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Abstra
t. We 
onstru
t a variety of 
omplete plane 
ubi
s by a sequen
e of �ve blow-

ups over P

9

. This enables us to translate the problem of 
omputing 
hara
teristi


numbers for a family of plane 
ubi
s into one of 
omputing �ve Segre 
lasses, and to

re
over 
lassi
 enumerative results of Zeuthen and Maillard.

x0 Introdu
tion. This paper is devoted to the 
omputation of the 
hara
teristi


numbers for the 9-dimensional family of smooth plane 
ubi
s, i.e. the number of

non-singular plane 
ubi
s whi
h are tangent to n

`

lines and 
ontain 9�n

`

points in

general position in the plane. We plan to 
omplement this result with the 
ompu-

tation of the 
hara
teristi
 numbers for nodal and 
uspidal 
ubi
s, in a forth
oming

paper.

Classi
ally, the enumerative geometry of plane 
ubi
s was studied independently

by S. Maillard and H.S. Zeuthen around 1870 ([M℄, [Z℄); their results also appear

in [S
℄, Chapter 4, x24. However, as with many other a

omplishments of the

great enumerative geometers of the XIX 
entury, the rigor of the methods used in

[M℄, [Z℄ was soon questioned. In the past few years interest in enumerative ge-

ometry has revived, partially as a 
onsequen
e of a new and deeper understanding

of interse
tion theory, and in many 
ases the old results and methods have been

veri�ed, improved, or 
orre
ted. In the 
ase of plane 
ubi
s, there are already sev-

eral modern approa
hes partially verifying Maillard and Zeuthen's results (see [Sa℄,

[KS℄, [XM℄). In general, these approa
hes work in the vein of the 
lassi
 \degen-

eration method": by spe
ializing the families to more degenerate ones, and using

previously obtained results. Kleiman and Speiser, in parti
ular, have developed an

eÆ
ient pro
edure of \partially" 
ompa
tifying the family under examination. They

normalize part of the graph of the dual map, in su
h a way that the elementary

systems (the basi
 tool for relating the 
hara
teristi
 numbers of di�erent families)

are in
orporated as 
omplete subs
hemes.

We present here an approa
h with a di�erent 
avor. We dominate the graph

of the dual map with a non-singular variety

e

V , whi
h is obtained from the P

9

parametrizing plane 
ubi
s by a sequen
e of blow-ups, in the spirit of (for example)

Veinsen
her's spa
es of `
omplete quadri
s' ([V℄). Also, rather than employing the

method of degeneration, we redu
e the 
omputation of the numbers for a family of

redu
ed 
ubi
s to the 
omputation of 
ertain Segre 
lasses related to the behavior

of the family in the blow-up pro
ess. This 
hoi
e, whi
h has its roots in Fulton-

Ma
 Pherson's `stati
' interse
tion theory, for
es us to an extensive analysis of the

blow-ups |indeed, this 
hoi
e for
es us to desingularize the whole graph; its net

advantage is that a spe
i�
 family 
an be studied without dependen
e on other re-

sults. The 
hara
teristi
 numbers for smooth 
ubi
s, for example, are an immediate

by-produ
t of our 
onstru
tion of

e

V , while their 
omputation via the degeneration

method relies on sophisti
ated information about families of singular 
ubi
s.

The 
ompa
ti�
ation we 
onstru
t here 
an be used to 
ompute 
hara
teristi


numbers for families of singular 
ubi
s as well; generally speaking, the diÆ
ulty of



the task in
reases with the 
odimension of the family, in 
ontrast with the degen-

eration method.

We give a sequen
e of 5 blow-ups V

1

; : : : ; V

5

over P

9

= V

0

, with non-singular


enters B

i

,! V

i

; if F � P

9

is a family of redu
ed 
ubi
s, and F

1

; : : : F

5

are the

proper transforms in the blow-ups of its 
losure F

0

in P

9

, we basi
ally translate

the problem of 
omputing the 
hara
teristi
 numbers for F into one of 
omputing

the �ve Segre 
lasses s(B

i

\ F

i

; F

i

), i = 0; : : : ; 4. Now, in general these are easier

to 
ompute when the 
odimension of F is low; for F the family of smooth 
ubi
s,

F

i

= V

i

and s(B

i

; V

i

) are the inverse Chern 
lasses of the normal bundles to B

i

in

V

i

, whi
h are obtained in the blow-up 
onstru
tion. The 
lasses needed when F

parametrizes other families (e.g. nodal 
ubi
s, or 
uspidal 
ubi
s, or 
ubi
s tangent

to a line at a given point) will require some more work.

In the P

9

parametrizing plane 
ubi
 
urves, 
all `point-
onditions' and `line-


onditions' respe
tively the hypersurfa
es 
onsisting of the 
ubi
s respe
tively 
on-

taining a given point and tangent to a given line. The interse
tion of all line-


onditions in P

9

is supported on a four-dimensional irredu
ible variety S parametriz-

ing all non-redu
ed 
ubi
s |i.e., 
ubi
s de
omposing into a line and a `double line'.

For any family of redu
ed 
ubi
s F � P

9

� S, 
onsider the number N of elements

(
ounted with multipli
ity) in the interse
tion of F with given general point- and

line-
onditions. For example, if F is the set of all smooth 
ubi
s, N is a 
hara
ter-

isti
 number for smooth 
ubi
s.

Now, for any variety mapping to P

9

, isomorphi
ally over P

9

�S, 
all `point-' and

`line-
onditions' the proper transforms of the 
onditions in P

9

; we say that su
h

a variety

e

V is a `variety of 
omplete plane 
ubi
s' if the interse
tion of its line-


onditions is empty. In x1 we prove (Theorem I) that the number N is pre
isely

the degree of the interse
tion of the point- and line-
onditions in su
h a

e

V with the

proper transform

e

F �

e

V of the 
losure of F .

In x3 we 
onstru
t a smooth variety

e

V of 
omplete 
ubi
s. This is obtained by a

sequen
e of �ve blow-ups along non-singular 
enters, starting with the blow-up of the

P

9

of 
ubi
s along the Veronese of `triple lines'. The same sequen
e was 
onsidered

by U. Sterz, who also obtains some enumerative results (see in parti
ular [St℄ IV),

and to whi
h we address the reader for a di�erent point of view. The general aim

is to separate the proper transforms of the line-
onditions above S; we a

omplish

this by systemati
ally blowing up the largest 
omponent of their interse
tion. In

doing so, we also 
olle
t (Theorem III) the information required to 
ompute in

e

V the interse
tion degrees we need: i.e., a des
ription of the interse
tion rings of

the 
enters of the blow-ups, the total Chern 
lasses of their normal bundles, and

information 
onsisting essentially of the multipli
ities of the 
onditions along the


enters.

The 
omputation of the interse
tion degrees is performed by using a formula

(Theorem II in x2) whi
h relates interse
tions under blow-ups. For X

�

subs
hemes

of a s
heme V , and

e

V the blow-up of V along a regularly imbedded subs
heme B,

the formula gives the di�eren
e between the interse
tion number of the X

�

in V

and the interse
tion number of their proper transforms in

e

V expli
itly, in terms of

information essentially equivalent to the Segre 
lasses s(B\X

�

; X

�

). We 
an apply

2



this formula to 
limb the sequen
e of blow-ups de�ning our variety of 
omplete


ubi
s.

In view of Theorems I, II, and III, the key information for 
omputing the 
har-

a
teristi
 numbers for any family F of 
ubi
s amounts to �ve Segre 
lasses s(B

i

\

F

i

; F

i

), where F

i

are the proper transforms of the 
losure of F in P

9

. In fa
t, this

result is best expressed in terms of equivalent data, i.e. the `full interse
tion 
lasses'

B

i

Æ F

i

= 
(N

B

i

V

i

) \ s(B

i

\ F

i

; F

i

) :

Theorem IV gives the numbers for a family F of redu
ed 
ubi
s expli
itly in terms

of the 
lasses B

i

Æ F

i

. For the family F of all smooth 
ubi
s we have F

i

= V

i

, thus

B

i

Æ F

i

= B

i

(sin
e, for B, V smooth, the Segre 
lass s(B; V ) equals the inverse

total Chern 
lass 
(N

B

V )

�1

). This allows us to get the 
hara
teristi
 numbers for

smooth 
ubi
s by simply evaluating 
oeÆ
ients of 
ertain power series (Corollary

IV).

For F the family of nodal 
ubi
s, or of 
uspidal 
ubi
s, et
., the 
omputation of

the 
lasses B

i

Æ F

i

is a more 
hallenging task. We will devote to it a se
ond note.

A good example of a less trivial appli
ation of Theorem IV to smooth 
ubi
s

is the 
omputation of the 
hara
teristi
 numbers obtained by 
onsidering also the


odimension-2 
ondition expressing the tangen
y to a line at a given point. To apply

Theorem IV to this question, we have to 
ompute the �ve 
lasses for the family of


ubi
s satisfying one of these 
onditions. This 
omputation is sket
hed in x5; the


hara
teristi
 numbers (agreeing with Maillard and Zeuthen's results) are listed

in Corollary IV

0

. In fa
t, we show that the information we need to 
ompute the

numbers with respe
t to 
odimention-1 
onditions for any family of 
ubi
s (i.e. the

�ve 
lasses) is enough to obtain the results involving these 
odimension-2 
onditions

as well (Theorem IV

0

in x5). This result will also be applied to families of singular


ubi
s in the future note.

In this paper we work over an algebrai
ally 
losed �eld of 
hara
teristi
 6= 2; 3.

The blow-up formula in x2 is 
hara
teristi
-free, and the preliminary results (in

parti
ular Corollary I) hold in 
hara
teristi
 6= 2; however, the blow-up 
onstru
tion

for the spa
e of 
ubi
s needs 
hara
teristi
 6= 2; 3.

Some of the material in this paper appears in the author's do
toral thesis written

under the guidan
e of W. Fulton at Brown (May 1987), and (in a sket
hier version)

in [A℄.

Aknowledgements. It is a pleasure to thank A. Collino and W. Fulton for propos-

ing the problem and for 
onstant advi
e and en
ouragement. I also want to thank

Joe Harris for several enlightening 
omments on the subje
t.

x1 Preliminaries: varieties of 
omplete plane 
urves. We will dis
uss here

some fa
ts and notations we will use in the rest of the note. The fa
ts hold for any

degree and any family of redu
ed 
urves, so we will not restri
t ourselves to smooth


ubi
s.

In the P

N

parametrizing plane 
urves of degree d, 
all point-
onditions and line-


onditions respe
tively the hypersurfa
es 
onsisting of the plane 
urves respe
tively


ontaining a given point and tangent to a given line. By `tangent to a line' we will

3



always mean `interse
ting a line with multipli
ity at least 2 at a point'. We will

say that a 
urve 
 and a line ` are `properly tangent' if ` is simply tangent to 


at a single non-singular point {i.e., if the tangen
y point is smooth on 
 and 
 is a

smooth point of the line-
ondition 
orresponding to `.

For any variety

e

V mapping birationally to P

N

, biregularly over the set P

N

� S


onsisting of redu
ed 
urves, 
all the proper transforms of the point- and the line-


onditions of P

N

point- and line-
onditions of

e

V .

Definition. We shall say that

e

V is a variety of 
omplete plane 
urves of degree d

if, moreover, the interse
tion of all its line-
onditions is empty.

The general point- and line-
onditions of

e

V de�ne divisors

e

P ;

e

L in

e

V . Although in

general these need not be Cartier divisors on

e

V , noti
e that they restri
t to Cartier

divisors on the inverse image of P

N

�S: thus if their interse
tion with a subvariety

e

F

of

e

V is proper and doesn't have 
omponents lying over S, then interse
tion produ
ts

~

P �

~

F and

e

L �

e

F are de�ned. When writing su
h produ
ts, we will imply that this is

the 
ase.

Our aim in this se
tion is to show:

Theorem I. Let

e

V be a variety of 
omplete plane 
urves of degree d, F an r-

dimensional (maybe non-
omplete) subvariety in P

N

parametrizing a family of re-

du
ed 
urves, and let

e

F be the proper transform in

e

V of the 
losure of F . Then the

number of elements (
ounted with multipli
ities) of F 
ontaining n

p

given points

and tangent to n

`

given lines in general position, with n

p

+ n

`

= r, is

e

P

n

p

�

e

L

n

`

�

e

F .

Furthermore, the elements 
ontaining the given points and properly tangent to the

given lines are 
ounted with multipli
ity 1.

Note that the statement implies that this number doesn't 
hange when F is

repla
ed with any dense open subset of F . I.e., `spe
ial' 
urves in the family 
an be

dis
arded.

In this note, our main appli
ation of this result is to the 
omputation of the


hara
teristi
 numbers for the family of smooth plane 
ubi
s. Sin
e in 
hara
teristi


6= 2 the general smooth 
urve is re
exive (so that for general lines all tangen
ies

will be proper), Theorem I gives

Corollary I. The 
hara
teristi
 numbers for the family of smooth plane 
urves

of degree d are given by

e

P

n

p

�

e

L

n

`

; for all n

p

; n

`

with n

p

+ n

`

=

d(d+3)

2

.

In se
tion 3 we will 
onstru
t a `variety of 
omplete plane 
ubi
s'; Corollary I will

then allow us to expli
itly perform the 
omputation for smooth plane 
ubi
s. More

generally, Theorem I and the 
onstru
tion in se
tion 3 will give a tool (Theorem

IV in x4) to 
ompute the numbers for any family of redu
ed 
ubi
s, on the basis of

geometri
 information.

