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0. Introdu
tion

In [A1℄ we study the basi
 enumerative question about the family of all smooth


ubi
s: we 
ompute its `
hara
teristi
 numbers', i.e. the number of smooth plane


ubi
s tangent to n

`

general lines and 
ontaining 9�n

`

general points of the plane.

In this paper we study the analogous question for several families of nodal and


uspidal 
ubi
s, re
overing as in [A1℄ 
lassi
 results of Maillard and Zeuthen's.

Spe
i�
ally, we will 
onsider the families

�D of nodal 
ubi
s;

�D` of 
ubi
s with node on a given line;

�Dp of 
ubi
s with node at a given point;

�C of 
uspidal 
ubi
s;

�C` of 
ubi
s with 
usp on a given line;

�Cp of 
ubi
s with 
usp at a given point.

(we will refer to a family by the subset of the P

9

of plane 
ubi
s parametrizing

it), and 
ompute the list of 
hara
teristi
 numbers for ea
h of them: i.e., for ea
h

family F we will 
ompute the numbers F (k) of elements of F that are tangent

(at smooth points) to k lines and 
ontain (dimF � k) points in general position

in the plane. Also, we will 
ompute for these families the numbers de�ned by


onsidering 
onditions of tangen
y to lines at spe
i�ed points. These results are

listed in Theorem III, x3, and Theorem III

0

, x4.

The 
omputation of the 
hara
teristi
 numbers for various families of plane 
ubi
s

has been atta
ked su

essfully from a number of viewpoints, both in the XIX 
entury

([M℄, [S
℄, [Z℄) and very re
ently ([Sa℄, [KS℄, [MX℄): the problem stands out as

a test-ground for te
hniques in enumerative geometry; and has a 
ertain 
harm in

itself, as do most problems so de
eptively easy to state.

In both the 
lassi
 and the modern approa
hes quoted above (for example, Klei-

man-Speiser's ex
ellent papers on the subje
t) the 
omputation is 
arried out de-

pending on su

essive degenerations, by relating the 
hara
teristi
 numbers for a

family to the numbers for a more `spe
ial' family. For example, the numbers for


uspidal 
ubi
s are used in obtaining the numbers for nodal ones, and these in turn

are an ingredient of the 
omputation for the family of smooth 
ubi
s. In fa
t, the

numbers for 
uspidal 
ubi
s are obtained by �rst studying families of redu
ible 
u-

bi
s, for whi
h the enumerative problem is essentially 
ombinatorial (modulo the

enumerative geometry of 
oni
s).

In [A1℄ we have tried a di�erent approa
h. In a sense, we have aimed to solving

the enumerative question about any given family of redu
ed plane 
ubi
s indepen-

dently from other families, at least for what 
on
erns the 
ontribution of degenerate
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elements. We produ
e a smooth variety of `
omplete 
ubi
s', i.e. we resolve all in-

determina
ies of the map asso
iating to ea
h 
ubi
 its dual sexti
 at on
e: this

is a

omplished by a sequen
e of 5 blow-ups at smooth 
enters over P

9

(the same

sequen
e was 
onsidered independently by Sterz, [St℄). Unfortunately, the 
onstru
-

tion doesn't provide an e�e
tive visualization of what a `
omplete 
ubi
' looks like,

so the pi
ture isn't nearly as informative and insightful as e.g. the one asso
iated

with the spa
e of `
omplete 
oni
s'. However, in this paper we would like to support

the usefulness of that 
onstru
tion by employing it to re
over Zeuthen's enumera-

tive results on singular 
ubi
s (we address the reader to [KS℄ in parti
ular for an

alternative modern veri�
ation of most of these results, from a viewpoint 
lose to

Zeuthen's). .

Solving an enumerative problem about 
ubi
s amounts to 
omputing the number

of `non-degenerate' points of interse
tion of suitable lo
i in P

9

. Modulo B�ezout's

theorem, this is equivalent to evaluating the 
ontribution due to the set of degenerate

points: in our 
ase, this is the set S of non-redu
ed 
ubi
s (whi
h are `tangent' to

all lines of the plane!). This brings naturally to trying to 
ompute a 
ertain Segre


lass of a s
heme supported on S|for appli
ations of this approa
h to enumerative

problems on 
oni
s, see [F℄, Examples 9.1.8, 9.1.9. Now, 
omputing Segre 
lasses is

in general very hard. In [A1℄ we essentially break the problem in �ve easier ones: let

B

0

; : : : ; B

4

be the 
enters of the blow-ups, and let V

i

be the i-th blow-up; if F � P

9

parametrizes a family of redu
ed 
ubi
s, and F

i

denotes the proper transform in

V

i

of the 
losure F

0

of F in P

9

, then the problem is redu
ed to the 
omputation

of the �ve 
lasses s(B

i

\ F

i

; F

i

), i = 0; : : : ; 4. This is easier, be
ause the B

i

's are

regularly embedded in the V

i

's, and produ
ts B

i

Æ F

i

= 
(N

B

i

V

i

)s(B

i

\ F

i

; F

i

) (the

`full interse
tion 
lasses' of [A1℄) are relatively easy to handle. For example, in

the 
ase of the family of all smooth 
ubi
s, B

i

Æ F

i

= [B

i

℄, so the 
omputation of

the 
hara
teristi
 numbers for the family of all smooth 
ubi
s be
omes parti
ularly

simple. For more general F , the enumerative problem is redu
ed expli
itly in [A1℄

to the 
omputation of the �ve 
lasses B

i

Æ F

i

, i = 0; : : : ; 4 (Theorems IV in [A1℄,

whi
h we re
all as Theorem I in x1); as an example illustrating the more general


ase, we 
omputed in [A1℄ the 
hara
teristi
 numbers for families of smooth 
ubi
s

tangent to a line at a given point.

In this note we take the next step in the program: we 
ompute the 
lasses B

i

ÆF

i

for some families of singular 
ubi
s. As an immediate appli
ation, we will re
over


lassi
 enumerative results about these families, providing again a 
ounterpoint to

the degeneration method; however, perhaps the main motivation of this paper is

to produ
e examples of 
omputations of Segre 
lasses in an interesting and natu-

ral geometri
 setting. We feel that more tools are needed for the 
omputation of

these important invariants of a 
losed embedding, and we hope that providing these

examples might be of some help in this development.

In order to 
ompute the 
lasses 
orresponding to the families D;D`; et
. listed

above, we realize the dis
riminant hypersurfa
e D

0

of P

9

(the 
losure of D) as the

birational proje
tion from P

2

�P

9

of the 
odimension-3 subvariety

b

D

0

of pairs (p; f)

where p 2 P

2

and f is a 
ubi
 singular at p. If

b

V

i

= P

2

� V

i

,

b

B

i

= P

2

� B

i

, and

b

D

i

denotes the proper transform of

b

D

0

in

b

V

i

, then the birational invarian
e of Segre


lasses allows one to relate the 
lasses B

i

ÆD

i

, B

i

ÆD`

i

et
. to the 
lasses

b

B

i

Æ

b

D

i

2



(Propositions 2.1, 2.11 and 2.12). These latter are not too hard to 
ompute, as the

stru
ture of

b

D

0

is rather transparent; the results are listed in Theorem II, x2. The

more te
hni
al tools used in the 
omputation are presented in an appendix.

On
e the 
lasses for the lo
i D, D`, et
. are obtained, applying Theorem I fur-

nishes us with the 
hara
teristi
 numbers for the families, `
ounted with multipli
-

ities'. A last step needs to be performed here, be
ause of the singularity of the


urves: for ea
h 
on�guration, a 
ontribution to the `weighted' 
hara
teristi
 num-

bers of one family might be due to another family. For example, among the nodal


ubi
s tangent to 8 lines we �nd 
ubi
s tangent to 7 of the lines and with a node on

the 8th, and 
ubi
s tangent to 6 of the lines and having the node at the interse
tion

of the remaining 2. If we want to 
ount only 
urves `properly tangent' to the lines,

then we'll have to evaluate the 
ontribution due to the di�erent possibilities. We

dealt with this issue already in [A3℄ (for nodal and 
uspidal 
urves of arbitrary

degree), so here we will simply apply the tool obtained there (whi
h we re
all as

Proposition 1.1).

Similarly, Theorem IV

0

in [A1℄ will yield the 
hara
teristi
 numbers involving the

additional 
ondition of tangen
y to a given line at a given point: as seen in [A1℄,

x5, no additional information is required for these results.

The last two of the blow-ups 
onstru
ting the variety of 
omplete 
ubi
s have been

studied for arbitrary degree in [A2℄, and applied to derive some enumerative results

for nodal and 
uspidal 
urves in [A3℄. In this paper we basi
ally 
omplete for degree

3 the partial 
omputations worked out in [A3℄ for all degrees, and our methods

here are similar to the ones employed there. Doing the same for e.g. degree 4 
urves

requires a

omplishing �rst the 
onstru
tion of a variety of `
omplete quarti
s', and

is therefore beyond our rea
h at present.

A
knowledgements. I thank William Fulton and Sean Keel for inspiring 
on-

versations about Segre 
lasses and enumerative geometry. I thank the referee for

pointing out a rather serious mistake in a display in an earlier version of this paper.

Also, I want to thank the Mathematis
hes Institut of the Universit�at Erlangen{

N�urnberg for their generous hospitality in the Summer of 1990, when most of this

note was written.

Computations in this paper were performed with Ma
syma and Maple.

1. Preliminaries

We work over an algebrai
ally 
losed �eld of 
hara
teristi
 0. Consider the spa
e

P

9

= P(H

0

O

P

2

(3)) parametrizing 
ubi
 
urves in the proje
tive plane P

2

. In [A1℄

we give a sequen
e of �ve blow-ups

e

V = V

5

�

5

�! V

4

�

4

�! V

3

�

3

�! V

2

�

2

�! V

1

�

1

�! V

0

= P

9

at smooth 
enters produ
ing a smooth proje
tive variety

e

V of `
omplete 
ubi
s':

i.e. a variety (birational to P

9

) on whi
h the map asso
iating to ea
h smooth 
ubi


its dual sexti
 extends to a regular map. In other terms, 
all `line-
ondition' the

hypersurfa
e of P

9

formed by all 
ubi
s tangent to a given line, and its proper

transforms in the V

i

's; then the interse
tion of all line-
onditions in

e

V is empty

(Proposition 5.3 in [A1℄, x3.5). We will re
all brie
y a des
ription of the 
enters of

the blow-ups in x2, in the 
ourse of the main 
omputation; the sequen
e of blow-ups

3



a

omplishes `separating' the line-
onditions over their interse
tion in P

9

, i.e. the set

S of non-redu
ed 
ubi
s (the four-dimensional set of 
ubi
s ��

2


onsisting of a line

� and a double line �

2

). Now 
all

e

L the 
lass of the general line-
ondition in

e

V , and

e

P the 
lass of the general `point-
ondition' (the proper transform of the hyperplane

in P

9

formed by 
ubi
s 
ontaining a given point); if F is (the parameter spa
e of) a

family of redu
ed 
ubi
s, 
all F

0

its 
losure in P

9

, F

i

the proper transform of F

0

in

V

i

, and set

e

F = F

5

. We observed in [A1℄, Theorem I, that the number of elements

of F (thus, automati
ally non-degenerate) tangent to n

`

lines and 
ontaining n

p

points is 
ounted with multipli
ity by the interse
tion produ
t

(*)

e

L

n

`

�

e

P

n

p

�

e

F ;

and furthermore elements `properly' tangent to the lines (i.e., simply tangent at

smooth points) 
ount with multipli
ity 1.

