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x0. Introdution

The group PGL(2) of linear transformations of the projetive line P

1

ats natu-

rally on the set of on�gurations of points on the line. We all eah on�guration

of d points (some of whih may oinide in the same point on the line) a `d-tuple'

of points; for a given d, the set of d-tuples of points in P

1

forms a dimension-d

projetive spae P

d

. In this note we are onerned with the orbits of this ation of

PGL(2) on P

d

. The losure of eah orbit is a projetive subvariety of P

d

of whih

we determine the degree (x1), the `boundary'{i.e., the omplement of an orbit in

its losure{(x2), and the multipliity at points of the boundary (x3). These results

are used to provide a omplete lassi�ation of the non-singular orbit losures, and

riteria for an orbit losure to be non-singular in odimension 1 (x4).

Although seemingly natural objets of study, we didn't �nd a lot of work on

these orbits in the literature. Some of the results presented here appear also in

[Mukai-Umemura℄, in one form or another; and the `ombinatorial' omputation

of the degree that we will sketh in this introdution goes bak to [Enriques-

Fano℄. But for example Mukai and Umemura establish the non-singularity of the

orbit losures of a spei� 6-tuple and a spei� 12-tuple by an ad-ho oordinate

omputation. We hope to provide here a more unifying approah. Luy Moser-

Jauslin has developed tehniques for the study of embeddings of SL(2) and PGL(2),

and the degree of the orbits an be omputed within her framework ([Moser℄, x8).

Our main motivation in this study is to prepare the ground for the muh riher

ase of the ation of PGL(3) on spaes parametrizing plane urves. The approah

we use in this note is suseptible to be employed in higher dimensions, although

the tehnial diÆulties mount very rapidly. The reader wishing to approah the

PGL(3) ase (see [AluÆ-Faber℄) will �nd here a sample of the essential tehniques.

The main idea for the degree and multipliity omputations is the following: for

eah given d-tuple of points on P

1

, build a smooth variety

e

V and a proper map from

this to the losure of the orbit of the d-tuple. In fat this

e

V will be a ompati�ation

of PGL(2), determined by the d-tuple, whih we obtain by a suitable blow-up of

the P

3

of 2 � 2 (homogeneous) matries. After the onstrution, we redue the

alulations to alulations on

e

V , where some intersetion alulus (partiularly,

the formalism of Segre lasses of [Fulton℄) allows us to perform them. The blow-up

onstrution also allows us to determine expliitly the boundary of the orbit.

The lassi�ation of smooth orbit losures follows from the multipliity ompu-

tations of x3; we use the lassi�ation of �nite subgroups of PGL(2), whih an be

found for example in [Weber℄.

We now sketh here the easy `ombinatorial' omputation of the degree of the

orbit losure of a d-tuple onsisting of d � 3 distint points. In this ase the orbit

losure is 3-dimensional, so its degree may be omputed as the intersetion produt

with three hyperplanes of P

d

.



For the hyperplanes, take 3 distint `point-onditions', i.e., hyperplanes in P

d

onsisting of the d-tuples that ontain a ertain given point. One heks easily

that the intersetion multipliity of the orbit losure and three point-onditions

(determined by three distint points p

1

, p

2

, p

3

) at a d-tuple equals the produt of

the multipliities of p

1

, p

2

and p

3

in the d-tuple: so the intersetion is automatially

transversal if the d-tuple onsists of d distint points. Therefore, in this ase the

degree is just the number of points of intersetion: the omputation then omes

down to ounting the number of elements of PGL(2) that send a given d-tuple

(onsisting of d distint points) to a d-tuple that ontains 3 (distint) given points.

Sine an element of PGL(2) is uniquely determined by presribing the images of 3

distint points, one sees that the answer must be

d(d� 1)(d� 2):

To get the degree of the orbit losure, we have to divide this number by the number

of elements of PGL(2) sending a d-tuple to itself: i.e., the order of the stabilizer of

the d-tuple. For example:

(1) The stabilizer of a 3-tuple onsisting of 3 distint points is S

3

, so the degree

of the orbit losure is 1 (the orbit losure is P

3

).

(2) A general 4-tuple has stabilizer C

2

�C

2

, so the degree of the orbit losure is

4�3�2

4

= 6. The 4-tuples with j = 0 (resp. 1728) have stabilizers A

4

(resp. D

4

),

so that the orbit losure has degree 2 (resp. 3).

(3) For d � 5, a general d-tuple has trivial stabilizer, so the degree of the orbit

losure is d(d� 1)(d� 2).

It would be easy to apply the same proedure to examine the ase in whih

some points of the d-tuples appear with multipliity. However, we don't see how

to obtain by this approah a uni�ed treatment of all ases; more importantly, this

approah wouldn't help us to study the singularity of these orbit losures, and more

important still we don't see how this kind of omputations ould be interpreted to

attak higher dimensional ases suh as the one dealt with in [AluÆ-Faber℄.

Aknowledgement. Both authors wish to thank the Max-Plank-Institut f�ur

Mathematik for the wonderful hospitality.

x1. The predegree of the orbit losure.