Let Q be a 3-dimensional ve
tor spa
e over an algebrai
ally 
losed �eld of 
har-

a
teristi
 6= 2. The 
urves of degree d in the proje
tive plane P

2

= P(Q) form a

proje
tive spa
e P

N

= P(Sym

d

�

Q), of dimension N =

d(d+3)

2

. In this proje
tive

spa
e, the 
urves that 
ontain a given point form a hyperplane; while those that

are tangent to a given line form a hypersurfa
e of degree 2d� 2. We will 
all these

4



divisors point-
onditions and line-
onditions respe
tively. As a point varies in P

2

,

the 
orresponding point-
ondition tra
es a subset of

�

P

N

. In fa
t, if (x

0

: x

1

: x

2

)

are 
oordinates in P

2

, the point-
ondition 
orresponding to the point (�x

0

: �x

1

: �x

2

)

is the hyperplane in P

N

whose equation has the monomials of degree d in �x

0

; �x

1

; �x

2

for 
oeÆ
ients. In other words:

Remark 1. The set of point-
onditions of P

N

is the d-Veronese imbedding of

�

P

2

in

�

P

N

.

In parti
ular, the set of point-
onditions is non-degenerate and irredu
ible, and

in parti
ular it is not 
ontained in any �nite union of hyperplanes: for example, it

follows that a point-
ondition 
an always be 
hosen to 
ut properly �nitely many

arbitrary subvarieties of P

N

.

On the open subset of P

N

formed by the smooth 
urves, an inje
tive morphism is

de�ned to the spa
e P

M

= P(Sym

d(d�1)

�

Q) parametrizing degree-d(d�1) 
urves, by

asso
iating to ea
h 
urve its dual. Note that a 
urve is tangent to a line ` � P

2

if

and only if its dual 
ontains ` 2

�

P

2

: thus the line-
onditions in P

N

are the pull-ba
ks

of the point-
onditions in the P

M

parametrizing all degree-d(d � 1) plane 
urves,

and it follows (by Remark 1)

Remark 2. The set of line-
onditions of P

N

is the d(d�1)-th Veronese imbedding

of

�

P

2

into

�

P

M

.

This also makes it 
lear that the rational map  : P

N

� � �

>

P

M

determined by the

morphism above is de�ned by the linear system generated by the line-
onditions in

P

N

.

We want to resolve the indetermina
ies of  . These o

ur on the interse
tion

of all line-
onditions, supported on the variety S � P

N

parametrizing non-redu
ed


urves;  is an inje
tive morphism on P

N

�S. We will 
all any variety

e

V �lling the


ommutative diagram

e

V

e

 

����! P

M

�

?

?

y










P

N

 

� � � � � �

>

P

M

with

~

 a morphism, and isomorphi
 to P

N

outside �

�1

(S), a `variety of 
omplete

plane 
urves of degree d'. For example, the blow-up of P

N

along the s
heme-

interse
tion of all its line-
onditions is a variety of 
omplete 
urves of degree d. An

instan
e is the 
lassi
al `variety of 
omplete 
oni
s' (
f. [CX, x2℄). In a di�erent


ontest, Vainsen
her's varieties of 
omplete quadri
s (inspired by S
hubert's work)

give another example of a similar situation.

Note that the �rst 
ondition ( lifting to a morphism

e

V �! P

M

) amounts to just

requiring that the interse
tion in

e

V of the proper transforms of all line-
onditions

be empty. We will 
onstru
t a smooth variety of 
omplete 
ubi
s by blowing-up P

9

�ve times along suitable 
enters, and use this variety to 
ompute the 
hara
teristi


numbers of 
ertain families of plane 
ubi
s.

5



The proper transforms of general point-
onditions and line-
onditions determine


lasses

e

P ;

e

L of divisors on

e

V . If

e

V is smooth, then for any

e

F �

e

V we have interse
-

tion produ
ts

e

P �

e

F and

e

L �

e

F . Even if

e

V is not smooth, however,

e

P and

e

L restri
t to

Cartier divisors on �

�1

(P

N

�S) (sin
e this is smooth): thus

e

P �

e

F;

e

L �

e

F are de�ned

as long as �(F ) * S and the proper transforms of general 
hoi
es of 
onditions 
ut

e

F \ �

�1

S properly. This will always be the 
ase for F as below (see Proposition 1

(1) and Lemma 1).

Computing 
hara
teristi
 numbers for families of redu
ed plane 
urves amounts

to 
omputing the number of interse
tions of 
ertain subsets of P

N

with assortments

of point- and line-
onditions in general position.

Let's �rst 
onsider line-
onditions. Let F be a pure r-dimensional lo
ally 
losed

(maybe non-
ompa
t) subset of P

N

, parametrizing a family of redu
ed 
urves: i.e.,

we assume F \ S = ;. For example, F 
ould be the set of all smooth 
urves, or the

set of all nodal 
urves, or the set of all nodal 
urves 
ontaining a given point, and so

on. The number of elements of F tangent to r lines in general position in the plane

is the number of points of interse
tion of F with r general line-
onditions of P

M

; but

sin
e all line-
onditions 
ontain the set of non-redu
ed 
urves, often non-redu
ed


urves will appear in the interse
tion of r (general) line-
onditions with the 
losure

F of F . For example, if F is the set of non-singular 
oni
s, the interse
tion of 5

general line-
onditions with F (= the whole of P

5

) 
onsists of one isolated point

and of the 2-dimensional set of `double lines'.

Let then

e

V be a variety of 
omplete plane 
urves of degree d,

e

F the proper

transform of F in

e

V , and 
all `line-
onditions in

e

V ' the proper transforms in

e

V of

the line-
onditions of P

N

; 
all

e

L the 
lass of the general line-
ondition in

e

V .

Proposition 1.

(1) A line-
ondition in

e

V 
an always be 
hosen to 
ut properly any �nite 
olle
-

tion of subvarieties of

e

V ;

(2) With F as above, r line-
onditions in

e

V 
an be 
hosen to 
ut

e

F in �nitely

many points, mapping to points of F ;

(3) the number of elements of F that are tangent to r lines in general position

is the number of interse
tions of

e

F with r general line-
onditions in

e

V .

Proof: (1) follows from Remark 2: the set of line-
onditions is not 
ontained in

any �nite union of hyperplanes of

�

P

M

.

For (2), let �

F

be the restri
tion of � to

e

F , and set E =

e

F � �

�1

F

F : dimE � r�1,

so (2) follows by applying (1) r times.

(3) follows from (2).

Working in a variety of 
omplete 
urves

e

V , the number we are after is the number

of points of interse
tions of 
omplete subsets of

e

V : 
ounting multipli
ities, the

number is given by the degree of

e

L

r

�

e

F .

Now for the point-
onditions. As above, let

e

V be a variety of 
omplete plane


urves of degree d, mapping to P

N

by �, F a lo
ally 
losed subset of P

N

, r = dimF

6



and

e

F the proper transform in

e

V of the 
losure F of F . In general, e denotes

proper transform via �.

Lemma 1. There exists a point-
ondition P su
h that P \ F = P \ F ,

g

P \ F =

e

P \

e

F , and dim(

e

P \

e

F ) = r � 1.

Proof: Let �

F

be the restri
tion of � to

e

F . P \ F = P \F and dim(

e

P \

e

F ) = r�1

are for
ed by requiring that P 
ut properly F and F � F . Next, 
ertainly

g

P \ F


oin
ides with

e

P \

e

F outside �

�1

F

(S) for any point-
ondition P ; we have to show

that we 
an 
hoose P so that none of the 
omponents of

e

P \

e

F lies in �

�1

F

(S). Let

then F

i

� F be the supports of the 
omponents of �

�1

F

(S), and 
hoose the point-


ondition P so that it 
uts properly all the F

i

's. Sin
e �

�1

F

(S) itself has dimension

(at most) r � 1, this will for
e dim�

�1

F

(S) \

e

P < r � 1, and we will be done. That

a point-
ondition 
an be 
hosen to 
ut properly any �nite 
hoi
e of subvarieties of

P

N

is on
e more a 
onsequen
e of the non-degenera
y of the set of point-
onditions

(Remark 1).

Following our line of notations, 
all now point-
onditions in

e

V the proper trans-

forms in

e

V of the point-
onditions in P

N

; the general ones determine a divisor 
lass

e

P of

e

V .

From Proposition 1 and Lemma 1, the �rst part of our basi
 tool follows:

Theorem I. (1) Let

e

V be a variety of 
omplete plane 
urves of degree d, F an

r-dimensional subvariety of P

N

parametrizing a family of redu
ed 
urves, and let

e

F be the proper transform of F in

e

V . Then the number of elements (
ounted with

multipli
ities) of F 
ontaining n

p

points and tangent to n

`

lines in general position,

with n

p

+ n

`

= r, is given by

e

P

n

p

�

e

L

n

`

�

e

F .

Proof: By repeated appli
ations of Lemma 1, n

p

point-
onditions P

1

; : : : ; P

n

p


an

be 
hosen so that

[(\

i

P

i

) \ F ℄ ~ = [(\

i

P

i

) \ F ℄ ~ = (\

i

e

P

i

) \

e

F :

To 
on
lude, it suÆ
es to apply Proposition 1 to (\

i

P

i

) \ F .

The last part of Theorem I 
on
erns interse
tion multipli
ities. It 
an be proven

by indu
tion on n

`

; the start and the indu
tion step are 
onsequen
es of:

Lemma 2. Let C be an irredu
ible 
urve in P

N

, su
h that C \ S = ; and that the


urves in C do not have a 
ommon 
omponent. Let 
 be a general point of C; then

(1) there exist at most �nitely many points p 2 P

2

su
h that p 2 
 and the

point-
ondition 
orresponding to p is tangent to C at 
;

(2) there exist at most �nitely many lines ` � P

2

su
h that 
 is properly tangent

to ` and the line-
ondition 
orresponding to ` is tangent to C at 
.

Proof: We 
an assume 
 is a smooth point of C; if 
 is redu
ible as a plane 
urve,

we 
an in fa
t assume that all 
omponents of 
 are moving smoothly as 
 moves on

C.

(1) By de�nition, the point-
ondition P 
orresponding to p 2 P

2


ontains 
 if and

only if p 2 
. P is tangent to C at 
 if it 
ontains the tangent line to C at 
: let

7






0

6= 
 be a point of this line. P 
ontains the line through 
 and 


0

6= 
 if and only if

p 2 
\ 


0

: sin
e all 
omponents of 
 are moving smoothly, this interse
tion is �nite.

(2) Sin
e 
 and ` are properly tangent, then 
 is a smooth point of the line-


ondition L

`


orresponding to `: therefore, C is tangent to L

`

at 
 if and only if

 (C) is tangent at  (
) to the point-
ondition 
orresponding to ` (sin
e C \S = ;,

 (
) is de�ned for all 
 2 C). Also, ` belongs to a redu
ed 
omponent of  (
), sin
e

the tangen
y point is smooth on 
. Sin
e 
 is general in C, we 
an assume this


omponent is moving smoothly at  (
). (2) is then simply the dual of (1): i.e., (1)

applied to  (
) 2  (C) � P

M

.

Theorem I. (2) In the same hypotheses of Theorem I (1), the elements 
ontaining

the given points and properly tangent to the given lines appear with multipli
ity 1.

Proof: We 
an assume that the 
urves in F don't have a 
ommon 
omponent: if

they do, fa
toring it out redu
es the statement to the same for lower degree 
urves.

We will prove that: (a) the statement is true for n

p

= r; n

`

= 0; (b) the statement

for n

p

= r � k; n

`

= k; k < r implies the statement for n

p

= r � k � 1; n

`

= k + 1.

The assertion will then follow by indu
tion.

(a) It is enough to show that there exists a point-
ondition P su
h that P \ F

is redu
ed, and to apply this fa
t r times. Now, suppose that is not the 
ase: i.e.,

suppose that for ea
h point-
ondition P , P \ F has some non-redu
ed 
omponent,

of dimension r � 1. These 
omponents would 
over a 
omponent of F , and the set

of point-
onditions is 2-dimensional: thus for a general point 
 in a 
omponent of

F there would be in�nitely many point-
onditions tangent to F at 
. In parti
ular,

they would all be tangent to some 
urve through 
, 
ontradi
ting Lemma 2 (1).

(b) For n

p

= r � k; n

`

= k, the statement says that for general line-
onditions

L

1

; : : : ; L

k

and point-
onditions P

1

; : : : ; P

r�k

, the interse
tion F \ L

1

\ � � � \ L

k

\

P

1

\ � � � \ P

r�k

is transversal at all points 
orresponding to proper tangen
y to

the lines. Consequently, the 
omponents C

i

of the 
urve F \ L

1

\ � � � \ L

k

\

P

1

\ � � � \ P

r�k�1

that 
ontain these points are redu
ed and 
ut transversally by

P

r�k

: to prove the indu
tion step, we must show that there exists a line ` in the

plane, su
h that the 
orresponding line-
ondition L

k+1


uts the C

i

transversally at

points 
orresponding to proper tangen
y to `. By Lemma 2 (2), the set of line-


onditions whi
h fail to 
ut transversally the C

i

's at points 
orresponding to proper

tangen
ies is at most 1-dimensional, in the 2-dimensional set of line-
onditions.

Therefore, an ` as above must exist.

x2 Preliminaries: an interse
tion formula. In x3 we will 
onstru
t a `variety

of 
omplete plane 
ubi
s'

e

V by a sta
k of blow-ups at non-singular 
enters over P

9

.

Corollary I in x1 expresses the 
hara
teristi
 numbers as degrees of interse
tion of

the proper transforms in

e

V of suitable hypersurfa
es of P

9

; we introdu
e here the

formula we will use in x4 to 
ompute these interse
tion degrees.

Let V be a non-singular variety of dimension n over an arbitrary �eld, and B

a non-singular 
losed subvariety of 
odimension d in V . For X ,! V any pure-

dimensional subs
heme of V , we set

B ÆX = 
(N

B

V ) \ s(B \X;X)

8



in the Chow group A

�

(B \X) of B \X. We 
all this the `full interse
tion 
lass' of

X by B in V .

Lemma. Denote by f�g

r

the r-dimensional 
omponent of the 
lass between bra
es.

(1) Let N be the pull-ba
k of N

B

V to B \ X, C = C

B\X

X ,! N the 
one of

B \ X in X, Q the universal quotient bundle of rank d of P(N � 1), p the

proje
tion P(N � 1) �! B \X. Then

B ÆX = p

�

(
(Q) \ [P(C � 1)℄) ;

(2) fB ÆXg

dimX�d

= B �X = j

!