Our main task will be to 
ompute the interse
tions (*) for the families D;D`;

et
. listed in the introdu
tion. After a

omplishing this, taking a

ount of elements


ontributing to (*) but not properly tangent will not be hard: denote the number of


urves in F properly tangent to k lines and 
ontaining dimF � k points (in general

position)|i.e., the k-th 
hara
teristi
 number of F|by F (k); while denote (as in

[A1℄) by N

F

(n

p

P; n

`

L) the interse
tion produ
t (*) above. Then:

Proposition 1.1.

D(k) = N

D

((8� k)P; kL)� 2kD`(k � 1)� 4

�

k

2

�

Dp(k � 2)

D`(k) = N

D`

((7� k)P; kL)� 2kDp(k � 1)

Dp(k) = N

Dp

((6� k)P; kL)

C(k) = N

C

((7� k)P; kL)� 3kC`(k � 1)� 9

�

k

2

�

Cp(k � 2)

C`(k) = N

C`

((6� k)P; kL)� 3kCp(k � 1)

Cp(k) = N

Cp

((5� k)P; kL)

Proof: This is Theorem I in [A3℄, for degree 3, and with the above notations.

Proposition 1.1 tells us that all we need to 
ompute are the `weighted' 
hara
-

teristi
 numbers N

F

(n

p

P; n

`

L), for F = D;D`; et
. This will be done by using

Theorem IV from [A1℄:

Theorem I. (Notations as above)

N

F

(n

p

P; n

`

L) = 4

n

`

� deg(F

0

)�

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

Æ F

i

)


(N

B

i

V

i

)

where B

i

ÆP

i

, B

i

ÆL

i

, 
(N

B

i

V

i

) are given expli
itly in [A1℄, Theorem III, together

with a des
ription of the relevant interse
tion 
al
ulus of the B

i

's. We see then

that the only missing ingredients are the degrees of the 
losure F

0

and the 
lasses

B

i

ÆF

i

, for ea
h family F = D;D`; et
. Of 
ourse there is nothing to the �rst item:

4



Proposition 1.2.

degD

0

= 12 degC

0

= 24

degD`

0

= 6 degC`

0

= 12

degDp

0

= 1 degCp

0

= 2

Proof: These are well known (
f. Proposition 1.2 and 1.5 in [A3℄).

By 
ontrast, the 
omputation of the `full interse
tion 
lasses'

B

i

Æ F

i

= 
(N

B

i

V

i

)s(B

i

\ F

i

; F

i

)

(where 
(�) and s(�) denote resp. total Chern and Segre 
lass) is non-trivial: this

will be our task in x2.

Note. The 
lasses B

i

Æ F

i

live naturally in the Chow groups of B

i

\ F

i

; we will

a
tually 
ompute their push-forward in the Chow group of B

i

; we will still denote

the push-forward by B

i

Æ F

i

, for 
onvenien
e of notation.

To prepare for the 
omputation, we want to highlight here a basi
 fa
t that we

will systemati
ally apply in x2. For B;F � V (with B

j

,! V a regular embedding

of 
odimension d), denoting by e

B

F the multipli
ity of F along B, and by f�g

m

the

m-th dimensional pie
e of the 
lass within bra
es:

Lemma 1.3.

(1) fB Æ Fg

dimB

= e

B

F [B℄

(2) fB Æ Fg

dimF�d

= j

�

[F ℄ = B � F

(3) fB Æ Fg

i

= 0 for i < dimF � d, i > dimF \ B

Proof: (1) holds be
ause s(B\F; F ) = e

B

F [B℄+ lower dimensional terms, by [F℄,

x4.3). (2), (3) are in [A1℄, Lemma in x2.

So e.g. if F is a divisor, then simply

B Æ F = e

B

F [B℄ + B � F :

In general, B ÆF has non-zero terms in at most 
odimF +1 dimensions. In a sense,

this is the reason why through this pro
ess it is easier to obtain results for the family

of all smooth 
ubi
s rather than for more spe
ial families: as a general rule, the

more spe
ial the family is, the higher the 
odimension, and the higher the number

of terms to be 
omputed.

Other (more te
hni
al) fa
ts needed in the 
omputations of x2 are listed in the

appendix.

2. Full interse
tion 
lasses

Our aim in this se
tion is the 
omputation of the 
lasses

B

i

Æ F

i

; i = 0; : : : ; 4

where B

0

; : : : ; B

4

are the 
enters of the blow-ups given in [A1℄, F = D;D`;Dp,

C;C`; Cp are the families listed in the introdu
tion, and F

i

denotes the proper

transform in V

i

of the 
losure F

0

of F in P

9

.

Ea
h is to be expressed in terms of the generators given in [A1℄, Theorem III for

the interse
tion rings of the B

i

's, i.e. various subsets of the list h; �; '; `;m; e. The

result will be:

5



Theorem II. With the above notations, the 
lasses B

i

Æ F

i

for the six families

F = D;D`;Dp, C;C`; Cp, and i = 0; : : : ; 4, are resp.:

8

>

>

>

>

>

<

>

>

>

>

>

:

8 + 36h

5 + (36h� 8�)

3 + (36h� 8�� 5')

6 + (12`+ 24m� 24e)

6 + (�6`+ 6m)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2 + 22h+ 54h

2

1 + (13h� 2�) + (54h

2

� 22�h+ 2�

2

)

(9h� 2�� ') + (54h

2

� 22�h� 13'h+ 2�

2

+ 2�'+ '

2

)

1 + (4`+ 11m� 8e) + (6`

2

+ 24`m+ 24m

2

� 66e`+ 18e

2

)

1 + (�2`+ 5m) + (3`

2

� 3`m� 6e`+ 2e

2

)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2h+ 14h

2

h+ (8h

2

� 2�h) + (�14�h

2

+ 2�

2

h)

(6h

2

� 2�h� 'h) + (�14�h

2

� 8'h

2

+ 2�

2

h+ 2�'h+ '

2

h)

m+ (4`m+ 5m

2

� 8e`) + (6`

2

m+ 12`m

2

� 42e`

2

+ 18e

2

`)

m+ (�2`m�m

2

) + (3`

2

m+ 3`m

2

� 6e`

2

+ 2e

2

`)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8 + 84h+ 216h

2

10 + (102h� 21�) + (216h

2

� 84�h+ 8�

2

)

(18h� 3�� 6') + (216h

2

� 84�h� 102'h+ 8�

2

+ 21�'+ 10'

2

)

6 + (24`+ 48m� 48e) + (24`

2

+ 96`m+ 96m

2

� 288e`+ 96e

2

)

6 + (�12`+ 12m) + (6`

2

� 12`m+ 6m

2

)

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

2 + 34h+ 186h

2

2 + (32h� 5�) + (186h

2

� 69�h+ 6�

2

) + (�186�h

2

+ 34�

2

h� 2�

3

)

(54h

2

� 21�h� 24'h+ 2�

2

+ 5�'+ 2'

2

) + (�186�h

2

� 186'h

2

+ 34�

2

h

+69�'h+ 32'

2

h� 2�

3

� 6�

2

'� 5�'

2

� 2'

3

)

1 + (6`+ 15m� 12e) + (14`

2

+ 62`m+ 68m

2

� 174e`+ 50e

2

) + (72`

2

m

+144`m

2

� 612e`

2

+ 372e

2

`� 72e

3

)

1 + (�3`+ 6m) + (5`

2

� 10`m+ 5m

2

� 6e`+ 2e

2

) + (6`

2

m� 3`m

2

)

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

2h+ 26h

2

2h+ (22h

2

� 5�h) + (�48�h

2

+ 6�

2

h) + (26�

2

h

2

� 2�

3

h)

(�18�h

2

� 18'h

2

+ 2�

2

h+ 5�'h+ 2'

2

h) + (26�

2

h

2

+ 48�'h+ 22'

2

h

2

� 2�

3

h

�6�

2

'h� 5�'

2

h� 2'

3

h)

m+ (6`m+ 9m

2

� 12e`) + (14`

2

m+ 38`m

2

� 126e`

2

+ 50e

2

`) + (48`

2

m

2

+276e

2

`

2

� 72e

3

`)

m� 3`m+ (5`

2

m+ 2`m

2

� 6e`

2

+ 2e

2

`)
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These expressions 
arry (admittedly, rather 
rypti
ally) 
on
rete geometri
 in-

formation about the obje
ts we are 
onsidering. Of 
ourse the enumerative results

of xx3,4 will best illustrate this point; however, one instan
e in whi
h this is very

expli
it is the �rst bra
e, 
orresponding to the family of nodal 
ubi
s D: the in-

formation 
arried by the expressions 
onsists of the degree of the dis
riminant (the

hyperplane in P

9

pulls-ba
k to 3h on B

0

, so the 
lass of the dis
riminant pulls-ba
k

to 36h), and of the multipli
ity of the dis
riminant and its proper transforms along

the 
enters of the blow-ups (the 
onstant terms in the expressions: 8, 5, 3, 6, 6).

This is all the information needed to 
ompute the `weighted' 
hara
teristi
 numbers

N

D

(n

p

P; n

`

L) (in fa
t, even less is needed: 
f. [A4℄, Theorem I).

Proving Theorem II will take us the rest of this se
tion; our approa
h is along

the same lines as the 
omputation in x2 of [A3℄. Give 
oordinates (x

0

: x

1

: x

2

) in

P

2

, and 
onsider the 
odimension-3 subvariety

b

D

0

of the produ
t P

2

� P

9

de�ned

by

(p; f) 2

b

D

0

()

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�f

�x

1

(p) = 0

�f

�x

2

(p) = 0

:

So (p; f) 2

b

D

0

if and only if f is a 
ubi
 singular at p. The proje
tion p

1

: P

2

�P

9

�!

