 4 exceptional divisors, plus the proper transforms of
the six lines through the points, which will give 6 more (—1)-curves. The blow-up
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of P? at four general points is a Del Pezzo surface of degree five, embedded into
P> by the system of cubics through the four points. The 10 special curves become
lines in this embedding.

These 10 lines are the boundary divisors of M 5, which are indexed as D(A|B)
by the () = 10 subsets A, |A| = 2, of {1,...,5}. The incidence of the D(A|B)’s is
represented by the following graph:

Finally, M 5 is the universal curve over Mg 4 = Pl

® ® ®
0 1 @

the 3 special fibers give 6 exceptional curves; plus the 4 sections, for a total of 10.

§4. Chow ring of M, ,. We can obtain some geometrically transparent rela-
tions in the ring as follows:

(a) D(A|B) = D(B|A); _ _
(b) the choice of distinct 4, j, k, (in {1,...,n} givesamap p : Mg, — M4 = P,

D(ij|kl) = D(ik|j¢) up to rational equivalence in P!, hence
p"D(zj|kt) = p* D(ik|j()
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n A*Mom. That is,

>, DB = )  D(AB)

i,jEAk LEB i, kEA;j LEB

(¢) D(A|B) - D(C|D) = 0 unless the curves corresponding to the general points
in the divisors have common degenerations, that is unless one of the four sets
A,B,C,D contains one of the others (i.e., the common refinement of the two par-

titions consists of 3 rather than 4 sets). For example, A = {1,2}, B = {3,4,5},
C=1{1,3}, D= {2,4,5):

there is no common degeneration to

so D(12|345) - D(13]245) = 0. B
The D(A|B)’s generate the Chow ring of M ,, multiplicatively. Surprisingly:

THEOREM. (a), (b), (c) are the only relations in the Chow ring of My . There-
fore,

A*Mon = Z[D(A|B),AUB = {1,....n},|4| 2 2,|B| = 2]/((a), (D), (c))
AlSO, H*Mom = A*Mom.

These results are due to Sean Keel, [Keel].

3. Quantum cohomology, old and new—Z. Ran, 9/26/96

LEMMA. Consider a 3-dimensional irreducible closed subvariety V of the PN
parametrizing plane curves of a given degree d. Suppose V' parametrizes rational
curves: t.e., a general point C € V corresponds to an irreducible rational curve.
Then V has a degenerate member: there exists a reducible or multiple Cy € V.

Note that the bound ‘3’ is sharp: the P? of lines has no degenerate members.

PROOF. Pick general points a,b in P2, and consider a one-parameter subfamily
B of V consisting of curves through a, b. The total space of B gives

XL>[E’>2

|

B
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where F is a morphism and X — B is a blown-up P'-bundle. We may assume
that F' is relatively minimal, i.e., there are no vertical (—1)-curves E such that
F(E) =pt. The general fiber of 7 is a P!; the special fibers are trees of P's. Each
of these has at least two ends; these are (—1)-curves, so F is not constant along
them.

Claim: there must exist at least one degenerate fiber.

Indeed, otherwise 7 is a P!-bundle; there would be sections F~'(a) = S,,
F=1(b) = Sp. Let then L = F*(line): as F is generically finite, L? > 0; L - S, = 0;
L- Sy, = 0. By the Hodge index theorem, S? < 0 and Sf < 0. But 5, — 5, 1s a
multiple of the class of the fiber, hence

0=(S,—Sp)?*=S+S;<0 ,

contradiction. O

Now we could try to get a formula from this situation for degV = deg F', by
relating it to the number of degenerate fibers containing either one or both of S,
Sp. Using ideas from quantum cohomology, one should get

d—degV + ) deg, W (deg Cy)* Z deg, | W - (deg C1) - (deg Cs)
w

where W ranges over ‘boundary components’ of V: W parametrizes curves of the
form C; U5 where

either € is a 2-parameter family, and deg, W = # {C; U C3: C; contains 2
general points},

or {C1} and {C3} are each a 1-parameter family, and deg, ; W = #{C, U (> :

C contains a general point, and Cy contains a general points}.

So much for the ‘new’ methods; move now to the ‘old” method, degenerating the
target.
Va,s denotes the Severi variety of nodal plane curves of degree d with 6 nodes.

Va5 is locally closed in p(*37)-1 ; its dimension is
d+2
( * )—1—(5:3d—|—g—1 ,
2
_ (d=1)(d—2) :
where ¢ = ~—5— — ¢ is the genus. We denote by Ny s the degree of Vy 5.

Consider the blow-up

S = B£(07p)c xP? —— C x P?

C
7 is a flat family, and 77!(¢t) = P% for t # 0; 7= 1(0) = Sy = S U Sy, with
51 == BKPPZ, and 52 == [FDZ
The intersection £ = 51 N S5 sits in S as the exceptional curve, and in S; as a
line.
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The blow-up sits in (C x P?) x P?; so there is another map § — P2 We have
C x P2

\/

with o'|s, = identity, and b’|s, = a P'-bundle over image = F = P,
Now consider Vy s as a family of curves on the general fiber of m, and take the
limit as t — 0. As a cycle,

Vis — Y _m(m)V(d,e/n/d,b2/6)

l; = # of blocks of size i; the weight of 7
Hz i the > is over T, (51, b9 satisfying
_I_

where: 7 is a partition, = = [{4,..., (],
) =

is |w| = > il;, and here e = |r|; m(w

> = 1)

The different 7 correspond to the strata of divisors of degree |r| in Pl 7 «
iy DGk Qi

V(d,e/n/d, b3/61) is the set of all C; U Cy such that C; C S; has 6; nodes, and
is smooth near E; C1 N E = Cy N E = divisor of type 7 in E = P!,

Note: the C; are not necessarily irreducible—this makes the degrees easier to
compute.

Next, the sought degree Ny 5 is the number of curves C' € V(d, ¢) containing N
(d+1)(d+2)
2

01+ 02 =20

general points p1,...,pN, where N = 1 — 6. Specialize py,...,pn to
Ny points on S and Ny points on Sz, Ny + Ny = N. To avoid trivial solutions,
assume

Ny > d+1 (avoids limit components where C; = d rulings)

Ny > 3.

One choice: make Ny as large as possible, i.e., choose Ny = d 4+ 1. In this case,
either e = d — 1 or else C contains a component not meeting F; call it C o; this
would come from a proper component of C' itself, so C' must be reducible. This
cannot happen if 6 < d.

For the rest of the discussion, assume e = d — 1. Then C; € |dH — (d — 1)E| on

S1, and
91
= Z R, +Cip
i=1

with R; rulings, and Ch o € |(d — 61)H — (d — 6; — 1)E| a smooth rational curve.
(One can in fact view this as a degeneration in the plane.)

We need to express the condition C; NE = Cs N E. Let P; be the set of divisors
of type 7 on E = P!, and P™ = [[P%. P™ maps birationally to Py. The condition
CiNE =CyN E is equivalent to

(CiNE,CoNE)EA; x--- XA, CP™x P™=(P" xP) x ... x (P x P)
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Now
o ‘,

(*) AL X X Ap o~ (Z[EW xPZl_j) X e X (Z[EW XPZT—j) = > p™ xp’
7=0 j=0 ml4nll=n

where 7/ = [0},...], 7" =[¢],...],and 7" + 7" = [0 + ¢7,...].

Write Co, N E = 32374Q7, m = 1,2, Fix Q}j, J=1,....0;, and Q?],j =
o4 1,...,00+ 07 ={;. Define

Vid,e),6,\n",x = {nodal curves C; with 6 nodes, and
C1N line = DiX*d 4 D, Do of general type ", |7'| + [7"'| = e}

There is an analogous locus V; 5 /i . Also, we set Ny s jpr o = deg Vs jnr 1,
etc.

REMARK. From (%), the condition C; N E = C3 N E is numerically equivalent to

C € Vid,d=1),6, \n! ;710 C; € V1,65, /7 =

for some 7', 7" such that 7’ + 7" = 7.

REMARK. Setting S(7) = > (; for # = [(4,...], we have S(x"") = 61 (follows
from #conditions on C; = dim{C1}), 2 =6 —d+ 1+ S(x’).

Now we have ¢} fixed, mult. 1 points on E; that C| must contain. Let é; — j of
these lie on rulings contained in €. The j remaining rulings will pass through some

of the d+1 interior points. And j < (/. The number of choices is Eflzo (5‘14/1]) (d"}'l>.

The remaining part of C'y, that is Cy o, is smooth. The remaining choice: degree
of variety of divisors of type «'"" = [(f — 5,04,...] on E, equal to m(x"")n(=""),

. S(m) S
with n(7r) defined a8 71T = T

Putting everything together:

Ngs = Z m(m)-

|m|=d—1
2/1/ 1 1 d+ 1 Ell
Z Nd—1,6—d+1+s(7r'),\7r“,7r/ 'Zm(ﬂ' n(m )( j )(S(TK‘//) —j)
OSTF//:[Z;»/]STI’,TI’/ITF—TI’” J

Along the same lines one can obtain true recursion formulas.

REMARKS. On the right-hand-side there is precisely one term corresponding to
(> having ¢ nodes: this corresponds to Nq_i 50,4—1, with the same leading term as
Ng—1,5. One can then derive estimates for Nq 5 — Ng—_1 5.

Fix ¢, consider d as a variable. Claim: as functions of d, Ny s is a polynomial of

degree 26. One finds
Nis —Ng—1,5 ~dNg—1,5-1 ~ d*=1

There are exactly two further terms contributing to d?°~!: for C; with one ruling,
7 = [d—1]; and for C'| smooth, simply tangent to E at a unique point, 7 = [d—3, 1].
The leading and next-to-leading coefficients of Ny s in d have been computed by
Y. Choi [Choi]:
s 3 s —2-3°
Q26 = 51 » “26-1 7 m

Finally, note that rational curves are the hardest to treat from this approach.
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4. Results and conjectures on the
tautological ring of M ,—C. Faber, 10/3/96

First, recall Witten’s conjecture=Kontsevich’s theorem. Consider M, and its
universal family 5!]7” = Mg,n—i—l — Hg,n- Let w be the relative dualizing sheaf of

this map, and denote the natural sections by o;, ¢ = 1,...,n. We obtain n line
bundles £; = o}w.

Witten’s conjecture is about the intersection numbers of the £;:

DEFINITION. (7q, -+ Ta, ) := 1 (L1)% - e1 (L)% on My if Y d; =39 — 3+ k,

and 0 otherwise. (Note: so this carries the genus information. )

The conjecture gives a complete recipe to compute these numbers. The ingredi-
ents are

(1) the string equation: <7’0 Hle le.> => . di>1 (Tdy =+ Tdi—1 " Td,);
(2) the dilaton equation: <7’1 Hle le.> =(2g—2+k) <Hf:1 le.>;

(3) a recursion (KdV-equation): let T = H;‘n:o T;j; then for n > 0

@+ 1) (rariT) = 7 (raamd T+ Y ﬁ(é)

0<aj<ej j=0
. <<Tn_1TOT1> <T3T2> + 2 <Tn_17'02T1> <T02T2>>

where T} = H;‘n:o T;j, and T =T1T5.
Witten showed that (1) and (2) hold; Kontsevich proved (3). (See [Witten], [Kont-

sevich2].)

For example, this allows you to compute the intersection numbers of Mumford’s
classes x; on M. For the universal family C, N M, with relative dualizing sheaf
w, let K =¢j(w) and k; = 7r*(Ki+1) € Aiﬂg (note: all Chow rings are taken with
Q-coeflicients); here is a recipe for the intersection numbers of the &;’s: put

<Td1+1Td2+1"'Tdk+1>: § Ko
o€

for >_d; = 3¢ — 3, where Y denotes the symmetric group, and «, is defined as
follows: think of ¥j as acting on the k-tuple (dy,...,dy); write o as a product of
disjoint cycles ayag -+ - a4y (including 1-cycles). Then

Ro = Klay|Flag| """ Rlay, ()]
where |a| = sum of the elements in the cycle a.

EXAMPLES. k =1: (135_2) = K34—3;
k=2 a+b=3g—3, (Tax1Tb41) = Kakp + K3g—3;
k=3 a+b+c= 39 - 37 <Ta+1Tb+1Tc+1> = RgKpKe + Kgtbhe + -0 + 2/4339—3-

(Alternative formulation, due to Zagier: set o4, - -+ 04, = (Ta, 41 Tdy+1); then
COabe..x = Oabe... Ky + Oq+a,be... + Oq,b+x,c... + ...
allows us to translate from o’s to k’s.)

Next, let’s move to M, by restricting the classes defined above.
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THEOREM. ky_g # 0 in A972(M,).

This result should be compared with what was known before:

ko =2¢g —2# 0 for g = 2;

k1 # 0 for ¢ = 3: M3 contains complete curves, k1 is ample on Mj;

ke # 0 for ¢ = 4 (Faber’s thesis, a long calculation). A simple proof can be
obtained given that x% and 9 are proportional on My. On Mg we have k1 = 12A1—6
(6 = sum of boundary divisors). Showing A7 # 0 on M, is equivalent to showing
M3y # 0 on My (as we will see in the first part of the proof below). Now map
My to A} (p.p.a.v.) by C — JacC; the \;’s are pull-backs from A}, and here
/\%/\3 Ag ~ /\(f # 0 since a multiple of A\; embeds A; in its Satake compactification.