We work over an algebraially losed �eld of harateristi 0.

The �rst question we onsider is the omputation of the degree of the losure

(in P

d

) of the orbit of a d-tuple under the ation of PGL(2). Here we think of P

d

as the spae parametrizing homogeneous forms of degree d on P

1

, and eah point

of this spae is identi�ed with the d-tuple of zeros of the form orresponding to it.

Also, we will denote by s the number of distint points in the d-tuple. As mentioned

in the introdution, the main ingredient in the omputation is the onstrution for

eah d-tuple of a non-singular variety dominating the orbit losure.

First we observe this is not neessary if the whole d-tuple is onentrated in one

point (that is, if s = 1). We'll refer to this partiular d-tuple as to the `d-fold point',

and the reader should have no diÆulties in heking that the orbit of the d-fold

point (that is, the set of all suh d-tuples) is simply the degree-d rational normal

urve in P

d

.
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Next, let's onsider the ase when the d-tuple is distributed among 2 distint

points, that is one r-fold point and one distint (d � r)-fold point. Again, in this

ase the reader will see immediately that the orbit onsists of all d-tuples with the

same multipliity data.

Proposition 1.1. The orbit losures of d-tuples onsisting of an r-fold point and

a (d � r)-fold (distint) point are surfaes in P

d

, of degree: 2r(d � r) if r 6= d=2,

r(d� r) = r

2

if r = d=2.

Proof: For this, we dominate the orbit losure with P

1

� P

1

, using the map P

1

�

P

1

�! P

d

de�ned by

((a

0

: a

1

); (b

0

: b

1

)) 7! (a

1

x� a

0

y)

r

(b

1

x� b

0

y)

d�r

:

it is lear that this map is �nite, and that the omplement of the diagonal in P

1

�P

1

maps onto the orbit we are onsidering. Also, it is lear that the degree of this map

is 1 if d 6= 2r, and 2 if d = 2r: so to get the statement we just need to hek that

the self-intersetion of the pull-bak of the hyperplane lass from P

d

to P

1

� P

1

via

the above map is 2r(d�r). This is straightforward: if h

1

, h

2

denote the hyperplane

lass of the fators, the pull-bak of the hyperplane lass from P

d

is (rh

1

+(d�r)h

2

),

and

Z

P

1

�P

1

(rh

1

+ (d� r)h

2

)

2

=

Z

P

1

�P

1

2r(d� r)h

1

h

2

= 2r(d� r) :

(Here and in the following

R

will denote `degree' in the sense of [Fulton℄)

It's worth observing that if r = d=2, then the orbit losure is a (regular) projetion

to P

d

of the r-th Veronese embedding of P

2

|the degree is indeed r

2

in this ase,

as it should be. For example, for r = 2 this is the (non-singular) projetion of the

Veronese surfae in P

5

to P

4

.

Now we move to the most interesting ase, that of a d-tuple distributed in s � 3

points. In this ase the orbit and its losure have dimension 3. In order to onstrut

a non-singular threefold dominating the orbit losure of a given d-tuple, we resolve

the indeterminaies of a rational map assoiated naturally to the given d-tuple.

Choose oordinates (x : y) in P

1

, and let C stand for a homogeneous form in

(x : y) of degree d � 3, and for the d-tuple of points on P

1

orresponding to it. The

PGL(2)-orbit of C in P

d

is the image of the map

 : PGL(2)! P

d

sending � 2 PGL(2) to the form C Æ �. Observe that this map is �nite (if at

least three points of the d-tuple are distint), and its degree equals the order of the

stabilizer of C. This map determines a rational map from the P

3

of 2� 2 matries

to P

d

, whih we also denote by .

Now we will resolve this rational map: i.e., we will onstrut a variety

e

V �lling a

ommutative diagram

PGL(2) �

e

V

~

����! P

d







�

?

?

y







PGL(2) � P

3



- - - -

>

P

d
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The image of ~ in P

d

is preisely the orbit losure. Thus the degree of the

orbit losure an be found by omputing the third power of the pull-bak of the

hyperplane lass of P

d

to

e

V , and dividing by the order of the stabilizer of C. We

all `predegree' the produt of the degree by the order of the stabilizer: sine the

d-tuple is supported on at least 3 points, this term will be synonymous for the 3-fold

self-intersetion of the pull-bak of the hyperplane from P

d

.

The base lous of  : P

3

- - -

>

P

d

onsists of the matries � for whih the form

C Æ � is identially zero. This happens exatly when � is a rank-1 matrix with

image a point of the d-tuple C. The base lous of  is therefore supported on a

�nite number of `parallel' lines in the (non-singular) quadri of rank-1 matries.

There are as many distint lines as there are distint points in the d-tuple C.

Proposition 1.2. A variety

e

V as above an be obtained by blowing up P

3

along

the support of the base lous of .