P

2

restri
ts to a map

b

D

0

�! P

2

realizing

b

D

0

as a P

6

-bundle over P

2

: the �ber over

p being the P

6

of 
ubi
s singular at p. The proje
tion p

2

: P

2

� P

9

�! P

9

restri
ts

to a birational morphism from

b

D

0

to the dis
riminant hypersurfa
e D

0

� P

9

: the

�ber over f 2 D

0


onsists of the singular lo
us of f . Observe that p

2

restri
ts to an

isomorphism over the set D of nodal 
ubi
s. Now for ea
h V

0

= P

9

; V

1

; : : : , de�ne

b

V

i

= P

2

� V

i

, and for ea
h 
enter B

i

de�ne

b

B

i

= P

2

� B

i

. It is 
lear then that

ea
h

b

V

i

(i > 0) is the blow-up of

b

V

i�1

along

b

B

i�1

, and we 
an 
onsider the proper

transform

b

D

i

of

b

D

0

in

b

V

i

. The proje
tion on the se
ond fa
tor will then restri
t to

birational morphisms

b

D

i

�! D

i

;

that will be our main tool: we will argue now that the 
lasses

b

B

i

Æ

b

D

i


ontain all

the information we need 
on
erning families of nodal 
urves (
f. Lemma 2.2 et
. in

[A3℄).

Let k denote the hyperplane 
lass in P

2

. So 
lasses in

b

B

i

will be polynomials of

degree � 2 in k, with 
oeÆ
ients in the interse
tion rings of the B

i

.

Proposition 2.1. For i = 0; : : : ; 4

B

i

ÆD

i

= 
oeÆ
ient of k

2

in

b

B

i

Æ

b

D

i

B

i

ÆD`

i

= 
oeÆ
ient of k

1

in

b

B

i

Æ

b

D

i

B

i

ÆDp

i

= 
oeÆ
ient of k

0

in

b

B

i

Æ

b

D

i

Proof: These follow easily from the birational invarian
e of Segre 
lasses: write

b

B

i

Æ

b

D

i

= A

2

+ A

1

k + A

0

k

2

, with A

0

; A

1

; A

2


lasses on B

i

; if p

(i)

is the proje
tion

P

2

� V

i

�! V

i

, then by the proje
tion formula

A

0

= p

(i)

�

(A

2

+ A

1

k +A

0

k

2

) ;

7



sin
e p

(i)

�

(k

0

) = p

(i)

�

(k

1

) = 0, p

(i)

�

(k

2

) = 1; so

A

0

= p

(i)

�

(

b

B

i

Æ

b

D

i

)

= p

(i)

�


(N

b

B

i

b

V

i

)s(

b

B

i

\

b

D

i

;

b

D

i

)

= 
(N

B

i

V

i

)p

(i)

�

s(

b

B

i

\

b

D

i

;

b

D

i

) sin
e N

b

B

i

b

V

i

= p

(i)

�

N

B

i

V

i

= 
(N

B

i

V

i

)s(B

i

\D

i

; D

i

) by the bir. inv. of Segre 
lasses

= B

i

ÆD

i

whi
h is the �rst 
laim.

For the other equalities in the statement, de�ne




D`

i

= proper transform of




D`

0

= P

2

� D`

0

, and similarly




Dp

i

= proper transform of




Dp

0

= P

2

� Dp

0

. The


lasses of




D`

i

;




Dp in

b

D

i

are 
learly resp. (the pull-ba
ks of) k; k

2

; also,




D`

i

;




Dp

i


ut

transversally in

b

D

i

the support of the 
one of

b

B

i

\

b

D

i

in

b

D

i

, so

s(

b

B

i

\




D`

i

;




D`

i

) = k � s(

b

B

i

\

b

D

i

;

b

D

i

) and

s(

b

B

i

\




Dp

i

;




Dp

i

) = k

2

� s(

b

B

i

\

b

D

i

;

b

D

i

) ;

by Lemma A.3. Then one argues as above, starting from A

1

= p

(i)

�

[k � (A

0

+A

1

k+

A

2

k

2

)℄ and A

2

= p

(i)

�

[k

2

� (A

2

+A

1

k + A

0

k

2

)℄

By Proposition 2.1, the �ve 
lasses

b

B

i

Æ

b

D

i

are the obje
ts we have to 
ompute

to prove the �rst part of Theorem II. We will analyze the �ve 
ases in some detail

in xx2.0{4 below. The main proposition in ea
h se
tion will give the 
orresponding


lass

b

B

i

Æ

b

D

i

, from whi
h (by Proposition 2.1) one reads the i

th

row in the �rst three

bra
es in the statement of Theorem II, by taking resp. the 
oeÆ
ient of k

2

, k, and

the 
onstant term with respe
t to k. As we will see in x2.5, very little additional

work is required to obtain the 
lasses for families of 
uspidal 
ubi
s (i.e. the last

three bra
es in Theorem II).

Note. As a general 
onvention, we omit the notation of pull-ba
k whenever we

feel that this 
hoi
e doesn't 
reate ambiguities.

x2.0.

b

B

0

Æ

b

D

0

b

B

0

Æ

b

D

0

b

B

0

Æ

b

D

0

. Re
all from [A1℄, x3.0 that the 
enter of the �rst blow-up is the

subvariety B

0

� P

9

of 
ubi
s 
onsisting of a `triple line'; B

0

�

=

P

2

is in fa
t embedded

in P

9

by the third Veronese embedding. Points of

b

B

0

= P

2

� B

0

will then be pairs

(p; �), where p 2 P

2

and � is a line. We 
all h the hyperplane 
lass in B

0

�

=

P

2

, so

the interse
tion ring of

b

B

0

�

=

P

2

� B

0

is generated by k; h, and the only non-zero

monomial in dimension 0 is h

2

k

2

. Also, the pull-ba
k of the hyperplane 
lass H of

P

9

via B

0

,! P

9

is 3h.

Lemma 2.2. 
(N

b

B

0

b

V

0

) = (1 +H + 2k)

3

.

Proof: This is 
lear from the equations for

b

D

0

(linear in the 
oeÆ
ients of the


ubi
, and quadrati
 in (x

0

: x

1

: x

2

)).

The interse
tion

b

B

0

\

b

D

0

is supported on the in
iden
e 
orresponden
e f(p; �) 2

b

B

0

s.t. p 2 �g; in fa
t, restri
ting the equations for

b

D

0

to

b

B

0

we �nd that

b

B

0

\

b

D

0

is regularly embedded in

b

B

0

, as a divisor of 
lass 2h+ 2k.

8



Proposition 2.3.

b

B

0

Æ

b

D

0

= (2h+ 2k) + (14h

2

+ 22hk + 8k

2

) + (54h

2

k + 36hk

2

).

Proof: Both

b

B

0

and

b

D

0

are non-singular, so

b

B

0

Æ

b

D

0

=

b

D

0

Æ

b

B

0

by Lemma A.1.

Now sin
e

b

B

0

\

b

D

0

is a divisor in

b

B

0

, with 
lass 2h+ 2k, then (as a 
lass in

b

B

0

)

s(

b

B

0

\

b

D

0

;

b

B

0

) = (2h+ 2k)� (2h+ 2k)

2

+ (2h+ 2k)

3

� (2h+ 2k)

4

;

while (Lemma 2.2) 
(N

b

D

0

b

V

0

) pulls-ba
k on

b

B

0

to (1 + 3h+ 2k)

3

. So

b

B

0

Æ

b

D

0

= (1 + 3h+ 2k)

3

�

(2h+ 2k)� (2h+ 2k)

2

+ (2h+ 2k)

3

� (2h+ 2k)

4

	

;

whi
h gives the statement.

x2.1.

b

B

1

Æ

b

D

1

b

B

1

Æ

b

D

1

b

B

1

Æ

b

D

1

. The 
enter B

1

of the se
ond blow-up is a P

2

-bundle over B

0

([A1℄,

x3.1); we interpret the �ber over a (triple) line � 2 B

0

as the plane of pairs of

points on �: so we will denote a point of

b

B

1

= P

2

� B

1

by a triple (p; �; fp

1

; p

2

g),

where p

1

; p

2

2 �. The interse
tion ring of B

1

is generated by (the pull-ba
k of) the


lass h from B

0

and by the 
lass � of the universal line bundle on B

1

. In fa
t B

1

is a subbundle of the ex
eptional divisor E

1

= P(N

B

0

V

0

), so � is the pull-ba
k via

B

1

,! E

1

,! V

1

of the 
lass of E

1

.

We 
an easily get equations for

b

D

1

in an open set in

b

V , by using the 
oordinates

for V

1

given in [A1℄, x3.1: give homogeneous 
oordinates (a

0

: a

1

: � � � : a

9

) in P

9

,

so that the point (a

0

: � � � : a

9

) 
orresponds to the 
ubi
 with equation

a

0

x

3

0

+ a

1

x

2

0

x

1

+ a

2

x

2

0

x

2

+ a

3

x

0

x

2

1

+ a

4

x

0

x

1

x

2

+ a

5

x

0

x

2

2

+ a

6

x

3

1

+ a

7

x

2

1

x

2

+ a

8

x

1

x

2

2

+ a

9

x

3

2

= 0 :

Then we 
an give 
oordinates (b

1

; : : : ; b

9

) in an open in V

1

, su
h that the blow-up

map is given by

b

1

= a

1

b

2

= a

2

b

3

= 3a

3

� a

2

1

b

4

b

3

= 3a

4

� 2a

1

a

2

b

5

b

3

= 3a

5

� a

2

2

b

6

b

3

= 9a

6

� a

1

a

3

b

7

b

3

= 3a

7

� a

2

a

3

b

8

b

3

= 3a

8

� a

1

a

5

b

9

b

3

= 9a

9

� a

2

a

5

In this des
ription b

3

= 0 is the ex
eptional divisor, and the point of B

1


orrespond-

ing to a line � : x

0

+ �

1

x

1

+ �

2

x

2

= 0 with pair of points (p

1

; p

2

) determined by

x

2

1

+ �x

1

x

2

+ �x

2

2

has 
oordinates

(3�

1

; 3�

2

; 0; �; �; 2�

1

; �

1

�; �

2

�; 2�

2

�) :

On fa

0

6= 0g,

b

D

0

is 
ut out by the equations

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�

�f

�x

1

�

a

1

3

�f

�x

0

�

(p) = 0

�

�f

�x

2

�

a

2

3

�f

�x

0

�

(p) = 0

;

9



from whi
h we get equations for

b

D

1

:

8

>

>

>

>

<

>

>

>

>

:

(3x

0

+ b

1

x

1

+ b

2

x

2

)

2

+ b

3

(x

2

1

+ b

4

x

1

x

2

+ b

5

x

2

2

) = 0

2x

0

x

1

+ b

4

x

0

x

2

+ b

6

x

2

1

+

2b

2

+ 6b

7

� b

1

b

4

3

x

1

x

2

+ b

8

x

2

2

= 0

b

4

x

0

x

1

+ 2b

5

x

0

x

2

+ b

7

x

2

1

+

2b

1

b

5

+ 6b

8

� b

2

b

4

3

x

1

x

2

+ b

9

x

2

2

= 0

Restri
ting these equations to

b

B

1

, we �nd equations for

b

B

1

\

b

D

1

in

b

B

1

: in terms of

the above 
oordinates for

b

B

1

8

>

<

>

:

(x

0

+ �

1

x

1

+ �

2

x

2

)

2

= 0

(x

0

+ �

1

x

1

+ �

2

x

2

)(2x

1

+ �x

2

) = 0

(x

0

+ �

1

x

1

+ �

2

x

2

)(�x

1

+ 2�x

2

) = 0

i.e.,

b

B

1

\

b

D

1

is the divisor of

b

B

1

f(p; �; fp

1

; p

2

g) 2

b

B

1

s.t. p 2 �g ;

with an embedded 
omponent on

f(p; �; fp

1

; p

2

g) 2

b

B

1

s.t. p = p

1

= p

2

g :

Also, along

b

B

1

\

b

D

1

one �nds that

b

D

1

is regularly embedded in

b

V

1

; and that

b

D

1

is

singular at points (p; �; fp

1

; p

2

g) with p 2 fp

1

; p

2

g.