[X℄;

(3) fB ÆXg

�

= 0 for � < dimX � d; � > dimB \X.

Proof: (1) Denote by O(�1) the universal line bundle on P(N � 1); then Q =

p

�

N � 1=O(�1), and therefore

p

�

(
(Q) \ [P(C � 1)℄) = p

�

(
(p

�

N) \ (1� 


1

(O(1))

�1

\ [P(C � 1)℄))

= p

�

(
(p

�

N) \ (

X

i�0




1

(O(1))

i

\ [P(C � 1)℄))

= 
(N) \ s(C)

= g

�


(N

B

V ) \ s(B \X;X):

(2) See [F℄, Proposition 6.1(a) and x6.2 (j

!

is the `Gysin homomorphism').

(3) fB ÆXg

�

= 0 for � > dimB \X is obvious; fB ÆXg

�

= 0 for � < dimX � d

follows from (1).

Let

e

V be the blow-up of V along B, suppose X

1

; : : : ; X

r

are pure-dimensional

subs
hemes of V , and let

e

X

�

�

e

V be their proper transforms: i.e., the blow-ups of

X

�

along B \X

�

.

Theorem II. Suppose that the 
odimensions of the X

�

add to the dimension of

V , and that the interse
tion \X

�

is a proper s
heme. With the notation above

Z

e

V

e

X

1

� : : : �

e

X

r

=

Z

V

X

1

� : : : �X

r

�

Z

B

Q

r

�=1

(B ÆX

�

)


(N

B

V )

:

Here the �rst produ
t is taken in

e

V , the se
ond in V and the third in B.

In x4 this formula will be applied to ea
h blow-up in the sequen
e.

Proof: Let E = P(N

B

V ) be the ex
eptional divisor of the blow-up, and write the

maps involved as follows:

E

i

����!

e

V

�

?

?

y

?

?

y

�

B

j

����! V

:

Theorem II follows from:
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Claim. Let X

1

; : : : ; X

r

be pure-dimensional subs
hemes of V , and write m =

dimV � 
odim

V

X

1

� � � � � 
odim

V

X

r

. Then

(*) �

�

(X

1

� : : : �X

r

) =

e

X

1

� : : : �

e

X

r

+ i

�

(

�

�

((B ÆX

1

) � : : : � (B ÆX

r

))


(N

E

e

V )

)

m

in A

m

(

T

i

�

�1

X

i

).

By [F℄, Proposition 6.7 (d), to prove (*) one must show that the equality holds

after (1) pushing it forward on V by �, and (2) pulling it ba
k on E by i. We will

show (1) here (whi
h is enough to imply Theorem II), and leave (2) to the interested

reader.

By the the proje
tion formula, (1) amounts to

X

1

� : : : �X

r

= �

�

(

e

X

1

� : : : �

e

X

r

) + j

�

�

Q

r

�=1

(B ÆX

�

)


(N

B

V )

�

m

:

Example 12.4.4 in [F℄ gives

X

1

� : : : �X

r

= �

�

(

e

X

1

� : : : �

e

X

r

) + j

�

p

�

(P(C

1

� 1) � : : : � P(C

r

� 1));

where p denotes the proje
tion P(N

B

V �1) �! B and C

i

= C

B\X

i

X

i

are the normal


ones of the imbeddings B \X

i

,! X

i

. Thus to prove (1) we may show that

(1') p

�

(P(C

1

� 1) � : : : � P(C

r

� 1)) =

�

(B ÆX

1

) � : : : � (B ÆX

r

)


(N

B

V )

�

m

;

where p is the proje
tion P(N � 1) �! B.

To this e�e
t, let d = 
odim

V

B, � = 


1

(O

P(N�1)

(1)), and Q be the universal

quotient bundle of rank d over P(N � 1). Any element A in A

k

(P(N � 1)) 
an be

expressed uniquely in the form

A =

d

X

�=0

�

�

\ p

�

�

k�d+�

;

where �

j

2 A

j

(B). Setting � = �

d

�=0

�

k�d+�

2 A

�

(B), we say that A 
orresponds

to �.

Claim 1. [P(C

i

� 1)℄ 
orresponds to B ÆX

i

, i = 1; : : : ; r.

Indeed, for any �

j

2 A

j

B and any � � d, by Example 3.3.3 in [F℄

p

�

(
(Q) \ �

�

\ p

�

�

j

) = �

j

;

thus the [P(C

i

� 1)℄ must 
orrespond to p

�

(
(Q) \ [P(C

i

� 1)℄). This equals B ÆX

i

by (1) of the Lemma.

Next, we relate in the above terminology interse
tions in P(N � 1) and B. With

n = dimV = dimP(N � 1):
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Claim 2. Suppose A

i

2 A

k

i

(P(N � 1)) 
orrespond to �

(i)

, i = 1; : : : ; r, and let

m = k

1

+ � � �+ k

r

� (r � 1)n. Then

p

�

(A

1

� : : : �A

r

) =

�

�

(1)

� : : : � �

(r)


(N)

�

m

:

Indeed, by linearity we may assume A

i

= �

q

i

\ p

�

�

(i)

, with �

(i)

2 A

k

i

�d+q

i

B.

Setting q =

P

q

i

and applying the proje
tion formula, the Claim redu
es to

p

�

(�

q

\ p

�

�

(r)

) = s

q�d

(N) \ �

(r)

;

whi
h amounts to the de�nition of s(N) = 
(N)

�1

([F℄, x3.1).

Claims 1 and 2 give (1'), 
on
luding the proof of (1).

We remark that (*) above (and therefore Theorem II) holds for possibly singular

V and B, if B is regularly imbedded in V and under 
onditions that guarantee the

interse
tion produ
ts are de�ned.

One advantage in writing the formula in Theorem II in terms of full interse
tion


lasses is that these are often easy to express `
on
retely'. In parti
ular:

(i) if X

�

= V , then B ÆX

�

= B. Indeed, in this 
ase s(B \X

i

; X

i

) = s(B; V ) is

the inverse total Chern 
lass 
(N

B

V )

�1

.

(ii) If X

�

is a divisor then B ÆX

�

= e

B

X

�

[B℄ + j

�

[X

�

℄, where e

B

X denotes the

multipli
ity of X along B and j is the imbedding B ,! V .

(iii) Similarly, if X

�

has 
odimension 2 and meets B in an irredu
ible W , with

dimW = dimB � 1, then B ÆX

�

= e

W

X

�

[W ℄ + j

�

[X

�

℄.

(These statement follow from (2), (3) in the Lemma.)

By use of Theorem II, the 
hara
teristi
 numbers for a family F � P

9

will be

expressed in terms of 
ertain full interse
tion 
lasses related to F (Theorem IV,

x4). For F the family of smooth 
ubi
s, we will just have to apply (i). To build up

Theorem IV, we will need to 
ompute full interse
tion 
lasses related to point- and

line- 
onditions, using (ii) (see x3); and (iii) will be needed for further 
omputations

in x5.

x3 A smooth variety of 
omplete 
ubi
s. Assume hereafter that the 
hara
ter-

isti
 of the ground �eld is 6= 2; 3. In this se
tion we will 
onstru
t a smooth variety of


omplete plane 
ubi
s, by means of a sta
k of blow-ups over P

9

. The same sequen
e

of blow-ups was obtained independently by U. Sterz (
f. [St℄); he gives a detailed

des
ription in 
oordinates of ea
h of them, and 
omputes their homology bases and

several relations. Our point of view di�ers from Sterz's in the sense that we need

to obtain `geometri
' information regarding the blow-ups, to apply the interse
tion

formula of x2. More pre
isely, we need for ea
h blow-up V

i+1

= B`

B

i

V

i

a des
ription

of the interse
tion ring of ea
h 
enter B

i

and the total 
hern 
lass 
(N

B

i

V

i

) of its

normal bundle; also, we need the full interse
tion 
lasses of the proper transforms

of point- and line-
onditions in ea
h blow-up with respe
t to the 
enter. The result

is

11



Theorem III. A smooth variety

e

V = V

5

of 
omplete 
ubi
s 
an be obtained by a

sequen
e of 5 blow-ups V

i

= B`

B

i�1

V

i�1

, i = 1; : : : ; 5, with V

0

= P

9

, and where

(1) B

0

�

=

P

2

is the lo
us of `triple lines' in the spa
e V

0

= P

9

of plane 
ubi
s;

the interse
tion ring of B

0

is generated by the hyperplane 
lass h, and

R

h

2

= 1;


(N

B

0

V

0

) =

(1 + 3h)

10

(1 + h)

3

.

(2) B

1

is a rank-2 proje
tive bundle over B

0

;

the interse
tion ring of B

1

is generated by the pull-ba
k h of h and by the


lass � of the universal line bundle, and

Z

B

1

h

4

= 0;

Z

B

1

h

3

� = 0;

Z

B

1

h

2

�

2

= 1

Z

B

1

h�

3

= 9;

Z

B

1

�

4

= 51;


(N

B

1

V

1

) = (1 + �)

(1 + 3h� �)

10

(1 + 2h� �)

6

.

(3) B

2

is a rank-3 proje
tive bundle over B

1

;

the interse
tion ring of B

2

is generated by the pull-ba
ks h; � of h; � and

by the 
lass ' of the universal line bundle, and

Z

B

2

'

7

= �210

Z

B

2

'

6

h = �90

Z

B

2

'

6

� = �240

Z

B

2

'

5

h

2

= �10

Z

B

2

'

5

h� = 0

Z

B

2

'

5

�

2

= 105

Z

B

2

'

4

h

2

� = 4

Z

B

2

'

4

h�

2

= 18

Z

B

2

'

4

�

3

= 42

Z

B

2

'

3

h

2

�

2

= �1

Z

B

2

'

3

h�

3

= �9

Z

B

2

'

3

�

4

= �51

(all other 
odimension-7 terms have degree 0);


(N

B

2

V

2

) = (1 + ')(1 + �� ').

(4) B

3

is isomorphi
 to the blow-up B`

�

P

2

� P

2

of P

2

� P

2

along the diagonal;

the interse
tion ring of B

3

is generated by the pull-ba
ks `;m of the hyper-

plane 
lasses in the fa
tors of P

2

� P

2

, and by the 
lass e of the ex
eptional

divisor, and em = e`, `

3

= m

3

= 0,

Z

B

3

`

2

m

2

= 1;

Z

B

3

e

2

`

2

= �1;

Z

B

3

e

3

` = �3;

Z

B

3

e

4

= �6 ;
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(N

B

3

V

3

) = 1+ 7`+17m� 16e+126m

2

+99`m+21`

2

� 315e`+105e

2

+

582`m

2

+ 237`

2

m � 2517e`

2

+ 1611e

2

` � 358e

3

+ 1026`

2

m

2

+ 9174e

2

`

2

�

3912e

3

`+ 652e

4

:

(5) B

4

is isomorphi
 to B

3

;

the interse
tion ring of B

4

is therefore generated by `;m; e as above;


(N

B

4

V

4

) = 1 � 5` + 5m + 18m

2

� 27`m + 3`

2

+ 21e` � 7e

2

� 30`m

2

+

75`

2

m� 225e`

2

+ 135e

2

`� 30e

3

+ 75`

2

m

2

:

Also, in these notations:

Full interse
tion 
lasses. The full interse
tion 
lasses with respe
t to the B

i

's

of the proper transforms P

i

; L

i

in V

i

of point- and line-
onditions are

B

0

Æ P

0

= 3h ; B

0

Æ L

0

= 2 + 12h

B

1

Æ P

1

= 3h ; B

1

Æ L

1

= 1 + 12h� 2�

B

2

Æ P

2

= 3h ; B

2

Æ L

2

= 1 + 12h� 2�� '

B

3

Æ P

3

= `+ 2m ; B

3

Æ L

3

= 1 + 4`+ 8m� 6e

B

4

Æ P

4

= `+ 2m ; B

4

Æ L

4

= 1 + `+ 5m� 2e:

The rest of this x3 is devoted to the proof of Theorem III. Most of the notations

employed here appear in the following diagram:

e

V = V

5

?

?

y

�

5

V

4

j

4

 ���� B

4

= P(L)

?

?

y

�

4

?

?

y

V

3

j

3

 ���� B

3

= S

3

�

3

 ����

�

B`

�

�

P

2

�

�

P

2

?

?

y

�

3

?

?

y










B

2

j

2

����! V

2

 ���� S

2

�

2

 ����

�

B`

�

�

P

2

�

�

P

2

P

3

�bundle

?

?

y

?

?

y

�

2

?

?

y










B

1

j

1

����! V

1

 ���� S

1

�

1

 ����

�

B`

�

�

P

2

�

�

P

2

P

2

�bundle

?

?

y

?

?

y

�

1

?

?

y

?

?

y

v

3

(

�

P

2

) = B

0

j

0

����! P

9

= V

0

 ���� S

0

�

0

 ����

�

P

2

�

�

P

2

:

Here S

0

is the lo
us of non-redu
ed 
ubi
s, and B

0

= v

3

(

�

P

2

) ,! P

9

is the Veronese

of triple lines. Ea
h B

i

is the 
enter of the blow-up V

i+1

= B`

B

i

V

i

; S

i+1

denotes

the proper transform of S

i

under this blow-up.

13



Also, L is a 
ertain sub-line bundle of the normal bundle N

B

3

V

3

of B

3

in V

3

. �

is the diagonal in

�

P

2

�

�

P

2

.

Finally, P

0

, L

0

will respe
tively be point- and line-
onditions in P

9

; P

i

, L

i

will be

the proper transforms of P

i�1

, L

i�1

, and E

i

will be the ex
eptional divisor of the

i-th blow-up. The P

i

's and L

i

's will be 
alled `point-
onditions' and `line-
onditions'

in V

i

. We will also say that point- and line-
onditions are `in general position' if

the 
orresponding points and lines are.