Proof: To see this, all `point-onditions in P

3

' the inverse image of the point-

onditions of P

d

(de�ned above). The map  is then the map de�ned by the linear

system generated by the point-onditions in P

3

, and therefore the base lous of  is

atually ut out by the point-onditions. Now we argue that a point-ondition in

P

3

is a degree-d hypersurfae onsisting of nothing but a olletion of hyperplanes,

one for eah point in the d-tuple C, eah appearing with the same multipliity as

the orresponding point appears in C. This is immediate: give oordinates

�

p

0

p

1

p

2

p

3

�

to the P

3

of matries; and suppose C is given by the equation

F (x : y) = 0 :

Then the point-ondition orresponding to e.g. the point (1 : 0) has equation

F (p

0

: p

2

) = 0 ;

so is indeed a union of hyperplanes as argued.

Let

e

V be the blow-up of P

3

along the lines supporting the base lous of . The

(a priori rational) map ~ making the above diagram ommute is then de�ned by the

linear system on

e

V generated by the proper transforms of the point-onditions: so

the base lous of ~ is ut out by the proper transforms in

e

V of the point-onditions.

But sine the point-onditions are supported on unions of hyperplanes, they nees-

sarily interset transversally in P

3

along the base lous of : therefore their inter-

setion in

e

V is empty, and we an onlude that the map ~ :

e

V �! P

d

is indeed a

morphism.

Now omputing the 3-fold self-intersetion of the lass of the proper transform

of a point-ondition (i.e., the predegree of the orbit losure) is a straightforward

intersetion alulus exerise. We use [AluÆ-Faber℄, Proposition 3.2: the self-

intersetion is omputed as the self-intersetion of the point-ondition in P

3

(i.e.,

4



d

3

) minus ontributions oming from eah omponent of the base lous of . The

formula gives

predegree = d

3

�

s

X

i=1

Z

L

i

(m

i

+ dh)

3

1 + 2h

;

where the summation runs over the distint points p

1

; : : : ; p

s

of the d-tuple, L

i

is

the line in the base lous orresponding to p

i

, m

i

is the multipliity of p

i

in the

d-tuple (thus the multipliity of the point-onditions along L

i

), and h denotes the

hyperplane lass in L

i

. The degree is omputed by taking the oeÆient of h in the

expression under

R

. Doing this gives:

Proposition 1.3. For d � 3, the predegree of the orbit losure of a d-tuple is

d

3

� 3d(

s

X

i=1

m

2

i

) + 2(

s

X

i=1

m

3

i

) :

So the predegree of a d-tuple C an be written in terms of just d and two numbers,

eah of whih is a sum of `loal ontributions' given by eah point of C. For example,

if the d-tuple onsists of d� r simple points and one r-fold point, then

s

X

i=1

m

2

i

= r

2

+ d� r;

s

X

i=1

m

3

i

= r

3

+ d� r;

so

predegree = d

3

� 3d(r

2

+ d� r) + 2(r

3

+ d� r)

= (d� r)(d� r � 1)(d+ 2r � 2) :

As seen in [AluÆ-Faber℄, this general feature of the predegree (being determined

by a few numbers reording loal data) is preserved in the PGL(3) ase, at least for

smooth urves.

For s = 1 or 2, the formula of this proposition gives 0: whih reets the fat

that in these ases the orbits have dimension < 3. We also remark that the P

1

�P

1

used to dominate the orbit losure in the ase s = 2 in Proposition (1.1) an also be

seen as one omponent of the exeptional divisor of the same blow-up onstrution

used for the ase s � 3.

x2. The boundary of an orbit losure

We turn now to the question of determining the `boundary' of the orbit of a d-

tuple C, by whih we mean the omplement of the orbit in its losure. Observe that

the boundary of an orbit is neessarily itself the union of orbits, and has dimension

� 2. Sine the orbit of a d-tuple has dimension 3 as soon as the d-tuple onsists

of at least 3 distint points, we an onlude right away that the boundary of the

orbit of a given d-tuple must onsist of a union of orbits of d-tuples onentrated

in at most two points. We will show:
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Proposition 2.1. The boundary of the (3-dimensional) orbit of C is the union of

the 1-dimensional orbit of x

d

and of those 2-dimensional orbits of x

r

y

d�r

for whih

r is the multipliity of a point of C.

Proof: We use again the variety

e

V onstruted in x1. The rank-1 matries not

in the base lous have image in the orbit of x

d

; so we only have to determine the

image in P

d

of the omponents of the exeptional divisor in

e

V . Give oordinates

�

p

0

p

1

p

2

p

3

�

to the P

3

of matries; the lous of rank-1 matries is given by p

0

p

3

� p

1

p

2

= 0.

Suppose the d-tuple C has equation a

0

x

d

+a

1

x

d�1

y+ � � �+a

d

y

d

= 0, orresponding

to the point (a

0

: a

1

: � � � : a

d

) 2 P

d

(with obvious hoie of oordinates there).

Assume that (1 : 0) is a point of multipliity r � 1 in C, i.e., a

0

= a

1

= � � � =

a

r�1

= 0; a

r

6= 0. Then p

2

= p

3

= 0 is a omponent of the base lous of  and we

an study

e

V loally by blowing up P

3

along p

2

= p

3

= 0.

