
How many smooth plane ubis with given j-invariant are

tangent to 8 lines in general position?

Paolo Aluffi

Abstrat. We employ a variety of `omplete ubis' to give formulas for the har-

ateristi numbers of families parametrized by hypersurfaes F in the P

9

of plane

ubis, in terms of information easily aessible given the equation of F . As exam-

ples, we obtain expliit results for families of ubis with given j-invariant and for

other families arising naturally from the geometry of plane ubis.

x0. Introdution.

The answer to the question posed in the title is 50;448 for j 6= 0; 1728; 16;816

for j = 0; and 25;224 for j = 1728 (Theorem III, x3). These are `harateristi

numbers' for the orresponding families of plane ubis: in general, if a family of

ubis is parametrized by a subvariety F of the P

9

of all plane ubis, then its `k-th

harateristi number' (denoted F (k) in the following), is the number of elements

in the family that are tangent at smooth points to k lines and ontain dimF � k

points in general position in the plane.

In [A1℄ we have studied a �ve blow-up onstrution over P

9

(also onsidered by

U. Sterz, [St℄) yielding a smooth variety of `omplete ubis', and employed it to

ompute the harateristi numbers for the family of all smooth ubis (verifying

lassi results of Maillard [M℄ and Zeuthen [Z℄). Suh a variety should in fat ontain

in nue the answer to all enumerative questions about ontats of (redued) plane

ubis. Unfortunately, our analysis in [A1℄ doesn't provide one with suh a lear

piture as say the famous variety of `omplete onis', and applying the onstrution

to obtain the harateristi numbers for a given family of ubis requires in general

a rather involved analysis of the behavior of the family through the blow-up stages.

Examples of suh omputations are worked out in [A1℄, x5 for families of ubis

tangent to given lines at given points, and in [A2℄ for various families of singular

ubis.

In this note we will disuss one ase in whih the proess is most transparent and

the answer an be expressed most expliitly: the ase of families parametrized by

hypersurfaes of P

9

. We will see that for suh families the harateristi numbers

an be written expliitly in terms of just three piees of information: the degree

of the hypersurfae parametrizing the family, and two numbers reording the loal

struture of the family along the set of `triple lines' and along the set of ubis on-

sisting of a line and a `double line' (see Theorem I, x1). This is a modern version

of a formula of Zeuthen's (in [Z℄); Kleiman and Speiser [KS℄ also prove a similar

statement, from a viewpoint loser to Zeuthen's (we see Theorem I in x1 as the

meeting point of the two approahes of [A1℄ and [KS℄). We want to stress the new

element in our result: the analysis of [A1℄ makes the set of data straightforward to
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obtain if the hypersurfae is given expliitly (Theorem II, x2). In fat, we will give

in an appendix a Maple proedure that will ompute all harateristi numbers of

an 8-dimensional family of smooth plane ubis, given the equation of the hyper-

surfae parametrizing it. We hope that this tool will be of some use in probing the

�eld in searh of general properties of these numbers, or as a ross-hek for other

approahes.

The numbers listed in the �rst paragraph an be obtained by applying the proe-

dure to the equations of the degree-4 and degree-6 invariants of plane ubis (whih

we give expliitly in x3), giving the answer for j = 0; 1728 respetively, and extend-

ing the result to all other �nite j's with a simple argument. The ase j = 1, i.e.

the disriminant hypersurfae in P

9

, parametrizing all singular ubis, is speial:

ontributions to the harateristi numbers may ome in this ase from on�gura-

tions in whih the singular point lies on one of the lines. We have studied this ase

in detail in [A2℄, so here we will deal with it only in passing.

Other onrete examples we have hosen to illustrate the proedure are hyper-

surfaes expressing speial positions of a ex or of a ex line of the ubi: the

omputation of the harateristi numbers for these families beomes an elemen-

tary exerise (see the appendix); one of the results also settles the omputation of

a pair of onstants left unknown in [Z℄.

