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0. Introdution

In [A1℄ we study the basi enumerative question about the family of all smooth

ubis: we ompute its `harateristi numbers', i.e. the number of smooth plane

ubis tangent to n

`

general lines and ontaining 9�n

`

general points of the plane.

In this paper we study the analogous question for several families of nodal and

uspidal ubis, reovering as in [A1℄ lassi results of Maillard and Zeuthen's.

Spei�ally, we will onsider the families

�D of nodal ubis;

�D` of ubis with node on a given line;

�Dp of ubis with node at a given point;

�C of uspidal ubis;

�C` of ubis with usp on a given line;

�Cp of ubis with usp at a given point.

(we will refer to a family by the subset of the P

9

of plane ubis parametrizing

it), and ompute the list of harateristi numbers for eah of them: i.e., for eah

family F we will ompute the numbers F (k) of elements of F that are tangent

(at smooth points) to k lines and ontain (dimF � k) points in general position

in the plane. Also, we will ompute for these families the numbers de�ned by

onsidering onditions of tangeny to lines at spei�ed points. These results are

listed in Theorem III, x3, and Theorem III

0

, x4.

The omputation of the harateristi numbers for various families of plane ubis

has been attaked suessfully from a number of viewpoints, both in the XIX entury

([M℄, [S℄, [Z℄) and very reently ([Sa℄, [KS℄, [MX℄): the problem stands out as

a test-ground for tehniques in enumerative geometry; and has a ertain harm in

itself, as do most problems so deeptively easy to state.

In both the lassi and the modern approahes quoted above (for example, Klei-

man-Speiser's exellent papers on the subjet) the omputation is arried out de-

pending on suessive degenerations, by relating the harateristi numbers for a

family to the numbers for a more `speial' family. For example, the numbers for

uspidal ubis are used in obtaining the numbers for nodal ones, and these in turn

are an ingredient of the omputation for the family of smooth ubis. In fat, the

numbers for uspidal ubis are obtained by �rst studying families of reduible u-

bis, for whih the enumerative problem is essentially ombinatorial (modulo the

enumerative geometry of onis).

In [A1℄ we have tried a di�erent approah. In a sense, we have aimed to solving

the enumerative question about any given family of redued plane ubis indepen-

dently from other families, at least for what onerns the ontribution of degenerate
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elements. We produe a smooth variety of `omplete ubis', i.e. we resolve all in-

determinaies of the map assoiating to eah ubi its dual sexti at one: this

is aomplished by a sequene of 5 blow-ups at smooth enters over P

9

(the same

sequene was onsidered independently by Sterz, [St℄). Unfortunately, the onstru-

tion doesn't provide an e�etive visualization of what a `omplete ubi' looks like,

so the piture isn't nearly as informative and insightful as e.g. the one assoiated

with the spae of `omplete onis'. However, in this paper we would like to support

the usefulness of that onstrution by employing it to reover Zeuthen's enumera-

tive results on singular ubis (we address the reader to [KS℄ in partiular for an

alternative modern veri�ation of most of these results, from a viewpoint lose to

Zeuthen's). .

Solving an enumerative problem about ubis amounts to omputing the number

of `non-degenerate' points of intersetion of suitable loi in P

9

. Modulo B�ezout's

theorem, this is equivalent to evaluating the ontribution due to the set of degenerate

points: in our ase, this is the set S of non-redued ubis (whih are `tangent' to

all lines of the plane!). This brings naturally to trying to ompute a ertain Segre

lass of a sheme supported on S|for appliations of this approah to enumerative

problems on onis, see [F℄, Examples 9.1.8, 9.1.9. Now, omputing Segre lasses is

in general very hard. In [A1℄ we essentially break the problem in �ve easier ones: let

B

0

; : : : ; B

4

be the enters of the blow-ups, and let V

i

be the i-th blow-up; if F � P

9

parametrizes a family of redued ubis, and F

i

denotes the proper transform in

V

i

of the losure F

0

of F in P

9

, then the problem is redued to the omputation

of the �ve lasses s(B

i

\ F

i

; F

i

), i = 0; : : : ; 4. This is easier, beause the B

i

's are

regularly embedded in the V

i

's, and produts B

i

Æ F

i

= (N

B

i

V

i

)s(B

i

\ F

i

; F

i

) (the

`full intersetion lasses' of [A1℄) are relatively easy to handle. For example, in

the ase of the family of all smooth ubis, B

i

Æ F

i

= [B

i

℄, so the omputation of

the harateristi numbers for the family of all smooth ubis beomes partiularly

simple. For more general F , the enumerative problem is redued expliitly in [A1℄

to the omputation of the �ve lasses B

i

Æ F

i

, i = 0; : : : ; 4 (Theorems IV in [A1℄,

whih we reall as Theorem I in x1); as an example illustrating the more general

ase, we omputed in [A1℄ the harateristi numbers for families of smooth ubis

tangent to a line at a given point.

In this note we take the next step in the program: we ompute the lasses B

i

ÆF

i

for some families of singular ubis. As an immediate appliation, we will reover

lassi enumerative results about these families, providing again a ounterpoint to

the degeneration method; however, perhaps the main motivation of this paper is

to produe examples of omputations of Segre lasses in an interesting and natu-

ral geometri setting. We feel that more tools are needed for the omputation of

these important invariants of a losed embedding, and we hope that providing these

examples might be of some help in this development.

In order to ompute the lasses orresponding to the families D;D`; et. listed

above, we realize the disriminant hypersurfae D

0

of P

9

(the losure of D) as the

birational projetion from P

2

�P

9

of the odimension-3 subvariety

b

D

0

of pairs (p; f)

where p 2 P

2

and f is a ubi singular at p. If

b

V

i

= P

2

� V

i

,

b

B

i

= P

2

� B

i

, and

b

D

i

denotes the proper transform of

b

D

0

in

b

V

i

, then the birational invariane of Segre

lasses allows one to relate the lasses B

i

ÆD

i

, B

i

ÆD`

i

et. to the lasses

b

B

i

Æ

b

D

i

2



(Propositions 2.1, 2.11 and 2.12). These latter are not too hard to ompute, as the

struture of

b

D

0

is rather transparent; the results are listed in Theorem II, x2. The

more tehnial tools used in the omputation are presented in an appendix.

One the lasses for the loi D, D`, et. are obtained, applying Theorem I fur-

nishes us with the harateristi numbers for the families, `ounted with multipli-

ities'. A last step needs to be performed here, beause of the singularity of the

urves: for eah on�guration, a ontribution to the `weighted' harateristi num-

bers of one family might be due to another family. For example, among the nodal

ubis tangent to 8 lines we �nd ubis tangent to 7 of the lines and with a node on

the 8th, and ubis tangent to 6 of the lines and having the node at the intersetion

of the remaining 2. If we want to ount only urves `properly tangent' to the lines,

then we'll have to evaluate the ontribution due to the di�erent possibilities. We

dealt with this issue already in [A3℄ (for nodal and uspidal urves of arbitrary

degree), so here we will simply apply the tool obtained there (whih we reall as

Proposition 1.1).

Similarly, Theorem IV

0

in [A1℄ will yield the harateristi numbers involving the

additional ondition of tangeny to a given line at a given point: as seen in [A1℄,

x5, no additional information is required for these results.

The last two of the blow-ups onstruting the variety of omplete ubis have been

studied for arbitrary degree in [A2℄, and applied to derive some enumerative results

for nodal and uspidal urves in [A3℄. In this paper we basially omplete for degree

3 the partial omputations worked out in [A3℄ for all degrees, and our methods

here are similar to the ones employed there. Doing the same for e.g. degree 4 urves

requires aomplishing �rst the onstrution of a variety of `omplete quartis', and

is therefore beyond our reah at present.
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pointing out a rather serious mistake in a display in an earlier version of this paper.
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note was written.
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1. Preliminaries

We work over an algebraially losed �eld of harateristi 0. Consider the spae

P

9

= P(H

0

O

P

2

(3)) parametrizing ubi urves in the projetive plane P

2

. In [A1℄

we give a sequene of �ve blow-ups

e

V = V

5

�

5

�! V

4

�

4

�! V

3

�

3

�! V

2

�

2

�! V

1

�

1

�! V

0

= P

9

at smooth enters produing a smooth projetive variety

e

V of `omplete ubis':

i.e. a variety (birational to P

9

) on whih the map assoiating to eah smooth ubi

its dual sexti extends to a regular map. In other terms, all `line-ondition' the

hypersurfae of P

9

formed by all ubis tangent to a given line, and its proper

transforms in the V

i

's; then the intersetion of all line-onditions in

e

V is empty

(Proposition 5.3 in [A1℄, x3.5). We will reall briey a desription of the enters of

the blow-ups in x2, in the ourse of the main omputation; the sequene of blow-ups

3



aomplishes `separating' the line-onditions over their intersetion in P

9

, i.e. the set

S of non-redued ubis (the four-dimensional set of ubis ��

2

onsisting of a line

� and a double line �

2

). Now all

e

L the lass of the general line-ondition in

e

V , and

e

P the lass of the general `point-ondition' (the proper transform of the hyperplane

in P

9

formed by ubis ontaining a given point); if F is (the parameter spae of) a

family of redued ubis, all F

0

its losure in P

9

, F

i

the proper transform of F

0

in

V

i

, and set

e

F = F

5

. We observed in [A1℄, Theorem I, that the number of elements

of F (thus, automatially non-degenerate) tangent to n

`

lines and ontaining n

p

points is ounted with multipliity by the intersetion produt

(*)

e

L

n

`

�

e

P

n

p

�

e

F ;

and furthermore elements `properly' tangent to the lines (i.e., simply tangent at

smooth points) ount with multipliity 1.

Our main task will be to ompute the intersetions (*) for the families D;D`;

et. listed in the introdution. After aomplishing this, taking aount of elements

ontributing to (*) but not properly tangent will not be hard: denote the number of

urves in F properly tangent to k lines and ontaining dimF � k points (in general

position)|i.e., the k-th harateristi number of F|by F (k); while denote (as in

[A1℄) by N

F

(n

p

P; n

`

L) the intersetion produt (*) above. Then:

Proposition 1.1.