On the aÆne piee p

0

= 1 we have oordinates (p

1

; p

2

; p

3

). On an aÆne piee of

the blow-up, oordinates (q

1

; q

2

; q

3

) are given by

8

>

<

>

:

p

1

= q

1

p

2

= q

2

p

3

= q

2

q

3

The map indued by  is then given by

(q

1

; q

2

; q

3

) 7! (b

0

: b

1

: � � � : b

d

)

with

b

0

x

d

+ � � �+ b

d

y

d

� a

r

(x+ q

1

y)

d�r

(q

2

x+ q

2

q

3

y)

r

+ � � �+ a

d

(q

2

x+ q

2

q

3

y)

d

:

Note that we an fator out q

2

r

from the last expression, so that

b

0

x

d

+ � � �+ b

d

y

d

� a

r

(x+ q

1

y)

d�r

(x+ q

3

y)

r

+ a

r+1

q

2

(x+ q

1

y)

d�r�1

(x+ q

3

y)

r+1

+ � � �+ a

d

q

d�r

2

(x+ q

3

y)

d

:

The exeptional divisor is given here by q

2

= 0. The restrition of the map ~ :

e

V �!

P

d

to the omponent of the exeptional divisor of

e

V orresponding to the r-fold

point is then given by restriting the last expression to q

2

= 0: we get d-tuples

orresponding to points

(*) b

0

x

d

+ � � �+ b

d

y

d

� a

r

(x+ q

1

y)

d�r

(x+ q

3

y)

r

:

we onlude that the image of the exeptional divisor orresponding to a point in

C of multipliity r is the losure of the PGL(2)-orbit of x

d�r

y

r

. (The boundary of

this orbit is the orbit of x

d

.) The statement follows.

6



x3. Multipliities.

We will now use the blow-up onstrution desribed in x1 to ompute the mul-

tipliity of the losure of an orbit along the orbits making up its boundary. For

s = 1 and s = 2; r = d=2 (notations as in x1) we have remarked that the orbit

losure is essentially a Veronese, so it is non-singular. To analyze the situation for

s = 2; r 6= d=2 and s � 3, we �rst need the following fat.

Identify P

d

with the spae of d-tuples of points on P

1

, by giving it oordinates

(a

0

: � � � : a

d

) and assoiating with every A = (a

0

: � � � : a

d

) the d-tuple of zeros of

F

A

(x : y) = a

0

x

d

+ a

1

x

d�1

y + � � �+ a

d

y

d

. Then let H

A

(x : y) denote the Hessian

of this form with respet to x; y, a form itself of degree 2d � 4 in (x : y) for eah

given A. For a given (� : �) in P

1

, the equation H

A

(� : �) = 0 determines the

quadri of all d-tuples A whose Hessian vanishes at (� : �). We'll use freely a few

fats about the Hessians, whose veri�ation will generally be left to the reader; the

most important is the following, whih we want to highlight:

Lemma 3.1. The orbit of the d-fold point in P

d

is ut out sheme-theoretially by

the equations H

A

(� : �) = 0, (� : �) 2 P

1

.

Proof: Clearly the Hessian of x

d

is identially zero. On the other hand, if the

Hessian of a form is identially zero, then after a hange of oordinates a olumn

in the matrix of seond derivatives vanishes. Sine the harateristi of the ground

�eld is zero, the form is in the orbit of x

d

. To �nish the proof it suÆes to show that

the quadris H

A

(� : �) ut out the orbit at the d-tuple x

d

= 0. Now the tangent

spae to H

A

(� : �) at (1 : 0 : � � � : 0) is

d

X

i=0

i(i� 1)a

i

�

2d�i�2

�

i�2

= 0 ;

so the intersetion of the tangent spaes at (1 : � � � : 0) is given by a

2

= � � � = a

d

= 0,

the tangent spae to the orbit.

To evaluate the multipliity of the orbit losure of a d-tuple at points of its

boundary, we use the tehniques of [Fulton℄, Chapter 4: the multipliity of a

variety Y along an irreduible subvariety X is the oeÆient of [X℄ in the Segre

lass s(X;Y ) of X in Y ([Fulton℄, x4.3), and Segre lasses behave well with respet

to proper maps ([Fulton℄, x4.2). For eah omponent of the boundary of an orbit

losure, we'll pull-bak equations for the omponent (essentially provided by the

above lemma) to the varieties onstruted in the degree omputations. Computing

the relevant term in the Segre lass will be manageable on these varieties as they

are non-singular. A push-forward will then give the Segre lass in the orbit losure,

and ompute the multipliity.

The boundary of the orbit losure of a d-tuple supported on a pair of points

onsists just of the orbit of a d-fold point.

Proposition 3.2. (s = 2) If r 6= d=2, the orbit losure of a d-tuple onsisting of

one r-fold point and one (d� r)-fold point has multipliity 2 along its boundary. If

r = d=2, this orbit losure is non-singular.