On a di�erent trak, Theorem I exposes general features of the harateristi

numbers for 8-dimensional families of ubis; some of these ould be expeted from

the general set-up of the problem, some others seem to us quite remarkable. For

example, the 8-th harateristi number of a family of plane ubis parametrized by

a hypersurfae F of P

9

depends only on the degree of F and on its loal struture

along the set of triple lines: that this number doesn't depend on the behavior along

the larger set of non-redued ubis reets the fat that the limit of the dual of

a urve as it approahes the union of a line and a (distint) double line forms a

set of dimension < 8 in the image of the dual map (this is also a result in [KS℄,

or an be derived from [K℄, Examples 3.4 d,e). The fat that the harateristi

numbers depend on just three numbers reets the fat that the Piard group of the

normalization of the graph of the dual map (dominated by the variety onstruted

in [A1℄) has three basi generators, a result of [KS℄.

Another urious onsequene of the formulas in Theorem I in x1 is that the

harateristi numbers of any family parametrized by a hypersurfae of a given

degree d are ongruent to d mod 3. This also explains why the 10 harateristi

numbers for smooth ubis are all ongruent to 1 mod 3: these an all be expressed

as harateristi numbers of the degree-4 hypersurfae of ubis tangent to a given

line, and of the hyperplane of ubis ontaining a given point.

I thank the Mathematishes Institut of the Universit�at Erlangen-N�urnberg for

hospitality and for the use of its omputing failities. I'd espeially like to thank

W. Ruppert for disussions that led me to write this paper.

x1. The main formula. As in [A1℄, we work over an algebraially losed �eld of

harateristi 6= 2; 3.
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Our main formula omes from speializing the results of [A1℄ (spei�ally Theo-

rem IV) to the ase in whih the family onsidered is parametrized by a odimension-

1 (maybe non-omplete) subvariety F of P

9

. As observed in [A1℄, x1, the hara-

teristi numbers don't hange if F is replaed by its losure in P

9

; so we just refer

to F as a hypersurfae, unless this might reate ambiguities; also, we assume that

the losure of F does not ontain the disriminant hypersurfae. As shown in [A1℄,

omputing the harateristi numbers for F amounts then to omputing �ve `full

intersetion lasses'

B

i

Æ F

i

= (N

B

i

V

i

)s(B

i

\ F

i

; F

i

) ;

where B

0

; : : : ; B

4

are the varieties desribed in Theorem III in [A1℄, V

0

= P

9

, V

i

is

the blow-up of V

i�1

along B

i�1

, and F

i

denotes the proper transform in V

i

of the

losure F

0

of F in P

9

.

Given F , denote by m

i

, i = 0; : : : ; 4 the multipliity of F

i

along the enter B

i

of

the (i+ 1)-th blow-up; then let

M = 2m

0

+m

1

+m

2

; N = m

3

+m

4

:

So with eah hypersurfae F of P

9

there are assoiated three numbers: the degree

d of F and the two numbers M;N .

Theorem I. Suppose (the losure of) F does not ontain the disriminant hyper-

surfae. Then, with d;M;N as above, the harateristi numbers for F are

F (k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

d

4d

16d

64d

256d� 24N

976d� 240N

3424d� 885N � 360M

9766d� 1470N � 2520M

21004d� 8400M

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

Note. These imply formula (1) in [Z℄, p. 727. Zeuthen proeeds then to �nd the

values for M , N (= B=40, A in his notations

1

) for the hypersurfae formed by the

ubis tangent to a given line, by a very beautiful interplay of di�erent relations

with other enumerative results. The point of Theorem I here is not so muh to give

a modern version of Zeuthen's formulas (for whih we ould quote [KS℄, Corollary

3.2 and Propositions 5.5, 6.2), but the fat that the blow-ups of [A1℄ give the

integers M;N expliitly. We'll exploit this in x3, and give a method to ompute

M;N diretly for any given hypersurfae of P

9

.