D(k) = N

D

((8� k)P; kL)� 2kD`(k � 1)� 4

�

k

2

�

Dp(k � 2)

D`(k) = N

D`

((7� k)P; kL)� 2kDp(k � 1)

Dp(k) = N

Dp

((6� k)P; kL)

C(k) = N

C

((7� k)P; kL)� 3kC`(k � 1)� 9

�

k

2

�

Cp(k � 2)

C`(k) = N

C`

((6� k)P; kL)� 3kCp(k � 1)

Cp(k) = N

Cp

((5� k)P; kL)

Proof: This is Theorem I in [A3℄, for degree 3, and with the above notations.

Proposition 1.1 tells us that all we need to ompute are the `weighted' hara-

teristi numbers N

F

(n

p

P; n

`

L), for F = D;D`; et. This will be done by using

Theorem IV from [A1℄:

Theorem I. (Notations as above)

N

F

(n

p

P; n

`

L) = 4

n

`

� deg(F

0

)�

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

Æ F

i

)

(N

B

i

V

i

)

where B

i

ÆP

i

, B

i

ÆL

i

, (N

B

i

V

i

) are given expliitly in [A1℄, Theorem III, together

with a desription of the relevant intersetion alulus of the B

i

's. We see then

that the only missing ingredients are the degrees of the losure F

0

and the lasses

B

i

ÆF

i

, for eah family F = D;D`; et. Of ourse there is nothing to the �rst item:

4



Proposition 1.2.

degD

0

= 12 degC

0

= 24

degD`

0

= 6 degC`

0

= 12

degDp

0

= 1 degCp

0

= 2

Proof: These are well known (f. Proposition 1.2 and 1.5 in [A3℄).

By ontrast, the omputation of the `full intersetion lasses'

B

i

Æ F

i

= (N

B

i

V

i

)s(B

i

\ F

i

; F

i

)

(where (�) and s(�) denote resp. total Chern and Segre lass) is non-trivial: this

will be our task in x2.

Note. The lasses B

i

Æ F

i

live naturally in the Chow groups of B

i

\ F

i

; we will

atually ompute their push-forward in the Chow group of B

i

; we will still denote

the push-forward by B

i

Æ F

i

, for onveniene of notation.

To prepare for the omputation, we want to highlight here a basi fat that we

will systematially apply in x2. For B;F � V (with B

j

,! V a regular embedding

of odimension d), denoting by e

B

F the multipliity of F along B, and by f�g

m

the

m-th dimensional piee of the lass within braes:

Lemma 1.3.

(1) fB Æ Fg

dimB

= e

B

F [B℄

(2) fB Æ Fg

dimF�d

= j

�

[F ℄ = B � F

(3) fB Æ Fg

i

= 0 for i < dimF � d, i > dimF \ B

Proof: (1) holds beause s(B\F; F ) = e

B

F [B℄+ lower dimensional terms, by [F℄,

x4.3). (2), (3) are in [A1℄, Lemma in x2.

So e.g. if F is a divisor, then simply

B Æ F = e

B

F [B℄ + B � F :

In general, B ÆF has non-zero terms in at most odimF +1 dimensions. In a sense,

this is the reason why through this proess it is easier to obtain results for the family

of all smooth ubis rather than for more speial families: as a general rule, the

more speial the family is, the higher the odimension, and the higher the number

of terms to be omputed.

Other (more tehnial) fats needed in the omputations of x2 are listed in the

appendix.

2. Full intersetion lasses

Our aim in this setion is the omputation of the lasses

B

i

Æ F

i

; i = 0; : : : ; 4

where B

0

; : : : ; B

4

are the enters of the blow-ups given in [A1℄, F = D;D`;Dp,

C;C`; Cp are the families listed in the introdution, and F

i

denotes the proper

transform in V

i

of the losure F

0

of F in P

9

.

Eah is to be expressed in terms of the generators given in [A1℄, Theorem III for

the intersetion rings of the B

i

's, i.e. various subsets of the list h; �; '; `;m; e. The

result will be:

5



Theorem II. With the above notations, the lasses B

i

Æ F

i

for the six families

F = D;D`;Dp, C;C`; Cp, and i = 0; : : : ; 4, are resp.:

8

>

>

>

>

>

<

>

>

>

>

>

:

8 + 36h

5 + (36h� 8�)

3 + (36h� 8�� 5')

6 + (12`+ 24m� 24e)

6 + (�6`+ 6m)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2 + 22h+ 54h

2

1 + (13h� 2�) + (54h

2

� 22�h+ 2�

2

)

(9h� 2�� ') + (54h

2

� 22�h� 13'h+ 2�

2

+ 2�'+ '

2

)

1 + (4`+ 11m� 8e) + (6`

2

+ 24`m+ 24m

2

� 66e`+ 18e

2

)

1 + (�2`+ 5m) + (3`

2

� 3`m� 6e`+ 2e

2

)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2h+ 14h

2

h+ (8h

2

� 2�h) + (�14�h

2

+ 2�

2

h)

(6h

2

� 2�h� 'h) + (�14�h

2

� 8'h

2

+ 2�

2

h+ 2�'h+ '

2

h)

m+ (4`m+ 5m

2

� 8e`) + (6`

2

m+ 12`m

2

� 42e`

2

+ 18e

2

`)

m+ (�2`m�m

2

) + (3`

2

m+ 3`m

2

� 6e`

2

+ 2e

2

`)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8 + 84h+ 216h

2

10 + (102h� 21�) + (216h

2

� 84�h+ 8�

2

)

(18h� 3�� 6') + (216h

2

� 84�h� 102'h+ 8�

2

+ 21�'+ 10'

2

)

6 + (24`+ 48m� 48e) + (24`

2

+ 96`m+ 96m

2

� 288e`+ 96e

2

)

6 + (�12`+ 12m) + (6`

2

� 12`m+ 6m

2

)

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

2 + 34h+ 186h

2

2 + (32h� 5�) + (186h

2

� 69�h+ 6�

2

) + (�186�h

2

+ 34�

2

h� 2�

3

)

(54h

2

� 21�h� 24'h+ 2�

2

+ 5�'+ 2'

2

) + (�186�h

2

� 186'h

2

+ 34�

2

h

+69�'h+ 32'

2

h� 2�

3

� 6�

2

'� 5�'

2

� 2'

3

)

1 + (6`+ 15m� 12e) + (14`

2

+ 62`m+ 68m

2

� 174e`+ 50e

2

) + (72`

2

m

+144`m

2

� 612e`

2

+ 372e

2

`� 72e

3

)

1 + (�3`+ 6m) + (5`

2

� 10`m+ 5m

2

� 6e`+ 2e

2

) + (6`

2

m� 3`m

2

)

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

2h+ 26h

2

2h+ (22h

2

� 5�h) + (�48�h

2

+ 6�

2

h) + (26�

2

h

2

� 2�

3

h)

(�18�h

2

� 18'h

2

+ 2�

2

h+ 5�'h+ 2'

2

h) + (26�

2

h

2

+ 48�'h+ 22'

2

h

2

� 2�

3

h

�6�

2

'h� 5�'

2

h� 2'

3

h)

m+ (6`m+ 9m

2

� 12e`) + (14`

2

m+ 38`m

2

� 126e`

2

+ 50e

2

`) + (48`

2

m

2

+276e

2

`

2

� 72e

3

`)

m� 3`m+ (5`

2

m+ 2`m

2

� 6e`

2

+ 2e

2

`)
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These expressions arry (admittedly, rather ryptially) onrete geometri in-

formation about the objets we are onsidering. Of ourse the enumerative results

of xx3,4 will best illustrate this point; however, one instane in whih this is very

expliit is the �rst brae, orresponding to the family of nodal ubis D: the in-

formation arried by the expressions onsists of the degree of the disriminant (the

hyperplane in P

9

pulls-bak to 3h on B

0

, so the lass of the disriminant pulls-bak

to 36h), and of the multipliity of the disriminant and its proper transforms along

the enters of the blow-ups (the onstant terms in the expressions: 8, 5, 3, 6, 6).

This is all the information needed to ompute the `weighted' harateristi numbers

N

D

(n

p

P; n

`

L) (in fat, even less is needed: f. [A4℄, Theorem I).

Proving Theorem II will take us the rest of this setion; our approah is along

the same lines as the omputation in x2 of [A3℄. Give oordinates (x

0

: x

1

: x

2

) in

P

2

, and onsider the odimension-3 subvariety

b

D

0

of the produt P

2

� P

9

de�ned

by

(p; f) 2

b

D

0

()

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�f

�x

1

(p) = 0

�f

�x

2

(p) = 0

:

So (p; f) 2

b

D

0

if and only if f is a ubi singular at p. The projetion p

1

: P

2

�P

9

�!

P

2

restrits to a map

b

D

0

�! P

2

realizing

b

D

0

as a P

6

-bundle over P

2

: the �ber over

p being the P

6

of ubis singular at p. The projetion p

2

: P

2

� P

9

�! P

9

restrits

to a birational morphism from

b

D

0

to the disriminant hypersurfae D

0

� P

9

: the

�ber over f 2 D

0

onsists of the singular lous of f . Observe that p

2

restrits to an

isomorphism over the set D of nodal ubis. Now for eah V

0

= P

9

; V

1

; : : : , de�ne

b

V

i

= P

2

� V

i

, and for eah enter B

i

de�ne

b

B

i

= P

2

� B

i

. It is lear then that

eah

b

V

i

(i > 0) is the blow-up of

b

V

i�1

along

b

B

i�1

, and we an onsider the proper

transform

b

D

i

of

b

D

0

in

b

V

i

. The projetion on the seond fator will then restrit to

birational morphisms

b

D

i

�! D

i

;

that will be our main tool: we will argue now that the lasses

b

B

i

Æ

b

D

i

ontain all

the information we need onerning families of nodal urves (f. Lemma 2.2 et. in

[A3℄).