Proof: Pull bak all equations H

A

(� : �) = 0 via the map P

1

�P

1

�! P

d

onsidered

in Proposition (1.1). With the notations of x1, H

A

(� : �) pulls bak to

(a

1

b

0

� a

0

b

1

)

2

(d� 1)(d� r)r(a

1

� � a

0

�)

2r�2

(b

1

� � b

0

�)

2(d�r)�2

;
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as (� : �) varies in P

1

we see that the equations of the orbit of the d-tuple pull

bak to the square of the equation of the diagonal in P

1

� P

1

. The diagonal maps

isomorphially onto the orbit of the d-fold point, and the map from P

1

� P

1

to the

orbit losure has degree 1 if r 6= d=2: thus, pushing forward to P

d

, it follows that

the �rst term in the Segre lass of the orbit of the d-fold point in the orbit losure

is twie the lass of the orbit. The �rst assertion follows. If r = d=2, the map from

P

1

� P

1

to the orbit losure has degree 2: thus the �rst term in the Segre lass

is the orbit of the d-fold point, with oeÆient 2=2 = 1. So the orbit losure is

non-singular in this ase, as already observed earlier.

s � 3. If the d-tuple onsists of at least 3 distint points, then its stabilizer in

PGL(2) is �nite, so its orbit losure is a threefold in P

d

. We have seen in x2 that the

boundary of the orbit of a d-tuple onsists of the union of the 1-dimensional orbit of

x

d

and the 2-dimensional orbits of x

r

y

d�r

, for all r that appear as the multipliity

of a point in the d-tuple.

We all `premultipliity' the produt of the multipliity of the orbit losure of a

d-tuple C (with s � 3) and the order of its stabilizer. Given C, onsider its Hessian

H

C

, this time spei�ally as a degree-(2d � 4) form on P

1

, and thus as a (2d� 4)-

tuple determined by C. An important role is going to be played by the points of

this (2d� 4)-tuple that lie away from C. We state the results �rst:

Proposition 3.3. The premultipliity of the orbit losure of C along the orbit of

the d-fold point is

X

i

k

2

i

+ 4s� 8 ;

where the summation runs over all zeros of the Hessian H

C

external to the d-tuple,

and the k

i

denote the multipliity of H

C

at suh points.

For example, suppose the Hessian is simple at all points external to C; sine the

Hessian has degree 2d � 4, and eah point with multipliity r on C ontributes

preisely a (2r � 2)-fold point to the Hessian, we �nd that in this ase H

C

has

exatly 2s� 4 simple points outside of C, so the premultipliity along the orbit of

the d-fold point must be

(2s� 4) + (4s� 8) = 6(s� 2) :

In partiular, the orbit losure of the general d-tuple, d � 5, has multipliity 6(d�2)

along this orbit.

Next for the 2-dimensional omponents of the boundary. For every point p of C

of multipliity r, denote by C

p

the residual (d� r)-tuple to p in C. In this ase it

matters whether the point p of C is a point of the Hessian of its residual C

p

in C

(thus automatially external to C

p

!).

As seen in x2, p ontributes to the boundary of the orbit losure of C by the orbit

of x

r

y

d�r

. The next result may be seen as a re�nement of that statement:

Proposition 3.4. Eah r-fold point p of the d-tuple ontributes to the premulti-

pliity of the orbit losure along the orbit of x

r

y

d�r

by

2 +mult. of p in H

C

p

8



if r 6= d=2, and

4 + 2 (mult. of p in H

C

p

)

if r = d=2.

So the orbit losure of the general d-tuple has multipliity 2d along its only

boundary omponent (i.e., the orbit of xy

d�1

), for d � 5.

Proofs: For the �rst omputation (multipliity along orbit of the d-fold point),

every point (� : �) in P

1

gives one equation for the orbit of the d-fold point in P

d

,

i.e. H

A

(� : �) = 0 (see Lemma (3.1)). Now if ' 2 P

3

, the Hessian of the translate

by ' is given by

H

AÆ'

= (det')

2

H

A

Æ ' :

therefore eah of the above equations for the orbit of x

d

pulls-bak in P

3

to the

square of the equation of the lous D of rank-1 matries, times the equation of

the point-ondition in P

3

relative to the Hessian of the d-tuple. As seen in x1,

point-onditions are separated above the base lous by the blow-up resolving the

rational map determined by the d-tuple, and as shown in the proof of Proposition

2.1, the exeptional divisors are mapped onto 2-dimensional boundary omponents.