1

This denominator `40' is niely explained at the end of the introdution of [KS℄.
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Proof: We an assume that F is irreduible, and that the general element of F is

non-singular as a plane ubi: so (in the terminology of [A1℄) the tangenies will

be automatially proper, and by Theorem I in [A1℄ elements of F will ontribute

with multipliity one. By Theorem IV in [A1℄, the k-th harateristi number for

F is given by

F (k) = 4

k

� d�

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

8�k

(B

i

Æ L

i

)

k

(B

i

Æ F

i

)

(N

B

i

V

i

)

where B

i

Æ P

i

, B

i

Æ L

i

, (N

B

i

V

i

) are given in Theorem III in [A1℄. Also, B

i

Æ F

i

=

m

i

[B

i

℄ + B

i

� F

i

(by [A1℄, x2): it's lear then that all the information is there. As

an illustration, the omputation for k = 6 runs:

F (6) = 4

6

� d�

Z

B

0

(3h)

2

(2 + 12h)

6

(1 + h)

3

(m

0

+ 3dh)

(1 + 3h)

10

�

Z

B

1

et.

= 4096d� (576m

0

)� (81m

0

+ 279m

1

)� (639m

0

+ 369m

1

+ 648m

2

)

� (390d+ 1092m

3

� 360m

0

� 180m

1

� 180m

2

)� (282d� 207m

3

+ 885m

4

� 216m

0

� 108m

1

� 108m

2

)

= 3424d� 885(m

3

+m

4

)� 360(2m

0

+m

1

+m

2

)

= 3424d� 885N � 360M :

The fat that all ontributions of the m

i

's will group in eah ase to ontribution

of M = 2m

0

+m

1

+m

2

and N = m

3

+m

4

seems rather magi, but �nds partly

an explanation in the Piard group of the normalization of the graph of the dual

map having three basi generators (see [KS℄, partiularly setion 2): indeed, the

harateristi numbers ompute the pull-bak of nine intersetion produts from

the graph (whih is dominated by

e

V ), so they all depend only on the three numbers

speifying the lass in the graph of the divisor determined by F .

We quote a ouple of immediate onsequenes of Theorem I here, sine they raise

questions that seem rather interesting to us.

Corollary 1. The maximum harateristi numbers for a hypersurfae F of P

9

of degree d are ahieved by all and only the hypersurfaes not ontaining the set of

triple lines, and they are in suh ase

d; 4d; 16d; 64d; 256d; 976d; 3424d; 9766d; 21004d

Proof: M;N � 0 always; for hypersurfaes not ontaining the lous of triple lines,

M = N = 0.

Can one give a lower bound? Is there a hypersurfae F of some degree d for

whih M = 5d=2? Suh a family would have the impressively low F (8) = 4d. Can

this be ahieved?
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Corollary 2. The harateristi numbers of a family of ubis parametrized by

a hypersurfae of degree d of P

9

are ongruent to d modulo 3.

Proof: Just read Theorem I modulo 3.

It is tempting to onjeture that suh a pleasant symmetry must be an instane of

a very general statement. The obvious guess is that the the statement of Corollary 2

holds for plane urves of any degree, modulo a suitable integer. Unfortunately this

is in ontrast with known results about quarti urves, so suh general statement

must be disarded. What is the right onjeture?

x2. The blow-ups in oordinates. As shown in x1, the harateristi numbers

for a family parametrized by a hypersurfae F of P

9

are determined by the degree

of F and by two numbers enoding the behavior of F through the �ve blow-ups

onstruting the variety of omplete ubis. Computing these two numbers from

the equation of F will be easy one the blow-ups are expliitly written out in

oordinates, over suitable open sets of the V

i

's (the only requirement on these open

sets is not to be disjoint from the B

i

's).

A desription of the �rst three blow-ups was already needed in [A1℄, and we

simply reprodue it here. We give homogeneous oordinates (x

0

: x

1

: x

2

) to P

2

and

(a

0

: a

1

: � � � : a

9

) to P

9

, so that the ubi of oordinates (a

0

: � � � : a

9

) has equation

a

0

x

3

0

+ a

1

x

2

0

x

1

+ a

2

x

2

0

x

2

+ a

3

x

0

x

2

1

+ a

4

x

0

x

1

x

2

+ a

5

x

0

x

2

2

+ a

6

x

3

1

+ a

7

x

2

1

x

2

+ a

8

x

1

x

2

2

+ a

9

x

3

2

= 0 :