Sin
e

b

B

1

\

b

D

1

is a divisor of 
lass h+ k outside the embedded 
omponent (whi
h

has 
odimension 3 in

b

B

1

), we have

s(

b

B

1

\

b

D

1

;

b

B

1

) = (h+ k)� (h+ k)

2

+ higher 
odimensional terms.

The omitted terms presumably are a�e
ted by the embedded 
omponent; however,

we will not need to 
ompute them. Similarly, we only list the relevant terms in the

pull-ba
k of 
(N

b

D

1

b

V

1

):

Lemma 2.4. 
(N

b

B

1

b

V

1

) restri
ts to 1 + 9h+ 6k � 2�+ : : :

Proof: By Lemma A.5 in the appendix, this is


(N

b

B

0

\

b

D

0

b

B

0

)


 

N

b

D

0

b

V

0

N

b

B

0

\

b

D

0

b

B

0


O(1)

!

= (1 + 2h+ 2k)

(1 + 3h+ 2k � �)

3

(1 + 2h+ 2k � �)

= 1 + 9h+ 6k � 2�+ : : :

as 
laimed.

The information we have 
olle
ted is enough to obtain the �rst two terms of

b

B

1

Æ

b

D

1

. By Lemma 1.3, the third term is

b

B

1

�

b

D

1

and the remaining ones are 0:

10



Proposition 2.5.

b

B

1

Æ

b

D

1

= (h+ k) + (8h

2

+ 13hk + 5k

2

� 2�h� 2�k)

+ (54h

2

k + 36hk

2

� 14�h

2

� 22�hk � 8�k

2

+ 2�

2

h+ 2�

2

k) :

Proof: Sin
e the embedded 
omponent of

b

B

1

\

b

D

1

has 
odimension 3 in

b

B

1

, we


an dis
ard it in 
omputing the 
odimension-1 and 2 terms in

b

B

1

Æ

b

D

1

, and assume

b

B

1

\

b

D

1

,!

b

V

1

,

b

D

1

,!

b

V

1

are both regular embeddings. Also, using the 
oordinate

des
ription above, one 
he
ks that (in 
odimension � 2) the blow-up of

b

D

1

along

b

B

1

\

b

D

1

is the residual s
heme to the ex
eptional divisor in the blow-up of

b

V

1

along

b

B

1

\

b

D

1

, and is regularly embedded there. Thus, by Lemma A.2 in the appendix,

b

B

1

Æ

b

D

1

=

b

D

1

Æ

b

B

1

in 
odimension � 2 in

b

B

1

: so

b

B

1

Æ

b

D

1

= 
(N

b

D

1

b

V

1

)s(

b

B

1

\

b

D

1

;

b

B

1

) (in 
od. 2)

= (1 + 9h+ 6k � 2�+ : : : )((h+ k)� (h+ k)

2

+ : : : );

whi
h gives the �rst two terms shown in the statement.

The 
odimension-3 term in

b

B

1

Æ

b

D

1

is the pull-ba
k

b

B

1

�

b

D

1

of the 
lass of

b

D

1

to

B

1

, by Lemma 1.3 (2): i.e., applying Lemma A.4,

54h

2

k + 36hk

2

�

(

b

B

0

Æ

b

D

0

1 + �

)


odim3

;

with the result listed in the statement.

By Lemma 1.3 (3) all other terms are 0, so we are done.

x2.2.

b

B

2

Æ

b

D

2

b

B

2

Æ

b

D

2

b

B

2

Æ

b

D

2

. The 
enter B

2

of the third blow-up is a P

3

bundle over B

1

([A1℄,

x3.2); we interpret the �ber over a point of B

1

over a line � as the P

3

of triples of

points on �: so a point of

b

B

2

= P

2

�B

2

will be a quadruple (p; �; fp

1

; p

2

g; fq

1

; q

2

; q

3

g)

where p

1

; p

2

, q

1

; q

2

; q

3

are points of �. The interse
tion ring of the ex
eptional divisor

E

2

and of B

2

are generated by the 
lasses h; � from B

1

, and by the 
lass ' of the

universal line-bundle; sin
e B

2

is a subbundle of E

2

= P(N

B

1

V

1

), ' is the pull-ba
k

via B

2

,! E

2

,! V

2

of the 
lass of E

2

.

Con
erning

b

B

2

Æ

b

D

2

, Lemma 1.3 (2), (3) will give us the terms in 
odimension 3

and higher in

b

B

2

, i.e. in dimension 6 or lower. Sin
e

b

D

2

has dimension 8, and 
learly

does not 
ontain

b

B

2

, the only term we must determine is the one in dimension 7,

i.e. (by Lemma 1.3 (1)) the 
lass of the 
omponents of

b

B

2

\

b

D

2

with 
oeÆ
ients

depending on the multipli
ity of

b

D

2

along them.

To this purpose, we use 
oordinates again. From [A3℄, x3.2, we know we 
an give


oordinates (


1

; : : : ; 


9

) in an open in V

2

so that the blow-up map is given by




1

= b

1




2

= b

2




3




6

= b

3




4

= b

4




5

= b

5




6

= 3b

6

� 2b

1




7




6

= 3b

7

� b

1

b

4




8




6

= 3b

8

� b

2

b

4




9




6

= 9b

9

� b

2

b

5

11



With these 
oordinates, 


6

= 0 is the ex
eptional divisor; if � is given by x

0

+

�

1

x

1

+ �

2

x

2

, fp

1

; p

2

g is determined by Q = x

2

1

+ �x

1

x

2

+ �x

2

2

, and fq

1

; q

2

; q

3

g by

K = x

3

1

+ �x

2

1

x

2

+ �x

1

x

2

2

+ �x

3

2

, then the point of B

2

spe
i�ed by this data has


oordinates

(3�

1

; 3�

2

; 0; �; �; 0;

�

3

;

�

3

; �):

Now, away from the embedded 
omponent f(p; �; fp; pg)g of

b

B

1

\

b

D

1

(e.g. if 2x

1

+

b

4

x

2

6= 0) one gets equations for

b

D

2

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(3x

0

+ 


1

x

1

+ 


2

x

2

)(2x

1

+ 


4

x

2

) + 


6

(x

2

1

+ 2


7

x

1

x

2

+ 


8

x

2

2

) = 0

(3x

0

+ 


1

x

1

+ 


2

x

2

)(x

2

1

+ 2


7

x

1

x

2

+ 


8

x

2

2

)

�


3

(x

2

1

+ 


4

x

1

x

2

+ 


5

x

2

2

)(2x

1

+ 


4

x

2

) = 0

(


4

x

1

+ 2


5

x

2

)(x

2

1

+ 2


7

x

1

x

2

+ 


8

x

2

2

)

�(2x

1

+ 


4

x

2

)(


7

x

2

1

+ 2


8

x

1

x

2

+ 


9

x

2

2

) = 0

So (setting 


6

= 0 and observing that 2x

1

+ 


4

x

2

6= 0 sin
e 2x

1

+ b

4

x

2

6= 0)

b

E

2

\

b

D

2

has equations

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:




6

= 0

3x

0

+ 


1

x

1

+ 


2

x

2

= 0




3

(x

2

1

+ 


4

x

1

x

2

+ 


5

x

2

2

) = 0

(


4

x

1

+ 2


5

x

2

)(x

2

1

+ 2


7

x

1

x

2

+ 


8

x

2

2

)

�(2x

1

+ 


4

x

2

)(


7

x

2

1

+ 2


8

x

1

x

2

+ 


9

x

2

2

) = 0

in this open. We 
on
lude that

b

E

2

\

b

D

2


onsists of (at most) three 7-dimensional


omponents:

{a 
omponent R

1

dominating the whole of

b

B

1

\

b

D

1

, with dimension-2 �bers, and

equations

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:




6

= 0

3x

0

+ 


1

x

1

+ 


2

x

2

= 0




3

= 0

(


4

x

1

+ 2


5

x

2

)(x

2

1

+ 2


7

x

1

x

2

+ 


8

x

2

2

)

�(2x

1

+ 


4

x

2

)(


7

x

2

1

+ 2


8

x

1

x

2

+ 


9

x

2

2

) = 0

{a 
omponent R

2

dominating the subset of

b

B

1

\

b

D

1

f(p; �; fp

1

; p

2

g) s.t. p

1

; p

2

2 �; p = p

1

or p = p

2

g

(whi
h is the subset along whi
h

b

D

1

is singular) with dimension-3 �bers, and equa-

tions

8

>

>

>

<

>

>

>

:




6

= 0

3x

0

+ 


1

x

1

+ 


2

x

2

= 0

x

2

1

+ 


4

x

1

x

2

+ 


5

x

2

2

= 0

x

3

1

+ 3


7

x

2

1

x

2

+ 3


8

x

1

x

2

2

+ 


9

x

3

2

= 0

;

12



{and a 
omponent R

3

, dominating the embedded 
omponent of

b

B

1

\

b

D

1

f(p; �; fp

1

; p

2

g) s.t. p = p

1

= p

2

2 �g

(as the above 
oordinates do not 
over this lo
us, so there might be a 
omponent

dominating it) with 4-dimensional �bers.