Equations for the inverse image of the orbit of x

d

in the blow-up are therefore

e

D

2

e

H(� : �) ; (� : �) 2 P

1

where

e

D is the equation for the proper transform of D, and

e

H(� : �) is the point-

ondition in the blow-up relative to the points in the Hessian not ontained in the

d-tuple. The sheme-theoreti inverse image onsists then of a non-redued sheme

supported on the proper transform of the lous of rank-1 matries, with length

2 over the support, and embedded omponents along penils of matries whose

image is a point of the Hessian not ontained in the d-tuple; eah of these penils

maps isomorphially to the 1-dimensional orbit of x

d

. To examine the situation

along these penils, observe that every point of the Hessian (say of multipliity k),

determines a omponent of every

e

H(� : �), in fat a k-fold plane ontaining the

penil. As (� : �) moves in P

1

, these omponents de�ne a sheme supported on the

penil. The de�ning ideal is the k-th power of that of the penil and its algebrai

multipliity ([Fulton℄, x4.3) is equal to k

2

. By [Fulton℄, Proposition 9.2, applied

to

e

D � ~

�1

(orbit of x

d

) �

e

V ;

the ontribution of eah embedded penil to the Segre lass is then k

2

times its

lass, and this gives the term

P

k

2

i

in the formula. It remains therefore to be seen

that the proper transform

e

D of the lous of rank-1 matries aounts for the term

4s � 8 in the premultipliity. Now we laim that all we have to hek is that

e

D

2

pushes forward to (2�s) times the lass of the orbit of x

d

: indeed, it will follow that

the ontribution of

e

D to the 1-dimensional term of the Segre lass (i.e., �(2

e

D)

2

)

pushes forward in P

d

to (4s� 8) times the lass of the orbit of x

d

, and we will be

done. Now a straightforward omputation shows that the push-forward of

e

D

2

is

the push-forward from P

3

of D

2

minus the s lines of the base lous (whih map

isomorphially to the orbit of x

d

). Finally, D

2

onsists, as a lass on the quadri

D, of 2 lines of eah ruling, and the ruling parametrizing matries with given kernel

9



pushes forward to 0 in P

d

; so the push-forward is indeed 2 � s times the orbit, as

needed.

For the seond statement (the multipliity along the orbit of x

r

y

d�r

), suppose p

is a point of multipliity r in the d-tuple, and fator the map P

3

- - -

>

P

d

through

P

3

- - -

>

P

1

� P

d�r

�! P

d

;

where P

3

maps to eah fator P

1

and P

d�r

as usual, by extending the ation of

PGL(2) on the r-fold point p and its residual (d�r)-tuple C

p

respetively; the orbit

losure of this point (p; C

p

) in P

1

�P

d�r

maps surjetively to the orbit losure of the

d-tuple in P

d

. The point is that the map P

1

� P

d�r

�! P

d

is an immersion at every

point (p; (d� r)q) if p 6= q; moreover, in this ase the inverse image of rp+ (d� r)q

onsists of preisely (p; (d� r)q) if r 6= d=2, and of the two points (p; (d� r)q) and

(q; rp) if r = d=2. Thus we only have to show that the premultipliity of the orbit

losure of (p; C

p

) in P

1

� P

d�r

is 2 + mult. of p in the Hessian of C

p

.

For this, we observe that equations for the set of points in P

1

� P

d�r

of type

(p; (d � r)q) are (again by Lemma (3.1)) given by H

A

(� : �) = 0, where now the

Hessian is taken for A 2 P

d�r

. Pulling bak to P

3

, and realling again that the

Hessian of a translate is the translate of the Hessian multiplied by the square of the

determinant of the translation, we �nd that equations in P

3

for the inverse image

of the lous of pairs (p; (d� r)q) are

(det')

2

H

C

p

('(� : �)) = 0:

Now blow-up P

3

as usual, and study it over the penil of all ' whose image is the

r-fold point p of the d-tuple. By arguing as in x1, one sees that the blow-up resolves

the map P

3

- - -

>

P

1

�P

d�r

; pulling bak the above equation to the blow-up, we �nd

that (near the penil) the inverse image of the lous of pairs (p; (d�r)q) is supported

on the proper transform of the determinant hypersurfae (with length 2), and on

the omponent of the exeptional divisor over the penil (with length 2+mult. of p

in H

C

p

). Now pairs (p; (d � r)q) with p 6= q don't ome from the determinant

hypersurfae (whih maps to d-fold points only), so the premultipliity equals the

length of the part supported on the exeptional divisor, and this onludes the proof

of the last laim.

x4. Smooth orbit losures and more.

The results of x3, together with a desription of the �nite subgroups of PGL(2)

(see [Weber℄, xx67-77), allow us to give an immediate lassi�ation of the smooth

PGL(2)-orbit losures.

First we present the following lemma, some instanes of whih appeared already

above. Its proof may be left to the reader.

Lemma 4.1. The map P

d

! P

md

, f 7! f

m

is an embedding.

If the d-tuple orresponding to f is supported on s � 3 points, the orbit losure

of f

m

has degree equal to m

3

times the degree of the orbit losure of f (for exam-

ple by Proposition 1.3), whereas the multipliities along orresponding boundary

omponents are equal.
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Beause of the lemma, in the remainder of this setion we will only onsider

d-tuples for whih the g..d. of the multipliities of the s points equals one. We will

also assume that s � 3; reall that the orbit (losure) of x

d

is smooth and that the

orbit losure of x

r

y

d�r

is smooth if and only if d = 2r.