Then we have oordinates (a

1

; : : : ; a

9

) for the open set fa

0

6= 0g in P

9

, and one

an give oordinates (b

1

; : : : ; b

9

) in V

1

, (

1

; : : : ; 

9

) in V

2

, and (d

1

; : : : ; d

9

) in V

3

suh

that ([A1℄, xx3.1,2,3)

(1)

b

1

= a

1

b

2

= a

2

b

3

= 3a

3

� a

2

1

b

4

b

3

= 3a

4

� 2a

1

a

2

b

5

b

3

= 3a

5

� a

2

2

b

6

b

3

= 9a

6

� a

1

a

3

b

7

b

3

= 3a

7

� a

2

a

3

b

8

b

3

= 3a

8

� a

1

a

5

b

9

b

3

= 9a

9

� a

2

a

5

(2)



1

= b

1



2

= b

2



3



6

= b

3



4

= b

4



5

= b

5



6

= 3b

6

� 2b

1



7



6

= 3b

7

� b

1

b

4



8



6

= 3b

8

� b

2

b

4



9



6

= 3b

9

� 2b

2

b

5

(3)

d

1

= 

1

d

2

= 

2

d

3

= 

3

d

4

= 

4

d

5

= 

5

d

6

d

3

= 

6

d

7

= 

7

d

8

= 

8

d

9

= 

9

:

For the fourth and �fth blow-ups, reall that the enters B

3

, B

4

are isomorphi

to the blow-up of P

2

� P

2

along its diagonal: we give oordinates (�

1

; �

2

; u; t) in

B

3

, B

4

so that the blow-up map to P

2

� P

2

is

(�

1

; �

2

; u; t) 7! ((�

1

+ u; �

2

+ ut); (�

1

; �

2

)) :

5



With this desription, the map B

3

,! V

3

an be written ([A1℄, x3.3)

(�

1

; �

2

; u; t) 7! (3�

1

+ u; 3�

2

+ ut;

u

2

; 2t; t

2

;�4; t; t

2

; t

3

) :

Equations for B

3

in (this open set of) V

3

are therefore

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

4d

5

� d

2

4

= 0

d

6

+ 4 = 0

2d

7

� d

4

= 0

4d

8

� d

2

4

= 0

8d

9

� d

3

4

= 0

;

and we an hoose oordinates (e

1

; : : : ; e

9

) for (an aÆne open set of) V

4

so that

(4)

e

1

= d

1

e

2

= d

2

e

3

= d

3

e

4

= d

4

e

5

= 4d

5

� d

2

4

e

6

e

5

= d

6

+ 4

e

7

e

5

= 2d

7

� d

4

e

8

e

5

= 4d

8

� d

2

4

e

9

e

5

= 8d

9

� d

3

4

To obtain equations for B

4

in V

4

, reall its onstrution from [A1℄, x3.4. If a point

(�

1

; �

2

; u; t) 2 B

3

, and u 6= 0, then a neighborhood of its image in V

3

is isomorphi

to a neighborhood of the ubi

(x

0

+ (�

1

+ u)x

1

+ (�

2

+ ut)x

2

)(x

0

+ �

1

x

1

+ �

2

x

2

)

2

in P

9

, onsisting of the line x

0

+ (�

1

+ u)x

1

+ (�

2

+ ut)x

2

= 0 and of the double

line supported on x

0

+ �

1

x

1

+ �

2

x

2

= 0. The tangent spae to B

3

at (�

1

; �

2

; u; t)

is then identi�ed with the four-dimensional spae of ubis onsisting of the line

x

0

+ �

1

x

1

+ �

2

x

2

= 0 and of a oni ontaining the point (�

1

t� �

2

: �t : 1) where

the two lines interset. The �ve-dimensional spae of ubis ontaining the line

x

0

+ �

1

x

1

+ �

2

x

2

= 0 determines then a point in the exeptional divisor E

4

over

(�

1

; �

2

; u; t): and B

4

is the set of all suh points obtained as (�

1

; �

2

; u; t) moves in

B

3

. To get a parametrization of B

4

, onsider the diretion (in P

9

)

s 7! (x

0

+ �

1

x

1

+ �

2

x

2

)