Let k denote the hyperplane lass in P

2

. So lasses in

b

B

i

will be polynomials of

degree � 2 in k, with oeÆients in the intersetion rings of the B

i

.

Proposition 2.1. For i = 0; : : : ; 4

B

i

ÆD

i

= oeÆient of k

2

in

b

B

i

Æ

b

D

i

B

i

ÆD`

i

= oeÆient of k

1

in

b

B

i

Æ

b

D

i

B

i

ÆDp

i

= oeÆient of k

0

in

b

B

i

Æ

b

D

i

Proof: These follow easily from the birational invariane of Segre lasses: write

b

B

i

Æ

b

D

i

= A

2

+ A

1

k + A

0

k

2

, with A

0

; A

1

; A

2

lasses on B

i

; if p

(i)

is the projetion

P

2

� V

i

�! V

i

, then by the projetion formula

A

0

= p

(i)

�

(A

2

+ A

1

k +A

0

k

2

) ;

7



sine p

(i)

�

(k

0

) = p

(i)

�

(k

1

) = 0, p

(i)

�

(k

2

) = 1; so

A

0

= p

(i)

�

(

b

B

i

Æ

b

D

i

)

= p

(i)

�

(N

b

B

i

b

V

i

)s(

b

B

i

\

b

D

i

;

b

D

i

)

= (N

B

i

V

i

)p

(i)

�

s(

b

B

i

\

b

D

i

;

b

D

i

) sine N

b

B

i

b

V

i

= p

(i)

�

N

B

i

V

i

= (N

B

i

V

i

)s(B

i

\D

i

; D

i

) by the bir. inv. of Segre lasses

= B

i

ÆD

i

whih is the �rst laim.

For the other equalities in the statement, de�ne



D`

i

= proper transform of



D`

0

= P

2

� D`

0

, and similarly



Dp

i

= proper transform of



Dp

0

= P

2

� Dp

0

. The

lasses of



D`

i

;



Dp in

b

D

i

are learly resp. (the pull-baks of) k; k

2

; also,



D`

i

;



Dp

i

ut

transversally in

b

D

i

the support of the one of

b

B

i

\

b

D

i

in

b

D

i

, so

s(

b

B

i

\



D`

i

;



D`

i

) = k � s(

b

B

i

\

b

D

i

;

b

D

i

) and

s(

b

B

i

\



Dp

i

;



Dp

i

) = k

2

� s(

b

B

i

\

b

D

i

;

b

D

i

) ;

by Lemma A.3. Then one argues as above, starting from A

1

= p

(i)

�

[k � (A

0

+A

1

k+

A

2

k

2

)℄ and A

2

= p

(i)

�

[k

2

� (A

2

+A

1

k + A

0

k

2

)℄

By Proposition 2.1, the �ve lasses

b

B

i

Æ

b

D

i

are the objets we have to ompute

to prove the �rst part of Theorem II. We will analyze the �ve ases in some detail

in xx2.0{4 below. The main proposition in eah setion will give the orresponding

lass

b

B

i

Æ

b

D

i

, from whih (by Proposition 2.1) one reads the i

th

row in the �rst three

braes in the statement of Theorem II, by taking resp. the oeÆient of k

2

, k, and

the onstant term with respet to k. As we will see in x2.5, very little additional

work is required to obtain the lasses for families of uspidal ubis (i.e. the last

three braes in Theorem II).

Note. As a general onvention, we omit the notation of pull-bak whenever we

feel that this hoie doesn't reate ambiguities.

x2.0.

b

B

0

Æ

b

D

0

b

B

0

Æ

b

D

0

b

B

0

Æ

b

D

0

. Reall from [A1℄, x3.0 that the enter of the �rst blow-up is the

subvariety B

0

� P

9

of ubis onsisting of a `triple line'; B

0

�

=

P

2

is in fat embedded

in P

9

by the third Veronese embedding. Points of

b

B

0

= P

2

� B

0

will then be pairs

(p; �), where p 2 P

2

and � is a line. We all h the hyperplane lass in B

0

�

=

P

2

, so

the intersetion ring of

b

B

0

�

=

P

2

� B

0

is generated by k; h, and the only non-zero

monomial in dimension 0 is h

2

k

2

. Also, the pull-bak of the hyperplane lass H of

P

9

via B

0

,! P

9

is 3h.

Lemma 2.2. (N

b

B

0

b

V

0

) = (1 +H + 2k)

3

.

Proof: This is lear from the equations for

b

D

0

(linear in the oeÆients of the

ubi, and quadrati in (x

0

: x

1

: x

2

)).

The intersetion

b

B

0

\

b

D

0

is supported on the inidene orrespondene f(p; �) 2

b

B

0

s.t. p 2 �g; in fat, restriting the equations for

b

D

0

to

b

B

0

we �nd that

b

B

0

\

b

D

0

is regularly embedded in

b

B

0

, as a divisor of lass 2h+ 2k.

8



Proposition 2.3.

b

B

0

Æ

b

D

0

= (2h+ 2k) + (14h

2

+ 22hk + 8k

2

) + (54h

2

k + 36hk

2

).

Proof: Both

b

B

0

and

b

D

0

are non-singular, so

b

B

0

Æ

b

D

0

=

b

D

0

Æ

b

B

0

by Lemma A.1.

Now sine

b

B

0

\

b

D

0

is a divisor in

b

B

0

, with lass 2h+ 2k, then (as a lass in

b

B

0

)

s(

b

B

0

\

b

D

0

;

b

B

0

) = (2h+ 2k)� (2h+ 2k)

2

+ (2h+ 2k)

3

� (2h+ 2k)

4

;

while (Lemma 2.2) (N

b

D

0

b

V

0

) pulls-bak on

b

B

0

to (1 + 3h+ 2k)

3

. So

b

B

0

Æ

b

D

0

= (1 + 3h+ 2k)

3

�

(2h+ 2k)� (2h+ 2k)

2

+ (2h+ 2k)

3

� (2h+ 2k)

4

	

;

whih gives the statement.

x2.1.

b

B

1

Æ

b

D

1

b

B

1

Æ

b

D

1

b

B

1

Æ

b

D

1

. The enter B

1

of the seond blow-up is a P

2

-bundle over B

0

([A1℄,

x3.1); we interpret the �ber over a (triple) line � 2 B

0

as the plane of pairs of

points on �: so we will denote a point of

b

B

1

= P

2

� B

1

by a triple (p; �; fp

1

; p

2

g),

where p

1

; p

2

2 �. The intersetion ring of B

1

is generated by (the pull-bak of) the

lass h from B

0

and by the lass � of the universal line bundle on B

1

. In fat B

1

is a subbundle of the exeptional divisor E

1

= P(N

B

0

V

0

), so � is the pull-bak via

B

1

,! E

1

,! V

1

of the lass of E

1

.

We an easily get equations for

b

D

1

in an open set in

b

V , by using the oordinates

for V

1

given in [A1℄, x3.1: give homogeneous oordinates (a

0

: a

1

: � � � : a

9

) in P

9

,

so that the point (a

0

: � � � : a

9

) orresponds to the ubi with equation

a

0

x

3

0

+ a

1

x

2

0

x

1

+ a

2

x

2

0

x

2

+ a

3

x

0

x

2

1

+ a

4

x

0

x

1

x

2

+ a

5

x

0

x

2

2

+ a

6

x

3

1

+ a

7

x

2

1

x

2

+ a

8

x

1

x

2

2

+ a

9

x

3

2

= 0 :

Then we an give oordinates (b

1

; : : : ; b

9

) in an open in V

1

, suh that the blow-up

map is given by

b

1

= a

1

b

2

= a

2

b

3

= 3a

3

� a

2

1

b

4

b

3

= 3a

4

� 2a

1

a

2

b

5

b

3

= 3a

5

� a

2

2

b

6

b

3

= 9a

6

� a

1

a

3

b

7

b

3

= 3a

7

� a

2

a

3

b

8

b

3

= 3a

8

� a

1

a

5

b

9

b

3

= 9a

9

� a

2

a

5

In this desription b

3

= 0 is the exeptional divisor, and the point of B

1

orrespond-

ing to a line � : x

0

+ �

1

x

1

+ �

2

x

2

= 0 with pair of points (p

1

; p

2

) determined by

x

2

1

+ �x

1

x

2

+ �x

2

2

has oordinates

(3�

1

; 3�

2

; 0; �; �; 2�

1

; �

1

�; �

2

�; 2�

2

�) :

On fa

0

6= 0g,

b

D

0

is ut out by the equations

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�

�f

�x

1

�

a

1

3

�f

�x

0

�

(p) = 0

�

�f

�x

2

�

a

2

3

�f

�x

0

�

(p) = 0

;

9



from whih we get equations for

b

D

1

:

8

>

>

>

>

<

>

>

>

>

:

(3x

0

+ b

1

x

1

+ b

2

x

2

)

2

+ b

3

(x

2

1

+ b

4

x

1

x

2

+ b

5

x

2

2

) = 0

2x

0

x

1

+ b

4

x

0

x

2

+ b

6

x

2

1

+

2b

2

+ 6b

7

� b

1

b

4

3

x

1

x

2

+ b

8

x

2

2

= 0

b

4

x

0

x

1

+ 2b

5

x

0

x

2

+ b

7

x

2

1

+

2b

1

b

5

+ 6b

8

� b

2

b

4

3

x

1

x

2

+ b

9

x

2

2

= 0

Restriting these equations to

b

B

1

, we �nd equations for

b

B

1

\

b

D

1

in

b

B

1

: in terms of

the above oordinates for

b

B

1

8

>

<

>

:

(x

0

+ �

1

x

1

+ �

2

x

2

)

2

= 0

(x

0

+ �

1

x

1

+ �

2

x

2

)(2x

1

+ �x

2

) = 0

(x

0

+ �

1

x

1

+ �

2

x

2

)(�x

1

+ 2�x

2

) = 0

i.e.,

b

B

1

\

b

D

1

is the divisor of

b

B

1

f(p; �; fp

1

; p

2

g) 2

b

B

1

s.t. p 2 �g ;

with an embedded omponent on

f(p; �; fp

1

; p

2

g) 2

b

B

1

s.t. p = p

1

= p

2

g :

Also, along

b

B

1

\

b

D

1

one �nds that

b

D

1

is regularly embedded in

b

V

1

; and that

b

D

1

is

singular at points (p; �; fp

1

; p

2

g) with p 2 fp

1

; p

2

g.