Se
tions 3.0-3.5 des
ribe the sequen
e of blow-ups in some detail. The aim is to

`separate' the line-
onditions by blowing-up non-singular subvarieties; thus, we will

generally 
hoose as 
enters the `biggest' non-singular 
omponents of the interse
tion

of the line-
onditions. In P

9

the interse
tion of the line-
ondition is supported on

the 4-dimensional variety S

0

parametrizing non-redu
ed 
urves. This is the image

of a bije
tive map �

0

:

�

P

2

�

�

P

2

�! P

9

; �

0

rami�es along the diagonal, mapping to

the 2-dimensional lo
us B

0

of `triple lines'. This latter is our 
hoi
e for the �rst

blow-up.

Ea
h of se
tions 3.0-3.5 is organized as follows: we �nd on ea
h V

i

the interse
tion

of all line-
onditions, and we 
hoose a 
enter B

i

for the next blow-up (a non-singular

subvariety or 
omponent of the interse
tion of the line-
onditions); then we obtain

the information 
olle
ted in Theorem III. In parti
ular, we des
ribe the interse
tion

rings of the B

i

's, and we 
ompute the total Chern 
lass 
(N

B

i

V

i

) of the normal

bundle to B

i

in V

i

. Next, we examine the geometry of the situation in more detail,

to obtain the information we will need in the following stages. Also, we 
ompute

the multipli
ities e

B

i

P

i

, e

B

i

L

i

of the 
onditions along the 
enters (in fa
t, e

B

i

P

i

will always be 0), and the pull-ba
ks j

�

i

P

i

, j

�

i

L

i

: this is the information 
ontained

in the full interse
tion 
lasses of the 
onditions with respe
t to the 
enters.

To prove that V

5

is a `variety of 
omplete 
ubi
s' amounts to proving that the

interse
tion of its line-
onditions is empty; this will be shown in x3.5. Equivalently,

one 
an show that V

5

dominates the graph of the rational map  of x1; a proof in

these terms 
an be found in [St, II, x4℄.

x3.0 The P

9

of plane 
ubi
s. Let Q be a 3-dimensional ve
tor spa
e over an

algebrai
ally 
losed �eld of 
hara
teristi
 6= 2; 3, and 
onsider P

9

= P(Sym

3

�

Q),

the proje
tive spa
e parametrizing 
ubi
 
urves in the plane P

2

= PQ. x

0

; x

1

; x

2

(resp., a

0

; : : : ; a

9

) will be homogeneous 
oordinates in P

2

(resp., in P

9

): the point

(a

0

: � � � : a

9

) 2 P

9

is asso
iated with the 
ubi
 of equation

a

0

x

3

0

+ a

1

x

2

0

x

1

+ a

2

x

2

0

x

2

+ a

3

x

0

x

2

1

+ a

4

x

0

x

1

x

2

+

+ a

5

x

0

x

2

2

+ a

6

x

3

1

+ a

7

x

2

1

x

2

+ a

8

x

1

x

2

2

+ a

9

x

3

2

= 0:

We will write K simultaneously for the 
ubi
 K in P

2

, a 
ubi
 polynomial giving

K in terms of the 
oordinates (x

0

: x

1

: x

2

), and the 
orresponding point K 2 P

9

.

Similarly, � 2

�

P

2

will stand for both the line � in P

2

and a 
orresponding linear

fun
tion in terms of (x

0

: x

1

: x

2

).

We observed already (see x1) that the point-
onditions P

0

in P

9

are hyperplanes,

while the line-
onditions L

0

form hypersurfa
es of degree 4. Expli
itly, the line-


ondition 
orresponding to the line x

0

= 0 is the dis
riminant of the polynomial in

14



x

1

; x

2

a

6

x

3

1

+ a

7

x

2

1

x

2

+ a

8

x

1

x

2

2

+ a

9

x

3

2

;

hen
e has equation

(*) a

2

7

a

2

8

+ 18a

6

a

7

a

8

a

9

� 4a

6

a

3

8

� 4a

3

7

a

9

� 27a

2

6

a

2

9

= 0:

The following fa
ts about line-
onditions are independent of the 
orresponding

line, therefore 
an be 
he
ked on (*):

Lemma 0.1. Let L be the line-
ondition in P

9


orresponding to � 2

�

P

2

. Then:

(1) IfK 2 L, then L is smooth atK if and only ifK interse
ts � with multipli
ity

exa
tly 2 at a point. In parti
ular, the line-
onditions are generi
ally smooth

along the lo
us S

0

of non-redu
ed 
ubi
s.

(2) If K interse
ts � with multipli
ity 3 at a point, then L has multipli
ity 2 at

K. In parti
ular, the line-
onditions have multipli
ity 2 along the lo
us B

0

of triple lines.

(3) The tangent hyperplane to L at a smooth point K 
onsists of the 
ubi
s


ontaining the point of tangen
y of K to �. The tangent 
one in V

0

= P

9

to L at a 
ubi
 K interse
ting � in a triple point p is supported on the

hyperplane in V

0


onsisting of the 
ubi
s 
ontaining p.

The interse
tion of all line-
onditions 
onsists of the lo
us of non-redu
ed 
ubi
s,

whi
h we denote S

0

. S

0

is the image of the 1-1 morphism

�

P

2

�

�

P

2

�

0

�! P

9

(�; �) 7! ��

2

whi
h maps the pair of lines with equations f� = 0g, f� = 0g to the 
ubi
 of

equation f��

2

= 0g. If � is the diagonal in

�

P

2

�

�

P

2

, �

0

(�) is the lo
us B

0

of triple

lines.

Lemma 0.2. The restri
tion of �

0

:

�

P

2

�

�

P

2

�� �! S

0

�B

0

is an isomorphism. In

parti
ular, S

0

� B

0

is non-singular.

Proof: The lo
us where d�

0

is an isomorphism is 
learly invariant under proje
tive

transformations of P

2

, and the group of proje
tive transformations a
ts transitively

on

�

P

2

�

�

P

2

��.

In fa
t, S

0

is singular along B

0

(see Remarks 1.4); we 
hoose B

0

as the 
enter of

the �rst blow-up.

Lemma 0.3. B

0

is the third Veronese imbedding of

�

P

2

in P

9

, thus a non-singular

2-dimensional subvariety of V

0

. The tangent spa
e to B

0

in V

0

at a point �

3

2 B

0


onsists of the 
ubi
s vanishing twi
e along �.

Proof: �

0

restri
ts on

�

P

2

�

=

� �! B

0

to � 7! �

3

, the 3

rd

Veronese imbedding v

3

.

The last assertion is 
he
ked by di�erentiating � 7! �

3

.

We 
an get now the information needed for Theorem III (1):
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Theorem III (1).

(i) the interse
tion ring of B

0

�

=

P

2

is generated by the hyperplane 
lass h;

(ii) 
(N

B

0

V

0

) =

(1 + 3h)

10

(1 + h)

3

.

Proof: (i) is just setting the notation;

(ii) the 
lass of the hyperplane in V

0

�

=

P

9

pulls-ba
k to 3h on B

0

, and 
(N

B

0

) =

j

�

0


(TP

9

)=
(TB

0

).

We also �nd:

Lemma 0.4. j

�

0

P

0

= 3h, j

�

0

L

0

= 12h; the full interse
tion 
lasses of a point-


onditions and line-
onditions with respe
t to B

0

are

B

0

Æ P

0

= 3h ; B

0

Æ L

0

= 2 + 12h:

Proof: The pull-ba
k of the hyperplane 
lass from V

0

to B

0

is 3h. B

0

is not


ontained in any point-
ondition, and the line-
onditions have multipli
ity 2 along

B

0

by 0.1.

x3.1 The �rst blow-up. Let V

1

= B`

B

0

V

0

, write �

1

: V

1

�! V

0

for the blow-up

map, E

1

for the ex
eptional divisor, and denote by S

1

, P

1

, L

1

the proper transforms

of S

0

, P

0

, L

0

. Then P

1

= �

�

1

P

0

, L

1

= �

�

1

L

0

� 2E

1

as divisor 
lasses.

We will see here that the line-
onditions in V

1

interse
t along the smooth 4-

dimensional proper transform S

1

of S

0

and along a smooth 4-dimensional subvariety

B

1

of the ex
eptional divisor E

1

(Proposition 1.2). We will 
hoose B

1

as the 
enter

for the se
ond blow-up.

We determine now the interse
tion of the line-
onditions in V

1

. Sin
e V

1

�E

1

�

=

V

0

�B

0

, S

1

must be a 
omponent of the interse
tion. To �nd 
omponents 
ontained

in E

1

, identify E

1

with the proje
tive bundle P(N

B

0

V

0

) over B

0

; the key observation

is

Lemma 1.1. There is an imbedding N

v

2

(

�

P

2

)

P

5

,! N

v

3

(

�

P

2

)

P

9

of ve
tor bundles over

�

P

2

.

Proof: We have the exa
t sequen
es on B

0

�

=

�

P

2

= P(

�

Q)

0 �! O

�

P

2

�!

�

Q
O

�

P

2

(1) �! T

�

P

2

�! 0 ;

0 �! O

�

P

2

�! Sym

2

�

Q
O

�

P

2

(2) �! TP

5

�! 0 ;

0 �! O

�

P

2

�! Sym

3

�

Q
O

�

P

2

(3) �! TP

9

�! 0 :

the �rst is the standard Euler sequen
e on P

�

Q; the se
ond and third are the pull-

ba
ks of the Euler sequen
es on P(Sym

2

�

Q) and P(Sym

3

�

Q) via the Veronese imbed-

dings v

2

:

�

P

2

�! P

5

and v

3

:

�

P

2

�! P

9

. From these we get

N

v

2

(

�

P

2

)

P

5

=

Sym

2

�

Q
O(2)

�

Q
O(1)

; N

v

3

(

�

P

2

)

P

9

=

Sym

3

�

Q
O(3)

�

Q
O(1)

:
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The 
laimed imbedding N

v

2

(

�

P

2

)

P

5

,! N

v

3

(

�

P

2

)

P

9

is indu
ed by the map

Sym

2

�

Q
O(�1) �! Sym

2

�

Q


�

Q �! Sym

3

�

Q :

this gives an imbedding

Sym

2

�

Q
O(2) = Sym

2

�

Q
O(�1)
O(3) ,! Sym

3

�

Q
O(3);

that indu
es an imbedding on the quotients.

We 
an then de�ne a 4-dimensional smooth subvariety B

1

of E

1

, i.e.

B

1

= P(N

v

2

(

�

P

2

)

P

5

) ,! P(N

v

3

(

�

P

2

)

P

9

) = E

1

:

Noti
e that the �ber of Sym

2

�

Q
O(�1) ,! Sym

3

�

Q over � 2 P(

�

Q) 
onsists of the


ubi
 polynomials over Q divisible by �. The �ber of B

1

= P(N

v

2

(

�

P

2

)

P

5

) is then

P(TR

�

=TB

0

),where R

�

�

=

P

5

is the subspa
e of V

0


onsisting of the 
ubi
s vanishing

along (i.e. 
ontaining) the line �. Also re
all (Lemma 0.3) that the tangent spa
e

to B

0

in P

9


onsists of the 
ubi
s vanishing twi
e along �. The information 
arried

by a point of B

1


onsists then of a line � and of the web of 
oni
s with given

proper interse
tion with �: i.e., of � and of two points on �. Of 
ourse these are

the `
omplete 
oni
s' supported on a double line: P(N

v

2

(

�

P

2

)

P

5

) is the ex
eptional

divisor in the spa
e of 
omplete 
oni
s (
f. [CX, 2.2℄). We will refer to points of

B

1

as to `lines with distinguished pairs of points'.

Proposition 1.2. The set-interse
tion of all line-
onditions in V

1

is 
ontained in

the union of the smooth 4-folds S

1

and B

1

.

Proof: B

1

is a proje
tive bundle over P

2

, therefore it is smooth; the smoothness

of S

1

is proved in Lemma 1.3 below.

We have to show that the line-
onditions interse
t along B

1

over B

0

, and this 
an

be 
he
ked �berwise. As observed above, the �ber of B

1

over a triple line �

3

2 B

0

is P(T

�

3

R

�

=T

�

3

B

0

), where R

�

�

=

P

5

is the subspa
e of V

0


onsisting of the 
ubi
s


ontaining �; on the other hand, by Lemma 0.1 the interse
tion of the tangent 
ones

to the line-
onditions (in P

9

) at �

3

2 B

0

is pre
isely R

�

, so the assertion follows.

B

1

will be the 
enter for the next blow-up.

Theorem III (2). B

1

is a P

2

-bundle over B

0

.

(i) The interse
tion ring of B

1

is generated by the pull-ba
k h of h via B

1

�! B

0

and the pull-ba
k � of E

1

via j

1

: B

1

,! V

1

, and

Z

B

1

h

4

= 0;

Z

B

1

h

3

� = 0;

Z

B

1

h

2

�

2

= 1;

Z

B

1

h�

3

= 9;

Z

B

1

�

4

= 51

(ii) 
(N

B

1

V

1

) = (1 + �)

(1 + 3h� �)

10

(1 + 2h� �)

6

:
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Proof: (i) The universal line bundle on P(N

v

2

(

�

P

2

)

P

5

) = B

1

is the restri
tion of the

one on P(N

v

3

(

�

P

2

)

P

9

) = E

1

, i.e. � (Lemma 1.1). The �rst assertion follows then from

[F, Example 8.3.4℄. Moreover, via B

1

�! B

0

, 1� �+ �

2

� �

3

+ �

4

pushes forward to

s(N

v

2

(

�

P

2

)

P

5

) =

(1 + h)

3

(1 + 2h)

6

= 1� 9h+ 51h

2

by [F, Chapter 4℄, so that the relations follow from the proje
tion formula.

(ii) The normal bundle to B

1

in V

1

is an extension of N

B

1

E

1

and N

E

1

V

1

. By

Lemma 1.1, there is a 
ommutative diagram

0 ����! O

B

1

����! N

v

2

(

�

P

2

)

P

5


O(1) ����! T

B

1

jB

0

����! 0

?

?

y

?

?

y

?