Now, the equations tell us that the only 
omponent of

b

E

2

\

b

D

2


ontained in

b

B

2

is R

1

, with equations (in

b

B

2

)

�

x

0

+ �

1

x

1

+ �

2

x

2

= 0

(�x

1

+ 2�x

2

)(3x

2

1

+ 2�x

1

x

2

+ �x

2

2

)� (2x

1

+ �x

2

)(�x

2

1

+ 2�x

1

x

2

+ 3�x

2

2

) = 0

and that

b

D

2

is generi
ally non-singular along it (in fa
t, D

2

is non-singular at

(p; �; fp

1

; p

2

g; fq

1

; q

2

; q

3

g) if e.g. p =2 fp

1

; p

2

g). So s(

b

B

2

\

b

D

2

;

b

D

2

) = [R

1

℄ + : : : , and

using Lemma 1.3 we get:

b

B

2

Æ

b

D

2

= [R

1

℄ + higher 
odimension terms

= [R

1

℄ +

b

B

2

�

b

D

2

:

To �nd the 
lass of R

1

in

b

B

2

, observe that its �rst equation de�nes the divisor

given by the pull-ba
k of

b

B

1

\

b

D

1

, i.e.

(h+ k) ;

the se
ond is

�Q

�x

2

�K

�x

1

�

�Q

�x

1

�K

�x

2

= 0 ;

where Q(x

1

; x

2

), K(x

1

; x

2

) determine the pair fp

1

; p

2

g and the triple fq

1

; q

2

; q

3

g, as

above; and �Q=�x

i

, �K=�x

i

give global 
lasses 3h � � + k, 3h � � � ' + 2k resp.,

so the divisor de�ned by the above equation in

b

B

1

has 
lass

6h� 2�� '+ 3k :

Now R

1

is the interse
tion of these two divisors: the above equations (and their

mirror image obtained by assuming b

4

x

1

+ 2b

5

x

2

6= 0) show it away from the in-

verse image of the embedded 
omponent of

b

B

1

\

b

D

1

, then globally sin
e this has


odimension 3 in

b

B

2

. So the 
lass of R

1

is

(h+ k)(6h+ 3k � 2�� ') = 6h

2

+ 9hk + 3k

2

� 2�h� 2�k � 'h� 'k

Proposition 2.6.

b

B

2

Æ

b

D

2

= (6h

2

+ 9hk + 3k

2

� 2�h� 2�k � 'h� 'k) + (54h

2

k + 36hk

2

� 14�h

2

�8'h

2

�22�hk�13'hk�8�k

2

�5'k

2

+2�

2

h+2�'h+'

2

h+2�

2

k+2�'k+'

2

k)

Proof: We have already observed

b

B

2

Æ

b

D

2

= [R

1

℄+

b

B

2

�

b

D

2

, and we have 
omputed

[R

1

℄ above. So all we need to get is

b

B

2

�

b

D

2

, for whi
h one just applies Lemma A.4.
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x2.3.

b

B

3

Æ

b

D

3

b

B

3

Æ

b

D

3

b

B

3

Æ

b

D

3

. The 
enter B

3

of the fourth blow-up is a 4-dimensional non-singular

variety, in fa
t isomorphi
 to the blow-up of

�

P

2

�

�

P

2

along its diagonal. B

3

is the

proper transform of the set of 
ubi
s 
onsisting of a line and a `double line' (ea
h

item parametrized by a fa
tor of

�

P

2

�

�

P

2

), 
f. [A1℄, x3.3. The interse
tion ring of

B

3

is generated by the pull-ba
k of the 
lasses `;m of the hyperplane of the fa
tors

of

�

P

2

�

�

P

2

, and by the ex
eptional divisor e. We 
hoose the fa
tors so that the

pull-ba
k of the hyperplane from P

9

is ` + 2m; and re
all from [A1℄, x3 that the

pull-ba
ks of the �rst three ex
eptional divisors E

1

, E

2

, and E

3

are resp. 2e, e, and

e. Also, we have obvious relations e` = em, `

3

= m

3

= 0.

Our pi
ture for

b

B

3

= P

2

�B

3

is the following: a point in

b

B

3

is a triple (p; (�; �); q),

where p 2 P

2

, �; � 2

�

P

2

are lines (so that the 
orresponding 
ubi
 is the union of

� and the double line supported on �; we denote this 
ubi
 ��

2

in [A1℄), and

q 2 � \ �. So the ex
eptional divisor is the set of su
h triples where � = �, and

q plays the role of `the' point of interse
tion of � and � (
f. [A1℄, Remarks 1.4 in

x3.1). Noti
e that

b

B

3

maps inje
tively `already' to

b

V

1

,

b

V

2

: in fa
t, Remark 2.4 in

[A1℄, x3.2 says that points (p; (�; �); q) of the ex
eptional divisor (so � = �) map to

points (p; �; fq; qg; fq; q; qg) of

b

B

2

. In parti
ular, it follows that

b

D

3

is smooth along

b

B

3

away from triples (p; (�; �); q) with � = � and p = q (be
ause

b

D

3

is the blow-up

of

b

D

2

along

b

B

2

\

b

D

2

, so it's smooth over points where both these are smooth): these

form a set of 
odimension 3 in

b

B

3

, so Lemma A.1 tells us

b

B

3

Æ

b

D

3

=

b

D

3

Æ

b

B

3

in 
odimension � 2 in

b

B

3

.

Mu
h as in x2.1, the 
omputation is then redu
ed to �nding the �rst terms of

s(

b

B

3

\

b

D

3

;

b

B

3

) and of the restri
tion of 
(N

b

D

3

b

V

3

) to

b

B

3

\

b

D

3

.

Lemma 2.7. 
(N

b

D

3

b

V

3

) restri
ts to 1 + 3`+ 6m+ 6k � 7e+ : : : .

Proof: Apply Lemma A.5 to the �rst three blow-ups, and restri
t to

b

B

3

: 


1

of the

normal bundle to

b

D

0

in

b

V

0

restri
ts to 3`+ 6m + 6k (by Lemma 2.2), and via the

blow-ups this gets modi�ed by �2

b

E

1

� 2

b

E

2

�

b

E

3

, restri
ting on

b

B

3

to �7e.

Proposition 2.8.

b

B

3

Æ

b

D

3

= (m+k)+(4`m+5m

2

+4k`+11km+6k

2

�8e`�8ek)+(6`

2

m+12`m

2

+6`

2

k+24`mk+24m

2

k+12`k

2

+24mk

2

�42e`

2

�66e`k�24ek

2

+18e

2

`+18e

2

k)

Proof: By Lemma 1.3 terms in 
odimension � 4 in

b

B

3

are 0, and the term in


odimension 3 is

b

B

3

�

b

D

3

. For the 
odimension 1 and 2 terms, the only missing

ingredient is (part of) s(

b

B

3

\

b

D

3

;

b

B

3

). To get equations for

b

B

3

\

b

D

3

in

b

B

3

, use the


oordinates of x2.1: give 
oordinates (�

1

; �

2

;u; t) to

b

B

3

, so that the blow-up map

to

�

P

2

�

�

P

2

is given by

(�

1

; �

2

;u; t) 7! ((�

1

+ u; �

2

+ ut); (�

1

; �

2

))

(with obvious 
hoi
es of 
oordinates for

�

P

2

�

�

P

2

); then in terms of (b

1

; : : : ; b

9

) one

has ([A1℄, x3.1)

(�

1

; �

2

;u; t) 7! (3�

1

+ u; 3�

2

+ ut;�u

2

; 2t; t

2

; 2�

1

; 2�

1

t; 2�

2

t; 2�

2

t

2

)
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Restri
ting the equations for

b

D

1

gives equations

�

(x

0

+ �

1

x

1

+ �

2

x

2

)

2

= 0

(x

0

+ �

1

x

1

+ �

2

x

2

)(x

1

+ tx

2

) = 0

;

these lift to equations for

b

B

3

\

b

D

3

in

b

B

3

. So

b

B

3

\

b

D

3


onsists of the divisor of triples

f(p; (�; �); q) 2

b

B

3

s.t. p 2 �g ;

with an embedded 
omponent along

f(p; (�; �); q) 2

b

B

3

s.t. p = qg :

The �rst has 
lass m + k, the se
ond is a divisor in the �rst, with 
lass `+m� e.

It follows easily that

s(

b

B

3

\

b

D

3

;

b

B

3

) = (m+ k)� (m+ k)

2

+ (m+ k)(`+ k � e) + higher 
od. terms

= (m+ k) + (m+ k)(`�m� e) + higher 
od. terms.

Therefore, by Lemma 2.7

b

D

3

Æ

b

B

3

= 
(N

b

D

3

b

V

3

)s(

b

B

3

\

b

D

3

;

b

B

3

)

= (1 + 3`+ 6m+ 6k � 7e+ : : : )((m+ k) + (m+ k)(`�m� e) + : : : )

= (m+ k) + (4`m+ 5m

2

+ 4k`+ 11km+ 6k

2

� 8e`� 8ek) + : : :

We are done, as we observed already that

b

B

3

Æ

b

D

3

=

b

D

3

Æ

b

B

3

in 
odimension � 2,

and the 
odimension-3 term, i.e.

b

B

3

�

b

D

3

, is given by a straightforward appli
ation

of Lemma A.4.

x2.4.

b

B

4

Æ

b

D

4

b

B

4

Æ

b

D

4

b

B

4

Æ

b

D

4

. The 
enter B

4

of the �fth blow-up is isomorphi
 to B

3

, therefore

to the blow-up of

�

P

2

�

�

P

2

along the diagonal ([A1℄, x3.4); the ex
eptional divisor

E

4

in V

4

restri
ts to 3`+ 3m� 4e on

b

B

4

([A1℄, Lemma 4.2). Lemmas 1.3 and A.4

will give easily the terms of

b

B

4

Æ

b

D

4

of 
odimension � 3 in

b

B

4

; so, as in x2.3, we

just have to determine the terms of

b

B

4

Æ

b

D

4

in 
odimension � 2. The main problem

here is analyzing the situation over the embedded 
omponent of

b

B

3

\

b

D

3

(whi
h

has 
odimension 2 in

b

B

3

, so a�e
ts the terms we have to 
ompute). For this we

introdu
e an `intermediate' blow-up

b

V

0

3

of

b

V

3

along the in
iden
e 
orresponden
e

I = f(p; (�; �); q) 2

b

B

3

s.t. p = qg ;

on whi
h the embedded 
omponent is supported (
f. x2.3). Next, let

b

V

0

4

be the blow-

up of

b

V

0

3

along the proper transform

b

B

0

3

of

b

B

3

in

b

V

0

3

. By the universal property of

blow-ups,

b

V

0

4

is also the blow-up of

b

V

4

along the inverse image J of I, so one has

the 
ommutative diagram

b

V

0

4

blow-up J

������!

b

V

4

blow-up

b

B

0

3

?

?

y

?