Sine

b

B

1

\

b

D

1

is a divisor of lass h+ k outside the embedded omponent (whih

has odimension 3 in

b

B

1

), we have

s(

b

B

1

\

b

D

1

;

b

B

1

) = (h+ k)� (h+ k)

2

+ higher odimensional terms.

The omitted terms presumably are a�eted by the embedded omponent; however,

we will not need to ompute them. Similarly, we only list the relevant terms in the

pull-bak of (N

b

D

1

b

V

1

):

Lemma 2.4. (N

b

B

1

b

V

1

) restrits to 1 + 9h+ 6k � 2�+ : : :

Proof: By Lemma A.5 in the appendix, this is

(N

b

B

0

\

b

D

0

b

B

0

)

 

N

b

D

0

b

V

0

N

b

B

0

\

b

D

0

b

B

0


O(1)

!

= (1 + 2h+ 2k)

(1 + 3h+ 2k � �)

3

(1 + 2h+ 2k � �)

= 1 + 9h+ 6k � 2�+ : : :

as laimed.

The information we have olleted is enough to obtain the �rst two terms of

b

B

1

Æ

b

D

1

. By Lemma 1.3, the third term is

b

B

1

�

b

D

1

and the remaining ones are 0:

10



Proposition 2.5.

b

B

1

Æ

b

D

1

= (h+ k) + (8h

2

+ 13hk + 5k

2

� 2�h� 2�k)

+ (54h

2

k + 36hk

2

� 14�h

2

� 22�hk � 8�k

2

+ 2�

2

h+ 2�

2

k) :

Proof: Sine the embedded omponent of

b

B

1

\

b

D

1

has odimension 3 in

b

B

1

, we

an disard it in omputing the odimension-1 and 2 terms in

b

B

1

Æ

b

D

1

, and assume

b

B

1

\

b

D

1

,!

b

V

1

,

b

D

1

,!

b

V

1

are both regular embeddings. Also, using the oordinate

desription above, one heks that (in odimension � 2) the blow-up of

b

D

1

along

b

B

1

\

b

D

1

is the residual sheme to the exeptional divisor in the blow-up of

b

V

1

along

b

B

1

\

b

D

1

, and is regularly embedded there. Thus, by Lemma A.2 in the appendix,

b

B

1

Æ

b

D

1

=

b

D

1

Æ

b

B

1

in odimension � 2 in

b

B

1

: so

b

B

1

Æ

b

D

1

= (N

b

D

1

b

V

1

)s(

b

B

1

\

b

D

1

;

b

B

1

) (in od. 2)

= (1 + 9h+ 6k � 2�+ : : : )((h+ k)� (h+ k)

2

+ : : : );

whih gives the �rst two terms shown in the statement.

The odimension-3 term in

b

B

1

Æ

b

D

1

is the pull-bak

b

B

1

�

b

D

1

of the lass of

b

D

1

to

B

1

, by Lemma 1.3 (2): i.e., applying Lemma A.4,

54h

2

k + 36hk

2

�

(

b

B

0

Æ

b

D

0

1 + �

)

odim3

;

with the result listed in the statement.

By Lemma 1.3 (3) all other terms are 0, so we are done.

x2.2.

b

B

2

Æ

b

D

2

b

B

2

Æ

b

D

2

b

B

2

Æ

b

D

2

. The enter B

2

of the third blow-up is a P

3

bundle over B

1

([A1℄,

x3.2); we interpret the �ber over a point of B

1

over a line � as the P

3

of triples of

points on �: so a point of

b

B

2

= P

2

�B

2

will be a quadruple (p; �; fp

1

; p

2

g; fq

1

; q

2

; q

3

g)

where p

1

; p

2

, q

1

; q

2

; q

3

are points of �. The intersetion ring of the exeptional divisor

E

2

and of B

2

are generated by the lasses h; � from B

1

, and by the lass ' of the

universal line-bundle; sine B

2

is a subbundle of E

2

= P(N

B

1

V

1

), ' is the pull-bak

via B

2

,! E

2

,! V

2

of the lass of E

2

.

Conerning

b

B

2

Æ

b

D

2

, Lemma 1.3 (2), (3) will give us the terms in odimension 3

and higher in

b

B

2

, i.e. in dimension 6 or lower. Sine

b

D

2

has dimension 8, and learly

does not ontain

b

B

2

, the only term we must determine is the one in dimension 7,

i.e. (by Lemma 1.3 (1)) the lass of the omponents of

b

B

2

\

b

D

2

with oeÆients

depending on the multipliity of

b

D

2

along them.

To this purpose, we use oordinates again. From [A3℄, x3.2, we know we an give

oordinates (

1

; : : : ; 

9

) in an open in V

2

so that the blow-up map is given by



1

= b

1



2

= b

2



3



6

= b

3



4

= b

4



5

= b

5



6

= 3b

6

� 2b

1



7



6

= 3b

7

� b

1

b

4



8



6

= 3b

8

� b

2

b

4



9



6

= 9b

9

� b

2

b

5

11



With these oordinates, 

6

= 0 is the exeptional divisor; if � is given by x

0

+

�

1

x

1

+ �

2

x

2

, fp

1

; p

2

g is determined by Q = x

2

1

+ �x

1

x

2

+ �x

2

2

, and fq

1

; q

2

; q

3

g by

K = x

3

1

+ �x

2

1

x

2

+ �x

1

x

2

2

+ �x

3

2

, then the point of B

2

spei�ed by this data has

oordinates

(3�

1

; 3�

2

; 0; �; �; 0;

�

3

;

�

3

; �):

Now, away from the embedded omponent f(p; �; fp; pg)g of

b

B

1

\

b

D

1

(e.g. if 2x

1

+

b

4

x

2

6= 0) one gets equations for

b

D

2

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(3x

0

+ 

1

x

1

+ 

2

x

2

)(2x

1

+ 

4

x

2

) + 

6

(x

2

1

+ 2

7

x

1

x

2

+ 

8

x

2

2

) = 0

(3x

0

+ 

1

x

1

+ 

2

x

2

)(x

2

1

+ 2

7

x

1

x

2

+ 

8

x

2

2

)

�

3

(x

2

1

+ 

4

x

1

x

2

+ 

5

x

2

2

)(2x

1

+ 

4

x

2

) = 0

(

4

x

1

+ 2

5

x

2

)(x

2

1

+ 2

7

x

1

x

2

+ 

8

x

2

2

)

�(2x

1

+ 

4

x

2

)(

7

x

2

1

+ 2

8

x

1

x

2

+ 

9

x

2

2

) = 0

So (setting 

6

= 0 and observing that 2x

1

+ 

4

x

2

6= 0 sine 2x

1

+ b

4

x

2

6= 0)

b

E

2

\

b

D

2

has equations

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:



6

= 0

3x

0

+ 

1

x

1

+ 

2

x

2

= 0



3

(x

2

1

+ 

4

x

1

x

2

+ 

5

x

2

2

) = 0

(

4

x

1

+ 2

5

x

2

)(x

2

1

+ 2

7

x

1

x

2

+ 

8

x

2

2

)

�(2x

1

+ 

4

x

2

)(

7

x

2

1

+ 2

8

x

1

x

2

+ 

9

x

2

2

) = 0

in this open. We onlude that

b

E

2

\

b

D

2

onsists of (at most) three 7-dimensional

omponents:

{a omponent R

1

dominating the whole of

b

B

1

\

b

D

1

, with dimension-2 �bers, and

equations

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:



6

= 0

3x

0

+ 

1

x

1

+ 

2

x

2

= 0



3

= 0

(

4

x

1

+ 2

5

x

2

)(x

2

1

+ 2

7

x

1

x

2

+ 

8

x

2

2

)

�(2x

1

+ 

4

x

2

)(

7

x

2

1

+ 2

8

x

1

x

2

+ 

9

x

2

2

) = 0

{a omponent R

2

dominating the subset of

b

B

1

\

b

D

1

f(p; �; fp

1

; p

2

g) s.t. p

1

; p

2

2 �; p = p

1

or p = p

2

g

(whih is the subset along whih

b

D

1

is singular) with dimension-3 �bers, and equa-

tions

8

>

>

>

<

>

>

>

:



6

= 0

3x

0

+ 

1

x

1

+ 

2

x

2

= 0

x

2

1

+ 

4

x

1

x

2

+ 

5

x

2

2

= 0

x

3

1

+ 3

7

x

2

1

x

2

+ 3

8

x

1

x

2

2

+ 

9

x

3

2

= 0

;

12



{and a omponent R

3

, dominating the embedded omponent of

b

B

1

\

b

D

1

f(p; �; fp

1

; p

2

g) s.t. p = p

1

= p

2

2 �g

(as the above oordinates do not over this lous, so there might be a omponent

dominating it) with 4-dimensional �bers.

Now, the equations tell us that the only omponent of

b

E

2

\

b

D

2

ontained in

b

B

2

is R

1

, with equations (in

b

B

2

)

�

x

0

+ �

1

x

1

+ �

2

x

2

= 0

(�x

1

+ 2�x

2

)(3x

2

1

+ 2�x

1

x

2

+ �x

2

2

)� (2x

1

+ �x

2

)(�x

2

1

+ 2�x

1

x

2

+ 3�x

2

2

) = 0

and that

b

D

2

is generially non-singular along it (in fat, D

2

is non-singular at

(p; �; fp

1

; p

2

g; fq

1

; q

2

; q

3

g) if e.g. p =2 fp

1

; p

2

g). So s(

b

B

2

\

b

D

2

;

b

D

2

) = [R

1

℄ + : : : , and

using Lemma 1.3 we get:

b

B

2

Æ

b

D

2

= [R

1

℄ + higher odimension terms

= [R

1

℄ +

b

B

2

�

b

D

2

:

To �nd the lass of R

1

in

b

B

2

, observe that its �rst equation de�nes the divisor

given by the pull-bak of

b

B

1

\

b

D

1

, i.e.