Now back to the Theorem:

PROOF (SKETCH). Denote by E the locally free rank-g sheaf 7, (w) on M, (that
is, the Hodge bundle). Then observe that, with A; := ¢;(E), AjA\,—; vanishes on

M, — M,. Indeed, M, — M, = UE‘qz/Oz]Ai, with Ag = closure of the locus of nodal
genus-(g — 1) curves and, for ¢ > 1, A; = closure of curves consisting of the union
of a genus-i and a genus-(¢g —¢) curve. On (a finite cover of ) Ag, we have the exact
sequence

0—-E_1 —-E —0—=0

Y

so Ay = 0 on Ag; on A;, for ¢ > 0:
Eg =E, © Eg_i

and therefore Ay = (priAi)(pr;_;Ag—i), Ag—1 = ...; and AgA;_1 = 0 because in
every genus h, A7 = 0. And why is A\7 = 0?7 Mumford shows that ¢(E)~! = ¢(EY),
which implies it right away.

(Alternate argument: Yk > 1, choi(E) = 0; hence V¢ > 2¢, chy(E) = 0;
chyg—1(E) = (nonzero #)A;A,—; must then vanish on Mg — M, since the com-
ponents here all have genus < g¢.)

The conclusion is that kg_2 # 0 on My, <= Kz_2X;_1A; # 0 on Mg.

Now we need Mumford’s expression for ch(E) obtained in [Mumford]:

—

g—
Chzg_l(E) = (7£ 0 Kog— 1+ = Z Zh ’29 2 IX’lzg_SIX’Q + -4 Ing 2)

o

Here 1 : Mg 12 — Ay C Mg, and K; =cotangent at the * b point; for A > 0,
T Mh 1 X Mg hi — Ay C Mg, and Ky, K5 are pull-backs from the factors.
Wlth this,

1 1 29—2 ;
Z O)Kg—zchzg—l(E) = (Tg-1729) = (T39—2) + 5 ;(—1) (T2g—2-jTjTg—1)
—I_% <(_1)g_h (T3h—gTg—1) <T3(9—h)—2> + (_1)h (T3n—2) <T3(g—h)—ng—1>>

>
I

1
_ 9
29=1(2¢)!
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using the recurrence relation for the 7’s in Witten’s conjecture.
This implies kg_2Ag—1 Ay # 0 on M, and concludes the proof. O

REMARK. The last, computational step is still rather complicated; it requires
knowing certain ‘n-point functions’ explicitly for n = 3 (the n-point functions are
S (rq, -+ -7a,) 28 - 2% ). There is a nice formula for the 2-point function, due to
Dijkgraaf: with 7(w)=>_ <, Tnw",

7

(rrtoyr() = e (or =) 30 s [t +2)

n>0

In the proof, I make use of an explicit formula that I found for the special 3-point
function (7(—w)7(w)7(2)). (Recently, Zagier found such a formula for the general
3-point function.) Details of the proof can be found in [Faber2].

Next, we move to a result of Looijenga [Looijengal.

Let CJ = M, be the n-fold fiber product of Cy(= M, 1) over My, and denote by
pr; the projections onto the factors. We let R*(C;) be the tautological ring of CJ':

for n =0 C) = My, and R*(M,) := the subring of A*(M,) generated by the x;
(restricted to M, );

for n > 1, R*(C;) := the subring of A*(C}) generated by the 7*x;, and the
divisor classes K; = pri K and D;; = [{z; = z;}] (thinking of C] as parametrizing
objects (Cx1,...,25)).

THEOREM. (Looijenga) A degree-d element in R*(C}) 1s a linear combination
of classes of the wrreducible components of

{(C’;xl,...,xn) such that there is an f : C — P! of degree < 29 — 2+ n, with
#IH0)Sg+n—1—d #f 7 (c0) =1, {zr,...,xn} CFTHO)U f (00)}

Further, for d = g+ n — 2, all the classes of these irreducible components are
proportional to the class of

Hy = {(Cs21,...,2n) such that C 1s hyperelliptic,

and ¥y = -+ =z, 18 a Weserstrass point of C'}

COROLLARY. Ford >g+n—2, RY(C})=0.
COROLLARY. Ford=g¢g+n—2, Rd(C;) 18 at most one-dimensional.

The first Theorem given above, together with this last result, imply that in fact
Rg"i'"_z(C;) = Q.

PROOF. (Sketch of the first part.)

(1) It is enough to prove the statement for the monomials in the K; only. We
have then to prove a statement as in the theorem, but with deg f < ¢ + n.

(2) Simple observation: if Dy ~ Do, are positive disjoint divisors on a curve C,
then there is a 7 : C — P! such that 7*(:) = D;, 1 = 0,00; and if p € C occurs
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*
Y

in D; with multiplicity m,, = induces a map C = T}P! — T];‘C@mp. This is not
canonical because 7 is not canonical. But let R = ramification outside 0 and oo,
and consider 7, R; fix 7 so that [] g % = 1: this determines 7 up to a (deg R)-th
root of unity.

ZE T,

(3) (Lemma 2.4 in loc.cit.) Relativize over a disk with generic point n and closed
point 0. Consider C — A with section A =5 C. Let P be a relative pencil with
d(x) as a member, and assume that P, is base-point-free. ), — IF’}) is ramified at
R, outside z,,. Specialize R, to Ry, obtain:

mult, ) Ro =mult. of 2(0) in the fixed part of Py.

— (4) V member D # d(x) of P specializing to d(x(0)), the degree of the moving
part of Py is < the number of 5-valued points of {supp(D,) — z(n)}

(5) Let Z be the moduli space of tuples (C;x1,..., 2, 2;D;P) with z;, 2 € C;
P a pencil on C, with (n + ¢)x as a member; and D a degenerate member of the
pencil (so #supp(D) < n + ¢) with {x1,...,2,} C supp(D).

Stratify Z by:

Z% = {supp(D) has < g +n — 1 — k points outside z}; so that

ZmH = ((Cha, .. ax(n + g)x, P

7

LEMMA. Vk < g+n—1: Z¥ — Z*=1 is quasi-affine of pure dimension (3g — 3 +
n—k); and f*K; =0 on ZF — Z*1 fori=1,... n.

(6) Define X* to be the union of the irreducible components of Z* that are not
contained in Z"t971,

(a) f: X" — C; is proper and surjective.

(b) Claim 1: f(X*n Znt9=1) C f(XFF)

Namely, for A € X¥ N Z"T971 write A = (C;x,...,2,2;(n + g)x, P), so that
flA) = (Csa,...,2); by (4), the moving part of P has degree <n+4+g¢g—k —1 so
that P has a member E # (n 4 ¢g)x with < n 4 g — k — 2 points outside x. Then
B = (Ciz,...,x,2; E,P) € Zkt1 & Zz"t9=1 o ¢ X*k*1; f(A) = f(B), proving
the claim.

Now set U* = f=1(f(X*) — f(X*1)) c X*

Claim 2: U* C Z% — Z*+1,

This is easy to see: UF N Z"T971 = ) (because a € U* N Z"T9~! — f(a) €
F(X*H1) contradiction); hence UF N Z¥+1 = § (because a € U N Z*! — a ¢
Znt97l — g ¢ X**1 contradiction).

It follows that f*K; = 0 on U*; f: UF — f(X*) — f(X**1) is proper, onto,
finite, hence K; = 0 on f(XF*) — f(X**1) (using Q-coefficients).

From this: all monomials of degree d in the K; are supported on f(X%); by (1),
this is enough to prove the first part of the theorem. [

The results seen so far support a standing conjecture on the tautological ring of

M,:
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CONJECTURE. (1) R*(M,) is Gorenstein with socle in degree (g — 2). That is:

(i) B/(My) =0 forj>g—2;

(i) RI72(M,y) = Q;

(iii) there is a perfect pairing R'(My) x RI727{(M,) — RI™*(M,) i Q.

(2) K1,...,K[g/3) generate the ring, no relations up to degree [g/3].

(3) Exzplicit proportionality factors in degree (g — 2).

As we have seen, parts (i) and (ii) of (1) are now proved. The rest of the
conjecture is still open, although we have been able to check it for all ¢ < 15 (and we

have reduced it to a hard combinatorial problem for all ¢). A complete statement,
and discussion of the evidence for this conjecture, can be found in [Faber].

5. Counting rational curves on quintic 3-folds—S. Kleiman, 10/10/96

This talk is a report on joint work with T. Johnsen, which was presented in
two papers, [J-K] and alg-geom/9601024. The aim here is to place this work in
context, to explain the main results, and to give the flavor of the proofs. The talk
is organized into these three sections:

I Context

II. Strategy

IIT. Proofs

I. Context. Let F be a hypersurface in P* of degree 5 over the complex num-
bers. Assume that F' is general, that is, represented by a point in a suitable
Zariski-open set of P12°. (By contrast, F is called generic, if it’s represented by a
point in the intersection of countably many Zariski-open sets. The latter condition
is necessary when we consider all degrees simultaneously, but here we will consider
only small degrees.)

Every irreducible rational curve C of degree d in P* is given by a parameterization
of the form,

(ot u),. .. au(t,u)),
where «; 1s a homogeneous polynomial of degree d. The smooth C' form an open
set in Hilb(P*); denote it by M,. Each parameterization is represented by a point
of an affine space, and those parameterizations giving smooth curves of degree d
form an open subset, which maps onto My; hence My is irreducible. This affine
space has dimension 5(d+ 1), and the fiber over a C in My has dimension 4; hence,

dim My = 5d + 1.

In fact, it’s not hard to compute the dimensions of the cohomology groups of the
normal bundle NcP*; whence, by the standard infinitesimal theory of the Hilbert
scheme, M, is smooth of dimension 5d + 1.

An arbitrary C' of degree d lies on F' if and only if the polynomial in ¢, u,

Flag(t,u), ..., aq(t,u)),

is identically zero. We expect this polynomial to be homogeneous of degree 5d, and
have 5d + 1 coefficients. Their vanishing would impose 5d + 1 conditions on C'. So,
since dim My = 5d + 1, we expect only finitely many C' on F. Denote the number
of smooth C' on F by ng, and the number of all C' on F by n/,.
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Schubert (1885): The number of lines on F' is ny = 2875.

Clemens (1983, "84, '86): After having proved that the Griffiths group of F has
infinite rational rank (that is, the vector space (G(F)/G.(F)) @ Q is infinite di-
mensional) when F' is generic, Clemens made the following series of conjectures
about the irreducible rational curves C' of degree d on F":

(a) 1 <ng < oo.
(b) Each smooth C is infinitesimally rigid on F.
(¢) There are no singular C' on F, and so ng = nJ.
(d) Any two C, C' are disjoint.

() ng="5-d-*.
S. Katz (1986): Conjectures (a) and (b) hold for d < 7. The number of conics on
F is ny = 609,250, which is of the form 5% - 2 - x prescribed by (e).

THEOREM 1 (Katz for d < 7, Nijsse and Johnsen—Kleiman for d = 8,9). Con-
jectures (a) and (b) hold for d < 9.

Vainsencher (1995): Conjecture (c) is false. In fact, there are 17,601,000 six-nodal
plane quintic curves on F', arising from tangent 2-planes. These curves deform
to smooth irreducible curves (so they are not infinitesimally rigid); however, the
corresponding maps P! — F are rigid.

PROPOSITION 2 (Johnsen—Kleiman). There are no 16-nodal 10-ics on F arising
from tangent quadric surfaces.

THEOREM 3 (Johnsen—Kleiman). In degree d at most 9, the following variations
of Congectures (¢) and (d) hold:

(¢") There are no singular C on F, other than Vainsencher’s quintics.
(d") Any two C, C' are disjoint if degC + deg C’ < 9 (including Vainsencher’s

quintics).
Ellingsrud-Stromme (1991, ’93): The number of twisted cubics on F is n3 =
371,206,375. Note that 3 does not divide nj, disproving part of Conjecture (e).

Candelas—de la Ossa—Green—Parkes (1990): Mirror symmetry gives an algorithm
for finding a suitably defined number n/, for all d. The values for d < 10 are given,
and 5% does divide n/, for d < 10.

Lian-Yau (1994): If 5 does not divide d, then 5% divides n/;, as defined in [CDGP].
It’s not ruled out that 5° always divides n/,.

Kontsevich (1994): Set Ny := ¢iopEq, where Eq is the vector bundle on M070(P4, d)
obtained as ¢.p*O(5) via the diagram,

MOJ([FA, d) # [FD4

£

Mo o(P4,d)

Kontsevich computed Ny, and it leads to the same n) computed in [CDGP].
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Note that there’s a positive-dimensional locus in the zero set of the section of

E; defined by F', namely,
{maps p: P! — C C F of degree k}.

It has dimension (2k — 2). To get from Ny to n/, use residual intersection theory,

which yields the formula,
g
_ /k
Na = Z L3

k|d

This number n/, is, however, not yet proved to be equal to the one computed by
the physicists in [CDGP]; however, it is equal to the number of irreducible C on F
if the latter number is finite.

II. Strategy. In two words, the strategy (due to Clemens and Katz) is this:
count constants. Namely, form the incidence variety,

I; = {(C, F)|C C F} C My x P23,

The naive count of parameterizations above shows that every component of I; has
dimension at least 125.

THEOREM 4 (Clemens—Katz). For all d, there is a pair (C,F) in Iy with F
smooth along C, and with C' smooth and infinitesimally rigid; in fact,

NcF = Op (—1) G Op (—1).

COROLLARY 5 (Katz). If I; is irreducible for a given d, then Conjectures (a)
and (b) hold for this d.