2

(x

0

+ (�

1

+ u)x

1

+ (�

2

+ ut)x

2

) + s(x

0

+ �

1

x

1

+ �

2

x

2

)x

2

2

:

This is normal to B

3

and lies in the �ve-dimensional spae de�ned above, so it

determines the point in B

4

above (�

1

; �

2

; u; t). Traing the oordinates, this gives

the urve

s 7! (3�

1

+ u; 3�

2

+ ut;

u

2

; 2t;�12

s

u

2

; 0; 0;

1

2

; 3t)

in V

4

, onverging to

(3�

1

+ u; 3�

2

+ ut;

u

2

; 2t; 0; 0; 0;

1

2

; 3t)
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as s! 0. This parametrization globalizes over fu = 0g as well, so equations for B

4

are

8

>

>

>

>

>

<

>

>

>

>

>

:

e

5

= 0

e

6

= 0

e

7

= 0

2e

8

� 1 = 0

2e

9

� 3e

4

= 0

;

and we an hoose oordinates (f

1

; : : : ; f

9

) in V

5

so that

(5)

f

1

= e

1

f

2

= e

2

f

3

= e

3

f

4

= e

4

f

5

= e

5

f

6

f

5

= e

6

f

7

f

5

= e

7

f

8

f

5

= 2e

8

� 1 f

9

f

5

= 2e

9

� 3e

4

:

The equation of the exeptional divisor in V

5

=

e

V is then f

5

= 0.

Composing the maps desribed by the set of equations (1){(5), we get a oordinate

desription of the map

e

V �! P

9

from the variety of omplete ubis to the P

9

of

ordinary ubis. Expliitly, one �nds the rather unpleasant-looking list of equations:

a

1

= f

1

; a

2

= f

2

; a

3

= �

4

3

f

2

3

+

1

3

f

2

3

f

2

5

f

6

+

1

3

f

2

1

;

a

4

= �

4

3

f

4

f

2

3

+

1

3

f

4

f

2

3

f

2

5

f

6

+

2

3

f

1

f

2

;

a

5

= �

1

3

f

2

4

f

2

3

+

1

12

f

2

4

f

2

3

f

2

5

f

6

�

1

3

f

5

f

2

3

+

1

12

f

3

5

f

2

3

f

6

+

1

3

f

2

2

a

6

=

16

27

f

3

3

�

8

27

f

3

3

f

2

5

f

6

+

1

27

f

3

3

f

4

5

f

2

6

�

4

9

f

1

f

2

3

+

1

9

f

1

f

2

3

f

2

5

f

6

+

1

27

f

3

1

;

a

7

=

8

9

f

4

f

3

3

�

4

9

f

4

f

3

3

f

2

5

f

6

+

1

18

f

4

f

3

3

f

4

5

f

2

6

+

8

9

f

7

f

2

5

f

3

3

�

4

9

f

7

f

4

5

f

3

3

f

6

+

1

18

f

7

f

6

5

f

3

3

f

2

6

�

4

9

f

1

f

4

f

2

3

+

1

9

f

1

f

4

f

2

3

f

2

5

f

6

�

4

9

f

2

f

2

3

+

1

9

f

2

f

2

3

f

2

5

f

6

+

1

9

f

2

f

2

1

;

a

8

=

4

9

f

2

4

f

3

3

�

2

9

f

2

4

f

3

3

f

2

5

f

6

+

1

36

f

2

4

f

3

3

f

4

5

f

2

6

+

2

9

f

8

f

2

5

f

3

3

�

1

9

f

8

f

4

5

f

3

3

f

6

+

1

72

f

8

f

6

5

f

3

3

f

2

6

+

2

9

f

5

f

3

3

�

1

9

f

3

5

f

3

3

f

6

+

1

72

f

5

5

f

3

3

f

2

6

�

4

9

f

2

f

4

f

2

3

+

1

9

f

2

f

4

f

2

3

f

2

5

f

6

�

1

9

f

1

f

2

4

f

2

3

+

1

36

f

1

f

2

4

f

2

3

f

2

5

f

6

�

1

9

f

1

f

5

f

2

3

+

1

36

f

1

f

3

5

f

2

3

f

6

+

1

9

f

1

f

2

2

;