(h+ k) ;

the seond is

�Q

�x

2

�K

�x

1

�

�Q

�x

1

�K

�x

2

= 0 ;

where Q(x

1

; x

2

), K(x

1

; x

2

) determine the pair fp

1

; p

2

g and the triple fq

1

; q

2

; q

3

g, as

above; and �Q=�x

i

, �K=�x

i

give global lasses 3h � � + k, 3h � � � ' + 2k resp.,

so the divisor de�ned by the above equation in

b

B

1

has lass

6h� 2�� '+ 3k :

Now R

1

is the intersetion of these two divisors: the above equations (and their

mirror image obtained by assuming b

4

x

1

+ 2b

5

x

2

6= 0) show it away from the in-

verse image of the embedded omponent of

b

B

1

\

b

D

1

, then globally sine this has

odimension 3 in

b

B

2

. So the lass of R

1

is

(h+ k)(6h+ 3k � 2�� ') = 6h

2

+ 9hk + 3k

2

� 2�h� 2�k � 'h� 'k

Proposition 2.6.

b

B

2

Æ

b

D

2

= (6h

2

+ 9hk + 3k

2

� 2�h� 2�k � 'h� 'k) + (54h

2

k + 36hk

2

� 14�h

2

�8'h

2

�22�hk�13'hk�8�k

2

�5'k

2

+2�

2

h+2�'h+'

2

h+2�

2

k+2�'k+'

2

k)

Proof: We have already observed

b

B

2

Æ

b

D

2

= [R

1

℄+

b

B

2

�

b

D

2

, and we have omputed

[R

1

℄ above. So all we need to get is

b

B

2

�

b

D

2

, for whih one just applies Lemma A.4.
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x2.3.

b

B

3

Æ

b

D

3

b

B

3

Æ

b

D

3

b

B

3

Æ

b

D

3

. The enter B

3

of the fourth blow-up is a 4-dimensional non-singular

variety, in fat isomorphi to the blow-up of

�

P

2

�

�

P

2

along its diagonal. B

3

is the

proper transform of the set of ubis onsisting of a line and a `double line' (eah

item parametrized by a fator of

�

P

2

�

�

P

2

), f. [A1℄, x3.3. The intersetion ring of

B

3

is generated by the pull-bak of the lasses `;m of the hyperplane of the fators

of

�

P

2

�

�

P

2

, and by the exeptional divisor e. We hoose the fators so that the

pull-bak of the hyperplane from P

9

is ` + 2m; and reall from [A1℄, x3 that the

pull-baks of the �rst three exeptional divisors E

1

, E

2

, and E

3

are resp. 2e, e, and

e. Also, we have obvious relations e` = em, `

3

= m

3

= 0.

Our piture for

b

B

3

= P

2

�B

3

is the following: a point in

b

B

3

is a triple (p; (�; �); q),

where p 2 P

2

, �; � 2

�

P

2

are lines (so that the orresponding ubi is the union of

� and the double line supported on �; we denote this ubi ��

2

in [A1℄), and

q 2 � \ �. So the exeptional divisor is the set of suh triples where � = �, and

q plays the role of `the' point of intersetion of � and � (f. [A1℄, Remarks 1.4 in

x3.1). Notie that

b

B

3

maps injetively `already' to

b

V

1

,

b

V

2

: in fat, Remark 2.4 in

[A1℄, x3.2 says that points (p; (�; �); q) of the exeptional divisor (so � = �) map to

points (p; �; fq; qg; fq; q; qg) of

b

B

2

. In partiular, it follows that

b

D

3

is smooth along

b

B

3

away from triples (p; (�; �); q) with � = � and p = q (beause

b

D

3

is the blow-up

of

b

D

2

along

b

B

2

\

b

D

2

, so it's smooth over points where both these are smooth): these

form a set of odimension 3 in

b

B

3

, so Lemma A.1 tells us

b

B

3

Æ

b

D

3

=

b

D

3

Æ

b

B

3

in odimension � 2 in

b

B

3

.

Muh as in x2.1, the omputation is then redued to �nding the �rst terms of

s(

b

B

3

\

b

D

3

;

b

B

3

) and of the restrition of (N

b

D

3

b

V

3

) to

b

B

3

\

b

D

3

.

Lemma 2.7. (N

b

D

3

b

V

3

) restrits to 1 + 3`+ 6m+ 6k � 7e+ : : : .

Proof: Apply Lemma A.5 to the �rst three blow-ups, and restrit to

b

B

3

: 

1

of the

normal bundle to

b

D

0

in

b

V

0

restrits to 3`+ 6m + 6k (by Lemma 2.2), and via the

blow-ups this gets modi�ed by �2

b

E

1

� 2

b

E

2

�

b

E

3

, restriting on

b

B

3

to �7e.

Proposition 2.8.

b

B

3

Æ

b

D

3

= (m+k)+(4`m+5m

2

+4k`+11km+6k

2

�8e`�8ek)+(6`

2

m+12`m

2

+6`

2

k+24`mk+24m

2

k+12`k

2

+24mk

2

�42e`

2

�66e`k�24ek

2

+18e

2

`+18e

2

k)

Proof: By Lemma 1.3 terms in odimension � 4 in

b

B

3

are 0, and the term in

odimension 3 is

b

B

3

�

b

D

3

. For the odimension 1 and 2 terms, the only missing

ingredient is (part of) s(

b

B

3

\

b

D

3

;

b

B

3

). To get equations for

b

B

3

\

b

D

3

in

b

B

3

, use the

oordinates of x2.1: give oordinates (�

1

; �

2

;u; t) to

b

B

3

, so that the blow-up map

to

�

P

2

�

�

P

2

is given by

(�

1

; �

2

;u; t) 7! ((�

1

+ u; �

2

+ ut); (�

1

; �

2

))

(with obvious hoies of oordinates for

�

P

2

�

�

P

2

); then in terms of (b

1

; : : : ; b

9

) one

has ([A1℄, x3.1)

(�

1

; �

2

;u; t) 7! (3�

1

+ u; 3�

2

+ ut;�u

2

; 2t; t

2

; 2�

1

; 2�

1

t; 2�

2

t; 2�

2

t

2

)

14



Restriting the equations for

b

D

1

gives equations

�

(x

0

+ �

1

x

1

+ �

2

x

2

)

2

= 0

(x

0

+ �

1

x

1

+ �

2

x

2

)(x

1

+ tx

2

) = 0

;

these lift to equations for

b

B

3

\

b

D

3

in

b

B

3

. So

b

B

3

\

b

D

3

onsists of the divisor of triples

f(p; (�; �); q) 2

b

B

3

s.t. p 2 �g ;

with an embedded omponent along

f(p; (�; �); q) 2

b

B

3

s.t. p = qg :

The �rst has lass m + k, the seond is a divisor in the �rst, with lass `+m� e.

It follows easily that

s(

b

B

3

\

b

D

3

;

b

B

3

) = (m+ k)� (m+ k)

2

+ (m+ k)(`+ k � e) + higher od. terms

= (m+ k) + (m+ k)(`�m� e) + higher od. terms.

Therefore, by Lemma 2.7

b

D

3

Æ

b

B

3

= (N

b

D

3

b

V

3

)s(

b

B

3

\

b

D

3

;

b

B

3

)

= (1 + 3`+ 6m+ 6k � 7e+ : : : )((m+ k) + (m+ k)(`�m� e) + : : : )

= (m+ k) + (4`m+ 5m

2

+ 4k`+ 11km+ 6k

2

� 8e`� 8ek) + : : :

We are done, as we observed already that

b

B

3

Æ

b

D

3

=

b

D

3

Æ

b

B

3

in odimension � 2,

and the odimension-3 term, i.e.

b

B

3

�

b

D

3

, is given by a straightforward appliation

of Lemma A.4.

x2.4.

b

B

4

Æ

b

D

4

b

B

4

Æ

b

D

4

b

B

4

Æ

b

D

4

. The enter B

4

of the �fth blow-up is isomorphi to B

3

, therefore

to the blow-up of

�

P

2

�

�

P

2

along the diagonal ([A1℄, x3.4); the exeptional divisor

E

4

in V

4

restrits to 3`+ 3m� 4e on

b

B

4

([A1℄, Lemma 4.2). Lemmas 1.3 and A.4

will give easily the terms of

b

B

4

Æ

b

D

4

of odimension � 3 in

b

B

4

; so, as in x2.3, we

just have to determine the terms of

b

B

4

Æ

b

D

4

in odimension � 2. The main problem

here is analyzing the situation over the embedded omponent of

b

B

3

\

b

D

3

(whih

has odimension 2 in

b

B

3

, so a�ets the terms we have to ompute). For this we

introdue an `intermediate' blow-up

b

V

0

3

of

b

V

3

along the inidene orrespondene

I = f(p; (�; �); q) 2

b

B

3

s.t. p = qg ;

on whih the embedded omponent is supported (f. x2.3). Next, let

b

V

0

4

be the blow-

up of

b

V

0

3

along the proper transform

b

B

0

3

of

b

B

3

in

b

V

0

3

. By the universal property of

blow-ups,

b

V

0

4

is also the blow-up of

b

V

4

along the inverse image J of I, so one has

the ommutative diagram

b

V

0

4

blow-up J

������!

b

V

4

blow-up

b

B

0

3

?

?

y

?