?

y

0 ����! O

E

1

����! N

v

3

(

�

P

2

)

P

9


O(1) ����! T

E

1

jB

0

����! 0

;

so that


(N

B

1

E

1

) =


(N

v

3

(

�

P

2

)

P

9


O(1))


(N

v

2

(

�

P

2

)

P

5


O(1)

=

(1 + 3h� �)

10

(1 + 2h� �)

6

:

On the other hand, 
(N

E

1

V

1

) = 1 + �; thus (ii) follows from the Whitney produ
t

formula.

We pro
eed next to a 
loser analysis of the varieties involved at this stage.

Consider the triple line x

3

0

2 B

0

,! V

0

= P

9

. Setting a

0

= 1, aÆne 
oordinates

for V

0

at x

3

0

are (a

1

; : : : ; a

9

), and

3a

3

� a

2

1

= 0 3a

4

� 2a

1

a

2

= 0 3a

5

� a

2

2

= 0

9a

6

� a

1

a

3

= 0 3a

7

� a

2

a

3

= 0 3a

8

� a

1

a

5

= 0

9a

9

� a

2

a

5

= 0

are equations for B

0

in a neighborhood of x

3

0

. Thus we 
an 
hoose 
oordinates

(b

1

; : : : ; b

9

) in an open in V

1

= B`

B

0

V

0

so that

b

1

= a

1

b

2

= a

2

b

3

= 3a

3

� a

2

1

b

4

b

3

= 3a

4

� 2a

1

a

2

b

5

b

3

= 3a

5

� a

2

2

b

6

b

3

= 9a

6

� a

1

a

3

b

7

b

3

= 3a

7

� a

2

a

3

b

8

b

3

= 3a

8

� a

1

a

5

b

9

b

3

= 9a

9

� a

2

a

5

:

With this 
hoi
e, b

3

= 0 is the equation for the ex
eptional divisor E

1

, and

(b

4

; : : : ; b

9

) are 
oordinates for the �ber of E

1

over a point of B

0

.

Re
all (x3.0) that S

0

is the image of a 1-1 morphism �

0

:

�

P

2

�

�

P

2

�! P

9

, whi
h

restri
ts to an isomorphism on

�

P

2

�

�

P

2

��, where � is the diagonal in

�

P

2

�

�

P

2

.
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Lemma 1.3. The proper transform S

1

of S

0

is non-singular, in fa
t isomorphi
 to

B`

�

�

P

2

�

�

P

2

.

Proof: We will show that �

0

lifts to an isomorphism �

1

: B`

�

�

P

2

�

�

P

2

�! S

1


ompatible with �

0

; that is, su
h that the following diagram 
ommutes:

(*)

B`

�

�

P

2

�

�

P

2

�

1

����!

�

S

1

,! V

1

?

?

y

?

?

y

�

P

2

�

�

P

2

�

0

����! S

0

,! V

0

:

Let e be the ex
eptional divisor of B`

�

�

P

2

�

�

P

2

. A morphism �

1

exists by the

universal property of blow-ups, and restri
ts to an isomorphism on B`

�

�

P

2

�

�

P

2

� e

by Lemma 0.2 (2); so we only need to 
he
k that (d�

1

)

p

is inje
tive for p 2 e.

This matter is lo
al and invariant under proje
tive transformations of P

2

, so we 
an

assume p is in the �ber of (x

0

; x

0

) 2 �. Choose lo
al 
oordinates (�

1

; �

2

;u

1

; u

2

) at

(x

0

; x

0

) so that (�

1

; �

2

;u

1

; u

2

) 
orresponds to

(x

0

+ (�

1

+ u

1

)x

1

+ (�

2

+ u

2

)x

2

; x

0

+ �

1

x

1

+ �

2

x

2

) 2

�

P

2

�

�

P

2

:

Equations for � are then u

1

= 0, u

2

= 0. Therefore, we 
an 
hoose 
oordinates

(�

1

; �

2

;u; t) in an open set (that we 
an assume 
ontains p) in B`

�

�

P

2

�

�

P

2

so that

�

1

= a

1

; �

2

= a

2

; u = u

1

; ut = u

2

;

the equation for e is u = 0.

By the 
ommutativity of (*), in terms of the 
oordinates given for V

1

and these


oordinates for B`

�

�

P

2

�

�

P

2

, �

1

is given expli
itly by

(**) (�

1

; �

2

;u; t) 7! (3�

1

+ u; 3�

2

+ ut;�u

2

; 2t; t

2

; 2�

1

; 2�

1

t; 2�

2

t; 2�

2

t

2

);

with non-degenerate ja
obian, as needed.

Remarks 1.4.

(1) We will let e denote the ex
eptional divisor in B`

�

�

P

2

�

�

P

2

(and its divisor


lass).

(2) �

�

1

E

1

= 2e: S

1

is tangent to E

1

along e. Consequently, S

0

has multipli
ity 2

along B

0

: it is indeed singular along it.

(3) A point in e 
an be visualized as a `double line with distinguished point'.

As a pair of lines (�; �) 2

�

P

2

�

�

P

2

approa
hes an element (�; �) 2 � along

some 
urve, their interse
tion � \ � approa
hes a spe
i�
 point on �. Ele-

ments in e re
ord this information. If (�

1

; �

2

; u; t) =2 e (i.e. if u 6= 0), then

the 
orresponding pair of lines interse
ts in the point (�

1

t� �

2

: �t : 1); if

(�

1

; �

2

; 0; t) 2 e, then (�

1

t� �

2

: �t : 1) are the 
oordinates of the `distin-

guished point' on the line x

0

+ �

1

x

1

+ �

2

x

2

= 0.

Lemma 1.5.

(1) B

1

interse
ts S

1

along e.

(2) The line 
onditions in V

1

are generi
ally smooth and tangent to E

1

along

B

1

.
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Proof: (1) This is easily 
he
ked using the expli
it expression (**) for �

1

in the

proof of Lemma 1.3. By invarian
e under proje
tive transformations, we 
an assume

� = x

0

; equations for R

�

are then a

6

= a

7

= a

8

= a

9

= 0, and the 
he
k is

immediate.

(2) By the invarian
e under proje
tive transformations, it is enough to verify the


laim for the line-
ondition 
orresponding to x

2

= 0, and we 
an restri
t to the

open set on whi
h our lo
al 
oordinates for V

1

hold. In terms of these 
oordinates,

the proper transform to the line-
ondition has equation

4b

3

+ (3b

6

� 2b

1

)

2

= 0;

and the assertion is easily 
he
ked.

Lemma 1.6. j

�

1

P

1

= 3h, j

�

1

L

1

= 12h � 2�. The full interse
tion 
lasses of point-

and line-
onditions with respe
t to B

1

are

B

1

Æ P

1

= 3h ; B

1

Æ L

1

= 1 + 12h� 2�:

Proof: P

1

= �

�

1

P

0

, L

1

= �

�

1

L

0

� 2E

1

; P

1

doesn't 
ontain B

1

, and e

B

1

L

1

= 1

follows from Lemma 1.5 (2).

Remarks 1.7.

(1) In terms of the des
riptions of e and B

1

, �

1

a
ts on e by mapping the line

� with the distinguished point p into the triple line � with the distinguished

double point p. Therefore, �

1

maps the �ber of e over � to a non-singular


oni
 in the �ber of B

1

over �

3

.

(2) Using the last remark and (**) in the proof of 1.3, one gets equations for B

1

in terms of the lo
al 
oordinates in V

1

:

b

3

= 0; 3b

6

� 2b

1

= 0; 3b

7

� b

1

b

4

= 0;

3b

8

� b

2

b

4

= 0; 3b

9

� 2b

2

b

5

= 0:

(3) Lemma 1.5 (2) 
an be stated more pre
isely:


onsider a point

~

� 2 B

1

, i.e. a line � with distinguished points p

1

; p

2

.

Then the line-
ondition in V

1


orresponding to a line � is non-singular at

~

�

if p

1

=2 � and p

2

=2 �.

The 
he
k is again immediate, for the equation of the proper transform of

the line-
ondition 
orresponding to x

2

= 0.

x3.2. The se
ond blow-up. Let V

2

= B`

B

1

V

1

, write �

2

: V

2

�! V

1

for the blow-

up map, E

2

for the ex
eptional divisor, and denote by

e

E

1

, S

2

, P

2

, L

2

the proper

transforms of E

1

, S

1

, P

1

, L

1

. Then P

2

= �

�

2

P

1

, and L

2

= �

�

2

L

1

� E

2

(Lemma 1.5

(2)).

In V

2

, we will see that the line-
onditions interse
t in the proper transform S

2

of S

1

and in a smooth 7-dimensional subvariety B

2

of the ex
eptional divisor E

2

(Proposition 2.1). B

2

will be the new 
enter of blow-up.
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Set B

2

=

e

E

1

\ E

2

. B

2

is the ex
eptional divisor of the blow-up of E

1

at B

1

,

therefore (see x3.1)

B

2

= P(N

B

1

E

1

) = P

�

Sym

3

�

Q
O(3)

Sym

2

�

Q
O(2)


O

B

1

(1)

�

is a P

3

-bundle over B

1

. In parti
ular, B

2

is smooth.

Proposition 2.1. The set-interse
tion of all line-
onditions in V

2

is 
ontained in

the union of S

2

and the 7-dimensional smooth variety B

2

=

e

E

1

\E

2

.

Proof: V

2

�E

2

�

=

V

1

�B

1

, thus S

2

is a 
omponent of the interse
tion. By Lemma

1.5 (2), the line-
onditions in V

1

are generi
ally tangent to E

1

, so their proper

transforms all interse
t E

2

along

e

E

1

\E

2

= B

2

.

The 
enter for the next blow-up will be B

2

.

Theorem III (3). B

2

is a P

3

-bundle on B

1

.

(i) The interse
tion ring of B

2

is generated by the pull-ba
ks h; � of h; � via the

proje
tion B

2

�! B

1

, and the pull-ba
k ' = j

�

2

E

2

of E

2

via j

2

: B

2

�! V

2

.

Also,

Z

B

2

'

7

= �210

Z

B

2

'

6

h = �90

Z

B

2

'

6

� = �240

Z

B

2

'

5

h

2

= �10

Z

B

2

'

5

h� = 0

Z

B

2

'

5

�

2

= 105

Z

B

2

'

4

h

2

� = 4

Z

B

2

'

4

h�

2

= 18

Z

B

2

'

4

�

3

= 42

Z

B

2

'

3

h

2

�

2

= �1

Z

B

2

'

3

h�

3

= �9

Z

B

2

'

3

�

4

= �51

hold (all other 
odimension-7 terms have degree 0).

(ii) 
(N

B

2

V

2

) = (1 + ')(1 + �� '):

Proof: (i) B

2

= P(N

B

1

E

1

), with universal line bundle indu
ed from P(N

B

1

V

1

)

= E

2

, so the �rst assertion follows. Moreover, 1�'+'

2

�'

3

+ '

4

�'

5

+'

6

�'

7

pushes forward to

s(N

B

1

E

1

) =

(1 + 2h� �)

6

(1 + 3h� �)

10

;

and the relations follow dire
tly by Lemma 1.7 and the proje
tion formula.

(ii) B

2

= E

2

\

e

E

1

, so that 
(N

B

2

V

2

) = 
(N

E

2

V

2

)
(N

e

E

1

V

2

):

We now obtain a more detailed des
ription of the situation, for future referen
e.

As for S

2

:
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Lemma 2.1. S

2

is isomorphi
 to S

1

, hen
e to B`

�

�

P

2

�

�

P

2

.

Proof: By Lemma 1.5 (1), S

2

is the blow-up of S

1

along a divisor, thus it is

isomorphi
 to S

1

.

A des
ription of B

2

is gotten as follows:

Let

~

� be a point in B

1

mapping to �

3

2 B

0

via B

1

�! B

0

(i.e. `� with two

distinguished points'). The �ber of B

2

above

~

� 
an be identi�ed with the spa
e

P((Sym

3

�

Q)

~

�

=(Sym

2

�

Q)

~

�

), where (Sym

2

�

Q)

~

�

,! (Sym

3

�

Q)

~

�

is the multipli
ation by

�. P((Sym

3

�

Q)

~

�

=(Sym

2

�

Q)

~

�

) is the 3-dimensional spa
e of 
ubi
s on �: a point in

the �ber of B

2

above

~

� 
orresponds then to a triple of points on �, and we will

refer to points of B

2

as to lines with a pair of distinguished points and a triple of

distinguished points.

Lemma 2.2.

(1) B

2

interse
ts S

2

�

=

B`

�

�

P

2

�

�

P

2

along e.

(2) The line-
onditions in V

2

are generi
ally smooth along B

2

.

Proof: (1) Re
all that S

1

is tangent to E

1

along e (Remark 1.4 (2)). Thus S

2

\

E

2

�

e

E

1

\ E

2

= B

2

.

(2) By Lemma 1.5 (2), the line-
onditions in V

1

are generi
ally smooth along

B

1

.

This gives us the additional information about 
onditions we will need in the


omputation in x4:

Lemma 2.3. j

�

2

P

2

= 3h, j

�

2

L

2

= 12h � 2� � '. The full interse
tion 
lasses for

point- and line-
onditions with respe
t to B

2

are

B

2

Æ P

2

= 3h ; B

2

Æ L

2

= 1 + 12h� 2�� ':

Proof: P

2

= �

�

2

P

1

; L

2

= �

�

2

L

1

�E

2

. P

2

doesn't 
ontain B

2

, and e

B

2

L

2

= 1 follows

from Lemma 2.2 (2).