PROOF. The projection I; — P2 is smooth and finite at a Clemens—Katz pair
(C,F), that is, a pair given by the theorem. Therefore, the projection is smooth
and finite over a generic F' if I; is irreducible. O

THEOREM 6 (Katz for d < 7, Nijsse and Johnsen—Kleiman for d = 8,9). The

incidence variety Iy is irreducible for d < 9.

COROLLARY 7 (Johnsen—Kleiman). A smooth C on F of degree d at most 9 has
the following properties:

(1) C spans a d-plane if d < 4; otherwise, it spans P*.

(2) C s of mazimal rank; that is, for each k, the restriction map,

pr: H'(Ops (k) — H(Oc(k)),

18 either injective or surjective or both.
(3) For d = 4q 4+ r with 0 < r < 4, the restricted twisted sheaf of 1-forms
decomposes as follows:

Qpa(D|C = O (—¢ = 1)" @ Op (—¢)" "

PROOF. The projection I; — My is surjective for d < 9. Properties (1)—(3)

hold for a general C' by direct computation and by results of Ballico-Ellia and
Verdier. O
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PROPOSITION 8 (Johnsen—Kleiman). The incidence variety Iy has the following
properties:
(1) If d > 25, then the projection Iz — My 1s not surjective.
(2) If d > 12, then I; is reducible.
(3) If d < 24, then there exists a unique component of Iy covering My, and it
has dimension 125.

PROOF. (1) Since 5d+1 > 126 for d > 25, the restriction map ps is not surjective.
Now, the maximal rank theorem says that a general C' in My is of maximal rank.
Hence, ps is injective for a general C', and so H*(Z¢(5)) = 0 where Z¢ is the ideal
of C'in P*. Therefore, a general C lies in no F.

(2) Consider the locus of pairs (C, F') in I; such that C lies on a smooth quadric
surface. This locus has dimension 2d 4+ 101. On the other hand, a Clemens-Katz
pair lies in a (unique) component of I; of dimension 125.

(3) The maximal rank theorem implies that the locus,

Lio = {(C,F) € Ij|H (Zc(5)) = 0},

is nonempty if and only if d < 24. Its closure I is the component in question.
More details can be found at the beginning of the next section. [

CONJECTURE 9 (Johnsen—Kleiman). For d < 24, the complement I}, := I;— 14,
does not cover P125,

PROPOSITION 10 (Johnsen—Kleiman). For d < 24, Conjecture 9 implies Con-
jectures (a), (b) and Corollary 7.

CONJECTURE 11 (Johnsen-Kleiman). For d < 24, the component I;o of Iy
contains all the Clemens—Katz pairs (C, F).

ITI. Proofs. Consider the projection «: Iy — My, and let C' € My. The fiber
a~1C is equal to P(HO (10(5))>. To compute its dimension, form the sequence,

0—Zc — Op — Oc — 0.
The associated long exact sequence,
0 — H°(Zc(5)) — H(Op:(5)) 25 HY(Oc(5)) — H' (Ze(5)) — H'(Om(5)),
in which the last term vanishes, yields the formulas,
dima™'C = h%(Zc(5)) — 1 = 124 — 5d + R (Zc(5)).

Set My, :={C € My|h'(Zc(5)) =i} and Iy, := a=*My,;. Then My, is open,
and the maximal rank theorem implies that, if d < 24, then My is nonempty. Re-
call that My is irreducible. Therefore, if d < 24, then I, o is irreducible of dimension
125, and its closure is the component in question in Part (3) of Proposition 8.

By a theorem of Gruson, Lazarsfeld, and Peskine, if d < 7, then My o = My,
and so Iy is irreducible. For d = 8,9, we have to work a little harder, and prove the
following lemma. It implies that I, := I; — I; o has dimension at most 124. Since
every component of I; must have dimension at least 125, again I, is irreducible.
Thus Theorem 6 holds, and Theorem 1 follows because of Corollary 5.
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LEMMA 12. For d =8.9, if ¢ > 1, then codim(Mgq;, My) > 1+ 1.
PROOF. Assume d = 8. Then dim Mg = 5(8 + 1) — 4 = 41. Now, the work of

Gruson, Lazarsfeld, and Peskine tells us that
0, if C spans P*
Y (Zc(5)) =4 1, if C CP?and C ¢ asmooth quadric Q;
5, if C' C asmooth quadric Q C P?.
Hence dim Mgy = 4(8+4 1) —4 +4 = 36: the first term in the middle is the number

of parameterized C' in P3; the second is the number of reparameterizations, and the
third is the number of P3s in P%. Similarly, we have

dim Mg 5 = dim{C C Q} + dim{Q C P’} + dim{P® C P*}
=15+9+4 =28
Assume d = 9. By the work of Gruson, Lazarsfeld, and Peskine again and by an
extension of it due to d’Almeida, there are five cases to consider:
0, C ¢ hyperplane, has no 7-secants;
0, C C hyperplane, has no 7-secants;
W (Ze(5)) < 1, C ¢ hyperplane, has 7-secants;

10, C C smooth quadric surface (so has T-secants);

8, C C hyperplane, ¢ smooth quadric, has 7-secants.

In fact, equality holds in the first four cases, and a certain amount of direct analysis
is required to handle the last two cases. Given these bounds, the assertion is
established by counting the number of C' that appear in each of the five cases. [0

The proof of Theorem 3 is, in spirit, like that of Theorem 6. Namely, we de-
compose a suitable incidence variety of pairs (C, F') into manageable locally closed
pieces, whose dimensions we can bound from above using the work of Gruson,
Lazarsfeld, and Peskine and of d’Almeida. We conclude that these pieces do not
cover P'?°, and so a general F' contains no C in question.

For (¢), the C in question are the singular irreducible rational curves of degree d
at most 9. Since we only need to prove crude bounds on dimensions, we may work
with pieces of the space of parameterized C' rather than the Hilbert scheme, and
we do so to simplify the job. On the other hand, each C has a nonzero arithmetic
genus ¢, which enters the scene via the Riemann—Roch theorem,

h(Oc(5)) = 5d +1 — g+ L' (Oc(5)).

So we must use the Castelnuovo—Halphen bounds on ¢ in terms of d. There are
many cases to analyze, and the analysis is at times a bit tedious.

For (d'), the C in question are the reducible curves of degree d at most 9 with
two intersecting components A and B, which are either both smooth curves with
the three properties listed in the corollary to Theorem 3 or else one is such a smooth
curve and the other is a six-nodal plane quintic. The main ingredients in the proof
are the following two lemmas. The first is proved via a direct case-by-case analysis,
and the second is proved using Hirschowitz’s “méthode d’Horace” in the case where
one of the components is a six-nodal plane quintic.



6. OPERADS AND ASSOCIATIVITY OF QH*—P. ALUFFI, 10/15/96 109

LEMMA 13. We have codim{C|#(ANB)>n+1} > n.
LEMMA 14. We have ' (Zc(5)) = 0.

6. Operads and associativity of QH*—P. Aluffi, 10/15/96

This lecture is prompted by a remark in §10 of [F-P], stating that the associativ-
ity of the quantum product is in a suitable sense equivalent to a certain map being
a morphism of operads. 1 will set up the definitions necessary to understand this

statement, and give a sketchy indication of why it holds. The plan is as follows:
—&81. Ezample

—=62. Formal definition

—=63. The endomorphism operad of a vector space V, Endy
—=&4. The moduli space operad, M, and its homology, H, M
—=85. Gromov- Witten numbers and Gromov- Witten classes

—86. GW on X induce H.M(n) — Endg«x(n)

—=&7. Properties of GW and morphisms of operads

61. Example. A “disk arrangement” is a disjoint union of labeled disks within
the unit circle:

Let O(n) denote the set of all n-disk arrangements (n > 0). S,, acts on O(n) by
relabeling the subdisks. We can define an operation

p i O(k) x O(ly) % -+ x O(lg) — O(ly + -+ + (1)

by the following recipe: given (o(k);o(l1),...,0((x)) in the source,
—scale the unit circle in o({¢;) down to the size of the i'! subdisk in o(k);
—replace the i't subdisk of o(k) with the resized o(¢;);
—remove the boundary of the resized o((;);

—Ilabel the total > ¢; subdisks in the natural way (starting from the first (4,
ete.).

For example, p : O(2 ) acts:

We should think of each o(k) € O(k) as giving a different ‘multiplication’ from
O(ly) x -+ x O(ly) to O(ly + -+ + ().
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This system of operations, for all k, satisfies an obvious “associativity” rule.
Suppose given

—a disk arrangement o(k);

—Fk disk arrangements o((1),...,0((y); and

—for each 7, (; disk arrangements o(m;1),...,0(me;) (for a total of E .My
subdisks).

Then we can do two different things:

—first apply p to each (o((;);0(mq1),...,0(me,)), producing an O(E]‘ m;;) for
each ¢; then apply to (o(k); (E mlj) (E] Mmp;)); or

—first apply p to (o(k);o(( ) ( )), obtaining an o(>_ (;); then apply to
(o(32 i) o(man ), -, o(mie, ).

It is clear that these two operations produce the same O(Z m;j). In other
words, the following operadic diagram commutes:

O(k) x (O(l1) x T]; O(ma;)) x - x (O(lx) x [1; O(mi;)) dXpxXp,

shufﬂel

(O(k) % O(£1) 5 -+ x O(£k)) x Omay) -+ x Olmygy) L2
C o O(k) X O(x;may) x - x O mij) — O(>2;; mij)

——— Oy + -+ L) x O(my1) X -+ X O(mpg, ) —r O(E mij)

There is more structure in this simple example. In O(1) there is a special @,
that is the ‘unit disk inside the unit circle’. It’s clear that this acts as a unit, for
example in the sense that via O(1) x O(n) — O(n), for all o(n) € O(n) we have
(@Q,0(n)) — o(n). To state this in the proper generality, we can say that there
exists @ map q from the singleton, that is the unit element Q) for product in the
category of sets, to O(1), such that the following two unit diagrams commute:

Q x O(n) ———= O(n) O(n) x Q" ——0(n)
mdl / idanl /
O(1) x O(n) O(n) x O(1)"

There is even more structure: there are two obvious equivariance properties
satisfied by p under the action of the permutation groups on the O(n). These can
be expressed by two equivariance diagrams, which are conceptually elementary
but notationally demanding. These are left to the reader to write out; or see [May],
for example.

§2. Formal definition. Let S be a symmetric monoidal category (that is,
S has an associative product with unit, and shuffling of factors gives canonical
isomorphisms) with product x and unit object ). Examples we will consider will
be

—Sets with product x and ) = singleton;

—Topological Spaces, with product x and ) = singleton;

—Vector Spaces over a field k, with product @ and Q) = k.
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DEFINITION. An operad O in § consists of objects O(n) for all n > 0, a unit

map Q > O(1), a right action of the symmetric group S, on O(n) for each n, and
operations

p:O(k) x O(ly) x -+ xOlg) — Oy + -+ ()
for k > 1, satisfying the operadic, unit, and equivariance diagrams of §1.

REMARK. O(0) plays little role in this definition, and no réle in this lecture, so
we will ignore it here.
Morphisms of operads C — O are defined in the natural way.

MORE EXAMPLES. e C,(k) = affine embeddings of k disjoint copies of the stan-
dard cube I™ in I" (C,(k) can be suitably topologized, making this a topological
operad). This is a straightforward generalization of the first example, and in some
sense it was the ‘first” operad. It is called the Boardman- Vogt little n-cubes operad
(see [B-V]. There are no ‘operads’ there, as the name had not yet entered into use;
there are however ‘PROPS’, ‘cherry trees’, etc.). The name and formal definition
of operad were introduced by J. P. May, [May2]. A brief (pre)historical sketch on
operads is in [Stashefl].

e Oriented trees. T(n) = the set of trees with one root and n labeled tails. For
example, 7 (4) consists of

NN T N

The operation is by ‘grafting’. For example,

T(3) x T(3) x T(1) x T(2) — T(6) acts

3 2 1 1 9 12 3
RN Z B VAR

These are the ‘cherry trees’ of [B-V]. As graphs can be thought of as a general-
ization of trees, so there is a corresponding generalization of the notion of operads,
that is modular operads, introduced by Getzler and Kapranov.

§3. The Endomorphism operad. Let V be a vector space (or more generally
an element of a category as above and with internal Hom).

DEFINITION. The Endomorphism operad Endy of V is defined by setting

Endy(n) = Hom(VE", V)
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The unit is the map k¥ — Hom(V, V) sending 1 to the identity; the action of S,

is by permutation of the factors in V®"; and the operation

Endy(n) @ Endy(61) @ -+ @ Endy((,) — Endy (¢ + -+ + )

acts on basic tensors as follows: for (¢ @ a1 @ --- @ ay) in the source, that is ¢ €
Hom(VO™ V), a; € Hom(V®% V), the corresponding homomorphism V(X 4) —
V' is induced by

(V115 e ey ULy e ey ULy ey Ukt ) = O (01150, 010y )y e v oy O (Vn1y v oy Uns, )

The operad axioms should be clear for Endy, from the associativity of composition.

Aside on terminology. If we have a morphism of operads C — Endy, we may
say that ‘V is a C-algebra’, or that we have defined an ‘action of C on V’, or that
V is realized as a representation of C (again, these notions may be defined not just
for vector spaces, but for objects in any reasonable category). May’s original result
was that “a connected space admits an action of the little cube operad C, if and

> There are a

only if it has the homotopy type of an n-fold iterated loop space.’
number of fancy-sounding terms that translate into “representation of (a certain)
operad”: see several papers by T. Kimura et al. For example, in [KSV] we read
that “ ... a conformal field theory at the tree level is equivalent to an algebra over
the operad of Riemann spheres with punctures.” Operads are increasingly relevant
to physics, as are other fields that I usually would not associate with physics. In
the same paper, I was surprised to read: “We recall the Deligne-Knudsen-Mumford
compactification of My, ... see [11,23,24,25] or any review of two-dimensional

quantum field theory.”
64. The moduli space operad.