?

y

blow-up

b

B

3

b

V

0

3

blow-up I

������!

b

V

3
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If ((�; �); q) 2 B

3

, look at the plane P

2

= P

2

� ((�; �); q) �

b

B

3

. Then

b

D

3

interse
ts

this P

2

along �, with embedded point at q. In

b

V

0

3

, the proper transform of this

plane is its blow-up

e

P

2

at q, and the proper transform

b

D

0

3

of

b

D

3

in

b

V

0

3

interse
ts

e

P

2

along the inverse image of � (use the equations for

b

B

3

\

b

D

3

in x2.3, proof of

Proposition 2.8). As ((�; �); q) moves in B

3

, we �nd that

b

D

0

3

interse
ts

b

B

0

3

along

the inverse image of the support of

b

B

3

\

b

D

3

, whi
h 
onsists of two 
omponents; so

the ex
eptional divisor of the blow-up of

b

D

0

3

along

b

B

0

3

\

b

D

0

3

(i.e., the interse
tion

of the ex
eptional divisor with the proper transform

b

D

0

4

of

b

D

0

3

in

b

V

0

4

) will have

two 
omponents E

(1)

0

, E

(2)

0

. Also, the top map doesn't 
ontra
t either of these


omponents; we 
on
lude that, in

b

V

4

,

b

E

4

\

b

D

4


onsists of two 
omponents E

(1)

,

E

(2)

, the �rst dominating the support of of

b

B

3

\

b

D

3

, and the se
ond dominating the

embedded 
omponent of

b

B

3

\

b

D

3

(supported on I). Also, tra
ing the inverse image

of

b

B

3

in the diagram gives that

b

E

4

pulls-ba
k on

b

D

4

to the divisor E

(1)

+ 2E

(2)

.

The information we have just 
olle
ted is needed to 
ompute the restri
tion of




1

(N

b

D

4

b

V

4

) to

b

B

4

\

b

D

4

:

Lemma 2.9. 
(N

b

D

4

b

V

4

) restri
ts to 1� 2`+ 7k + : : : .

Proof: If

b

E

4

is the ex
eptional divisor in

b

V

4

, then (omitting pull-ba
ks as usual)




1

(T

b

V

4

) = 


1

(T

b

V

3

)� 4

b

E

4

sin
e the 
odimension of

b

B

3

in

b

V

3

is 5.

To get 


1

(T

b

D

4

), we restri
t the above blow-up diagram to the

b

D's:

b

D

0

4

blow-up J\

b

D

4

���������!

b

D

4

blow-up

b

B

0

3

\

b

D

0

3

?

?

y

?

?

y

blow-up

b

B

3

\

b

D

3

b

D

0

3

blow-up I

���������!

b

D

3

Let F

3

be the ex
eptional divisor of the bottom blow-up. The ex
eptional divisor of

the leftmost blow-up 
onsists (as we have seen) of two 
omponents E

(1)

0

, E

(2)

0

; F

3


ontains one of the two 
omponents blown up on the left, and the top map 
ontra
ts

the proper transform F

4

= F

3

� E

(2)

0

of F

3

in

b

V

0

4

. Away from F

4

and its image in

b

D

4

(whi
h has 
odimension > 1),

b

D

0

4

and

b

D

4

are isomorphi
, the former being the

blow-up of the latter along the divisor E

(2)

; so 


1

(T

b

D

0

4

) restri
ts to (the pull-ba
k

of) 


1

(T

b

D

4

) on the 
omplement of F

4

. Now




1

(T

b

D

0

4

) = 


1

(T

b

D

0

3

)� 2E

(1)

0

� 2E

(2)

0

= 


1

(T

b

D

3

)� 3F

3

� 2E

(1)

0

� 2E

(2)

0

= 


1

(T

b

D

3

)� 3F

4

� 2E

(1)

0

� 5E

(2)

0

restri
ts to 


1

(T

b

D

3

)� 2E

(1)

� 5E

(2)

on the 
omplement of F

4

, so re
alling that

b

E

4

pulls-ba
k to E

(1)

+ 2E

(2)

on

b

D

4

we �nd




1

(T

b

D

4

) = 


1

(T

b

D

3

)� 2

b

E

4

� E

(2)

:
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Thus




1

(N

b

D

4

b

V

4

) = 


1

(T

b

V

4

)� 


1

(T

b

D

4

)

= 


1

(T

b

V

3

)� 4

b

E

4

� 


1

(T

b

D

3

) + 2

b

E

4

+ E

(2)

= 


1

(N

b

D

3

b

V

3

)� 2

b

E

4

+ E

(2)

:

Finally, the 
lass of E

(2)

restri
ts on

b

B

4

\

b

D

4

to ` + k � e: indeed, we'll see in a

moment that

b

B

4

\

b

D

4

is supported on the pull-ba
k of the support of

b

B

3

\

b

D

3

; and

E

(2)

\

b

B

4

is the pull-ba
k in

b

B

4

\

b

D

4

of the divisor I of

b

B

3

\

b

D

3

, whi
h has 
lass

`+ k � e.

Putting all together (and re
alling that

b

E

4

restri
ts to 3` + 3m � 4e, beginning

of this se
tion)




1

(N

b

D

4

b

V

4

) = (3`+ 6m+ 6k � 7e)� 2(3`+ 3m� 4e) + (`+ k � e)

= �2`+ 7k ;

whi
h is the 
laim.

Proposition 2.10.

b

B

4

Æ

b

D

4

= (m+ k) + (�2`m�m

2

� 2`k + 5mk + 6k

2

) + (3`

2

m

+ 3`m

2

+ 3k`

2

� 3k`m� 6k

2

`+ 6k

2

m� 6e`

2

� 6ekl + 2e

2

`+ 2e

2

k)

Proof: On
e more we argue

b

B

4

Æ

b

D

4

=

b

D

4

Æ

b

B

4

(in 
odimension � 2), and pro
eed

to 
ompute the �rst 
ouple of terms in s(

b

B

4

\

b

D

4

;

b

B

4

). Now we 
laim that

b

B

4

\

b

D

4

is

the divisor of

b

B

4

dominating the support of

b

B

3

\

b

D

3

, this time without embedded


omponents. This is another 
oordinate 
omputation: the key step is to show

that the divisor is 
ut out s
heme-theoreti
ally (without embedded 
omponents);

for this, it suÆ
es to produ
e a divisor of

b

V

4


ontaining

b

D

4

and interse
ting

b

B

4

s
heme-theoreti
ally along the support of

b

B

4

\

b

D

4

. For example, one sees that the

proper transform of

2

�

a

0

�f

�x

2

�

a

2

3

�f

�x

0

�

(3a

3

� a

2

1

)�

�

a

0

�f

�x

1

�

a

1

3

�f

�x

0

�

(3a

4

� 2a

1

a

2

) = 0

satis�es this requirement over fa

0

6= 0; x

2

6= 0g.

So

b

B

4

\

b

D

4

is a divisor of

b

B

4

, with 
lass m+k (the 
lass of the support of

b

B

3

\

b

D

3

in

b

B

3

, 
f. x2.3), and therefore

(

b

B

4

\

b

D

4

;

b

B

4

) = (m+ k)� (m+ k)

2

+ : : : :

Now using Lemma 2.9:

b

D

4

Æ

b

B

4

= (1� 2`+ 7k + : : : )((m+ k)� (m+ k)

2

+ : : : ) ;

so

b

B

4

Æ

b

D

4

= (m+ k) + (�2`m�m

2

� 2`k + 5mk + 6k

2

) +

b

B

4

�

b

D

4

:

Finally, Lemma A.4 yields

b

B

4

�

b

D

4

, with the result given in the statement.
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x2.5. Proof of Theorem II. As observed already, the �rst part of Theorem II

follows from the 
omputations performed in xx2.0{4, by reading o� ea
h 
lass

b

B

i

Æ

b

D

i

the 
oeÆ
ient of k

2

, k, and the 
onstant term with respe
t to k. The results obtained

give the 
lasses for the three families of nodal 
ubi
s we are 
onsidering, and are

enough to 
ompute the 
hara
teristi
 numbers for su
h families. We will see now

that the 
lasses

b

B

i

Æ

b

D

i


ontain a
tually most of the information needed to 
ompute

the 
lasses for families of 
uspidal 
ubi
s as well.

As in [A3℄, x1.2, we des
ribe the 
losure C

0

of the set of 
uspidal 
urves as the

proje
tion from P

2

� P

9

of the divisor

b

C

0

of

b

D

0

de�ned by

(p; f) 2

b

C

0

()

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�f

�x

1

(p) = 0

�f

�x

2

(p) = 0

;

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

"

�

�

2

f

�x

0

�x

1

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

1

#

(p) = 0

"

�

�

2

f

�x

0

�x

2

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

2

#

(p) = 0

"

�

�

2

f

�x

1

�x

2

�

2

�

�

2

f

�x

2

1

�

2

f

�x

2

2

#

(p) = 0

:

(so (p; f) 2

b

C

0

if and only if f is a 
ubi
 singular at p, whose tangent 
one at p


ontains a double line). The proje
tion P

2

� P

9

�! P

2

restri
ts to a map

b

C

0

�! P

2

whose �bers are quadri
s in the �bers of

b

D

0

. The other proje
tion, P

2

� P

9

�! P

9

,

restri
ts to a birational morphism from

b

C

0

to the 
losure of the set of 
uspidal 
ubi
s

in P

9

. We let

b

C

i

be the proper transform of

b

C

0

in

b

V

i

; then we obtain birational

morphisms

b

C

i

�! C

i

:

Proposition 2.11. For i = 0; : : : ; 4

B

i

Æ C

i

= 
oeÆ
ient of k

2

in

b

B

i

Æ

b

C

i

B

i

Æ C`

i

= 
oeÆ
ient of k

1

in

b

B

i

Æ

b

C

i

B

i

Æ Cp

i

= 
oeÆ
ient of k

0

in

b

B

i

Æ

b

C

i

Proof: The argument mirrors the proof of Proposition 2.1, and we leave it to the

reader.

So all we need to 
ompute in order to 
omplete the proof of Theorem II are the

�ve 
lasses

b

B

0

Æ

b

C

0

: : : ,

b

B

4

Æ

b

C

4

. Sin
e ea
h

b

C

i

is a divisor in

b

D

i

, applying Lemma

A.3 from the appendix redu
es the 
omputation to �nding the `multipli
ity' of ea
h

b

C

i

along

b

B

i

\

b

D

i

.

Proposition 2.12.

b

B

0

Æ

b

C

0

= (1 + 6h)

b

B

0

Æ

b

D

0

b

B

1

Æ

b

C

1

= (2 + 6h� �)

b

B

1

Æ

b

D

1

b

B

2

Æ

b

C

2

= (6h� �� 2')

b

B

2

Æ

b

D

2

b

B

3

Æ

b

C

3

= (1 + 2`+ 4m� 4e)

b

B

3

Æ

b

D

3

b

B

4

Æ

b

C

4

= (1� `+m)

b

B

4

Æ

b

D

4
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Proof: We apply Lemma A.3 from the appendix. Obtaining the multipli
ity of

the

b

C

i

along

b

B

i

Æ

b

D

i

is done by 
omputing the highest power of a lo
al equation for

the ex
eptional divisor that divides the pull-ba
k to

b

D

i+1

of a lo
al equation for

b

C

i

in

b

D

i

(to start, observe that e.g. over fx

2

6= 0g

"

�

�

2

f

�x

0

�x

1

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

1

#

(p) = 0

gives a lo
al equation for

b

C

0

in

b

D

0

).