?

y

blow-up

b

B

3

b

V

0

3

blow-up I

������!

b

V

3

15



If ((�; �); q) 2 B

3

, look at the plane P

2

= P

2

� ((�; �); q) �

b

B

3

. Then

b

D

3

intersets

this P

2

along �, with embedded point at q. In

b

V

0

3

, the proper transform of this

plane is its blow-up

e

P

2

at q, and the proper transform

b

D

0

3

of

b

D

3

in

b

V

0

3

intersets

e

P

2

along the inverse image of � (use the equations for

b

B

3

\

b

D

3

in x2.3, proof of

Proposition 2.8). As ((�; �); q) moves in B

3

, we �nd that

b

D

0

3

intersets

b

B

0

3

along

the inverse image of the support of

b

B

3

\

b

D

3

, whih onsists of two omponents; so

the exeptional divisor of the blow-up of

b

D

0

3

along

b

B

0

3

\

b

D

0

3

(i.e., the intersetion

of the exeptional divisor with the proper transform

b

D

0

4

of

b

D

0

3

in

b

V

0

4

) will have

two omponents E

(1)

0

, E

(2)

0

. Also, the top map doesn't ontrat either of these

omponents; we onlude that, in

b

V

4

,

b

E

4

\

b

D

4

onsists of two omponents E

(1)

,

E

(2)

, the �rst dominating the support of of

b

B

3

\

b

D

3

, and the seond dominating the

embedded omponent of

b

B

3

\

b

D

3

(supported on I). Also, traing the inverse image

of

b

B

3

in the diagram gives that

b

E

4

pulls-bak on

b

D

4

to the divisor E

(1)

+ 2E

(2)

.

The information we have just olleted is needed to ompute the restrition of



1

(N

b

D

4

b

V

4

) to

b

B

4

\

b

D

4

:

Lemma 2.9. (N

b

D

4

b

V

4

) restrits to 1� 2`+ 7k + : : : .

Proof: If

b

E

4

is the exeptional divisor in

b

V

4

, then (omitting pull-baks as usual)



1

(T

b

V

4

) = 

1

(T

b

V

3

)� 4

b

E

4

sine the odimension of

b

B

3

in

b

V

3

is 5.

To get 

1

(T

b

D

4

), we restrit the above blow-up diagram to the

b

D's:

b

D

0

4

blow-up J\

b

D

4

���������!

b

D

4

blow-up

b

B

0

3

\

b

D

0

3

?

?

y

?

?

y

blow-up

b

B

3

\

b

D

3

b

D

0

3

blow-up I

���������!

b

D

3

Let F

3

be the exeptional divisor of the bottom blow-up. The exeptional divisor of

the leftmost blow-up onsists (as we have seen) of two omponents E

(1)

0

, E

(2)

0

; F

3

ontains one of the two omponents blown up on the left, and the top map ontrats

the proper transform F

4

= F

3

� E

(2)

0

of F

3

in

b

V

0

4

. Away from F

4

and its image in

b

D

4

(whih has odimension > 1),

b

D

0

4

and

b

D

4

are isomorphi, the former being the

blow-up of the latter along the divisor E

(2)

; so 

1

(T

b

D

0

4

) restrits to (the pull-bak

of) 

1

(T

b

D

4

) on the omplement of F

4

. Now



1

(T

b

D

0

4

) = 

1

(T

b

D

0

3

)� 2E

(1)

0

� 2E

(2)

0

= 

1

(T

b

D

3

)� 3F

3

� 2E

(1)

0

� 2E

(2)

0

= 

1

(T

b

D

3

)� 3F

4

� 2E

(1)

0

� 5E

(2)

0

restrits to 

1

(T

b

D

3

)� 2E

(1)

� 5E

(2)

on the omplement of F

4

, so realling that

b

E

4

pulls-bak to E

(1)

+ 2E

(2)

on

b

D

4

we �nd



1

(T

b

D

4

) = 

1

(T

b

D

3

)� 2

b

E

4

� E

(2)

:
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Thus



1

(N

b

D

4

b

V

4

) = 

1

(T

b

V

4

)� 

1

(T

b

D

4

)

= 

1

(T

b

V

3

)� 4

b

E

4

� 

1

(T

b

D

3

) + 2

b

E

4

+ E

(2)

= 

1

(N

b

D

3

b

V

3

)� 2

b

E

4

+ E

(2)

:

Finally, the lass of E

(2)

restrits on

b

B

4

\

b

D

4

to ` + k � e: indeed, we'll see in a

moment that

b

B

4

\

b

D

4

is supported on the pull-bak of the support of

b

B

3

\

b

D

3

; and

E

(2)

\

b

B

4

is the pull-bak in

b

B

4

\

b

D

4

of the divisor I of

b

B

3

\

b

D

3

, whih has lass

`+ k � e.

Putting all together (and realling that

b

E

4

restrits to 3` + 3m � 4e, beginning

of this setion)



1

(N

b

D

4

b

V

4

) = (3`+ 6m+ 6k � 7e)� 2(3`+ 3m� 4e) + (`+ k � e)

= �2`+ 7k ;

whih is the laim.

Proposition 2.10.

b

B

4

Æ

b

D

4

= (m+ k) + (�2`m�m

2

� 2`k + 5mk + 6k

2

) + (3`

2

m

+ 3`m

2

+ 3k`

2

� 3k`m� 6k

2

`+ 6k

2

m� 6e`

2

� 6ekl + 2e

2

`+ 2e

2

k)

Proof: One more we argue

b

B

4

Æ

b

D

4

=

b

D

4

Æ

b

B

4

(in odimension � 2), and proeed

to ompute the �rst ouple of terms in s(

b

B

4

\

b

D

4

;

b

B

4

). Now we laim that

b

B

4

\

b

D

4

is

the divisor of

b

B

4

dominating the support of

b

B

3

\

b

D

3

, this time without embedded

omponents. This is another oordinate omputation: the key step is to show

that the divisor is ut out sheme-theoretially (without embedded omponents);

for this, it suÆes to produe a divisor of

b

V

4

ontaining

b

D

4

and interseting

b

B

4

sheme-theoretially along the support of

b

B

4

\

b

D

4

. For example, one sees that the

proper transform of

2

�

a

0

�f

�x

2

�

a

2

3

�f

�x

0

�

(3a

3

� a

2

1

)�

�

a

0

�f

�x

1

�

a

1

3

�f

�x

0

�

(3a

4

� 2a

1

a

2

) = 0

satis�es this requirement over fa

0

6= 0; x

2

6= 0g.

So

b

B

4

\

b

D

4

is a divisor of

b

B

4

, with lass m+k (the lass of the support of

b

B

3

\

b

D

3

in

b

B

3

, f. x2.3), and therefore

(

b

B

4

\

b

D

4

;

b

B

4

) = (m+ k)� (m+ k)

2

+ : : : :

Now using Lemma 2.9:

b

D

4

Æ

b

B

4

= (1� 2`+ 7k + : : : )((m+ k)� (m+ k)

2

+ : : : ) ;

so

b

B

4

Æ

b

D

4

= (m+ k) + (�2`m�m

2

� 2`k + 5mk + 6k

2

) +

b

B

4

�

b

D

4

:

Finally, Lemma A.4 yields

b

B

4

�

b

D

4

, with the result given in the statement.
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x2.5. Proof of Theorem II. As observed already, the �rst part of Theorem II

follows from the omputations performed in xx2.0{4, by reading o� eah lass

b

B

i

Æ

b

D

i

the oeÆient of k

2

, k, and the onstant term with respet to k. The results obtained

give the lasses for the three families of nodal ubis we are onsidering, and are

enough to ompute the harateristi numbers for suh families. We will see now

that the lasses

b

B

i

Æ

b

D

i

ontain atually most of the information needed to ompute

the lasses for families of uspidal ubis as well.

As in [A3℄, x1.2, we desribe the losure C

0

of the set of uspidal urves as the

projetion from P

2

� P

9

of the divisor

b

C

0

of

b

D

0

de�ned by

(p; f) 2

b

C

0

()

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�f

�x

1

(p) = 0

�f

�x

2

(p) = 0

;

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

"

�

�

2

f

�x

0

�x

1

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

1

#

(p) = 0

"

�

�

2

f

�x

0

�x

2

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

2

#

(p) = 0

"

�

�

2

f

�x

1

�x

2

�

2

�

�

2

f

�x

2

1

�

2

f

�x

2

2

#

(p) = 0

:

(so (p; f) 2

b

C

0

if and only if f is a ubi singular at p, whose tangent one at p

ontains a double line). The projetion P

2

� P

9

�! P

2

restrits to a map

b

C

0

�! P

2

whose �bers are quadris in the �bers of

b

D

0

. The other projetion, P

2

� P

9

�! P

9

,

restrits to a birational morphism from

b

C

0

to the losure of the set of uspidal ubis

in P

9

. We let

b

C

i

be the proper transform of

b

C

0

in

b

V

i

; then we obtain birational

morphisms

b

C

i

�! C

i

:

Proposition 2.11. For i = 0; : : : ; 4

B

i

Æ C

i

= oeÆient of k

2

in

b

B

i

Æ

b

C

i

B

i

Æ C`

i

= oeÆient of k

1

in

b

B

i

Æ

b

C

i

B

i

Æ Cp

i

= oeÆient of k

0

in

b

B

i

Æ

b

C

i

Proof: The argument mirrors the proof of Proposition 2.1, and we leave it to the

reader.

So all we need to ompute in order to omplete the proof of Theorem II are the

�ve lasses

b

B

0

Æ

b

C

0

: : : ,

b

B

4

Æ

b

C

4

. Sine eah

b

C

i

is a divisor in

b

D

i

, applying Lemma

A.3 from the appendix redues the omputation to �nding the `multipliity' of eah

b

C

i

along

b

B

i

\

b

D

i

.

Proposition 2.12.

b

B

0

Æ

b

C

0

= (1 + 6h)

b

B

0

Æ

b

D

0

b

B

1

Æ

b

C

1

= (2 + 6h� �)

b

B

1

Æ

b

D

1

b

B

2

Æ

b

C

2

= (6h� �� 2')

b

B

2

Æ

b

D

2

b

B

3

Æ

b

C

3

= (1 + 2`+ 4m� 4e)

b

B

3

Æ

b

D

3

b

B

4

Æ

b

C

4

= (1� `+m)

b

B

4

Æ

b

D

4

18



Proof: We apply Lemma A.3 from the appendix. Obtaining the multipliity of

the

b

C

i

along

b

B

i

Æ

b

D

i

is done by omputing the highest power of a loal equation for

the exeptional divisor that divides the pull-bak to

b

D

i+1

of a loal equation for

b

C

i

in

b

D

i

(to start, observe that e.g. over fx

2

6= 0g

"

�

�

2

f

�x

0

�x

1

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

1

#

(p) = 0

gives a loal equation for

b

C

0

in

b

D

0

).