DEFINITION. The moduli space operad M is defined by setting M(n) = Mg ;41
for n > 2, and M(1) =pt., to be pictured as a P! with two marked points (that is,
a component which will automatically contract to a point, by the stability require-
ment).

The unit of M consists of the single point in M (1); the action of S,, on M(n) =
Mg n41 1s by permutation of the first n points. For the operation

pr M) x M(ly) x - x M(lg) = My + -+ k)

say that (C(k);C(ly),...,C(Lg)) is in the source (that is, C'(k) is a stable (k +
1)-pointed rational curve, etc.) The operation joins C(¢;) to C(k) by identifying
the last, ‘free’ marked point of C(¢;) with the ¢! point of C'(k). After collapsing
unstable components, this produces a stable curve with (¢; + -+ 4 {;) + 1 marked
points, as needed. A schematic representation of this operation on general points
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of the factors is:

C(k)
k+

k$ A e Cll)

I AT —e cy)

It 1s a good exercise to see what this operation does to the ‘combinatorial type’ of
stable curves, in the sense of Belorousski’s lecture on My ,.

The sense in which M(1) acts as a unit is by collapsing the corresponding tail:
for example, via M(1) x M(n) — M(n)

contract
T = G

The operad M lives (for example) in the topological category. We can get a
related operad in Vector Spaces over Q by taking homology: set

H,M(n) = H,(M(n),Q)

The operation is obtained by composing

Kiinneth
_—

HoM(k) @ Ho M) @ - @ Hy M(£,) Ho(M(k) x M(£) % - x ML)

2y oM (S )

Next, the Gromov-Witten invariants on a variety X allow us to define linear maps
H.M(n) — Endg«x(n) for all n > 1. Then the properties of Gromov-Witten
invariants will imply that this is a map of operads.

§5. Gromov-Witten invariants and classes. Reminder: for nice X and 3 €
A X there is a space Mg (X, 3) and n evaluation maps 11, ..., 7, : Mo (X, 3) —
X, acting n; : (C;p1,...,pn; f) — f(pi). The number associated with classes
Y1y Yn € A*X s

/_ Ny U Unan
MO,n(Xvﬁ)

Now we need to shift the focus a little: first, we want to consider the whole class
niy1U- - -Unky, (note: not gaining information, according to the ‘first reconstruction
theorem’ in [K-M]); second, we transfer the class to My ,. For this, consider the
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diagram

Here (m1 0o m)(C;p1, ... pa; [) = (f(p1), .-+, f(pn)), that is, 7 om = (1,...,1a);
we can then map v @ -+ @ 7, in H*(X™) to a class in My , by pushing-forward
via (72 o m) the pull-back via (71 o m).

DEFINITION. Call this class Io),(n,/a(% @ DY)

This definition reflects the motivic aziom of [K-M]. Motivic here means that
the map H*X" — H*M,,, is obtained via a correspondence, that is a class in
H.(X" x My ,). For genus=0, and nice X, the image from Mg (X, 3) of the
fundamental class can be used for this purpose, and this leads to the I()),(n,ﬁ above. In
other cases the situation is considerably more involved; the construction of Behrend
and Fantechi produces a good candidate in great generality.

REMARK. Our previous Gromov-Witten number is still fMo : Igfnﬁ(’yl@@- S @Yn)-

Summarizing: the Gromov-Witten information is encoded in maps
L5+ (HX)™" — H'(Mo,0)

We can also put all of them together if we want, by taking as many copies of the
target as there are effective f3’s:

I, 1 (H*X)®" — ©gepH* (Mo ) s)

where B = {effective 3’s}, and the product on the @ respects the B-grading. Put
it otherwise, we should consider

It (H*X)®" — H*(Mo.n)
as a map between B-graded objects in order to carry along the information about
B. We will do this implicitly in what follows.
§6. GW on X induce H,M(n) — Endpy+x(n). At this point we have maps
(H*X)*" @ H*X — H*(Mg nt1)
(M@ @) @Y1 = I @ @ Yt

where I(y1 @ @ Yp41) = @ﬁf())fn-l-lﬁ(% @+ @Yn+1) (again, source and target of
I are B-graded, see §5; this will be hidden in the notations). Dualizing this map,
we obtain a map

H.(Mg pt1) —Hom((H*X)®" @ H*X, Q)
= Hom((H*X)®" (H*X)")
= Hom((H*X)®", H*X)
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by Poincaré duality. That is, we now have a map
H. M(n) — Endg:x(n)

for n > 2, which we proceed to write out explicitly.
First, Poincaré duality works H*X — (H*X)Y by sendmg cto [y el =ac()
Say T; form a basis for H*X, and (g;;) = [ T;UTj, (¢") = (g;;)~" as usual. Then,

writing ¢ in terms of this bas1s

c—ZcTZH<T — (T /ZCTUT—Zg” ) , and hence
Z(Sk’—Zg]kg”c —Zg ac(Ty) , or
C—Z ka —Zg]koz
Now start with Z € H, M(n) = H*Mom_H = (H*Mo7n+1)v, and get
Z '—>/ ( - @ Yn1 '—>/ (1@ '®7n+1)> € Hom((H*X)""*1, Q)

- ( O LT B -)) & Hom((H* X)*", (H"X)")

- ®7n'—>Zg / - @ Y @ Ty) Tk

in Hom((H*X)®", H*X) = Endg« x(n). This defines
H. M(n) — Endpg-x(n)
for all n > 2. For n = 1, there is little choice:

H M(1)=H.(pt)=Q — Hom(H*"X,H*X) = Endy~x(1)
1 +— identity

§7. Properties of Gromov-Witten invariants and morphisms of op-
erads. The (vague) claim is now that the general properties of Gromov-Witten
imvariants amount to the fact that the maps

(*) H. M(n) — Endg+x(n)

defined in §6 preserve the operad structures on source and target.

REMARK /EXAMPLE. Both operads involved have in fact a little more structure,
and this is also preserved. On the End side, we have

Y : Endysx(n) — Endg«x(n — 1)
= (1@ @1 a( @ @ yp— @ 1))
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On the H, M side, we have the maps induced in homology by the maps
¢: M(n)= Mo,n—i—l — Mo,n = M(n—1)

obtained by forgetting the last point (and collapsing unstable components):

n n
iy T

Cram. The map Hi M — Endp«x defined above preserves this structure; that
18, the diagrams

H.M(n) ——  Endg-x(n)

5| |+
H M(n—1) —— Endg~x(n—1)

commaute.

PROOF. These (and all other analogous facts) should be straightforward from
the explicit formula given for (*) in §6. Going first right and then down gives

Z — 71®---®7nHng’“/I(m@---@vn@Tj)Tk
ik 7

N 71@...®7n_ll—>2gjk/I(’71®"‘®7n—1®1®Tj)Tk ;
ik z

going first down and then right gives
Z v ¢uZ — 71@"'®’Yn—1'—>zgjk/ I(v1 @ @yno1 @ Ty) Ty
ik bx 2

Using that (¢’%) is nonsingular, reading components, and replacing T}; by 7, we see
then that the commutativity of the diagrams is equivalent to

/I(%®"'®7n®1)=/ I @ ®7n)
A O Z

for all Z € H.Mg 441 and 71,...,7, € H*X. This holds by the projection for-
mula, and is essentially equivalent to property (1) of Gromov-Witten invariants in
Ranestad’s lecture. [
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Concerning associativity, writing that (%) induces a morphism of operads also
amounts to the commutativity of certain diagrams. Writing this out leads essen-
tially to the WDVV equations, which also appeared in Ranestad’s lecture. A key
formula from that lecture, rewritten slightly to match notations, reads

Z/Mo JAU{e} I((®GEAYG)®T£) gzm /M I(Tm ®(®b63%)) :/ I(®c€AuB’Yc)

D(A|B)

0,BU{e}

(for the notations, see also Belorousski’s lecture on Mo,n- And note that the
dependence on f is implicit in I once the relevant objects are B-graded, see §5;
the f-component of the left-hand-side is a Eﬁ +3,=p of terms [ I - [Ig,-

We want to show that this follows from the commutativity of one of the dlagrams
expressing that (*) is a morphism of operads. Conversely, these equalities and the
structure of the boundary of the spaces M ,, ought to imply that all such diagrams
commute; but this seems substantially more involved, and we will not attempt to
discuss it here.

For |A| = ny, |B| = ny, with ny,ny > 2, consider

M(TLQ) X ./\/l(nl) X M(l) X e X M(l) — ./\/l(n1 + ny — 1)

Tl2—1

"

contract
—

This map realizes the map
MO,AU{.} X MO,BU{.} - MO,AUB
whose image is the divisor D(A|B) of Mo aup. Now take H, and apply (*):

H*M(ng)®H*M(n1)®H*M(1)®("2_1) _ H*M(nl —|—TL2 —1)

l l

EndH*X(ng) & EndH*X(nl) & EndH*X(1)®("2_1) E— EndH*X(nl + g — 1)
Assume (%) induces a morphism of operads; then this diagram commutes. Chase
[MO,BU{Q}] ® [MO,AU{O}] ® [Pt]®n2_1

going first right and then down, this maps to [D(A|B)] and then to

Y@ @ Ynydng—1 Zgjk/ I(vi @ @ Ynygnam1 @T5) Ty
1 D(A|B)
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going first down and then right, it maps to

Zgj’“/_ (@0 -@T)T;
ik ™

Mpuge} n
2

®(71®"'®7“1'_>Zg£m/— I(’Y1®®7nl®T£)Tm)

m Maugey

@ (Y41 = Yni41) @ @ (Ynidna—1 = Ynid4na—1)

and then (by the obvious linearity of I) to

N @ O Ynypngm1 D g" (Zgzm /_ Im® @y T
ik tm Mau{e}

/_ I(Ty, ®'Yn1+1®"'®7ﬂ1+ﬂ2—1®Tj)Tk)
Mpuiey

Comparing the two results, we see that we must have

Z/_ I(71®®7n1 ®T4)gém /_ I(Tm®7n1+1®'"®7n1+n2—1®Tj)
Maugey Mpuge

:/ I(v1 @ @ Ynygno—1 @ Tj)
D(A|B)
for all v1,...,¥n,+n,—1, and therefore (again by linearity of I)

Z/_ I(y1 @ @ n, @T0) g™ /_ (T @ yny41 @+ @ Ynigms )
Maugey Mputey

:/ I(Vl®"'®7n1+n2)
D(A|B)

which is our basic identity. [

7. Axioms for Gromov-Witten invariants, I—B. Fantechi, 10/24/96

We introduce and motivate the axioms from [IK-M] for Gromov-Witten invari-
ants, then discuss approaches for a construction of classes satisfying these axioms,
with emphasis on Behrend’s work [B-M]. This talk and the next one are a rough and
oversimplified outline of the contents of [K-M] and [B-M]. They contain intentional
mistakes (and probably unintentional ones as well).

Let X be a smooth complex projective variety.

DEFINITION. A system of Gromov-Witten classes on X is the datum, for every
p € Hy(X) and for every g,n > 0 such that 2¢g +n > 3, of a linear map

I¥, 5 HY(X)®" — H* (M)

g1,

satisfying the properties
(GWO0) Effectivity
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( ) Sp-equivariance
(GW2) Grading

(GW3) Fundamental class

(GW4) Divisors

(GW5) Mapping to a point (8 = 0)
(GW6) Splitting

(GWT) Genus reduction

(GW8) Motivic axiom

A tree level system of Gromov-Witten classes is the same, with ¢ = 0 (so the
genus reduction axiom becomes irrelevant).

Here Hy(X) = H2(X,Z), and cohomology is taken with Q-coefficients.

Idea behind the axioms: suppose we are in the best possible world; in particular,
nontrivial finite groups of automorphisms do not exist, and for a generic map f :
C — X, h'(f*Tx) = 0. (Note: this is never true if ¢(C') > 1.) Let M, (X, 3) be
the moduli space of maps (as defined in previous lectures). What is its dimension
supposed to be? ‘Coarse’ reasoning: look at the map M, ,(X,3) — M, ,, and
pretend it simply forgets the extra data. The dimension of M, is (3¢ — 3 + n);
we are pretending that there is no (or no generic) obstruction from H', so (by
Riemann-Roch) the fibers would have dimension

RY(g*Tx) = x(f*Tx)=dimX(1—g)+ B-c1(X) , hence

dim M, ,(X,3) = (dmX - 3)(1 —¢)+n+ Becr(X)
We call this number the ezpected dimension of M, ,(X,3). The natural map

Mg7n(X7 ﬂ) - Xn X M‘(Ln

gives (via Poincaré duality) a class

Conp = [Myn(X,5)] € H (X" x M)

Consider the two projection

X" x My, ——— My,
|
xn
and define (note: H*(X") = H*(X)®")

Ipng = a(p" ()N ey 5)

(motivated by the intuitive enumerative meaning).
We will now state each of the axioms and ‘verify’ some of them in the very
optimistic assumptions above, in the hope to give an intuitive motivation for them.