This 
omputation gives the 
onstant terms 1; 2; 0; 1; 1 of the linear fa
tors in the

statement.

For the other terms, the 
lass of

b

C

0

in

b

D

0

is 2H by Lemma 1.4 in [A3℄ (H is the

hyperplane 
lass in P

9

, as in x2.0); therefore the multipli
ity 
omputation gives the


lasses of the

b

C

i

in the

b

D

i

as the pull-ba
k of:

2H i = 0

2H �

b

E

1

i = 1

2H �

b

E

1

� 2

b

E

2

i = 2

2H �

b

E

1

� 2

b

E

2

i = 3

2H �

b

E

1

� 2

b

E

2

�

b

E

4

i = 4

restri
ting on

b

B

i

to

6h i = 0

6h� � i = 1

6h� �� 2' i = 2

2`+ 4m� 4e i = 3

� `+m i = 4

(

b

E

1

restri
ts to �; 2e;

b

E

2

to '; e;

b

E

4

to 3`+ 3m � 4e, see xx2.0{4) giving the other

terms in the linear fa
tors in the statement.

Propositions 2.11 and 2.12 
omplete the proof of Theorem II. For example, by

Proposition 2.12,

b

B

0

Æ

b

C

0

is

(1 + 6h)(

b

B

0

Æ

b

D

0

) = (1 + 6h)(2h+ 2k + 14h

2

+ 22hk + 8k

2

+ 54h

2

k + 36hk

2

)

= 2h+ 2k + 26h

2

+ 34hk + 8k

2

+ 186h

2

k + 84hk

2

+ 216h

2

k

2

= (8 + 84h+ 216h

2

)k

2

+ (2 + 34h+ 186h

2

)k + (2h+ 26h

2

) ;

giving the �rst row of the last three bra
es in the statement of Theorem II, by

Proposition 2.11.
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3. Chara
teristi
 numbers

The 
omputation of the 
hara
teristi
 numbers is now a straightforward appli
a-

tion of Propositions 1.1 and Theorem I from x1 to the 
lasses 
omputed in Theorem

II, x2: Theorem I gives the `weighted' 
hara
teristi
 numbers N

F

(n

p

P; n

`

L) for ea
h

of the families D;D`;Dp, C;C`; Cp; these in turn give the 
hara
teristi
 numbers

proper, via Proposition 1.1.

Proposition 3.1. The weighted 
hara
teristi
 numbers N

F

(n

p

P; n

`

L) (where

n

p

= dimF � n

`

) are:

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 12 2

1 48 24 4 96 48 8

2 192 96 16 384 144 20

3 768 336 52 1248 348 38

4 2784 1020 142 3264 642 44

5 8832 2466 256 6324 792 32

6 21828 4284 304 8376 648

7 39072 5256 7584

8 50448

Proof: For example, for the family of 
uspidal 
ubi
s, and n

`

= 7:

N

C

(0P; 7L) = 4

7

� 24�

4

X

i=0

Z

B

i

(B

i

Æ L

i

)

7

(B

i

ÆC

i

)


(N

B

i

V

i

)

by Theorem I, i.e. (reading B

i

Æ C

i

from Theorem II in x2, and B

i

Æ L

i

, 
(N

B

i

V

i

)

from Theorem III in [A1℄)

N

C

(0P; 7L) = 16384 � 24�

Z

B

0

(2 + 12h)

7

(8 + 84h+ 216h

2

)(1 + h)

3

(1 + 3h)

10

�

Z

B

1

(1 + 12h� 2�)

7

(10 + 102h� 21�+ 216h

2

+ : : : )(1 + 2h� �)

6

(1 + �)(1 + 3h� �)

10

�

Z

B

2

(1 + 12h� 2�� ')

7

(18h� 3�� 6'+ 216h

2

� 84�h+ : : : )

(1 + ')(1 + �� ')

�

Z

B

3

(1 + 4`+ 8m� 6e)

7

(6 + 24`+ 48m� 48e+ 24`

2

+ : : : )

(1 + 7`+ 17m� 16e+ 126m

2

+ : : : )

�

Z

B

4

(1 + `+ 5m� 2e)

7

(6� 12`+ 12m+ 6`

2

� 12`m+ 6m

2

)

(1� 5`+ 5m+ 18m

2

� 27`m+ 3`

2

+ : : : )

= 393216� 219648� 127902� 115554 + 67338 + 10134

= 7584

(ea
h term is 
omputed by expanding the fra
tion as a power series, sele
ting the

term of degree = dimB

i

, and applying the relations given in [A1℄, Theorem III).
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We list here the intermediate 
ontributions for all families, obtained as above, for

those n

`

giving non-zero terms.

D:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

4 0 0 0 144 144

5 0 0 0 2052 1404

6 4608 2043 8901 6912 4860

7 59904 21807 73809 {3636 5652

8 439296 120966 289914 {97722 {16470

D`:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

3 0 0 0 24 24

4 0 0 0 312 204

5 576 297 1071 1047 687

6 7680 3180 9228 {564 768

7 56832 17571 36405 {15402 {2358

Dp:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

3 0 0 0 6 6

4 0 0 0 72 42

5 192 99 357 57 63

6 2048 833 2087 {1032 {144

C:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

3 0 0 0 144 144

4 0 0 0 1764 1116

5 2304 2925 5139 4752 3132

6 29952 26739 36621 {5796 2412

7 219648 127902 115554 {67338 {10134

C`:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

2 0 0 0 24 24

3 0 0 0 264 156

4 288 405 603 711 423

5 3840 3750 4506 {894 294

6 28416 17889 14175 {10578 {1398
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Cp:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

2 0 0 0 6 6

3 0 0 0 60 30

4 96 135 201 9 27

5 1024 925 931 {774 {90

The results in the statement of the Proposition are obtained by subtra
ting the

sum of the numbers in ea
h row from 4

n

`

� degF

0

(the degree of D

0

; D`

0

; et
. are

listed in Proposition 1.2), as pres
ribed by Theorem I.

Is there any general pattern ruling the numbers listed in Proposition 3.1 (and its

proof)? The alert reader has probably noti
ed that the numbers N

F

(n

p

P; n

`

L) of

the statement are in ea
h 
ase 
ongruent to degF

0

modulo 3: this is always true

when F

0

is a hypersurfa
e of P

9

(see [A4℄, x1, Corollary 2).

Proposition 1.1 now 
on
ludes the 
omputation:

Theorem III. The 
hara
teristi
 numbers for the families D;D`;Dp, C;C`; Cp

are

k D D` Dp C C` Cp

0 12 6 1 24 12 2

1 36 22 4 60 42 8

2 100 80 16 114 96 20

3 240 240 52 168 168 38

4 480 604 142 168 186 44

5 712 1046 256 114 132 32

6 756 1212 304 60 72

7 600 1000 24

8 400

where F (k) denotes the number of elements of F tangent at smooth points to k

lines and 
ontaining dimF � k points in general position in the plane.

Proof: This is now straightforward. For example,

Cp(5) = N

Cp

(0P; 5L) = 32; so

C`(6) = N

C`

(0P; 6L)� 18 � 32 = 72; and

C(7) = N

C

(0P; 7L)� 21 � 72� 9 � 21 � 32 = 24;

by Propositions 1.1 and 3.1.
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4. Further 
hara
teristi
 numbers

In this last se
tion we want to stress that the 
lasses 
omputed in x2 
ontain

yet more enumerative information: no additional work is needed at this point to

produ
e the 
hara
teristi
 numbers for the families obtained by further imposing


onditions of tangen
y to a line at a given point.

Denote by N

F

(n

p

P; n

`

L; n

m

M) the weighted number of elements of F 
ontaining

n

p

points, tangent to n

`

lines, and furthermore tangent to n

m

lines at given points

(where n

p

+ n

`

+ 2n

m

= dimF ); then Theorem IV

0

in [A1℄ gives

N

F

(n

p

P; n

`

L; n

m

M) = 4

n

`

� degF

0

�

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

n

p

(B

i

Æ L

i

)

n

`

(B

i

ÆM

i

)

n

m

(B

i

Æ F

i

)


(N

B

i

V

i

)

with notations as above, and B

i

ÆM

i

given by Proposition 5.1 in [A1℄.

Proposition 4.1. The `weighted' numbers N

F

(n

p

P; n

`

L; n

m

M) (where

n

p

= dimF � n

`

� 2n

m

) are:

|for n

m

= 1

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 12 2

1 48 24 4 96 36 6

2 192 84 14 312 90 12

3 696 258 40 816 168 14

4 2208 612 70 1536 210

5 5232 1026 2004

6 8868

|for n

m

= 2

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 10 2

1 48 22 4 84 24 4

2 180 68 12 216 44

3 576 156 384

4 1296

|for n

m

= 3

n

`

N

D

N

D`

N

Dp

N

C

N

C`

N

Cp

0 12 6 1 24 6

1 48 18 60

2 156
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Proof: As for Proposition 3.1, we just list the relevant 
ontributions one 
omputes

in applying the above formula:

|for n

m

= 1:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

D :

3 0 0 0 36 36

4 0 0 0 522 342

5 1536 681 2967 972 900

6 18432 6588 21636 {6282 {90

D` :

2 0 0 0 6 6

3 0 0 0 78 48

4 192 99 357 147 129

5 2368 961 2719 {939 9

Dp :

2 0 0 0 1 1

3 0 0 0 15 9

4 64 33 119 {35 5

C :

2 0 0 0 36 36

3 0 0 0 450 270

4 768 975 1713 576 576

5 9216 7938 10494 {4986 {90

C` :

1 0 0 0 6 6

2 0 0 0 66 36

3 96 135 201 87 81

4 1184 1115 1301 {741 3

Cp` :

1 0 0 0 1 1

2 0 0 0 13 7

3 32 45 67 {33 3

|for n

m

= 2:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

D :

2 0 0 0 6 6

3 0 0 0 114 78

4 512 227 989 {90 138

D` :

1 0 0 0 1 1

2 0 0 0 17 11

3 64 33 119 {11 23
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Dp :

2 0 0 0 2 2

C :

1 0 0 0 6 6

2 0 0 0 102 66

3 256 325 571 {102 102

C` :

0 0 0 0 1 1

1 0 0 0 15 9

2 32 45 67 {13 17

Cp :

1 0 0 0 2 2

|for n

m

= 3:

n

`

R

B

0

R

B

1

R

B

2

R

B

3

R

B

4

D :

2 0 0 0 18 18

D` :

1 0 0 0 3 3

C :

1 0 0 0 18 18

C` :

0 0 0 0 3 3

The statement of the proposition is obtained from these tables by subtra
ting the

sum of the �ve numbers in ea
h row from 4

n

`

� degF

0

.