With these assumptions, we have:

Proposition 4.2. The smooth 3-dimensional PGL(2)-orbit losures are:

(1) the orbit losure of x

3

+ y

3

, with stabilizer D

3

= S

3

;

(2) the orbit losure of x

4

+ xy

3

, with stabilizer A

4

;

(3) the orbit losure of x

5

y � xy

5

, with stabilizer S

4

;

(4) the orbit losure of x

11

y + 11x

6

y

6

� xy

11

, with stabilizer A

5

.

Proof: The orbit losure of a d-tuple f is smooth if and only if its multipliity

along the orbit of x

d

equals one, i.e., the premultipliity along that orbit equals

the order of the stabilizer of f . From Proposition (3.3), this premultipliity equals

P

k

2

i

+ 4s � 8, where the k

i

are the multipliities of the points of the Hessian

of f external to f . Counted with multipliity, there are 2s � 4 suh points (i.e.,

P

k

i

= 2s� 4), so the premultipliity is � 6(s� 2).

Assuming that f has smooth orbit losure, it follows that the order of its stabilizer

is � 6(s� 2). In partiular, its stabilizer is non-trivial. It now suÆes to onsider

the ation of the �nite subgroups G of PGL(2) on P

1

and the orbits of points with

non-trivial stabilizer. Following [Weber℄, x68, we list these groups and the lengths

of the speial orbits:

(0) G = C

n

; lengths 1, 1;

(1) G = D

n

; lengths 2, n, n;

(2) G = A

4

; lengths 4, 4, 6;

(3) G = S

4

; lengths 6, 8, 12;

(4) G = A

5

; lengths 12, 20, 30.

Determining the d-tuples f with smooth orbit losure is now an easy matter:

(0) Assume Stab(f) = C

n

. Then n � 6(s�2) > s. It follows that f is supported

on one or two points, a ontradition.

(1) Assume Stab(f) = D

n

. Then 2n � 6(s � 2) so n � 3(s � 2) � s. Again,

if n > s it follows that s = 2, a ontradition; so we get n = s = 3 and

Stab(f) = D

3

= S

3

. Clearly the multipliities of the 3 points are all equal,

thus by our assumption they are all one. So this is the orbit losure of x

3

+y

3

,

whih is P

3

. Of ourse smoothness also follows from onsidering the Hessian

of f .

(2) Assume Stab(f) = A

4

. Then 12 � 6(s� 2) so s � 4. It follows that s = 4

and that all multipliities are equal (to one). This is the orbit losure of

x

4

+ xy

3

; omputing the Hessian, we see that it is indeed smooth.

(3) Assume Stab(f) = S

4

. Then 24 � 6(s�2) so s � 6. It follows that s = 6 and

that all multipliities are equal to one. This is the orbit losure of x

5

y�xy

5

,

whih is indeed smooth, as its Hessian has simple zeros.

(4) Assume Stab(f) = A

5

. Then 60 � 6(s � 2) so s � 12. It follows that

s = 12 and that all multipliities are equal to one. This is the orbit losure

of x

11

y + 11x

6

y

6

� xy

11

([Weber℄, x74). It is smooth as its Hessian has 20

simple zeros.
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It turns out that it is also possible to lassify the orbit losures that are smooth

in odimension one. The answer is partiularly pretty in ase the multipliities of

the s points of the d-tuple are all equal. In that ase we may and will assume that

they are all equal to one, so that d = s; all suh a d-tuple simple. Note that the

orbit losure of a simple d-tuple has at most one boundary omponent.

Proposition 4.3. The orbit losure of a simple d-tuple f is smooth in odimension

one if and only if f is a speial orbit for the ation of a �nite subgroup G of PGL(2)

on P

1

(i.e., f is an orbit of length smaller than the order of G).

Proof: Let f be a simple d-tuple (so d = s). If d = 1 (resp. 2) the orbit losure

of f is smooth; take G = C

n

(resp. D

n

) for an n � 2. So we assume d �

3. From Proposition (3.4), the premultipliity of the orbit losure of f along its

only boundary omponent equals

P

(2 + mult. of p in H

C

p

), where the summation

runs over the d points p of f . Assuming that the orbit losure of f is smooth in

odimension one, it follows that the stabilizer of f has order � 2d. The \only if"

part of the proposition follows. It remains to hek that the orbit losures of the

speial orbits are indeed smooth in odimension one. This is an easy veri�ation

(see below).

It is perhaps worthwhile to remark that the proposition above seems to onsti-

tute an answer to the question raised in [Mukai-Umemura℄, Remark (3.6): the

PGL(2)-orbit losures of speial G-orbits (G � PGL(2) �nite) may be haraterized

as the orbit losures of simple d-tuples that are smooth in odimension one.

The general ase is somewhat harder. Let f be a d-tuple supported on s �

3 points, and assume that the orbit losure of f is smooth in odimension one.

Suppose that there are s

a

points with multipliity a. Then the stabilizer of f has

order at least 2s

a

. We onlude that f is supported on the speial orbits for the

ation of its stabilizer G on P

1

. Clearly G is not yli, so there are 3 suh orbits.