(GWO) Let Hy(X)1 ={p € Ho(X)/B-c1(L) > 0 for all ample L£}. Then I;fnﬁ =0

unless 3 € Hy(X)4. Verification: M, (X, 3) is clearly empty unless either
=0, or 3 is the class of an effective case. In either case, § € Hy(X)4.
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(GW1) I;fnﬁ is Sy-equivariant.
(GW2) deg IX , = 2[(g — 1)dim X + 3 - Kx]. Verification: This is the degree

g,n,8
induced by the dimension estimate above (the ‘2’ comes in passing from the

complex to the real dimension).

(GW3) Let 7 : My n41 — M., be the map forgetting the last point (and stabiliz-

ing); then I*

!Ln—l-lﬁ(' @ 1X) =7* ol

. Moreover
g,n,B ’

/71U72 if =0
X

0 otherwise

I 5(1 @72 @ 1x) =

(GW4) If v € H*(X), then

”*I;,(nﬂ,ﬁ(‘ ® ’Y) = (5 : ’Y) I;,(n,ﬁ

(GW5) (Case 8 =0) M, ,(X,0) =M, , x X. Here

dimMgW(X,O) =3¢g—3+n+dmX
exp. dimM, ,(X,0) =39 -3 +n+dimX(1 —g)

do not match for ¢ > 0. Now the obstruction space is:
Ticwp =H'(C.f'Tx)=H(C,0c) @ Ty yc)

that is, with

Mg7n(X7 0)

7' = R'g.(f*Tx). This has rank ¢ dim X, accounting for the difference
between actual and expected dimension. Use 7! then to ‘correct’ the fun-
damental class:

X0 = [Myu(X,0)]UciopT?

Note: in the real world, C does not exist; this is one reason to consider

M, (X, ) as a Deligne-Mumford stack: so it is a smooth, fine moduli
space, can work with cohomology (with Q-coefficients), etc. Define
I;,(n,o = pz*(piﬁ() ) c;{n,O)

where p; are the projections from M, , x X.

(GW6) Fix g1, g2, g, n1, n2, n such that 29, +n; +1 >3, ¢ = g1 + g2, n = 11 + na.

Let ¢ : My, ny+1 X Mgy nyt1 — My, be the usual glueing map. Then

90*0]57175(71@”'@7”) = Z Iﬁ7ﬂ1+1751 ®I£7ﬂ2+1752(71®'”®’Y”1®[A]®’Y”1+1®'”®’Y”)

B1+B2=0
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where [A] is the class of the diagonal in X? (this can also be written in
terms of a basis and of the usual g*®). Note that the sum is finite, by
effectivity.

(GWT) Let v : My_1 42 — M, be the map joining two of the points and in-
creasing the genus. Then

oI, 5 =11 o 5(- @ [A])

(GW8) There exists C;{n,ﬁ € A (X7 x Mg,n) such that

X X
Iyng = g«(p"(-) N cg,nﬁ)
with ¢, p the projections, as before.

REMARK. Once we take (GWS) for granted, all other axioms can be formulated
in terms of cinﬁ. For example, both (GW3) and (GW4) boil down to

X _ * X
Cgn+1,8 = (idxn x ) Cg,n,B

We now try to describe how to construct a system of classes cg(n g such that the
axioms hold.

Constructions. If ¢ = 0 and X is convex, then everything works fine, with
cgfn7ﬂ = [My (X,5)]. The expectation is that this should be the case whenever
the dimension equals the expected dimension. Main problem:
define [My (X, B)]" € Au(M, (X, 3)) with the correct dimension and properties.

Symplectic approach. Deform enough data so that M, (X, 3) is of the correct
dimension. This requires a sophisticated analysis. Solutions have been given by
Fukaya-Ono [F-O], Li-Tian [Li-Tian2], Siebert [Siebert].

Algebraic approach, Li & Tian’s method [Li-Tian]. We first describe the situ-
ation locally in the euclidean topology. Let M be a moduli space. Usually from
deformation theory one has for all m € M an obstruction space Opr . Choose
mo, and let T = Thr gy, O = Onrm,- Then there is a map of germs of ana-
Iytic spaces f : (T,0) — (0,0) such that (M,mgy) = f~1(0); for m € (M,my),
Ty m = kerdf(m) and Opy,m = Cokerdf(m). Then Li and Tian define a normal
cone

CM/TCOXM ,

of pure dimension = dim 7', and T-invariant fiberwise.

Global story: Given Er -5 Eo morphism of vector bundles over M, such that
Ty m = kerg(m), Oprm = Coker g(m) (the obstruction complex), there is a cone
C C Ey of pure dimension = rk T, and we can define

[M]¥'™* = [C] U (zero section of Ey)

Note dim[M]""* = 1k E — 1tk F = dim T(m) — dim O(m) (=expected dimension) for

all m.
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The hard work goes now in defining everything rigorously and proving the inde-
pendence on the choices, and the relevant properties.

Behrend-Fantechi: For all m, C,, comes from a cone in O(m).

(1) The cone only depends only on the deformation functor;

(2) invariance means it comes from [Eo/E7]| (stack quotient);

(3) The stack is an easy version of the deformation functor.
Result: given any M, Deligne-Mumford stack, there exists a pure dimensional C,,
(the intrinsic normal cone, see [B-F]); and given any Er — Eo, the obstruction
complex Cy; — [Eo/Er] = E yields a [M]'"'* = [C,,] N zero-section of E. This
only depends on [Eo/E7], i.e., on Ep — Eo as an object in the derived category.

There is also a relative version over any smooth Artin stack.

DEFINITION. For any ¢, any n, any X and any 3, let M = M, ,, the moduli
stack of prestable curves of genus g with n marked points: M is a smooth Artin
stack, containing M, ,, as an open and proper subset (M is not separated). There is
a natural morphism M = M, (X, 8) — M, sending (C, z;, f) to (C,z;) (without

stabilizing). Let C — M be the universal curve, and consider the diagram

C#X

|

M

The complex Rp,(f*Tx), a well-defined object in the derived category, is a relative

obstruction theory for M over M, and yields a [M, (X, 3)]"'"" of the correct
dimension.

This implies immediately (GW0), (GW1), (GW2), (GWS8); and (GW5) with a
little care. To prove (GW3) and (GW4), one must consider

Myni1(X,8) = Myn(X, 8)
The map 7 is flat of relative dimension 1. Then one needs
[M g1 (X, BT = 7 [M g, (X, B
This follows from properties of the relative intrinsic normal cone.

To prove (GW6) and (GWT), and for any further work we will have to face
graphs and axioms from [B-M].

8. Axioms for Gromov-Witten invariants, II—B. Fantechi, 10/31/96

This lecture is based on [B-M] and [Behrend] (the same disclaimer for the previ-
ous lecture applies here). Among the problems left open from the first lecture, we
had the splitting aziom, dealing with the behavior of the Gromov-Witten classes
on sets of reducible curves. This leads to considering more complicated curves.
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DEFINITION. A modular graph 7 is the datum of
(1) a finite set V' of vertices;

(2) a finite set F' of flags;

(3) amap 0: F — V;

(4) an involution j : F — F (denote f = j(f))
(5) (modular) a map, the genus, g : V. — Z>g

Notation: T = set of tails = {f € F/f = f}; E = set of edges = {{f, f}/f # f};
forveV, F,={f/0f =v}.
DEFINITION. The topological realization of 7, denoted |7|: start with a point for

every vertex; for every edge {e, e} glue [0, 1] at Je, J¢; for every tail ¢, glue [0, 1] at
ot.

Intuitive relation with pointed curves: every vertex v corresponds to a curve of
genus ¢(v); for every edge we make the corresponding curves intersect transversally;
for every tail we put a marked point. Hence a modular graph describes the structure
of a prestable curve.

DEFINITION. A vertex v of 7 is stable if 2¢(v) + #F, > 3.
We will assume all vertices of all graphs under consideration to be stable.

EXAMPLE. An irreducible n-pointed genus-¢g curve corresponds to a single vertex

v, with g(v) =¢,and F = F, ={1,...,n}.
Fix a smooth projective variety X over C.

DEFINITION. Let 7 be a modular graph. An X-marking of 7 is a map « :
V(T) — HQ(X)+

DEFINITION. Fix (7,«). A prestable (1,a)-map to X is the datum (Cy, x5, p),
where

(1) Yo € V(7), Cy is a prestable curve of genus ¢(v);

(2) Vf e F(T), Ty € Caf;

(3) pmaps € =1C, — X so that p(ay) = p(ag) for all f € F; and p1,[C,] =

a(v) € Hy(X)T.

Moreover, (Cy, x5, pt) is stable if Yo € V., (Cy, {2t} fer,, pc, ) is a stable map.

REMARK. If X =pt, o and p bear no information. We speak then simply of a
7-(pre)stable curve.

REMARK. Note that the domain of a prestable (7, «) map has at least as many
irreducible components as the vertices of 7, but it might have more (i.e., some curve
C, may be reducible, or singular).

DEFINITION. A family of (7, «)-prestable maps over S is the datum (Cy, zf, i)
where

(1) Cy — S is a flat proper map, and p is a map C = IIC, — X;

(2) 25:5 — C, is a section (for f € F,), and poxy = ftoTg;

(3) Vs € S, the fiber of (Cy,x¢, ) over s is a (7, a)-prestable curve.

REMARK. Families of (7, ) (pre)stable maps pull-back; so we may consider the
corresponding functor, as usual, and as usual we wish to represent it.
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THEOREM. Let X be a projective variety, (7,«) an X -marked modular graph.
(1) There exists a fine moduli space M,(X,a) for (7,a)-stable maps to X;

M (X, ) is a proper, separated Deligne-Mumford stack of finite type.
(2) There exists a fine moduli space M(T) for T-prestable curves; M(7) 1s @

smooth Artin stack.

For example, for 7 a graph with a single vertex of genus ¢ and n flags around it,
M-(X,a) is our usual M, (X, a).
DEFINITION. Let (7,a) be a marked graph.
1) x(m) = x(I7]) = Zvev(n 9(v).
2) g(7) =1—=x(7).
3) dim7 = —3x(7) + #T — #E.
4) The class of 7 = a(7) = >, oy a(v).
5) dim(7,«) = dim(7) + x(7) dim X 4 o(7)er (Tx).

Exercise: prove that M, has dimension = dim(7).
There are natural maps

M. (X,a) — M(7) — M,
given by (Cy,xf, 1)+ (Cyp,x5) = (Cy, g )*t2P.
The ezpected dimension of M, (X, a) is dim(7, o).
DEFINITION. An orientation for M over X is the datum, for every X-marked
graph (7,«), of a class
IT(X, Oé) € Adim(r,a)MT(Xa Oé)

satisfying 5 compatibility axioms, to be discussed shortly.

An orientation determines a good system of Gromov-Witten classes, in the sense
of the previous lecture, as follows. Omitting X from the notations for convenience,
we have the diagram:

i,
=
Mo (a) — T, x XT(
T
X T(r)

and we set fr(a) = ev,Z, (), and define

I? H*@QT(1) — H*(M,.) by

12(9) = pr (4201) 1 Zo()
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We list the compatibility axioms and give for each of them a short, informal
description.
(BM1) Mapping to a point
(BM2) Products
(BM3) Cutting edges
(BM4) Forgetting tails
(BM5) Isogeny

(BM1) This is the case @ = 0 ( <= «(7) = 0). The axiom is the obvious
generalization of the corresponding GW axiom (GW5).

(BM2) If (7,«) is the ‘disjoint union’ of (m,a1) and (72,az), then Z.(a) =
.,Z'T1 (Oél) X I,—2 (Oéz).

(BM3) Cutting an edge: the modular graph o is obtained from 7 by ‘cutting the
edge’ {e,e} if V(o) =V(r), F(o) = F(r), 00 = 071, g5 = ¢, and

(i fE{ed
]U(f) _{ f fE {675}

(so the edge {e, €} between internal vertices is replaced by two tails). We have the
cartesian diagram

X — X?

where the first vertical map sends (Cy, x ¢, 1) to p(x,e) = p(z,€), while the second
sends (Cy,x¢, ) to the pair (p(z,e), u(x,€)). The axiom states then that the
orientation for 7 comes from o:

This corresponds to gluing two curves at one marked point on each.

(BM4) Forgetting tails: o is obtained from 7 by forgetting the tail ¢+ € T(7) if
V(o) = V(r), Flo) = F(t) = {t}, jo = Jry 9o = ¢r, O = Or (warning: we are
cheating a little because o here could become unstable; pretend it stays stable, for
simplicity). This situation generalizes the map from M, , forgetting one of the
marked points: we get a flat, proper map

M (X,0) 5 My(X,a)

and the axiom states that

Ir(a) = 7T, («)

This corresponds to forgetting one of the marked points.

(BM5) Isogeny: for simplicity, we will consider here only the case of ‘contracting
an edge’. The modular graph o is obtained from 7 by contracting the edge {e,e}
it F(o)=F(r)—{e,e}, 0 =0r, jo = jr, and

—if {e, €} forms a loop in 7, that is de = J¢, then V(o) = V(1) and g¢,(0¢e) =
g-(0¢) + 1;
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—if {e,€} does not form a loop in 7, V(o) = (V(7) — {0e,0€}) U {x}, with
9o(*) = g=(0¢) + g-(Je)
(and g, = g, on unaffected vertices).

This corresponds to the smoothing of a node.

Further, for o a marking on o consider all possible compatible markings «; on 7.

We get a diagram o o
OMA(X,05) —— Mo(X, o)

M, —* ., M,
and the axiom (in a slightly simplified form) prescribes that

S To(an) = 6Z,(a)

As mentioned above, it can be shown that an orientation defines a system of
Gromov-Witten classes satisfying the axioms (GW0)—(GWS8) of the previous lec-
ture. For example, the splitting axiom compares classes for My, n,+1, Mgy not1
with classes for Mg,n with ¢ = g1 + g2 and n = ny + na:

491 gzx .