From Proposition 3.2 and the straightforward extension of Proposition 1.1 (whi
h

we leave to the reader) follow the 
hara
teristi
 numbers:

Theorem III

0

. Denote by F

(j)

(k) the number of elements of F tangent to k lines,


ontaining dimF � k� 2j points, and tangent to j lines at given points (all 
hoi
es

being general). Then:

k D

(1)

D`

(1)

Dp

(1)

C

(1)

C`

(1)

Cp

(1)

0 10 6 1 18 12 2

1 28 22 4 36 30 6

2 68 68 14 54 54 12

3 136 174 40 54 60 14

4 196 292 70 36 42

5 200 326 18

6 148
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k D

(2)

D`

(2)

Dp

(2)

C

(2)

C`

(2)

Cp

(2)

0 8 6 1 12 10 2

1 20 20 4 18 18 4

2 40 52 12 18 20

3 56 84 12

4 56

k D

(3)

D`

(3)

Dp

(3)

C

(3)

C`

(3)

Cp

(3)

0 6 6 1 6 6

1 12 16 6

2 16

The enumerative results 
omputed in Theorems III and III

0

agree with Zeuthen's

lists, with the ex
eption of D`(5) from Theorem III in x3 (the number of nodal


ubi
s with node on a given line, 
ontaining three points and tangent to �ve lines

in general position), a (very rare!) typo in [Z℄, p.607.

Appendix

In this appendix we list a few fa
ts used in the 
omputation of the full interse
tion


lasses in x2. Suppose B;F � V are pure-dimensional s
hemes, with B ,! V a

regular embedding. We set

B Æ F = 
(N

B

V )s(B \ F; F ) ;

the `full interse
tion 
lass' of F by B in V (as usual, we omit pull-ba
k notations).

If F ,! V is also a regular embedding, then we 
an 
onsider the 
lass F Æ B as

well; unfortunately, B Æ F 6= F ÆB in general: for example, let B = p be a point in

V = P

2

, and let F be any 
urve with a double point at p: then B Æ F = 2[p℄, while

F ÆB = [p℄. However:

Lemma A.1. If B, F , V are non-singular, then

B Æ F = F ÆB :

Proof: By [F℄, Example 4.2.6,


(TF )s(B \ F; F ) = 
(TB)s(B \ F;B)

(this 
lass is intrinsi
 of B \ F ). Multiplying by


(TV )


(TF )
(TB)

gives then


(TV )


(TB)

s(B \ F; F ) =


(TV )


(TF )

s(B \ F;B) ; i.e.


(N

B

V )s(B \ F; F ) = 
(N

F

V )s(B \ F;B)
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whi
h is the 
laim.

For example, in 
omputing B ÆF , suppose that the hypotheses of A.1 hold in the


omplement of a subvariety W of B of 
odimension r. Then

fB Æ Fg

i

= fF ÆBg

i

for i > dimB � r;

by Lemma A.1 (we say, a little improperly, `B Æ F = F Æ B in 
odimension < r

in B'). Often the right-hand-side is easier to 
ompute, and higher 
odimensional

terms 
an be 
omputed separately, e.g. by using Lemma 1.4 (2), (3). Noti
e that

the right-hand-side above need not be de�ned in the whole of V , but just on V �W ,

be
ause Segre 
lasses are preserved via 
at maps.

The 
ommutativity of full interse
tion 
lasses is stri
tly related to the following

issue: suppose W � X � V are 
losed embedding, and suppose X ,! V is regular.

Under what 
ir
umstan
es is


(N

X

V )

�1

s(W;X)

independent of X?

The proof of A.1 works be
ause this 
lass is independent of X if X and V are

non-singular. Other 
onditions 
an be 
onsidered; S. Keel has shown that this 
lass

is independent of X as long as the embedding W ,! X is `linear' (see [K℄): so

B Æ F = F Æ B if B ,! V , F ,! V are regular embeddings and B \ F ,! B,

B \ F ,! F are linear embeddings. The following observation is also due to Keel:

Lemma (Keel). Suppose W � X � V are 
losed embeddings, with W ,! V ,

X ,! V regular embeddings. Suppose the proper transform of X in the blow-up

B`

W

V

�

�! V of V along W is regularly embedded in B`

W

V as the residual s
heme

to the ex
eptional divisor in �

�1

X. Then


(N

X

V )

�1

s(W;X) = s(W;V ) :

Proof: Let I, J be the ideal sheaves of W , X resp. in O

V

. The exa
t sequen
e

J

J

2

�!

I

I

2

�!

I

I

2

+ J

�! 0

indu
es an exa
t sequen
e of graded algebras

J

J

2


 Sym

�

I

I

2

�

(�1) �! Sym

�

I

I

2

�

�! Sym

�

I

I

2

+ J

�

�! 0 :

Sin
e the embedding W ,! V is regular, the se
ond term in this sequen
e is the

homogeneous 
oordinate ring for P(N

W

V ); under the hypotheses, the embedding

W ,! V is weakly linear (Theorem 1 in [K℄), so the third term is the ring for

P(C

W

X). The image of the �rst is then the homogeneous ideal sheaf of P(C

W

X)

in P(N

W

V ), and we get the sequen
e of sheaves on P(N

W

V )

N

X

V

�


O(�1) �! O

P(N

W

V )

�! O

P(C

W

X)

�! 0 :
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Thus P(C

W

X) is 
ut out by a se
tion of N

X

V 
O(1), whi
h must be regular sin
e

the bundle has the right dimension and the embedding of P(C

W

X) in P(N

W

V ) is

regular. Therefore (using notation rather freely) if r is the 
odimension of X in V :

s(W;X) =

X

i�0




1

(O(1))

i

P(C

W

X � 1)

=

X

i�0




1

(O(1))

i




r

(N

X

V 
O(1)) \ P(N

W

V � 1)

=

X

j�0




r�j

(N

X

V )

X

i�j




i

(O(1)

i

P(N

W

V � 1)

= 
(N

X

V )s(W;V ):

We use this fa
t in x2.1, in the form:

Lemma A.2. Suppose B � V are non-singular irredu
ible varieties and B\F ,! V ,

F ,! V are regular embeddings. Suppose the proper transform of F in the blow-up

B`

B\F

V

�

�! V of V along B \ F is regularly embedded in B`

B\F

V as the residual

s
heme to the ex
eptional divisor in �

�1

F . Then

B Æ F = F ÆB :

Proof: Sin
e B; V are non-singular, 
(N

B

V )

�1

s(B \ F;B) = s(B \ F; V ) (argue

as in the proof of Lemma A.1); and s(B \ F; V ) = 
(N

F

V )

�1

s(B \ F; F ) by Keel's

Lemma. The statement follows immediately.

The next Lemma fo
uses on the 
ase of divisors:

Lemma A.3. Let W � Y and W � F be 
losed embeddings of pure-dimensional

s
hemes, with W irredu
ible and Y a Cartier divisor of F , and suppose the proper

transform

e

Y in the blow-up of F alongW is the residual s
heme of the m

th

multiple

of the ex
eptional divisor. Then

s(W \ Y; Y ) = (m+ Y ) � s(W;F ) :

Proof: We leave to the reader the 
ase in whi
h W is a 
omponent of Y (use

Lemma 4.2 in [F℄). If W is not a 
omponent of Y , then let B`

W

F

�

�! F be the

blow-up of F along W , and let E be the ex
eptional divisor. Then E \

e

Y is the

ex
eptional divisor of the blow-up of Y along W \ Y , so that (by Corollary 4.2.2 in

[F℄)

s(W \ Y; Y ) = �

�

X

k�1

(�1)

k�1

(E \

e

Y )

k

= �

�

X

k�1

(�1)

k�1

E

k

�

e

Y

= �

�

X

k�1

(�1)

k�1

E

k

� (�

�

Y �mE)

= m�

�

X

k�1

(�1)

k

E

k+1

+ �

�

(�

�

Y �

X

k�1

(�1)

k�1

E

k

)

= (m+ Y ) � �

�

X

k�1

(�1)

k�1

E

k

by the proje
tion formula

= (m+ Y )s(W;F ):
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Applying Lemma A.3 to the 
ase in whi
h W = B \ F , with B;F � V as in the

beginning of this appendix, we get

B Æ Y = (m+ Y )(B Æ F ) ;

whi
h is the form we mainly need in x2.

Finally, we need two results about proper transforms. The �rst is Fulton's `blow-

up formula':

Lemma A.4. Let V be a variety, B ,! V a regular embedding, and let F � V be a

k-dimensional variety. Let

e

V be the blow-up of V along B, and let

e

F be the proper

transform of F in

e

V ; also, let j : E ,!

e

V be the ex
eptional divisor. Then (omitting

pull-ba
k notations)

[

e

F ℄ = [F ℄� j

�

�

B Æ F

1 + E

�

k

:

Proof: This is Theorem 6.7 in [F℄; or, set r = 1 in the Claim in [A1℄, Theorem

II.

The se
ond 
omputes the �rst Chern 
lass of the normal bundle of a proper

transform:

Lemma A.5. In the above situation, suppose the embeddings B\F ,! B, B \ F ,!

F are regular. Then

e

F ,!

e

V is a regular embedding; and if r = 
odim

V

B, s =


odim

F

(B \ F ), then (omitting pull-ba
ks)




1

(N

e

F

e

V ) = 


1

(N

F

V )� (r � s)E :

Proof: We leave the �rst 
laim to the reader. For the relation between Chern


lasses, 
learly 


1

(N

e

F

e

V ) = 


1

(N

F

V ) � kE for some k; to show k = r � s, we

restri
t to E. The 
lass 
(N

e

F

e

V ) restri
ts to 
(N

E\

e

F

E), and E = P(N

B

V ), E\

e

F =

P(N

B\F

F ); so 
hasing the Euler sequen
es for P(N

B

V ), P(N

B\F

F ) gives


(N

E\

e

F

E) = 
(N

B\F

B)


�

N

F

V

N

B\F

B


O(1)

�

;

from whi
h it follows that k equals the rank of N

F

V=N

B\F

B, i.e. r � s.

Typi
ally, to get into the hypotheses of this Lemma we have to restri
t to open

subsets of V;

e

V . However, sin
e the statement only deals with the �rst Chern


lass, this will work sin
e the open sets (impli
itly) 
onsidered will always be the


omplement of subvarieties of 
odimension at least two.
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