In the lo
al 
oordinates given for V

1

in x3.1, equations for B

1

are

b

3

= 0; 3b

6

� 2b

1

= 0; 3b

7

� b

1

b

4

= 0;

3b

8

� b

2

b

4

= 0; 3b

9

� 2b

2

b

5

= 0;

(Remark 1.7 (2)) thus we 
an 
hoose 
oordinates (


1

; : : : ; 


9

) in an open set in V

2

so that




1

= b

1




2

= b

2




3




6

= b

3




4

= b

4




5

= b

5




6

= 3b

6

� 2b

1




7




6

= 3b

7

� b

1

b

4




8




6

= 3b

8

� b

2

b

4




9




6

= 3b

9

� 2b

2

b

5

:

In the 
oordinates (


1

; : : : ; 


9

), equations for E

2

and

e

E

1

are 


6

= 0 and 


3

= 0

respe
tively.
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Re
all that S

1

is the isomorphi
 image of a map �

1

: B`

�

�

P

2

�

�

P

2

,! V

1

(see

Lemma 1.3) given in lo
al 
oordinates by

(�

1

; �

2

;u; t) 7! (3�

1

+ u; 3�

2

+ ut;�u

2

; 2t; t

2

; 2�

1

; 2�

1

t; 2�

2

t; 2�

2

t

2

):

Now �

1

lifts to a map �

2

: B`

�

�

P

2

�

�

P

2

,! V

2

; a lo
al 
oordinate expression for �

2

is

(*) (�

1

; �

2

;u; t) 7! (3�

1

+ u; 3�

2

+ ut;

u

2

; 2t; t

2

;�2u; t; t

2

; t

3

):

Remark 2.4.

(1) From this it follows �

�

2

E

2

= e.

(2) Using (*), one 
he
ks that in terms of the des
riptions of e as set of lines

with distinguished point, and of B

2

as set of lines with distinguished pair and

triple of points, �

2

a
ts e �! B

2

by mapping the line � with distinguished

point p to the line � with distinguished double point p and triple point p.

Lemma 2.5. Let

�

� be a point on B

2

, i.e. a line � with distinguished pair of

points p

1

; p

2

and triple of points q

1

; q

2

; q

3

, and 
onsider the line-
ondition L

�

in V

2


orresponding to a line � 6= �. Then:

(1) L

�

is tangent to E

2

at

�

� if 9i; p

i

2 �;

(2) L

�

is tangent to

e

E

1

at

�

� if 9i; q

i

2 �.

Proof: We 
an assume � = x

0

, � = x

1

, by invarian
e under proje
tive transfor-

mations. In lo
al 
oordinates, the equation for L

�

is then

4


3




3

5

+ 


6




2

9

= 0 ;

and 
oordinates for

�

� have 


5

= 0 if the pair tou
hes �, 


9

= 0 if the triple tou
hes

�. The veri�
ations are immediate.

x3.3. The third blow-up. Let V

3

= B`

B

2

V

2

, write �

3

: V

3

�! V

2

for the blow-up

map, E

3

for the ex
eptional divisor, and denote by S

3

, P

3

, L

3

the proper transforms

of S

2

, P

2

, L

2

. Then P

3

= �

�

3

P

2

, and L

3

= �

�

3

L

2

� E

3

(Lemma 2.2 (2)).

In V

3

the line-
onditions will interse
t in the proper transform S

3

of S

2

, a 4-

dimensional smooth variety isomorphi
 to the blow-up of

�

P

2

�

�

P

2

along the diagonal

(Lemma 3.1, Proposition 3.2). We will 
hoose S

3

as the 
enter B

3

for the fourth

blow-up.

We �rst of all remark:

Lemma 3.1. S

3

is isomorphi
 to S

2

, hen
e to B`

�

�

P

2

�

�

P

2

.

Proof: By Lemma 2.2 (1), S

3

is the blow-up of S

2

along a divisor.

Then
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Proposition 3.2. The interse
tion of all line-
onditions in V

3

is supported on the

4-dimensional smooth irredu
ible variety S

3

.

Proof: We have to verify that the line-
onditions interse
t in E

3

only along S

3

\E

3

.

Sin
e B

2

has 
odimension 2 in V

2

, E

3

is a P

1

-bundle over B

2

. A general line-


ondition is smooth at

�

� 2 B

2

(Lemma 2.2 (2)), thus the line-
onditions in V

3


an

interse
t in at most one point over ea
h

�

� 2 B

2

. We have then to 
he
k that the

line-
onditions in V

3


an interse
t in E

3

only above B

2

\S

2

, i.e. only above

�

� 2 B

2

with 
oin
ident pair and triple of points (see Remark 2.4 (2))

Noti
e that sin
e B

2

=

e

E

1

\ E

2

, the proper transforms of

e

E

1

, E

2

in V

3


ut the

�ber of E

3

over any

�

� 2 B

2

in distin
t points, say r

1

; r

2

. Fix now

�

� 2 B

2

, i.e. a

line � with distinguished pair p

1

; p

2

and triple q

1

; q

2

; q

3

, and let � 6= � be a line. As

a 
onsequen
e of Lemma 2.5:

if � tou
hes the pair, then the line-
ondition in V

3


orresponding to � 
ontains

r

2

;

if � tou
hes the triple, then the line-
ondition in V

3


orresponding to � 
ontains

r

1

.

We 
on
lude that the line-
onditions 
an interse
t over

�

� only if p

1

= p

2

= q

1

=

q

2

= q

3

, i.e. if

�

� 2 B

2

\ S

2

.

Therefore in V

3

the line-
onditions interse
t along the smooth and irredu
ible

4-dimensional variety S

3

�

=

B`

�

�

P

2

�

�

P

2

. We 
hoose S

3

as the 
enter for the next

blow-up: in other words, we let B

3

be S

3

.

Note that B

3

�

=

B`

�

�

P

2

�

�

P

2

has two natural proje
tions onto

�

P

2

: let `, m be the

pull-ba
ks via these proje
tions of the hyperplane 
lass in

�

P

2

, and denote by e the

ex
eptional divisor.

Theorem III (4). B

3

�

=

B`

�

�

P

2

�

�

P

2

.

(i) The interse
tion ring of B

3

is generated by `;m; e, and the relations em = e`,

`

3

= m

3

= 0,

Z

B

3

`

2

m

2

= 1;

Z

B

3

e

2

`

2

= �1;

Z

B

3

e

3

` = �3;

Z

B

3

e

4

= �6 ;

(ii) 
N

B

3

V

3

) = 1+7`+17m�16e+126m

2

+99`m+21`

2

�315e`+105e

2

+582`m

2

+

237`

2

m�2517e`

2

+1611e

2

`�358e

3

+1026`

2

m

2

+9174e

2

`

2

�3912e

3

`+652e

4

:

Proof: (i) Call k the hyperplane 
lass in

�

P

2

�

=

�

Æ

,!

�

P

2

�

�

P

2

. Sin
e k = Æ

�

` = Æ

�

m,

then `;m; e generate the interse
tion ring of B

3

(
f. [F, Example 8.3.9℄). em = e`

is 
lear, while the other relations are 
he
ked observing that e� e

2

+ e

3

� e

4

pushes-

forward to

s(�;

�

P

2

�

�

P

2

) =

1

(1 + k)

3

:

(ii) j

�

3


(TV

3

), 
(TB

3

) 
an be obtained by applying the blow-up Chern 
lasses for-

mula (
f. [F, Theorem 15.4℄).
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Then 
(N

B

3

V

3

) is 
omputed as j

�

3


(TV

3

)=
(TB

3

).

In the lo
al 
oordinates given for V

2

in x3.2, equations for B

2

are




3

= 0; 


6

= 0

(re
all that B

2

=

e

E

1

\ E

2

), thus we 
an 
hoose 
oordinates (d

1

; : : : d

9

) in an open

set in V

3

su
h that

d

1

= 


1

d

2

= 


2

d

3

= 


3

d

4

= 


4

d

5

= 


5

d

6

d

3

= 


6

d

7

= 


7

d

8

= 


8

d

9

= 


9

:

The equation of the ex
eptional divisor is d

3

= 0.

The map �

2

: B`

�

�

P

2

�

�

P

2

�! V

2

lifts to a map �

3

: B`

�

�

P

2

�

�

P

2

�! V

3

, given in


oordinates by

(�

1

; �

2

;u; t) 7! (3�

1

+ u; 3�

2

+ ut;

u

2

; 2t; t

2

;�4; t; t

2

; t

3

):

Lemma 3.3. j

�

3

P

3

= `+ 2m, j

�

3

L

3

= 4`+ 8m� 6e; the full interse
tion 
lasses for

points- and line-
onditions with respe
t to B

3

are

B

3

Æ P

3

= `+ 2m ; B

3

Æ L

3

= 1 + 4`+ 8m� 6e:

Proof: j

�

3

P

3

= `+ 2m be
ause of the 
ommutativity of the diagram

B

3

= S

3

j

3

����! V

3

?

?

y

?

?

y

�

P

2

�

�

P

2

�

0

����! V

0

;

by the de�nition of �

0

in x3.0, and sin
e P

3

is the pull-ba
k of a hyperplane from V

0

.

j

�

3

L

3

= 4`+8m� 6e be
ause L

3

= �

�

3

L

2

� E

3

, L

2

= �

�

2

L

1

� E

2

, L

1

= �

�

1

L

0

� 2E

1

,

L

0

is a hypersurfa
e of degree 4 in V

0

, and �

�

1

E

1

= 2e (Remark 1.4 (2)), �

�

2

E

2

= e

(Remark 2.4 (1)), and �

�

3

E

3

= e. No point-
onditions in V

3


ontain B

3

, therefore

e

B

3

P

3

= 0; e

B

3

L

3

= 1 follows from Lemma 0.1 (1), sin
e V

0

and V

3

are isomorphi


away from B

0

and from the ex
eptional divisors.

Remarks 3.4.

(1) The equations of the line-
onditions in V

3


orresponding to lines through the

point (1 : 0 : 0) are written in terms of d

4

; : : : ; d

9

only, as seen by dire
t


omputation.

(2) On the other hand, the last six 
oordinates d

4

; : : : ; d

9

of the image of a point

via �

3

are 
onstant along divisors ft = 
onst:g in B`

�

�

P

2

�

�

P

2

.
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Therefore, the behavior of line-
onditions 
orresponding to lines 
ontaining the

point (1 : 0 : 0) is 
onstant along the sets ft = 
onst:g in B`

�

�

P

2

�

�

P

2

. For example,

to 
he
k the transversality of line-
onditions 
orresponding to lines through (1 : 0 :

0) at all points of the image of B`

�

�

P

2

�

�

P

2

, it is enough to 
he
k it for points not


ontained in e. This argument will be applied in xx3.4, 3.5; it 
an also be used to

give a se
ond proof of Proposition 3.2.

x3.4. The fourth blow-up. Let V

4

= B`

B

3

V

3

, write �

4

: V

4

�! V

3

for the blow-up

map, E

4

for the ex
eptional divisor, and denote by P

4

, L

4

the proper transforms of

P

3

, L

3

. Then P

4

= �

�

4

P

3

, and L

4

= �

�

4

L

3

� E

4

(Lemma 0.1 (1)).

In V

4

, the line-
onditions will still interse
t in a 4-dimensional smooth variety B

4

,


ontained in E

4

(Proposition 4.1). B

4

will be the last 
enter of blow-up.

Proposition 4.1. The interse
tion of all line-
onditions in V

4

is a smooth 4-

dimensional subvariety B

4

of E

4

= P(N

B

3

V

3

). More pre
isely, B

4

= P(L), L a

sub-line bundle of N

B

3

V

3

.

Proof: First 
onsider a point in B

3

�

=

B`

�

�

P

2

�

�

P

2

not on the ex
eptional divisor e.

There exist isomorphi
 neighborhoods of su
h a point in V

3

and of a point ��

2

2 S

0

,

� 6= �, in V

0

= P

9

; by Lemma 0.1 (3) the tangent hyperplanes to the line-
onditions

in V

0

at ��

2

interse
t in the 5-dimensional subspa
e R

�

of V

0


onsisting of the


ubi
s 
ontaining �. In fa
t, if �; � don't 
ontain (1 : 0 : 0) it is enough to 
onsider

line-
onditions 
orresponding to lines 
ontaining (1 : 0 : 0).

The tangent spa
e to R

�

at ��

2

, T

��

2

R

�

, 
ontains the 4-dimensional T

��

2

S

0

; as

�; � vary, T

��

2

R

�

=T

��

2

S

0

determine a line-bundle

Æ

L over S

0

�B

0

�

=

B

3

�e, and the

interse
tion of the line-
onditions in V

4

above points in B

3

outside e is supported

on P(

Æ

L) ,! P(N

B

3

V

3

) = E

4

. By Remarks 3.4,

Æ

L extends to a line bundle L over

the whole B

3

, and the line-
onditions interse
t along P(L) as 
laimed.

We 
hoose B

4

for the next (and last) 
enter of blow-up: let j

4

: B

4

,! V

4

be the

in
lusion. The next lemma gives the information needed to 
ompute 
(N

B

4

V

4

).

Lemma 4.2. 


1

(L) = 3`+ 3m� 4e.

Proof: P(L) is isomorphi
 to B

3

= B`

�

�

P

2

�

�

P

2

via the proje
tion map. To


ompute 


1

(L), noti
e that the restri
tion of O(�1) from P(N

B

3

V

3

) = E

4

to P(L)

is the pull-ba
k of L, so that, via the isomorphism P(L) �! B

3

, 


1

(L) = j

�

4

E

4

.

Consider then the divisor F

0

in V

0

with equation

�

�

�

�

�

�

3a

0

a

1

a

2

2a

1

2a

3

a

4

2a

2

a

4

2a

5

�

�

�

�

�

�

= 12a

0

a

3

a

5

� 3a

0

a

2

4

� 4a

2

1

a

5

+ 4a

1

a

2

a

4

� 4a

2

2

a

3

= 0:

The rows of the determinant are 
oeÆ
ients of se
ond partial derivatives of the

equation of a 
ubi
, therefore it is 
lear that this divisor 
ontains S

0

(the 
ubi
s in

S

0

have a triple point). If F

1

; F

2

; F

3

denote the proper transforms of F

0

in V

1

; V

2

; V

3

,

one 
he
ks that F

1

= �

�

1

F

0

� 2E

1

, F

2

= �

�

2

F

1

, F

3

= �

�

3

F

2

. Sin
e F

0

has degree 3,
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it follows that j

�

3

F

3

= 3`+ 6m� 4e. Now F

0

has multipli
ity 1 along S

0

: thus F

3

has multipli
ity 1 along B

3

, and if F

4

is the proper transform of F

3

in V

4

we get




1

(L) = 3`+ 6m� 4e� j

�

4

F

4

:

By the des
ription of L given in the proof of Proposition 4.1, F

4

meets B

4

= P(L)

at a point mapping to ��

2

2 V

0

�B

0

if the tangent hyperplane to F

0

at ��

2


ontains

the spa
e R

�

of 
ubi
s 
ontaining �. Using this fa
t, one 
omputes j

�

4

F

4

= 3m,

getting




1

(L) = 3`+ 6m� 4e� 3m = 3`+ 3m� 4e

as needed.