These are related to each other by respectively cutting an edge or contracting it
from

Thus the ‘splitting axiom’ (GW6) follows by judiciously applying (BM3) and
(BM5). Similarly,

n+2
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are obtained by respectively cutting the loop, or contracting it, in

(BM3) and (BMS5) can then be used to prove the ‘genus reduction axiom’ (GWT)

for Gromov-Witten classes.
MAIN RESULT. (Behrend) The class defined by
T.(a) = (Fr(a), Er "
gives an orientation for M over X.

In this statement, []VI'* is the (relative) virtual fundamental class in the sense of

the previous lecture, and E? , is the relative obstruction theory over M,: E? |, =

Rr, p*Tx in 7
C LN
M. (X,a)

where (C, 1, X) is the universal family over M, (X, «).
This result produces then a system of Gromov-Witten classes satisfying the ax-
ioms from [K-M], for an arbitrary smooth, projective variety X.

9. Kapranov’s work on M, ,—C. Faber, 10/29/96

The reference for this is [Kapranov]; we work over C.
§1. The main result.

THEOREM. Let p1,...,pn be n points in P"~% in general position. Let Vo(p) =
Vo(p1,---.pn) be the space of Veronese curves in P2 through p1,...,pn. Then:

(a) Vo(p) = Mo n.

Consider Vo(p) as a subvariety of the Hilbert scheme H parametrizing all sub-
schemes of P2 let V((p) = V(p1,...,pn) be the closure of Vo(p) in H. Then:

(b) V(p) & My,n. The subschemes of P"~? representing points of V(p) are,
considered together with the n points, stable n-pointed curves of genus 0.

(¢) Analogous statement for Chow variety instead of Hilbert scheme.

REMARKS. In suitable coordinates, p; = e¢; =(0:---:0:1:0:---:0) for

7

0<:i<n-—1l,and p, =€, =(1:---:1). Also, by a classical result of Castelnuovo,
through any (n + 1) points in P"~2 in general position passes a unique Veronese
curve.
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§2. Discussion. Fix py,...,p, in general position in P"~2, My, = V(p).
CLAIM. Every component of the curve C € V(p) is a Veronese curve in its span.

A more precise statement requires a few preliminaries:

(a) Let A,,_1 be the configuration of (g) hyperplanes A;;, A;; =span of{ps},
k#1i,5(1#7). A face of A,_; is a projective subspace which is the intersection
of some of the A;;.

The hyperplanes in A,y are isomorphic to the projectivization of the hyper-
planes {t; = t;} in the subspace C§ ' C C" with equation t; + -+ +t, = 0. (The
‘mirror’ of the root system A, _1.)

(b) The faces in A,,_; correspond to equivalence relations on n = {1,2,...,n}:
for a relation R, A(R) = N;r;Aij.

(¢) So there are exactly 2"~! — 1 0-dimensional faces, corresponding to equiva-
lence relations with exactly 2 equivalence classes (e.g., p; < {¢} I {n — {¢}}).

(d) Intersecting A;; with a face A, we obtain an A,,, with m = dim A + 1.

(e) Let 7 be a tree with tails (=endpoints) Aq,..., A,, and let v,w be vertices
(possibly endpoints) of 7. Let [v,w] be the unique geodesic from v to w. Define
for v an internal vertex of 7 an equivalence relation 22, on n:

igvj <~ v Q[A“AJ]

The equivalence classes of =, correspond to the edges incident at v.

(f) For e an edge in 7, define
1 =) = e ¢ [Ai A

Note: for each ¢, this equivalence relation has exactly two equivalence classes.
(g) With the above understood, recall that every n-pointed stable curve corre-
sponds to a tree (see Belorousski’s lecture on My ,,). Then the claim is:

THEOREM. For C € V(p), consider its tree T. Let v be an internal vertex of T,
and let Cy, be the corresponding component of C'. Then
(1) Cy is a Veronese curve in its span < C, >; < C, > 1is the face of A,_4
corresponding to =,. Its dimension 18

(# equivalence classes)—2=(# edges incident to v)—2
=(# special points on C,)—2

(2) Let e be an edge of T connecting internal vertices; that is, e corresponds
to a node z of C. Then z corresponds to the 0-dimensional face of An_1
corresponding to =.. Therefore, the possible singular points of any C € V(p)
belong to a fized finite subset of 2"~ — 1 — n points in P72,

Next, recall that for ¢+ = 1,...,n there is a map =; : Mo,n — Mo,n—l for-
getting the i-th point. Thus there must be corresponding maps V(p1,...,pn) —
V(ql, ce ,qn_l).



9. KAPRANOV’S WORK ON Wom—C. FABER, 10/29/96 129

CrAIM. These are induced by the projections
P2 — {pi} - P}

This seems rather reasonable.
Next, there are basic line bundles £; whose fiber at €' is T, C'. These can be
realized as follows: consider the map:

o, V(p) — [F’?_?)

sending C to the embedded tangent line to C at p; (which determines a point in
P"~3 under the i-th projection as above). Then £; = a;‘(OP?_s(l)). Also, we get
maps yg, : Mo,n - PHO(HOW,L’Z‘)*.
Results and comments:
(1) dim HO(MOW,L’Z‘) =n—2;
(2) vz, is a birational morphism; v, = o, after the identification [F’?_?) =
P(HO(MOW, ,Cl)*,
(3) o; can be decomposed explicitly into blow-ups; there are other constructions
for this, due to Fulton-MacPherson and Keel;
(4) the identifications induce rational maps [F’?_?) -3 IF’;‘_S; these turn out to
be Cremona transformations.
(5) Finally, this gives an interpretation for the Witten 7-numbers in genus 0:

< T4, " Td, >= /_ Hcl(ﬁi)di
MO,n

?

with > d; = n—3. This is the number of Veronese curves through a certain
assortment of points, and tangent to certain codimension-d; planes at these
points. This might lead to a computation of these numbers (which are
however already known and rather easy to obtain).

Next, we have the relative dualizing sheaf we on a stable n-pointed curve C' of
genus 0: obtained by gluing w; on components C;, where the w; are regular on the
smooth part, and at a point of intersection of two components they may have simple
poles with opposite residues. By Knudsen’s work, we (@ + -+ - + @5, ) is very ample,
and has (n—1) independent global sections. Via the corresponding map C' < P"~2,
the images p; of the x; are in general position (as shown by a computation).

Now for part (a) of the main theorem, consider 1, ..., z, distinct points on P!,
and embed P! in P2 with wm (21 + -+ + 2,). By a projective transformation,
the image is moved to a Veronese curve through pq,..., p,, given points in general

position in P"72. So each curve € My, can be realized as stated. If f is an
isomorphism of two n-pointed curves, f induces an isomorphism of the (n — 2)-nd
symmetric products P?~2, hence of their duals P"~2, fixing n generic points; it
follows that f is the identity. This essentially establishes My , = Vo(p1,....pn).
For part (b), consider a stable n-pointed genus-0 curve over any base S: C = S,
with sections s;. We have an embedding of C in P(m.(we/s(s1 4 -+ + 5,))%),
a projective bundle with n sections si,...,s,, in general position in every fiber.



130 PART III—RELATED MATERIAL

Trivialize the situation by moving every fiber to pass through a fixed frame in
P"~2 The map ~ is flat, so we get a map vs,¢ from S to the Hilbert scheme H,
such that C is the pull-back via yg¢ of the universal flat family of subschemes =

over H: _
C —— E

1

S Ys,c H

Now for all S this determines a map
vs : Mor(S, Mo,n) — Mor(S,H)

by sending a family C (which determines and is determined by a unique morphism
S — MO,n) to vs,c. In fact, taking S = Mo,n itself gives a map from this to H,
and the dense open Mj , of Mo,n maps to Vo(p) C H; so Mo,n maps to the closure
V(p) of Vo(p) in H, and vs must factor through

vs : Hom(S, Mo,n) — Hom(S,V(p))

We want to show that this is a bijection for all S. The injectivity follows from the
fact that every C is a pull-back from =; for the surjectivity, we have the diagram

Cop —— =
I
Mo —— V(p)
and since the fibers of = over V are stable n-pointed curves of genus 0, there must
be a map V(p) — Mo, as My, is a fine moduli space. O
Note that we are assuming already that M , is a fine moduli space; it would
be interesting to use the construction to show directly that V(p) is a fine moduli
space.
For (¢) in the main theorem, let C be the Chow variety; we have H — C and
My » = V(p) surjecting on the closure W(p) of Vy(p) in C; we would show that this

latter map is an isomorphism. One proves that it is a set bijection, then argues
that tangent vectors to V(p) (which is smooth) are not contracted in W(p).

§3. Problem. Let x4(#),...,2,(t) € C((#)) be distinct formal Laurent series
in t. Assume that for ¢t # 0, (P';21(¢),...,2,(t)) is a stable n-pointed curve in
My C Mo,n- The limit lims—o(PY;21(2),...,2,(t)) is then a certain C' € Mo,n;
the question is: can this C' be determined?

Choosing a suitable coordinate on P!, and multiplying by a common power of ¢ if
necessary, we may assume that @, (t) is identically co, and that x1(¢),...,x,—1(t) €
C][[t]]. Baby example: something like

(12,1%, 2t 3%, o0)

Set-up. We define a tree, the ‘tree of infinitely near points in C: the vertices
will be pairs (m, f) with m € Z>_4, and f a polynomial in C[t] of degree < m (the



ENUMERATION OF RATIONAL CURVES, AFTER KONTSEVICH—C. FABER 131

only polynomial of degree < —1 is 0); the edges will be between pairs (m, f) and
(m +1,¢) if and only if g agrees with f modulo ™!,

The ends of this tree correspond to formal Taylor series € C[[t]].

For (x1(t),...,2,-1(t),00) as prescribed above, look at the subtree 7 of the tree
Ty of infinitely near points in C obtained as the union of paths in 7y connecting the
x;(t) and the root vg = (—1,0); and let 7' be the simplest topologically equivalent
version of 7 (where only internal vertices of degree > 3 survive). Then:

CLAIM. (1) T’ is the tree of the limit curve;

(2) to determine the isomorphism class of the limit, one needs the projective
equivalence class of the special points on every component C, of C. This can be
read off from T': the edges departing from v correspond to the special points on
Cy, and each has a number naturally associated with it (oo for the edge connecting
back towards the root, and the coefficients of the next term wn the Taylor series
represented by the other edges).

In the example above: (2,3, 2t% 3% co):

®
5 4
0
00 1
0+0t > >—<¢3 > 2
0+0 t+0 14 0+0 141 12 B3
1 2 Py )

t3 23 3t3

EXERCISE. For a slightly different flavor, take K = Q,, with ring of integers Z,
and determine the stable reduction (mod 2) of (P';0,1,2,3,4,5,6,7,8).

10. Enumeration of rational curves,
after Kontsevich—C. Faber, 11/28/96

Three examples:

(1) Rational curves on P2. Consider the map ¢y : Mo ,(P% d) — (P?H*
defined by ¢r(C;s a5 f) = (f(x:)), and let

Py :=#{rational curves on P? of degree d > 1, through (3d — 1) generic points}

=degree of 341

= Jits s oy Limr 9" (1 (O(1)i)?)

with evident notations.

(2) Rational curves on quintic threefolds. Let V' be a threefold given by
a section Q of O(5) on P*. Consider

MOJ([FA, d) L [FD4

E

Z(Qq) = Moo(V,d[PY]) —S— M, o(P*,d)
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Here de is the section of &; := m.(¢*O(5)) determined by ). Note that &; is a
vector bundle: for f : C — P* a genus-0 stable map, H'(C, f*O(5)) = 0. Then

look at the number
Ng = /_ C5d+1(5d)
(P, d)

this ought to count the cardinality of Z(@d), that is the weighted number of rational
curves on a quintic threefold. Problem: N; ¢ Z in general; however, one can see

that
No=> k°Ng,
k|d

with NJ counting the actual number of rational curves (without contributions of
multiple coverings from lower d’s, see (3)). This should be an integer.

(3) Multiple coverings of rational curves on Calabi-Yau threefolds.

Consider a Cy = P! on a Calabi-Yau threefold V with normal bundle O(-1)&
O(—1). The space M070(V, d[Cy]) has a connected component HO70(CO,d[CO]) =
My o(P1,d). Tts dimension is (2d —2), while the virtual dimension is 0; the obstruc-
tion sheaf Fy; is the rank-(2d — 2) vector bundle with fiber H'(C, f*(Tyv /T¢c,)) =
C* @ HY(C, f*(O(-1))) at each point f : C' — Cj (a degree-d stable map). By

definition, the contribution of this component will be

My = /_ cad—2(Fq)
M(P',d)

Expectation: My = d~? (checked by Manin). This explains then the relation

between Ng's and NJ’s.
This relation can be inverted by using the Mobius function:

NS = Z,,L(k)k—3Nd/k
k|d

Goal of the lecture: to explain how Kontsevich ([Kontsevich]) computes in prin-
ciple the numbers P;, Ng, My. The main tool is Bott’s formula.

Situation: X is a (smooth) complex projective manifold, € is a holomorphic
vector bundle on X; a complex torus T' = C* x ... x C* acts algebraically on
(X,€).