This omputation gives the onstant terms 1; 2; 0; 1; 1 of the linear fators in the

statement.

For the other terms, the lass of

b

C

0

in

b

D

0

is 2H by Lemma 1.4 in [A3℄ (H is the

hyperplane lass in P

9

, as in x2.0); therefore the multipliity omputation gives the

lasses of the

b

C

i

in the

b

D

i

as the pull-bak of:

2H i = 0

2H �

b

E

1

i = 1

2H �

b

E

1

� 2

b

E

2

i = 2

2H �

b

E

1

� 2

b

E

2

i = 3

2H �

b

E

1

� 2

b

E

2

�

b

E

4

i = 4

restriting on

b

B

i

to

6h i = 0

6h� � i = 1

6h� �� 2' i = 2

2`+ 4m� 4e i = 3

� `+m i = 4

(

b

E

1

restrits to �; 2e;

b

E

2

to '; e;

b

E

4

to 3`+ 3m � 4e, see xx2.0{4) giving the other

terms in the linear fators in the statement.

Propositions 2.11 and 2.12 omplete the proof of Theorem II. For example, by

Proposition 2.12,

b

B

0

Æ

b

C

0

is

(1 + 6h)(

b

B

0

Æ

b

D

0

) = (1 + 6h)(2h+ 2k + 14h

2

+ 22hk + 8k

2

+ 54h

2

k + 36hk

2

)

= 2h+ 2k + 26h

2

+ 34hk + 8k

2

+ 186h

2

k + 84hk

2

+ 216h

2

k

2

= (8 + 84h+ 216h

2

)k

2

+ (2 + 34h+ 186h

2

)k + (2h+ 26h

2

) ;

giving the �rst row of the last three braes in the statement of Theorem II, by

Proposition 2.11.
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3. Charateristi numbers

The omputation of the harateristi numbers is now a straightforward applia-

tion of Propositions 1.1 and Theorem I from x1 to the lasses omputed in Theorem

II, x2: Theorem I gives the `weighted' harateristi numbers N

F

(n

p

P; n

`

L) for eah

of the families D;D`;Dp, C;C`; Cp; these in turn give the harateristi numbers

proper, via Proposition 1.1.

Proposition 3.1. The weighted harateristi numbers N

F

(n

p

P; n

`

L) (where

n

p

= dimF � n

`

) are:

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 12 2

1 48 24 4 96 48 8

2 192 96 16 384 144 20

3 768 336 52 1248 348 38

4 2784 1020 142 3264 642 44

5 8832 2466 256 6324 792 32

6 21828 4284 304 8376 648

7 39072 5256 7584

8 50448

Proof: For example, for the family of uspidal ubis, and n

`

= 7:

N

C

(0P; 7L) = 4

7

� 24�

4

X

i=0

Z

B

i

(B

i

Æ L

i

)

7

(B

i

ÆC

i

)

(N

B

i

V

i

)

by Theorem I, i.e. (reading B

i

Æ C

i

from Theorem II in x2, and B

i

Æ L

i

, (N

B

i

V

i

)

from Theorem III in [A1℄)

N

C

(0P; 7L) = 16384 � 24�

Z

B

0

(2 + 12h)

7

(8 + 84h+ 216h

2

)(1 + h)

3

(1 + 3h)

10

�

Z

B

1

(1 + 12h� 2�)

7

(10 + 102h� 21�+ 216h

2

+ : : : )(1 + 2h� �)

6

(1 + �)(1 + 3h� �)

10

�

Z

B

2

(1 + 12h� 2�� ')

7

(18h� 3�� 6'+ 216h

2

� 84�h+ : : : )

(1 + ')(1 + �� ')

�

Z

B

3

(1 + 4`+ 8m� 6e)

7

(6 + 24`+ 48m� 48e+ 24`

2

+ : : : )

(1 + 7`+ 17m� 16e+ 126m

2

+ : : : )

�

Z

B

4

(1 + `+ 5m� 2e)

7

(6� 12`+ 12m+ 6`

2

� 12`m+ 6m

2

)

(1� 5`+ 5m+ 18m

2

� 27`m+ 3`

2

+ : : : )

= 393216� 219648� 127902� 115554 + 67338 + 10134

= 7584

(eah term is omputed by expanding the fration as a power series, seleting the

term of degree = dimB

i

, and applying the relations given in [A1℄, Theorem III).
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We list here the intermediate ontributions for all families, obtained as above, for

those n

`

giving non-zero terms.

D:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

4 0 0 0 144 144

5 0 0 0 2052 1404

6 4608 2043 8901 6912 4860

7 59904 21807 73809 {3636 5652

8 439296 120966 289914 {97722 {16470

D`:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

3 0 0 0 24 24

4 0 0 0 312 204

5 576 297 1071 1047 687

6 7680 3180 9228 {564 768

7 56832 17571 36405 {15402 {2358

Dp:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

3 0 0 0 6 6

4 0 0 0 72 42

5 192 99 357 57 63

6 2048 833 2087 {1032 {144

C:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

3 0 0 0 144 144

4 0 0 0 1764 1116

5 2304 2925 5139 4752 3132

6 29952 26739 36621 {5796 2412

7 219648 127902 115554 {67338 {10134

C`:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

2 0 0 0 24 24

3 0 0 0 264 156

4 288 405 603 711 423

5 3840 3750 4506 {894 294

6 28416 17889 14175 {10578 {1398
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Cp:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

2 0 0 0 6 6

3 0 0 0 60 30

4 96 135 201 9 27

5 1024 925 931 {774 {90

The results in the statement of the Proposition are obtained by subtrating the

sum of the numbers in eah row from 4

n

`

� degF

0

(the degree of D

0

; D`

0

; et. are

listed in Proposition 1.2), as presribed by Theorem I.

Is there any general pattern ruling the numbers listed in Proposition 3.1 (and its

proof)? The alert reader has probably notied that the numbers N

F

(n

p

P; n

`

L) of

the statement are in eah ase ongruent to degF

0

modulo 3: this is always true

when F

0

is a hypersurfae of P

9

(see [A4℄, x1, Corollary 2).

Proposition 1.1 now onludes the omputation:

Theorem III. The harateristi numbers for the families D;D`;Dp, C;C`; Cp

are

k D D` Dp C C` Cp

0 12 6 1 24 12 2

1 36 22 4 60 42 8

2 100 80 16 114 96 20

3 240 240 52 168 168 38

4 480 604 142 168 186 44

5 712 1046 256 114 132 32

6 756 1212 304 60 72

7 600 1000 24

8 400

where F (k) denotes the number of elements of F tangent at smooth points to k

lines and ontaining dimF � k points in general position in the plane.

Proof: This is now straightforward. For example,

Cp(5) = N

Cp

(0P; 5L) = 32; so

C`(6) = N

C`

(0P; 6L)� 18 � 32 = 72; and

C(7) = N

C

(0P; 7L)� 21 � 72� 9 � 21 � 32 = 24;

by Propositions 1.1 and 3.1.
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4. Further harateristi numbers

In this last setion we want to stress that the lasses omputed in x2 ontain

yet more enumerative information: no additional work is needed at this point to

produe the harateristi numbers for the families obtained by further imposing

onditions of tangeny to a line at a given point.

Denote by N

F

(n

p

P; n

`

L; n

m

M) the weighted number of elements of F ontaining

n

p

points, tangent to n

`

lines, and furthermore tangent to n

m

lines at given points

(where n

p

+ n

`

+ 2n

m

= dimF ); then Theorem IV

0

in [A1℄ gives

N

F

(n

p

P; n

`

L; n

m

M) = 4

n

`

� degF

0

�

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

ÆM

i

)

n

m

(B

i

Æ F

i

)

(N

B

i

V

i

)

with notations as above, and B

i

ÆM

i

given by Proposition 5.1 in [A1℄.

Proposition 4.1. The `weighted' numbers N

F

(n

p

P; n

`

L; n

m

M) (where

n

p

= dimF � n

`

� 2n

m

) are:

|for n

m

= 1

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 12 2

1 48 24 4 96 36 6

2 192 84 14 312 90 12

3 696 258 40 816 168 14

4 2208 612 70 1536 210

5 5232 1026 2004

6 8868

|for n

m

= 2

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 10 2

1 48 22 4 84 24 4

2 180 68 12 216 44

3 576 156 384

4 1296

|for n

m

= 3

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 6

1 48 18 60

2 156
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Proof: As for Proposition 3.1, we just list the relevant ontributions one omputes

in applying the above formula:

|for n

m

= 1:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

D :

3 0 0 0 36 36

4 0 0 0 522 342

5 1536 681 2967 972 900

6 18432 6588 21636 {6282 {90

D` :

2 0 0 0 6 6

3 0 0 0 78 48

4 192 99 357 147 129

5 2368 961 2719 {939 9

Dp :

2 0 0 0 1 1

3 0 0 0 15 9

4 64 33 119 {35 5

C :

2 0 0 0 36 36

3 0 0 0 450 270

4 768 975 1713 576 576

5 9216 7938 10494 {4986 {90

C` :

1 0 0 0 6 6

2 0 0 0 66 36

3 96 135 201 87 81

4 1184 1115 1301 {741 3

Cp` :

1 0 0 0 1 1

2 0 0 0 13 7

3 32 45 67 {33 3

|for n

m

= 2:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

D :

2 0 0 0 6 6

3 0 0 0 114 78

4 512 227 989 {90 138

D` :

1 0 0 0 1 1

2 0 0 0 17 11

3 64 33 119 {11 23
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Dp :

2 0 0 0 2 2

C :

1 0 0 0 6 6

2 0 0 0 102 66

3 256 325 571 {102 102

C` :

0 0 0 0 1 1

1 0 0 0 15 9

2 32 45 67 {13 17

Cp :

1 0 0 0 2 2

|for n

m

= 3:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

D :

2 0 0 0 18 18

D` :

1 0 0 0 3 3

C :

1 0 0 0 18 18

C` :

0 0 0 0 3 3

The statement of the proposition is obtained from these tables by subtrating the

sum of the �ve numbers in eah row from 4

n

`

� degF

0

.