Note that B

4

is isomorphi
 to B

3

= B`

�

�

P

2

�

�

P

2

via the proje
tion P(L) �! B

3

;

thus its interse
tion ring is generated by the pull-ba
ks of `;m; e, whi
h we will still

denote `;m; e, with the relations stated in Theorem III (4):

Theorem III (5). B

4

�

=

B

3

.

(i) The interse
tion ring of B

4

is generated by `;m; e, and em = e`, `

3

= m

3

= 0,

Z

B

3

`

2

m

2

= 1;

Z

B

3

e

2

`

2

= �1;

Z

B

3

e

3

` = �3;

Z

B

3

e

4

= �6 ;

(ii) 
(N

B

4

V

4

) = 1�5`+5m+18m

2

�27`m+3`

2

+21e`�7e

2

�30`m

2

+75`

2

m�

225e`

2

+ 135e

2

`� 30e

3

+ 75`

2

m

2

:

Proof: (i) is noti
ed above.

(ii) The Euler sequen
e

0 �! O

E

4

�! N

B

3

V

3


O(1) �! T

E

4

jB

3

�! 0

restri
ts to

0 �! O

P(L)

�! N

B

3

V

3




�

L �! T

E

4

jB

3

�! 0

on P(L) (for ease of reading, we have suppressed the pull-ba
k signs). Sin
e B

4

=

P(L)

�

=

B

3

via the proje
tion, it follows


(N

B

4

E

4

) = 
(T

E

4

jB

3

) = 
(N

B

3

V

3




�

L);

so that


(N

B

4

V

4

) = j

�

4


(N

E

4

V

4

)
(N

B

4

E

4

) = 
(L)
(N

B

3

V

3




�

L);

and (ii) follows.
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Lemma 4.3. j

�

4

P

4

= ` + 2m; j

�

4

L

4

= ` + 5m � 2e: The full interse
tion 
lasses for

the point- and line-
onditions with respe
t to B

4

are

B

4

Æ P

4

= `+ 2m ; B

4

Æ L

4

= 1 + `+ 5m� 2e:

Proof: P

4

= �

�

4

P

3

implies j

�

4

P

4

= ` + 2m. The restri
tion of O(�1) from E

4

=

P(N

B

3

V

3

) to P(L) is the pull-ba
k of L, so j

�

4

L

4

= j

�

4

(�

�

4

L

3

�E

4

) = 4`+8m� 6e�




1

(L) = ` + 5m � 2e (Lemma 4.2). The point-
onditions in V

4

don't 
ontain B

4

;

the line-
onditions in V

4

are generi
ally smooth along B

4

sin
e the line-
onditions

in V

3

are generi
ally smooth along B

3

.

x3.5. The �fth blow-up. Let V

5

= B`

B

4

V

4

, write �

5

: V

5

�! V

4

for the blow-up

map, E

5

for the ex
eptional divisor, denote by

e

E

4

, P

5

, L

5

the proper transforms of

E

4

, P

4

, L

4

.

Finally, we will see that the line-
onditions `separate' in V

5

(Proposition 5.3),


on
luding the proof of Theorem III.

Consider

e

E

4

\E

5

= P(N

B

4

E

4

).

Denote by O

1

(�1) (resp. O

2

(�1)) the pull-ba
k of the universal line-bundle

from the �rst (resp. se
ond) fa
tor of

�

P

2

�

�

P

2

to

�

P

2

�

�

P

2

. Re
alling that B

3

� e

�

=

S

0

�B

0

,!

�

P

2

�

�

P

2

(and omitting pull-ba
ks for sake of notations)

N

B

3

�e

V

3

�

=

N

S

0

�B

0

V

0

= TP

9

=T

�

P

2

�

�

P

2

;

if P

2

= PQ, so that P

9

= P(Sym

3

�

Q), then TP

9

is given by the Euler sequen
e

0 �! O

P

9

�! Sym

3

�

Q
O

P

9

(1) �! TP

9

�! 0; thus

N

B

3

�e

V

3

�

=

(Sym

3

�

Q
O

P

9

(1)=O

P

9

)=T

�

P

2

�

�

P

2

�

=

(Sym

3

�

Q
O

1

(1)
O

2

(2)=O

B

3

�e

)=T

�

P

2

�

�

P

2

:(*)

N

B

4

E

4

�

=

T

E

4

jB

4

is given by

0 �! O

E

4

�! N

B

3

V

3


O

E

4

(1) �! T

E

4

jB

4

�! 0;

restri
ting on B

4

= P(L) to

0 �! O

B

4

�! N

B

3

V

3




�

L �! N

B

4

E

4

�! 0:

On the other hand, over B

3

� e the line bundle L restri
ts to

Æ

L

�

=

(Sym

2

�

Q
O

P

5

(1)=O

P

5

)=T

�

P

2

�

�

P

2

�

=

(Sym

2

�

Q
O

1

(1)
O

2

(1)=O

B

3

�e

)=T

�

P

2

�

�

P

2

(**)
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(this follows from the des
ription of

Æ

L given in the proof of Proposition 4.1). By

(*) and (**),

N

B

4

E

4

�

=

(N

B

3

V

3




�

L)=O

B

4

�

=

(N

B

3

V

3

=L)


�

L

restri
ts over B

4

� e to

Sym

3

�

Q

Sym

2

�

Q
O

2

(�1)


O

1

(1)
O

2

(2)


�

L:

Therefore, over a point in B

4

�e, mapping to ��

2

2 S

0

��, the �ber of N

B

4

E

4


an

be identi�ed with the spa
e Sym

3

�

Q=Sym

2

�

Q, where the in
lusion Sym

2

�

Q ,! Sym

3

�

Q

is given by the multipli
ation by �. This spa
e is 
anoni
ally isomorphi
 to the spa
e

of homogeneous degree-3 polynomials on the line with equation � = 0; 
onsequently,

a point of

e

E

4

\ E

5

= P(N

B

4

E

4

) over ��

2

, � 6= �, 
an be pi
tured as a 
ubi



onsisting of a line and a double line, with three distinguished points on the double

line.

For � 6= � lines in P

2

, 
onsider a point ��

2

2

e

E

4

\E

5

, i.e. ��

2

`with a distinguished

triple of points spe
i�ed on �', and a line � � P

2

.

Lemma 5.1. Suppose � does not 
ontain � \ �. Then the line-
ondition in V

5


orresponding to � 
ontains ��

2

if and only if � 
ontains a point of the triple on �.

Proof: Let L

i

be the line-
ondition in V

i


orresponding to �. Sin
e � + � \ �,

then L

0

is non-singular at ��

2

by Lemma 0.1 (1). Let H

p

� Sym

3

�

Q denote the

spa
e of 
ubi
 polynomials on Q vanishing at p. As ��

2

varies in S

0

, the H

�\�

de�ne a subbundle H of Sym

3

�

Q over a neighborhood of ��

2

; noti
e that H �

Sym

2

�

Q
O

2

(�1). By Lemma 0.1 (3), the tangent spa
e to L

0

at ��

2

is 
ontained

in T

��

2

P

9

as the image of H
O

P

9

(1); tra
ing the argument pre
eding this Lemma

identi�es then the �ber of L

5

\

e

E

4

\E

5

over ��

2

with P(H

�\�

=Sym

2

�

Q), the spa
e

of triples on � tou
hing �.

Remark 5.2. Noti
e that this Lemma implies that the interse
tion of all line-


onditions in V

5

must be disjoint from

e

E

4

\ E

5

. We will prove that it is empty by

showing that it must also be 
ontained in

e

E

4

\E

5

.

Proposition 5.3. The interse
tion of all line-
onditions in V

5

is empty.

Proof: The line-
onditions 
an interse
t only in E

5

. By Remarks 3.4, it is enough

to 
he
k that the interse
tion is empty above B

4

�e; and sin
e the matter is invariant

under proje
tive transfomations, it is enough to 
he
k that the interse
tion of all

line-
onditions in V

5

is empty over a single point ��

2

2 B

4

, with � 6= �.

The �ber (E

5

)

��

2

of E

5

= P(N

B

4

V

4

) over ��

2

is a 4-dimensional proje
tive spa
e

P

4

. For � + � \ �, the asso
iation

� line in P

2

7! (E

5

)

��

2

\ line-
ondition in V

5


orresponding to �

determines a rational map

�

P

2

� � �

>

�

P

4

. Noti
e that by the non-singularity of

�

P

2

,

this extends in 
odimension 1, so it must be de�ned for at least all � 6= �; �. Let

then � � � \ �, � 6= �; �, denote by ��

2

also the point on B

4

over ��

2

2 P

9

,
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and write L

�

0

for the line-
ondition in V

4


orresponding to a line �

0

+ � \ �. A


oordinate 
omputation shows that as �

0

approa
hes �, its tangent spa
e at ��

2

T

��

2

L

�

0

approa
hes T

��

2

E

4

(as subspa
es of T

��

2

V

4

). It follows that the image of �

under

�

P

2

� � �

>

�

P

4

is the interse
tion of

e

E

4

with the �ber of E

5

: this implies that the

interse
tion of all line-
onditions in V

5

is in
luded in

e

E

4

\ E

5

. On the other hand,

by Remark 5.2 the interse
tion must be disjoint from

e

E

4

\ E

5

: therefore, it must

be empty.

A di�erent proof of an equivalent statement 
an be found in [St, II℄, p. 146.

Proposition 5.3 
on
ludes the proof of Theorem III:

e

V = V

5

is a smooth variety of


omplete 
ubi
s. By Corollary I, the number of smooth 
ubi
s 
ontaining n

p

points

and tangent to n

`

lines in general position (n

p

+n

`

= 9) is then

R

V

5

P

n

p

5

L

n

`

5

. In the

next se
tion we will apply Theorem II to 
ompute these interse
tion numbers.

x4 Computation of the 
hara
teristi
 numbers. We work over an algebrai
ally


losed �eld of 
hara
teristi
 6= 2; 3. The notations for this se
tion are those used in

the statement of Theorem III: V

0

= P

9

, V

i

is the i-th blow-up, B

i

the 
enter for the

i+1-th blow-up, the interse
tion rings of the B

i

's are generated by various subsets

of fh; �; �; `;m; eg, with the relations listed in Theorem III. Furthermore (as in the

rest of x3) P

i

; L

i

denote respe
tively the point- and line-
onditions in V

i

; we found

in x3 that the full interse
tion 
lasses of P

i

; L

i

with respe
t to B

i

, i = 0; : : : ; 4, are

respe
tively

B

0

Æ P

0

= 3h ; B

0

Æ L

0

= 2 + 12h

B

1

Æ P

1

= 3h ; B

1

Æ L

1

= 1 + 12h� 2�

B

2

Æ P

2

= 3h ; B

2

Æ L

2

= 1 + 12h� 2�� '

B

3

Æ P

3

= `+ 2m ; B

3

Æ L

3

= 1 + 4`+ 8m� 6e

B

4

Æ P

4

= `+ 2m ; B

4

Æ L

4

= 1 + `+ 5m� 2e:

Also, Theorem III lists the total Chern 
lasses 
(N

B

i

V

i

) and the relations in dimen-

sion 0 in the Chow groups of the B

i

's. Therefore, the following statement translates

the 
omputation of the 
hara
teristi
 numbers of a family F into the 
omputation

of a degree and of �ve full interse
tion 
lasses B

i

Æ F

i

:

Theorem IV. (Notations of Theorem III) Let F an r-dimensional subvariety in

P

9

parametrizing a family of redu
ed 
ubi
s, and let F

i

be the proper transform in

V

i

of the 
losure F

0

of F . Also, let f be the degree of the 
losure of F . Then the

number N

F

(n

p

P; n

`

L) of elements (
ounted with multipli
ities) of F 
ontaining n

p

given points and tangent to n

`

given lines in general position, with n

p

+ n

`

= r, is

N

F

(n

p

P; n

`

L) = 4

n

`

� f �

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

Æ F

i

)


(N

B

i

V

i

)

:

Furthermore, the elements 
ontaining the given points and properly tangent to the

given lines are 
ounted with multipli
ity 1.
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Proof: This follows from

Z

V

0

P

n

p

0

L

n

`

0

F

0

= 4

n

`

� f(1)

Z

V

i+1

P

n

p

i+1

L

n

`

i+1

F

i+1

=

Z

V

i

P

n

p

i

L

n

`

i

F

i

�

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

Æ F

i

)


(N

B

i

V

i

)

(2)

N

F

(n

p

P; n

`

L) =

Z

V

5

P

n

p

5

L

n

`

5

F

5

:(3)

(1) follows from B�ezout's Theorem, (2) from Theorem II, and (3) from Theorems I

and III.