Fact: then X7 is smooth. On each connected component X7, & = @rerv BV,
a decomposition into ‘eigenbundles’ for characters A. The same for the normal
bundles to the fixed loci: for N7 := Tx [Tx~+, N7 = Ererv A;,go./\/%

To write the formula, we introduce the Chern roots of these bundles: e; for &;

A for BV, n?’)‘ for N7 So Y5, er(€) = [1;(1 + ei), and so on.

Now let P be a homogeneous polynomial of degree dim X in the Chern classes
¢i(€) (considered as indeterminates of degree ¢); that is, a symmetric homogeneous
polynomial in the e;, of degree dim X. Bott’s formula then states that

[re=% [ fm
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Every character A defines a linear form on Lie(T), so the right-hand-side is
a rational function on Lie(T') (which is constant by the statement, and equals
[x Ple)).

We will use Bott’s formula on orbifolds.

Description of fixed points of the natural action of T = (C*)"*! on
M, 1 (P", d). This is induced from the action of T on P™.

Notation: p;, © = 1,...,n 4+ 1, are the fixed points of T" on P". We think of
T acting diagonally on (n + 1)-tuples of homogeneous coordinates, so p; is the
projectivization of the i-th coordinate line in C"*!. For i # j, let {;; = (;; be the
line in P™ through p; and p;.

Suppose that the stable map f : C — P" represents a point of M%k(P",d)T.
Then

(1) f(C) is T-invariant, so a union of lines ¢;; (points with > 2 nonzero coor-
dinates have > 2-dimensional orbits);

(2) the images of all marked and singular points, and of all contracted compo-
nents, are points p;;

(3) a component C'® of V not contracted by f maps onto a line ¢;;, say with
degree d,. The map C'* — (;; can only be ramified over p; and p;; by the
Hurwitz formula, necessarily C'® has genus 0 and is totally ramified over p;
and p;. Note that in particular C'* is smooth; the map is f(z; : z2) = (0 :

-:Zfa :---:Zga cee- 2 0).

To each T-fixed (C'; 21, ..., 2x; f) we associate a graph I' (that is, a 1-dimensional

finite CW-complex):

(a) Vertices v € Vert(T') correspond to connected components C, of f~1(p;)
(note: C, may be a point);

(b) Edges o € Edge(I") correspond to irreducible components C, (of genus 0)

mapping onto lines (;;.

So, the edges « at a vertex v correspond to the non-contracted irreducible com-
ponents C, having non-empty intersection with the connected component C',. The
two vertices connected by the edge « corresponding to a Cy, say mapping to (;;,
correspond to the unique connected components Cy, o C f7(p;), Coja C f(p;)
resp. which contain C, N f~1(p;), Co N f~(p;) resp. Note that these two vertices
are distinct, so I' has no simple loops.

In short, I" is made from C by contracting each C, to a vertex v. In particular,
I is connected.

(c) Labels on I': the vertices v get a number f, via f(Cy) = py,; the edges «
get labeled by the degree d, of f: Cy — (;;. Further, we define ¢, := the
arithmetic genus of the 1-dimensional part of Cy; and S, C {1,...,k} to be
the set of indices of marked points lying on C,,.

CLAIM. The connected components of My x(P™ d)T are naturally labeled by the
equivalence classes of connected graphs T' (with specifications) such that

(1) if an edge o connects the vertices u, v, then fu, # f, (in particular, I' cannot
have simple loops);

(2) 1- X(P) + ZvEVert(F) gv = 95
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(3) EaEEdge(F) do = d;'
(4) TS, = {1,...,k}.

Kontsevich says (in words): M, x(P", d)l' = (HU Mgv,val(v)—l—#Sv) JAut(T"). This
isn’t quite true, as we will see.

Now for the computation. Assumptions: (1) ¢ = 0, so all I'’s are trees, all
interior genera ¢, = 0;

(2) for simplicity, we forget the marked points (for the time being);

(3) notation:

(a) M = M(P", d) (n, d are fixed);

(b) [£] for the class in the equivariant I{-group with Q-coefficients of a T-equi-

variant vector bundle £ on M :
o —T =T
KM YoQ= KM )®Q[TY]
(¢) [x] for the class of a trivial line bundle with T-action given by x € TV @ Q.

(4) We systematically decompose fibers of vector bundles as formal linear com-
binations of other vector spaces, in order to compute the characters. First, the
normal bundle:

[T = [E°(C.f Te)l + Y [L(C*) @ T,(CP)

yeCNCF a3

+ Y. (TC+[T,(CH)]) = Y [H(C® Tea)]

yeCeNCP a#p @

(Recall: (i) no marked points; (ii) for one component, this is OK; (iii) if we add
a component, then we subtract an extra 3-dimensional thing, but we also add 3
dimensions: 1 for smoothing the node, and 2 for moving it. Compare with [F-P].)

[Tﬁr] =0+ Z [Ty(Ca) % Ty(Cﬁ)]
yeCNCP a#B,a,¢Edge
+ >, [T,(C)) = > [H(C® Tew)]
yeCrNCP a#B,agEdge agEdge

(Namely, we can only smooth nodes for which both branches are contracted; we
can move a node only on a contracted component; and we have infinitesimal auto-
morphisms only on contracted components.) So,

[Nezr] = [H°(C, f*Tpn )] + [N228] | where

MF
(Nl = > [T,(C™) @ T, (%) + > [T,(C*) @ T,(C¥)]
y;a,B€Edge y;a€Edge; 3¢Edge

+ Y, [L(C] = Y [H(C*Tca))

y;a€lkdge acEdge
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The only nontrivial vector bundle term: T,(C?) for 3 not an edge, in the sec-
ond summand. However, this term has trivial character (which will simplify the
computation).

More notions and notations. A flag is an edge « with arrow: (v, «), v € Vert(I)
thought of as the source of the arrow. This is unambiguous, as I' has no simple
loops. For F' = (v,«) a flag, the weight of F is

Ar, — A
P fvda fu)
where u is the other vertex of . Here A;,7 = 1,...,n+1, are the natural coordinates
on Lie(T); wp is the character of T for the action on Tea ¢ynca. If F'= (u,a) is
the dual flag then of course wi = —wp.

We need the following integral:

1
I(wy,. .. wg) = /MM w; + (T, (C))

k
= Z H wi T (g, g, (Witten’s notation)
d;>0,> d;=k—3 =1 v

= w7 ([ wi

_ (k=3
Tditodg!

Pl + )
__ A :
' [Li(n "+ A)

in all three examples the equivariant vector bundles are trivial as vector bundles:

ef)‘ = 0 always. So P(---)is just a constant for the integral. Similarly for many

Recall that we are to compute integrals We will see that

of the nf)‘, but not for all: exactly the terms
> [T,(C*) @ T, (C7)]
y;a€bdge, s €Edge

in [N] (written additively) are nontrivial bundles. Writing multiplicatively, and
putting it in the denominator, we get

1
7" 11y aerage pepage(wr + c1(Ty(C7))

(with F' = (y,«a)) as the only part that needs to be integrated.
—T — — .
Now M “=” (HU MO,Val(v)—l—#Sv) JAut(T) — Hv,val(v)23 My vai(v), forgetting
marked points and the action of Aut(I'). So this becomes

val(v)—3

11 > wy! I weey= I &

v,val(v)>3 F=(v,a) F=(v,a) v,val(v)>3
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by the integral computed above.
Now two remarkable steps recover the vertices of lower valence:

(1) 22).0.5emdgelLy(C?) @ T,(C?)] corresponds to the vertices with valency 2.
The contribution (to the denominator) is Hmval(v):z(wﬂ(v) + Wh, ()

Since (% + %)_1 %% = aL—i—b? this gives exactly
II &
v,val(v)=2
(2) - EaEEdge[HO(Ca7 Tca )] = - EaEEdge([_wF(Ol)] —I_ [0] —I_ [wF(a)])
- — Zﬂags plwr] — (#edges)[0]. On the other hand, Zy,aEEdge[Ty(CQ)]

= D Fe(v,0) val(e)>2[W0F]. Allin all, we get

- >, [wr] — (#edges)[0]

F=(v,a),val(v)=1

The term —(#edges)[0] will cancel out. The rest gives [[wp, and after all wp =
(w;")((wr)~1) 7% putting all together, the contribution of [N“Mbﬁ] + (#edges)[0] is

val(v)—3

(A) 11 > wi! IT w#

v F=(v,a) F=(v,a)

Next, we examine [H°(C, f* T )]. We have a short exact sequence
0— HO(C, f*T]pn) — @aEEdgeHO(Ca7f*T]Pm) N @vafan ® Cva,l(v)—l 0

(global sections are tuples of sections over edges, that agree at each v for all edges
at v). To see what the middle term is, recall that f on C, is given via

Xi(f(2)) = 5", X;(f(2) = 24, Xi(f(2)) =0 Yk #1,j

for z = (21 : z2) a coordinate on P! =~ C° mapping d, : 1 onto (;;, and the X;
homogeneous coordinates on P".
A calculation shows that the following elements form a basis for H°(C®, f*Tpn ):

(1) Z“Xi% —dy < a <dgy;
(2) Zfzé% a+b=d,,0<abjk#u,5(ke{l,....,n+1})

There is a unique element with trivial T-action: Xiaix,»? vielding (#edges)[0] and
giving the promised cancellation.

Now z corresponds to )‘i(i_)‘j =wp (F = (v,a)with f(Cy) = p;); Xy corresponds
to Ax, 21 to \i/dy, and 2y to Aj/dq.

The third term in the short exact sequence gives

(1—val(v)) > [Ar, — Ajl

37 Sy




ENUMERATION OF RATIONAL CURVES, AFTER KONTSEVICH—C. FABER 137

since the elements X7, % with j # f, form a basis of T, P". In total, we find
J v

(B)

< d 2d .
Afuy _a)‘fv2> 1
ajomg ooy | (FD((da))? 11 11 LN+ A, — Ak

k£ foy k# foy atb=da;a,b>0 da o1

val(v)—1

J1{ T O =2

v NIFES

Marked points. Claim: the only effect of allowing marked points is that in
term (A), val(v) must be replaced by val(v) + #5,. Also, the graphs considered
must allow extra tails, corresponding to the markings.

The last contribution (C) we need to consider is the contribution of the vector
bundles £ in the three examples: trivial bundles, twisted with suitable characters.

(1) TI, (A, )%

(2) The exact sequence
0 — H(C, f*O(5)) = Baerage H'(C, f*O(5)) = @,0(5),,, @ C*I ™" =0
is used to obtain

H H a/\fm;_ b/\va H(5/\fv)1—val(v)

a joining vi,v2 \ a,b>0,a4+b=5d, v
(3) Similarly,

0 — @o(O(=1)p,, ® CHI71) — HY(C, frO(-1))
— @aeEdgeHI(Ca,f*O(—l)) — 0

yields
aly  + b
H H fvld fv2 . H(_Afv )val(v)—l
a joining vi,v2 \a,b<0,a+b=—d, @ v

The final sum is

1
Y s AIBKe)
T
where I are the graphs with tails (for marked points), and as mentioned above (A)
has val(v) + #9, instead of val(v) if there are marked points.

This is what Kontsevich writes.

One hitch: we are doing integrals over orbifolds, so we should not forget au-
tomorphisms of general elements (maps). The order of this group is (#Aut(f)) .
(HaeEdge dy ); we then need to divide by this.
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Moral. If you can formulate your favorite counting problem as the computation
of the degree of a Chern class on a Kontsevich space M, (P", d), you have a good
chance of reducing it to a sum over graphs. This should at least enable you to
calculate the first few cases by computer. Also, physicists and combinatorists have
tricks to do sums over trees and graphs.

Examples. First example, d = 1. Since dy, > 1 and ) _ do = d = 1, we can
only have one edge. There are 4 ways to distribute the 2 marked points, and 3
different labelings: (1)(2), (1)(3), (2)(3). For (1)(2): let wy be the flag at 1, etc. So
wy = /\1 —/\27 Wo = /\2 —/\17 and

(A)= (wy )P wy)#5! = (—1)#%

(B)= (A1:§\2)2 AliAg )\2i>\3 (all valencies are 1);

(€)= ()45 3y 45
Total for (1)(2):

1 (A + /\2)2
(A1 = A2)2 (A1 — A3)(Az2 — A3) (A1 = A3)(A2 — A3)
Now take the corresponding terms for (1)(3) and (2)(3), and discover the nice
identity

(AT + A3 = 20103) =

(A + Xo)? (A1 +Ag)? o tAa)®
(A =As)(A2 = Az)  (Ar = A2)(As = A2) - (A2 = A1)(As — A) 7
the number of lines through 2 points.