From Proposition 3.2 and the straightforward extension of Proposition 1.1 (whih

we leave to the reader) follow the harateristi numbers:

Theorem III

0

. Denote by F

(j)

(k) the number of elements of F tangent to k lines,

ontaining dimF � k� 2j points, and tangent to j lines at given points (all hoies

being general). Then:

k D

(1)

D`

(1)

Dp

(1)

C

(1)

C`

(1)

Cp

(1)

0 10 6 1 18 12 2

1 28 22 4 36 30 6

2 68 68 14 54 54 12

3 136 174 40 54 60 14

4 196 292 70 36 42

5 200 326 18

6 148

25



k D

(2)

D`

(2)

Dp

(2)

C

(2)

C`

(2)

Cp

(2)

0 8 6 1 12 10 2

1 20 20 4 18 18 4

2 40 52 12 18 20

3 56 84 12

4 56

k D

(3)

D`

(3)

Dp

(3)

C

(3)

C`

(3)

Cp

(3)

0 6 6 1 6 6

1 12 16 6

2 16

The enumerative results omputed in Theorems III and III

0

agree with Zeuthen's

lists, with the exeption of D`(5) from Theorem III in x3 (the number of nodal

ubis with node on a given line, ontaining three points and tangent to �ve lines

in general position), a (very rare!) typo in [Z℄, p.607.

Appendix

In this appendix we list a few fats used in the omputation of the full intersetion

lasses in x2. Suppose B;F � V are pure-dimensional shemes, with B ,! V a

regular embedding. We set

B Æ F = (N

B

V )s(B \ F; F ) ;

the `full intersetion lass' of F by B in V (as usual, we omit pull-bak notations).

If F ,! V is also a regular embedding, then we an onsider the lass F Æ B as

well; unfortunately, B Æ F 6= F ÆB in general: for example, let B = p be a point in

V = P

2

, and let F be any urve with a double point at p: then B Æ F = 2[p℄, while

F ÆB = [p℄. However:

Lemma A.1. If B, F , V are non-singular, then

B Æ F = F ÆB :

Proof: By [F℄, Example 4.2.6,

(TF )s(B \ F; F ) = (TB)s(B \ F;B)

(this lass is intrinsi of B \ F ). Multiplying by

(TV )

(TF )(TB)

gives then

(TV )

(TB)

s(B \ F; F ) =

(TV )

(TF )

s(B \ F;B) ; i.e.

(N

B

V )s(B \ F; F ) = (N

F

V )s(B \ F;B)
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whih is the laim.

For example, in omputing B ÆF , suppose that the hypotheses of A.1 hold in the

omplement of a subvariety W of B of odimension r. Then

fB Æ Fg

i

= fF ÆBg

i

for i > dimB � r;

by Lemma A.1 (we say, a little improperly, `B Æ F = F Æ B in odimension < r

in B'). Often the right-hand-side is easier to ompute, and higher odimensional

terms an be omputed separately, e.g. by using Lemma 1.4 (2), (3). Notie that

the right-hand-side above need not be de�ned in the whole of V , but just on V �W ,

beause Segre lasses are preserved via at maps.

The ommutativity of full intersetion lasses is stritly related to the following

issue: suppose W � X � V are losed embedding, and suppose X ,! V is regular.

Under what irumstanes is

(N

X

V )

�1

s(W;X)

independent of X?

The proof of A.1 works beause this lass is independent of X if X and V are

non-singular. Other onditions an be onsidered; S. Keel has shown that this lass

is independent of X as long as the embedding W ,! X is `linear' (see [K℄): so

B Æ F = F Æ B if B ,! V , F ,! V are regular embeddings and B \ F ,! B,

B \ F ,! F are linear embeddings. The following observation is also due to Keel:

Lemma (Keel). Suppose W � X � V are losed embeddings, with W ,! V ,

X ,! V regular embeddings. Suppose the proper transform of X in the blow-up

B`

W

V

�

�! V of V along W is regularly embedded in B`

W

V as the residual sheme

to the exeptional divisor in �

�1

X. Then

(N

X

V )

�1

s(W;X) = s(W;V ) :

Proof: Let I, J be the ideal sheaves of W , X resp. in O

V

. The exat sequene

J

J

2

�!

I

I

2

�!

I

I

2

+ J

�! 0

indues an exat sequene of graded algebras

J

J

2


 Sym

�

I

I

2

�

(�1) �! Sym

�

I

I

2

�

�! Sym

�

I

I

2

+ J

�

�! 0 :

Sine the embedding W ,! V is regular, the seond term in this sequene is the

homogeneous oordinate ring for P(N

W

V ); under the hypotheses, the embedding

W ,! V is weakly linear (Theorem 1 in [K℄), so the third term is the ring for

P(C

W

X). The image of the �rst is then the homogeneous ideal sheaf of P(C

W

X)

in P(N

W

V ), and we get the sequene of sheaves on P(N

W

V )

N

X

V

�


O(�1) �! O

P(N

W

V )

�! O

P(C

W

X)

�! 0 :
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Thus P(C

W

X) is ut out by a setion of N

X

V 
O(1), whih must be regular sine

the bundle has the right dimension and the embedding of P(C

W

X) in P(N

W

V ) is

regular. Therefore (using notation rather freely) if r is the odimension of X in V :

s(W;X) =

X

i�0



1

(O(1))

i

P(C

W

X � 1)

=

X

i�0



1

(O(1))

i



r

(N

X

V 
O(1)) \ P(N

W

V � 1)

=

X

j�0



r�j

(N

X

V )

X

i�j



i

(O(1)

i

P(N

W

V � 1)

= (N

X

V )s(W;V ):

We use this fat in x2.1, in the form:

Lemma A.2. Suppose B � V are non-singular irreduible varieties and B\F ,! V ,

F ,! V are regular embeddings. Suppose the proper transform of F in the blow-up

B`

B\F

V

�

�! V of V along B \ F is regularly embedded in B`

B\F

V as the residual

sheme to the exeptional divisor in �

�1

F . Then

B Æ F = F ÆB :

Proof: Sine B; V are non-singular, (N

B

V )

�1

s(B \ F;B) = s(B \ F; V ) (argue

as in the proof of Lemma A.1); and s(B \ F; V ) = (N

F

V )

�1

s(B \ F; F ) by Keel's

Lemma. The statement follows immediately.

The next Lemma fouses on the ase of divisors:

Lemma A.3. Let W � Y and W � F be losed embeddings of pure-dimensional

shemes, with W irreduible and Y a Cartier divisor of F , and suppose the proper

transform

e

Y in the blow-up of F alongW is the residual sheme of the m

th

multiple

of the exeptional divisor. Then

s(W \ Y; Y ) = (m+ Y ) � s(W;F ) :

Proof: We leave to the reader the ase in whih W is a omponent of Y (use

Lemma 4.2 in [F℄). If W is not a omponent of Y , then let B`

W

F

�

�! F be the

blow-up of F along W , and let E be the exeptional divisor. Then E \

e

Y is the

exeptional divisor of the blow-up of Y along W \ Y , so that (by Corollary 4.2.2 in

[F℄)

s(W \ Y; Y ) = �

�

X

k�1

(�1)

k�1

(E \

e

Y )

k

= �

�

X

k�1

(�1)

k�1

E

k

�

e

Y

= �

�

X

k�1

(�1)

k�1

E

k

� (�

�

Y �mE)

= m�

�

X

k�1

(�1)

k

E

k+1

+ �

�

(�

�

Y �

X

k�1

(�1)

k�1

E

k

)

= (m+ Y ) � �

�

X

k�1

(�1)

k�1

E

k

by the projetion formula

= (m+ Y )s(W;F ):
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Applying Lemma A.3 to the ase in whih W = B \ F , with B;F � V as in the

beginning of this appendix, we get

B Æ Y = (m+ Y )(B Æ F ) ;

whih is the form we mainly need in x2.

Finally, we need two results about proper transforms. The �rst is Fulton's `blow-

up formula':

Lemma A.4. Let V be a variety, B ,! V a regular embedding, and let F � V be a

k-dimensional variety. Let

e

V be the blow-up of V along B, and let

e

F be the proper

transform of F in

e

V ; also, let j : E ,!

e

V be the exeptional divisor. Then (omitting

pull-bak notations)

[

e

F ℄ = [F ℄� j

�

�

B Æ F

1 + E

�

k

:

Proof: This is Theorem 6.7 in [F℄; or, set r = 1 in the Claim in [A1℄, Theorem

II.

The seond omputes the �rst Chern lass of the normal bundle of a proper

transform:

Lemma A.5. In the above situation, suppose the embeddings B\F ,! B, B \ F ,!

F are regular. Then

e

F ,!

e

V is a regular embedding; and if r = odim

V

B, s =

odim

F

(B \ F ), then (omitting pull-baks)



1

(N

e

F

e

V ) = 

1

(N

F

V )� (r � s)E :

Proof: We leave the �rst laim to the reader. For the relation between Chern

lasses, learly 

1

(N

e

F

e

V ) = 

1

(N

F

V ) � kE for some k; to show k = r � s, we

restrit to E. The lass (N

e

F

e

V ) restrits to (N

E\

e

F

E), and E = P(N

B

V ), E\

e

F =

P(N

B\F

F ); so hasing the Euler sequenes for P(N

B

V ), P(N

B\F

F ) gives

(N

E\

e

F

E) = (N

B\F

B)

�

N

F

V

N

B\F

B


O(1)

�

;

from whih it follows that k equals the rank of N

F

V=N

B\F

B, i.e. r � s.

Typially, to get into the hypotheses of this Lemma we have to restrit to open

subsets of V;

e

V . However, sine the statement only deals with the �rst Chern

lass, this will work sine the open sets (impliitly) onsidered will always be the

omplement of subvarieties of odimension at least two.
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