a

9

=

2

27

f

3

4

f

3

3

�

1

27

f

3

4

f

3

3

f

2

5

f

6

+

1

216

f

3

4

f

3

3

f

4

5

f

2

6

+

1

27

f

9

f

2

5

f

3

3

�

1

54

f

9

f

4

5

f

3

3

f

6

+

1

432

f

9

f

6

5

f

3

3

f

2

6

+

1

9

f

4

f

5

f

3

3

�

1

18

f

4

f

3

5

f

3

3

f

6

+

1

144

f

4

f

5

5

f

3

3

f

2

6

�

1

9

f

2

f

2

4

f

2

3

+

1

36

f

2

f

2

4

f

2

3

f

2

5

f

6

�

1

9

f

2

f

5

f

2

3

+

1

36

f

2

f

3

5

f

2

3

f

6

+

1

27

f

3

2

;

these give the other main tool in the omputation:

7



Theorem II. (Notations of Theorem I) If F (a

0

: � � � : a

9

) = 0 is the equation of

the hypersurfae parametrizing the family, then the numbers M;N are resp. the

highest power of f

3

; f

5

dividing

F (1 : f

1

: f

2

: �

4

3

f

2

3

+

1

3

f

2

3

f

2

5

f

6

+

1

3

f

2

1

: : : : ) :

Proof: The highest powers of f

3

, f

5

dividing F (1 : f

1

: f

2

: : : : ) are resp. the

oeÆients of the third and �fth exeptional divisors in the inverse image of the

hypersurfae, and these are easily seen to beM;N . Or, simply trae (1){(5) and the

de�nition of the multipliities m

0

; : : : ;m

5

: for example, m

0

is the highest power of

b

3

dividing F (1 : b

1

: b

2

:

1

3

b

3

+

1

3

b

2

1

: : : : ), therefore the highest power of 

3

dividing

F (1 : 

1

: 

2

: : : : ); and m

0

+m

1

is the highest power of 

6

dividing F (1 : 

1

: 

2

:

: : : ), so M = 2m

0

+m

1

+m

2

is the highest power of d

3

dividing F (1 : d

1

: d

2

: : : : ).

The statement for M follows easily.

Notie that the oordinate desription does not over the ase F = a

0

; but in

this ase M = N = 0, and the statements hold trivially.

As an illustration, onsider the family parametrized by

F (a

0

: � � � : a

9

) = a

2

3

� 3a

1

a

6

;

pulling-bak to

e

V :

F (1 : f

1

: f

2

: : : : ) = (�

4

3

f

2

3

+

1

3

f

2

3

f

2

5

f

6

+

1

3

f

2

1

)

2

� 3f

1

(

16

27

f

3

3

�

8

27

f

3

3

f

2

5

f

6

+

1

27

f

3

3

f

4

5

f

2

6

�

4

9

f

1

f

2

3

+

1

9

f

1

f

2

3

f

2

5

f

6

+

1

27

f

3

1

)

= �

1

9

f

2

3

(�4 + f

2

5

f

6

)(�f

2

3

f

2

5

f

6

+ f

1

f

3

f

2

5

f

6

+ f

2

1

+ 4f

2

3

� 4f

1

f

3

)

Therefore M = 2; N = 0 by Theorem II, and the harateristi numbers for this

family are

2; 8; 32; 128; 512; 1952; 6128; 14492; 25208

as k = 0; : : : ; 8, by Theorem I.