The second example, for d = 1, also involves trees with a single edge. Carefully
evaluating each term gives the total

2501 A2 (421 4+ A2) (BA14+2X2) (2A1 +3A2) (A1 +4A2)
(A1 = A3) (A2 = A3) (A1 = Ag) (Aa = Ag) (A1 — A5) (A2 — As)
2521 A3 (421 +X3) (BA14+2X3) (2A1 +3X3) (A1 +4A3)
(A1 = A2) (A2 +A3) (A1 = A1) (A3 = Ag) (A1 = As5) (A3 — As)
25 2 A3 (422 +X3) (BA24+2X3) (2A2+3X3) (A2 +4As3)
(A1 4+ A2) (=A1+A3) (A2 = Ag) (As — A1) (A2 = As) (A — As)
2501 A0 (421 +21) (BA14+2X0) (21 +3 M) (M +4 M)
0 =) (O = ) (e ) (=g + ) O = Xs) (= As)
25 2 A4 (422 + A1) (BA24+2Xy) (2A24+3 M) (A2 +4 M)
TN T A2) (= As) (=1 + Aa) (= As £ A1) (ha — As) (ha — As)
. 25 3 A0 (423 + A1) (BAz3+2Ay) (2A3 +3 X)) (A3 +4\y)
(A1 +A3) (A2 +A3) (A1 + Ag) (F A2+ M) (A3 = As) (Mg — As)
250125 (421 4+ X5) (BA14+2X5) (2A1 +3X5) (A1 +4Xs5)
0 = 2a) O = Aa) O — ) (—ha £ 29) (<2 +25) (— s+ As)
2502 A5 (422 4+ X5) (BA24+2X5) (22 4+3X5) (A2 +4Xs5)
TN T A2) (2 — As) (hz = Aa) (=1 + As) (—As + As) (—As + A)
2503 A5 (423 +X5) (BA34+2X5) (2A3+3X5) (A3 +4Xs5)
(A1 +A3) (A2 +A3) (A3 = Ag) (A1 +As5) (A2 + As) (= Aa + As)
2504 A5 (420 +X5) (BAs+2X5) (2A0 +3X5) (As +4Xs5)
(A1 + A1) (A2 + A1) (A3 + Ag) (A 4+ As) (A2 +As5) (= A3 + As)
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which simplifies to 2875, the number of lines on a quintic threefold.

11. Equivariant cohomology—P. Belorousski, 12/12/96
The basic reference is [A-B]; also, see [Ginzburg].

General theory. Let G be a compact connected Lie group, and consider its
universal principal bundle EG — BG. Here EG is a contractible space, with a
free (right) G-action (this defines it uniquely up to homotopy), and BG = EG/G.
One often works with finite-dimensional approximations BGy, EGx (which can
be chosen smooth and compact).

Let X be a smooth manifold with a smooth left G-action. The following is what
is known as the Borel’s mizing construction. Consider EG x X (on which G acts

freely by (o, z) 25 (g™, gz)) and the quotients:
EFG «—— FEGxX — X

l l l

BG 1 — (EG x X)/G -7, X/G
Xg :=(EG x X)/G is the homotopy quotient of X by G.
DEFINITION. The equivariant cohomology of X is H (X)) := H*(Xq).

The map © : X¢ — BG is a bundle with fiber X; in the associated Leray
spectral sequence, E'Y = H?(BG,H1(X)) = H?*4(X¢). In our case, BG will
be simply connected and we will work over C, so by Kiinneth H?(BG,H?(X)) =
H?(BG) ® H1(X).

Also, we have a pull-back map 7* : H*(BG) — H}(X), which gives H (X)) an
H*(BG)-module structure. We will write H, for the coefficient ring H*(BG) =
He(pt).

The map o is not a fibration. For a a point in X, O, its orbit, e71(0,) =
EG/G, = BG,, where G, is the stabilizer of . If G acts freely on X, then o
is a homotopy equivalence, and HA(X) = H*(X/G). In this sense, equivariant
cohomology can say something new only if the action of G on X is not free to start
with.

We also have the fiber inclusion over the base point of BG, 7 : X — X¢, and
the corresponding pull-back map * : Hf(X) — H*(X). Finally, we have the
push-forward 7, : H5(X) — HZ™"; and a pairing

()t Hy(X) ® HL(X) — HG™"
with n = dim X.

We can say a lot more in the case of the Hamiltonian actions on symplectic
manafolds.

Reminder. A smooth manifold X2" is symplectic if it is endowed with a form
w € Q*(X) such that

(1) w is closed;
(2) the symplectic volume form w™/n! is nowhere 0 on X.
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This gives C*°(X) a Lie algebra structure, with the Poisson bracket {f, ¢} = df(g)
as the Lie bracket, after identifying df with a vector field via w. C*(X) is an
extension of the Lie subalgebra Vect, (X ) C Vect(X) of vector fields preserving w.

An action of a group G on X is symplectic if it preserves the form w. We can ask
more: the action of G on X gives a homomorphism of Lie algebras g — Vect(X),
and we can require that there be a lifting

C>(X)

7
ra
ra
ra

[ Vect(X)

If such a lifting exists, the action is called Hamailtonian (or Poisson).

THEOREM. If X has ¢ Hamiltonian action of G, then the Leray spectral sequence
degenerates at the second term. As a consequence, H(X) us a free HE -module,
isomorphic to H*(X) @ H,.

Also, the restriction map o* : Hf(X) — H*(X) 1s surjective. Furthermore, the
pairing (-,-) s non-degenerate, so we have an isomorphism

Hg(X) = Homp, (HE(X), Hg)

Thus if the action is Hamiltonian we may pick a basis {hy,..., h;} of the free
H}-module H}(X), and get that det((h;,h;)) € HS = C (since the pairing is
nondegenerate, the determinant must be invertible).

We will look at algebraic actions of reductive groups. Fact: they are all Hamil-
tonian.

Classifying spaces. First, take G = C*. Then EGy = CV*!\ {0}, and
EGyN — BGy is simply the factor map CN*'\ {0} — PV, In the limit, EG — BG
is the map C>* \ {0} — P°.

We can think of EG as the complement to the zero section in the total space of
O(—1) over P*. We get H3, = H*(P*) = C[h], where degh = 2, h = ¢1(O(1)).

For G=T"=(C*)", EG = (C*\ {0})" and BG = (P*°)". The coefficient ring
is Hpn = Clhy, ..., hy], with h; = ¢1(O0;(1)).

For G = GL(n) the finite dimensional approximation is EGy = Fr(n, N), the
bundle of n-frames in C” over the Grassmannian Gr(n,N) = BGy. In the limit,
EG — BG is Fr(n,o00) — Gr(n,o0). Hf = Cls1,...,sy,], where 5; = ¢;,(S"), with
S™ the universal subbundle over Gr(n, o). Of course degs; = 2i. We can think of
the s;’s as the elementary symmetric functions (up to sign) in the h;’s:

Clsys...,sn] =Clhy, ..., ~hn]"", si = (—1)'si(h).
Important example. T = T"t! = (C*)"*! — GL(n + 1) acting on P

tg - 0
(to,...,tn)'—> .
0 th
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Here EG sits as the complement to the zero section in E = Og(—=1)& - & Op(—1)
over (P°°)"*!. The homotopy quotient P% is PE. So
Hi(P") = Clho, ... ha;y]/(y" T+ y"cr(BE) + - -+ + g1 (E))

The base ring here is Clhy, ..., hy] as seen above, and the module structure is the
one obvious from the presentation.

k
Next note that this action has (n + 1) fixed points: py = (0 :---:1:---:0).
The inclusion ¢y : pr — P™ is equivariant, so we have a push-forward on H7( ):
(Zk)* : C[ho,,hn] - C[hov"'vhn;y]/(y - ho)(y - hn)
What is this map? It corresponds to the embedding P(Ok(—1)) — P(E) of the
projectivisation of the k-th copy of O(—1) over (P>°)"*!. Now if
0—-S—F—-Q—0

is an exact sequence of bundles over X, then P(S) — P(FE) is the zero locus of
a section of p*@Q @ Opg)(1), where p denotes the projection P(E) — X. So,

[P(S)] = crop(p*Q @ Op(g)(1)).
Using this, it is straightforward to compute the class of P(Og(—1)) and find that
under (¢x )«

s (g ho) o (5 )~y — i)
What about the pull-back
(21)" : Clho, s syl /(y — ho) - (y — hn) — Clho, . .., By ?

Here h; +— h; for all i; as for the image of y, the Opg)(1) restricts to O(1) on
P(Or(—1)). This says that y — hy.

The composition
(16)" (2k)s : Clho .., B — Clho, ..., hy)
is given by
1w (bt —ho)- - (hg — hi) -+ - (R, — hy)

Remark: this is precisely the equivariant top Chern class of the (equivariant) normal
bundle of pg in P™.

Localization. Let T be a torus acting on X (assume that we are in the algebraic
situation for simplicity), and let X7 be the fixed point locus. The inclusion X7 C
X is equivariant, so we have a H}-module restriction homomorphism H}.(X) —

HA(XT).
CLAIM. This map s injective, and its cokernel 1s H} -torsion.

Hence, it is an isomorphism after localization at a suitable f € H7. Since T acts

trivially on X1, we get H5(XT) = H*(XT) @ H%, and hence
HNX)= HYX")@ HE

after a suitable localization.
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Appendix: The computer program farsta—A. Kresch

I. Purpose
[DF-I]: Look at examples.

For simple varieties,

Given associativity relations + several N's
y )

derive more N's.

farsta: Automate this process.

To obtain farsta

Go to http://www.math.uchicago.edu/"kresch
follow the link to farsta
uncompress, untar, and compile by typing make

Documentation (view with more, print with 1pr)

farsta-documentation
farsta-examples

[F-P]: X, tkH*X=m+1
Get (m* — 2m® 4 3m? — 2m)/8 associativity relations;

each is an equation of formal power series.

Isolating coefficients, each associativity relation yields a family of
relations in N's.

What farsta can do:
1. From description of H*X and K x, derive associativity relations.

2. Given associativity relation and particular degree,

derive equation among N's.
3. Substitute known numbers; solve if equation reduces to just one unknown.

4. Store linear relations, and do linear algebra to solve for N'’s.
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II. Example
X =p3
H'X =Z(T,, 11,15, Ts)
—Kx =4Ty
Relations:
6 relations R1-R6.
E.g.
1. 3
(R2) 2>_<2 P33 = 1130220 — I'i120993
where

ys yh
= Z N(c;a,b)ecyl—z’b—?.
a+2b=4c a o

Equating coefficients of e2¥t yy y3 yields
N(2;2,3) = N(1;0,2)N(1;4,0) — N(1;2,1)*.

Same relation, coefficient of €*¥1 y5:

1 1
cN(24.2) = SN(L2.1)N(1:4,0)

From these equations, the numbers

N(1;0,2) =1

N(1;2,1)=1

N(1;4,0) =2
determine

N( ? 2 -

143
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Computer:

>A P3

dim(P3) = 7 >3

basis H"*(P3) = 7 >y0 yl y2 y3

rank H"2(P3) = 7 >1
(complex) codim(y2)
(complex) codim(y3)

>2
>3

enter classical potential function:
(1/2) yo 2 y3 + y0 y1 y2 + (1/6) yi 3
rank Pic(P3) = 7 >1
PD(B_1) in H"2(P3) = 7 >y1
TP3 = tangent bundle on P3
int_(B_1) <¢_1(TP3) = 7 >4

>R 2
(2) (2,3,3,4) 1 Gy2,y3,y3 + 1 Gyl,yl,y2
Gy2,y2,y3 - 1 Gyl,yl1,y3 Gy2,y2,y2 =0

vV V V
=323
O
IS S e
O = N

1]
—

Relation
>E 2 2 3
Relation (2) 2 ; 30 gives N(2;4,2)

1
1
2
>E 2211
(2) 2 ;11 gives N(2;2,3)
0

1}
NN
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III. Exhaustive search
try lots of E’s

>A P3
(enter description of P?).

>N1021
>X1 614

... tells the computer to try exhaustively:
* relations 1 through 6, (i.e., all)
* curve class 177 through 477 .

Relation (1)
Relation (4)
Relation (2)
Relation (3)
Relation (3)
Relation (4)
Relation (6)
Relation (2)

gives N(1;2,1) =1
gives N(1;4,0) = 2
gives N(2;4,2) = 4
gives N(2;2,3) =1
gives N(2;0,4) =0
gives N(2;6,1) = 18
gives N(2;8,0) = 92
gives N(3;6,3) = 190

W W MNDNDNDNDRFR P
g o0 W o N W ek O
, O, B O O O O

Relation (3)

S
o
o

gives N(4;0,8) = 4

IV. Linear algebra:

>L1

tells the computer to keep linear relationships among N’s in memory.

Recursively substitutes and backsubstitutes to determine more N’s

Necessary, e.g., for G(2,4).
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V. Observations:

1. Specifying cone of effective classes is unimportant —

farsta figures it out and gives zeros for noneffective 3 (even w/o any input!).
2. Can change canonical class to get new solutions.
3. Can work with H* of an orbifold — any ring with Q-Poincaré duality works.

4. Choice of basis can have big impact on performance.

VI. Performance (on a Sun SparcSTATION 20):

* (G(2,4) m=2>5 55 relations
deg =1,2,3, 4  in 90 seconds.
—all-— most

Hilb, P2 m=2~8 406 relations
(0,0) < (dq1,d2) <(2,2) in 3 minutes;
(0,0) < (dq1,d2) <(2,4) in 10 hours;
(0,0) < (dq1,d2) <(4,4) in 45 hours.

* G(2,5) m=29 666 relations
— basis of Schubert cycles

89 out of 139 d =1 N’s in 3 seconds;

775 out of 865 d =2 N’s in 5 minutes;
3478 out of 3608 d =3 N’s in 4 hours;
11512 out of 11682 d =4 N’s in 104 hours.

*

* G(2,5) m =29 — Tom Graber’s basis
About 10 percent faster.

* (G(2,6) m =14 4186 relations
573 out of 877 d =1 N’s in 6 minutes;
7675 out of 8820 d =2 N’s in 36 hours.

* ((3,6) m =19 14706 relations

Can’t even get started.



APPENDIX: THE COMPUTER PROGRAM FARSTA—A. KRESCH 147

VII. Limitations

*

No odd cohomology.

*

No free parameters —

numbers only (rational, multi-precision numerator and denominator).

*

Memory limitations —

Linear expression buffer tends to fill up.

* Practical limit on m =rk H*X — 1:
m < 10 usually fine;
10<m <15 questionable;

m > 15 probably hopeless.
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