Call them A, B and C, and write f = A

a

B

b

C



with a, b and  positive integers.

Call A-multipliity the ontribution of the points of A to the multipliity of the

orbit losure of f along the orbit of x

a

y

d�a

. By Proposition (3.4), this equals

d

A

(2 + mult. of p in the Hessian of A

a

p

B

b

C



)

order of G

where d

A

is the degree of A, p a point of A and A

p

the residual (d

A

� 1)-tuple.

Similarly we de�ne the B-multipliity and the C-multipliity. The following result

is an immediate onsequene.

Proposition 4.4. Let G be a �nite, non-yli subgroup of PGL(2). Denote by

A, B and C the three speial orbits for the ation of G on P

1

. Let f = A

a

B

b

C



,

with a, b and  positive integers. Assume that G is the PGL(2)-stabilizer of f . The

PGL(2)-orbit losure of f is smooth in odimension one if and only if a, b and  are

mutually distint and the A-multipliity, the B-multipliity and the C-multipliity

are equal to one.

When one or two of a, b and  are zero, the proposition remains true, mutatis

mutandis.

Computing the multipliity of the Hessian at p beomes simpler when one hooses

the right oordinates. Namely, p is one of the two �xed points of an element of G

12



(of order m = (order of G)=d

A

). Choose oordinates x, y so that p and the other

�xed point are given by x = 0 and y = 0 respetively. Writing out A

p

, B and C in

these oordinates, we see that only powers of x

m

our:

A

p

= y

d

A

�1

+ A

1

y

d

A

�1�m

x

m

+A

2

y

d

A

�1�2m

x

2m

+ : : : ;

B = y

d

B

+B

1

y

d

B

�m

x

m

+ B

2

y

d

B

�2m

x

2m

+ : : : ;

C = y

d

C

+ C

1

y

d

C

�m

x

m

+ C

2

y

d

C

�2m

x

2m

+ : : : :

Now one immediately heks that the multipliity of the Hessian of A

a

p

B

b

C



at p is

m� 2 when

A

1

a+ B

1

b+ C

1

 6= 0;

that it is 2m� 2 when

A

1

a+ B

1

b+ C

1

 = 0 and

(A

2

1

� 2A

2

)a+ (B

2

1

� 2B

2

)b+ (C

2

1

� 2C

2

) 6= 0;

et. Thus the A-multipliity is 1, 2, : : : , orrespondingly.

Finally we list for eah of the �nite, non-yli subgroups G of PGL(2) the spe-

ial orbits and the relevant equations. (Some of these results were obtained using

Maple.)

(1) G = D

n

: A = xy, B = x

n

+ y

n

, C = x

n

� y

n

; the A-multipliity is 1 i�

b 6= ;

the B-multipliity is 1 i�

�a+

(n� 1)(n� 2)

6

b+

n(n� 1)

2

 6= 0;

the C-multipliity is 1 i�

�a+

n(n� 1)

2

b+

(n� 1)(n� 2)

6

 6= 0:

(2) G = A

4

: A = x

4

+2

p

�3x

2

y

2

+y

4

, B = x

4

�2

p

�3x

2

y

2

+y

4

, C = x

5

y�xy

5

;

the A-multipliity is 1 i�

a� 8b+ 20 6= 0;

otherwise it is 2; the B-multipliity is 1 i�

8a� b� 20 6= 0;

otherwise it is 2; the C-multipliity is 1 if

a 6= b;
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it is 2 when a = b (unless  = 14a = 14b, in whih ase it is 4); note

however that when a = b the stabilizer is S

4

, so the atual multipliities are

1, respetively 2 (see also below).

(3) G = S

4

: A = x

5

y�xy

5

, B = x

8

+14x

4

y

4

+y

8

, C = x

12

�33x

8

y

4

�33x

4

y

8

+y

12

;

the A-multipliity is 1 i�

a� 14b+ 33 6= 0;

otherwise it is 2; the B-multipliity is 1 i�

20a� 7b� 88 6= 0;

otherwise it is 2; the C-multipliity is 1 i�

45a� 84b� 11 6= 0;

it is 2 when 45a�84b�11 = 0, unless (a; b; ) � (5852; 561; 19656), in whih

ase it is 3.

(4) G = A

5

:

A = x

11

y + 11x

6

y

6

� xy

11

;

B = x

20

� 228x

15

y

5

+ 494x

10

y

10

+ 228x

5

y

15

+ y

20

;

C = x

30

+ 522x

25

y

5

� 10005x

20

y

10

� 10005x

10

y

20

� 522x

5

y

25

+ y

30

;

the A-multipliity is 1 i�

11a� 228b+ 522 6= 0;

otherwise it is 2; the B-multipliity is 1 i�

88a� 57b� 580 6= 0;

otherwise it is 2; the C-multipliity is 1 i�

99a� 285b� 58 6= 0;

it is 2 otherwise, unless (a; b; ) � (26864005; 431607; 43733250), in whih

ase it is 3.
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