For the family F of smooth 
ubi
s, we have F

i

= V

i

, so that B

i

ÆF

i

= [B

i

℄. Also,

all tangen
ies are proper, thus the numbers given by Theorem IV are in fa
t the

`
hara
teristi
 numbers'. Writing N(n

p

P; n

`

L) = N

F

(nP; n

`

L) in this 
ase, we get

Corollary IV. The 
hara
teristi
 numbers for the family of smooth plane 
ubi
s

are given by

N(n

p

P; n

`

L) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 n

p

= 9; n

`

= 0

4 n

p

= 8; n

`

= 1

16 n

p

= 7; n

`

= 2

64 n

p

= 6; n

`

= 3

256 n

p

= 5; n

`

= 4

976 n

p

= 4; n

`

= 5

3424 n

p

= 3; n

`

= 6

9766 n

p

= 2; n

`

= 7

21004 n

p

= 1; n

`

= 8

33616 n

p

= 0; n

`

= 9

:

Proof: Theorem IV gives

(*) N(n

p

P; n

`

L) = 4

n

`

�

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`


(N

B

i

V

i

)

;
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listing only the non-zero 
ontributions, and understanding n

p

= 9� n

`

:

Z

B

0

(3h)

n

p

(2 + 12h)

n

`

(1 + h)

3

(1 + 3h)

10

=

8

>

<

>

:

1152 n

`

= 7

16128 n

`

= 8

125952 n

`

= 9

Z

B

1

(3h)

n

p

(1 + 12h� 2�)

n

`

(1 + 2h� �)

6

(1 + �)(1 + 3h� �)

10

=

8

>

<

>

:

441 n

`

= 7

5229 n

`

= 8

32214 n

`

= 9

Z

B

2

(3h)

n

p

(1 + 12h� 2�� ')

n

`

(1 + ')(1 + �� ')

=

8

>

<

>

:

2295 n

`

= 7

21411 n

`

= 8

97146 n

`

= 9

Z

B

3

(`+ 2m)

n

p

(1 + 4`+ 8m� 6e)

n

`

(1 + 7`+ 17m� 16e+ : : : )

=

8

>

>

>

>

>

<

>

>

>

>

>

:

24 n

`

= 5

390 n

`

= 6

1572 n

`

= 7

18 n

`

= 8

�22635 n

`

= 9

Z

B

4

(`+ 2m)

n

p

(1 + `+ 5m� 2e)

n

`

(1� 5`+ 5m+ : : : )

=

8

>

>

>

>

>

<

>

>

>

>

>

:

24 n

`

= 5

282 n

`

= 6

1158 n

`

= 7

1746 n

`

= 8

�4149 n

`

= 9

Ea
h of these 
omputations is performed by extra
ting the 0

th

dimensional terms

in the series and using the relations in the rings of the B

i

's listed in Theorem III.

For example:

Z

B

4

(1 + `+ 5m� 2e)

9

(1� 5`+ 5m+ : : : )

=

Z

B

4

48654`

2

m

2

+ 126129e

2

`

2

� 29508e

3

`+ 2533e

4

= 48654 � 1 + 126129 � (�1)� 29508 � (�3) + 2533 � (�6)

= �4149:

The 
omputations were 
arried out using Ma
syma.

These results and (*) above give N(n

p

P; n

`

L) = 4

n

`

for n

`

= 0; : : : ; 4 and n

p

=
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9� n

`

, and N(n

p

P; n

`

L) =

=

8

>

>

>

>

>

<

>

>

>

>

>

:

1024� 0� 0� 0� 24� 24 = 976

4096� 0� 0� 0� 390� 282 = 3424

16384� 1152� 441� 2295� 1572� 1158 = 9766

65536� 16128� 5229� 21311� 18� 1746 = 21004

262144� 125952� 32214� 97146 + 22635 + 4149 = 33616

for n

`

= 5; : : : ; 9 as stated.

Corollary IV agrees with Maillard and Zeuthen's result.

More generally, the relevant information needed to apply Theorem IV to a family

F is the behavior of the proper transforms F

i

of the 
losure F

0

of F , with respe
t

to the B

i

's. For example, if F

0

is a divisor of P

9

, all one needs is the degree of F

0

and the �ve multipli
ities of the F

i

along the B

i

(for F

i

divisors, this information

gives (B

i

Æ F

i

)). For example, for F

0

the divisor of singular 
ubi
s the multipli
ities

are 8,5,3,6,6, as we will 
ompute in a forth
oming note. These multipli
ities and

the degree of F

0

(12) are enough to 
ompute the N

F

(n

p

P; n

`

L) for nodal 
ubi
s.

From them, the 
hara
teristi
 numbers for nodal 
ubi
s will be obtained by further

appli
ations of Theorem IV to the families of nodal 
ubi
s with node on given line

and node at a given point.

x5 A 
odimension-2 
ondition. Maillard and Zeuthen's results for smooth 
u-

bi
s go further than Corollary IV above. After 
omputing the 
hara
teristi
 num-

bers involving point- and line-
onditions, they list the numbers also involving the


odimension-2 
onditions expressing tangen
y to a line at a given point.

Su
h 
onditions are linear: in a sense they are the interse
tion of two `in�nitely

near' point-
onditions. The numbers re
e
t this fa
t by agreeing with appropriate


hara
teristi
 numbers from Corollary IV for low n

`

; but as n

`

grows larger and

non-redu
ed 
urves enter into the pi
ture, their position with respe
t to the 
ag

be
omes relevant and one expe
ts dis
repan
ies to o

ur. It is natural to inquire

whether the information we need to apply Theorem IV to the 
omputation of the

numbers involving 
odimension-1 
onditions is enough to obtain these other results;

this is indeed the 
ase, as we will show in this se
tion.

The geometry of the situation is 
aptured in �ve full interse
tion 
lasses (Propo-

sition 5.1); on
e they are 
omputed, a statement analogous to Theorem IV gives

the numbers involving these 
odimension-2 
onditions for a family F if the 
lasses

B

i

Æ F

i

are known. As in x4, the appli
ation to the family of smooth plane 
ubi
s

(over an algebrai
ally 
losed �eld of 
hara
teristi
 6= 2; 3) is then immediate.

We will keep the style of the notations introdu
ed in x1: 
all point-line-
ondi-

tions M the linear subspa
es P

N�2

,! P

N

formed by the plane 
urves tangent to a

given line at a given point; for any variety

e

V mapping to P

N

, isomorphi
ally over

P

N

� S, 
all point-line-
onditions in

e

V the proper transforms

f

M of the 
onditions

M of P

N

.

f

M is regularly imbedded outside the inverse image of S in

e

V ; therefore,
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if the interse
tion of

f

M with a subvariety

e

F of

e

V is proper and has no 
omponents

lying over S, then the produ
t

f

M �

e

F is de�ned.

Theorem I

0

. Let

e

V be a variety of 
omplete 
urves of degree d, F an r-dimensio-

nal subvariety in P

N

parametrizing a family of redu
ed 
urves, and let

e

F be the

proper transform in

e

V of the 
losure of F . Then the number of elements (
ounted

with multipli
ities) of F 
ontaining n

p

given points, tangent to n

`

given lines,

and tangent to n

m

given lines at spe
i�ed points (all 
hoi
es being general), with

n

p

+ n

`

+ 2n

m

= r, is

e

P

n

p

�

e

L

n

`

�

f

M

n

m

�

e

F . Furthermore, the elements satisfying

the 
onditions and properly tangent to the lines are 
ounted with multipli
ity one.

Proof: We just sket
h the arguments here, sin
e they 
losely resemble those in x1.

We also assume the notations and the basi
 set-up from x1. The main observation

is the analogous for point-line-
onditions of Lemma 1 in x1, namely:

Claim. For F � P

N

, there exists a point-line-
ondition M su
h that

g

M \ F =

f

M \

e

F .

Indeed, one has to 
he
k that

f

M \

e

F doesn't have 
omponents over S. But a

point-line-
ondition M is 
ontained in the interse
tion of the 
orresponding point-


ondition P and line-
ondition L, so that

f

M \

e

F �

e

L \

e

P \

e

F . We 
an 
hoose the

point so that

e

P \

e

F has no 
omponents over S (Lemma 2 in x1), and for a general

line through that point we 
an get

e

L \

e

P \

f

M with no 
omponents over S (the set

of line-
onditions 
orresponding to lines through a point is non-degenerate in

�

P

M

).

The 
laim implies the �rst part of the theorem, by the same argument in the

proof of Theorem I (1) in x1.

The proof of the statement about multipli
ities is likewise similar to the proof of

Theorem I (2) in x1.

Before stating Theorem IV

0

, we 
ompute the full interse
tion 
lasses B

i

ÆM

i

,

i = 0; : : : ; 4, for point-line-
onditions. Here the notations are those used in Theorem

III, M

0

denotes a point-line-
ondition in V

0

= P

9

, and M

i

is the proper-transform

of M

i�1

in V

i

(i.e., a `point-line-
ondition' in V

i

).

Proposition 5.1. (Full interse
tion 
lasses for point-line-
onditions)

(1) B

0

ÆM

0

= 2h+ 9h

2

(2) B

1

ÆM

1

= h+ 9h

2

� 2�h

(3) B

2

ÆM

2

= h+ 9h

2

� 2�h� �h

(4) B

3

ÆM

3

= m+ `

2

+ 4`m+ 4m

2

� 6e`

(5) B

4

ÆM

4

= m+ `

2

+ `m+m

2

� 2e` :

Proof: The main tools are the geometry of the blow-ups (x3), and (iii) from x2.

(1) M

0

is non-singular, has 
odimension 2 and interse
ts B

0

along the pen-


il P

1

� P

2

= B

0

of triple lines through the given point; therefore B

0

ÆM

0

=

[B

0

\M

0

℄ +B

0

�M

0

. An algebrai
 
he
k gives [B

0

\M

0

℄ = 2h; and sin
e the hy-

perplane in P

9

= V

0

pulls-ba
k to 3h on B

0

, (1) follows.

(2) Noti
e that M

0

is 
ontained in the line-
ondition L

0


orresponding to the

given line, and in the point-
ondition P

0


orresponding to the point. The �ber of
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M

1

over a point of B

0

\M

0

is 5-dimensional and 
ontained into (therefore 
oin
iding

with) the irredu
ible 5-dimensional �ber of L

1

over the same point. It follows that

B

1

\M

1

is (set-theoreti
ally) the �ber in B

1

of B

0

\M

0

. Also, dim(SingM

1

) �

dimB

0

\M

0

= 1, thus M

1

is generi
ally non-singular along B

1

\M

1

; it follows

B

1

ÆM

1

= [B

1

\M

1

℄ + B

1

�M

1

. Sin
eM

1

� L

1

\ P

1

, L

1

is generi
ally non-singular

along B

1

(Lemma 1.5 (2) in x3), and P

1


uts transversally B

1

, then [B

1

\M

1

℄ = h.

Finally, one applies Fulton's blow-up formula (Theorem 6.7 in [F℄) to get B

1

�M

1

=

9h

2

� 2�h, as stated.

(3), (4) and (5) are obtained using the same arguments.

Now we 
an state the extension of Theorem IV:

Theorem IV

0

. (Notations of Theorem III) Let F an r-dimensional subvariety in P

9

parametrizing a family of redu
ed 
ubi
s, and let F

i

be the proper transform in V

i

of

the 
losure F

0

of F . Also, let f be the degree of the 
losure of F . Then the number

N

F

(n

p

P; n

`

L; n

m

M) of elements (
ounted with multipli
ities) of F 
ontaining n

p

given points, tangent to n

`

given lines, and tangent to n

m

given lines at spe
i�ed

points (all 
hoi
es being general), with n

p

+ n

`

+ 2n

m

= r, is

N

F

(n

p

P; n

`

L; n

m

M) =

= 4

n

`

� f �

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

ÆM

i

)

n

m

(B

i

Æ F

i

)


(N

B

i

V

i

)

:

Furthermore, the elements 
ontaining the given points and properly tangent to the

given lines are 
ounted with multipli
ity one.

Proof: Similarly to Theorem IV, this is a 
onsequen
e of

Z

V

0

P

n

p

0

L

n

`

0

M

n

m

0

F

0

= 4

n

`

� f(1)

Z

V

i+1

P

n

p

i+1

L

n

`

i+1

M

n

m

i+1

F

i+1

=

Z

V

i

P

n

p

i

L

n

`

i

M

n

m

i

F

i

�

�

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

ÆM

i

)

n

m

(B

i

Æ F

i

)


(N

B

i

V

i

)

(2)

N

F

(n

p

P; n

`

L) =

Z

V

5

P

n

p

5

L

n

`

5

M

n

m

5

F

5

;(3)

where now (3) follows from Theorem I

0

and III.

This applies immediately to the family of smooth 
ubi
s; denoting the numbers

in this 
ase by N(n

p

P; n

`

L; n

m

M):
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Corollary IV

0

.

N(n

p

P; n

`

L; 1M) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 n

p

= 7; n

`

= 0

4 n

p

= 6; n

`

= 1

16 n

p

= 5; n

`

= 2

64 n

p

= 4; n

`

= 3

244 n

p

= 3; n

`

= 4

856 n

p

= 2; n

`

= 5

2344 n

p

= 1; n

`

= 6

4726 n

p

= 0; n

`

= 7

;

N(n

p

P; n

`

L; 2M) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 n

p

= 5; n

`

= 0

4 n

p

= 4; n

`

= 1

16 n

p

= 3; n

`

= 2

62 n

p

= 2; n

`

= 3

220 n

p

= 1; n

`

= 4

576 n

p

= 0; n

`

= 5

;

N(n

p

P; n

`

L; 3M) =

8

>

>

>

<

>

>

>

:

1 n

p

= 3; n

`

= 0

4 n

p

= 2; n

`

= 1

16 n

p

= 1; n

`

= 2

58 n

p

= 0; n

`

= 3

;

N(n

p

P; n

`

L; 4M) =

�

1 n

p

= 1; n

`

= 0

4 n

p

= 0; n

`

= 1

:

Proof: This follows from Theorem IV

0

applied to the family of smooth 
ubi
s; in

this 
ase, B

i

Æ F

i

= [B

i

℄. We just list here the relevant 
ontributions:

N((7� n

`

)P; n

`

L; 1M) =

=

8

>

>

>

<

>

>

>

:

256� 0� 0� 0� 6� 6 = 244 n

`

= 4

1024� 0� 0� 0� 99� 69 = 856 n

`

= 5

4096� 384� 147� 765� 240� 216 = 2344 n

`

= 6

16384� 4992� 1596� 6372 + 1287 + 15 = 4726 n

`

= 7

;

N((5� n

`

)P; n

`

L; 2M) =

=

8

>

<

>

:

64� 0� 0� 0� 1� 1 = 62 n

`

= 3

256� 0� 0� 0� 21� 15 = 220 n

`

= 4

1024� 128� 49� 255 + 13� 29 = 576 n

`

= 5

;

N(0P;3L; 3M) = 64� 0� 0� 0� 3� 3 = 58 :
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Corollary IV

0

also agrees with Maillard and Zeuthen's results.
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