As an other example,

F (a

0

: � � � : a

9

) = 4a

3

5

a

0

� 18a

9

a

2

a

5

a

0

� a

2

2

a

2

5

+ 4a

3

2

a

9

+ 27a

2

9

a

2

0

is the equation of the set of all ubis tangent to the line x

1

= 0; therefore its

harateristi numbers will be the last 9 of the harateristi numbers for the family

of all smooth ubis. For this equation

F (1 : f

1

: f

2

: : : : ) =

1

6912

f

6

3

f

2

5

(f

2

5

f

6

� 4)

3

(f

2

9

f

4

5

f

6

+ 6f

9

f

3

5

f

4

f

6

+ 4f

3

4

f

9

f

2

5

f

6

+ 9f

2

4

f

6

f

2

5

� 4f

2

9

f

2

5

+ 12f

4

4

f

5

f

6

� 24f

9

f

5

f

4

+ 16f

5

+ 4f

6

4

f

6

� 16f

3

4

f

9

+ 12f

2

4

)

8



so M = 6; N = 2, and the harateristi numbers are indeed

4; 16; 64; 256; 976; 3424; 9766; 21004; 33616 ;

as listed in [Z℄, [KS℄, or [A1℄.

x3. Cubis with given j-invariant. We want to illustrate Theorems I and II by

applying them to families of smooth ubi urves with a given j-invariant. Reall

then that the equation of suh a family is

j =

1728C

3

4

C

3

4

� C

2

6

(j 6= 0; 1728)

where C

4

, C

6

are the lassi degree-4 and degree-6 invariants of plane ubis, suit-

ably normalized (see e.g. [Si℄, III, x1). For j = 0 or 1728, the above equation

beomes resp. C

3

4

= 0, C

2

6

= 0 (as the extra automorphisms of the orresponding

urves ause these hypersurfaes to wrap on themselves); redued equations are

then C

4

= 0, C

6

= 0.

What are C

4

, C

6

expliitly in the oordinates a

0

: � � � : a

9

of x2? At a loss with a

referene, we have to list them here! We will atually list 16C

4

and 64C

6

, to avoid

denominators:

� 16C

4

:

a

4

4

+ 16a

2

2

a

2

7

+ 16a

2

1

a

2

8

+ 16a

2

3

a

2

5

� 48a

2

a

2

3

a

9

� 48a

0

a

3

a

2

8

� 48a

2

1

a

7

a

9

� 48a

0

a

5

a

2

7

� 16a

2

a

3

a

5

a

7

+ 144a

1

a

2

a

9

a

6

+ 24a

1

a

3

a

4

a

9

� 216a

0

a

4

a

9

a

6

+ 24a

0

a

4

a

7

a

8

� 16a

1

a

3

a

5

a

8

� 8a

2

a

2

4

a

7

+ 24a

2

a

4

a

5

a

6

� 8a

1

a

2

4

a

8

� 16a

1

a

2

a

7

a

8

+ 144a

0

a

5

a

8

a

6

+ 24a

2

a

3

a

4

a

8

� 48a

1

a

2

5

a

6

+ 24a

1

a

4

a

5

a

7

� 8a

3

a

2

4

a

5

+ 144a

0

a

3

a

7

a

9

� 48a

2

2

a

8

a

6

� 64C

6

:

a

6

4

� 64a

3

5

a

3

3

� 64a

3

2

a

3

7

� 64a

3

8

a

3

1

� 864a

3

5

a

0

a

2

6

� 576a

2

7

a

0

a

3

a

2

5

+ 36a

8

a

0

a

3

4

a

7

+ 864a

2

8

a

0

a

2

a

4

a

6

+ 216a

2

9

a

2

3

a

2

1

� 1296a

8

a

0

a

6

a

2

a

5

a

7

� 144a

5

a

0

a

8

a

2

7

a

1

+ 720a

5

a

0

a

8

a

3

a

7

a

4

� 72a

5

a

0

a

2

4

a

2

7

+ 288a

2

a

0

a

5

a

3

7

� 144a

8

a

0

a

2

a

4

a

2

7

i

� 144a

2

8

a

0

a

7

a

4

a

1

� 144a

5

a

8

a

7

a

4

a

2

1

� 864a

3

8

a

2

0

a

6

� 144a

2

8

a

0

a

3

a

7

a

2

+ 216a

2

8

a

2

0

a

2

7

+ 48a

5

a

8

a

3

a

7

a

2

a

1

+ 864a

7

a

0

a

4

a

6

a

2

5

� 5832a

2

9

a

2

0

a

2

6

� 864a

2

9

a

0

a

3

3

� 12a

8

a

4

4

a

1

+ 288a

9

a

2

a

5

a

3

3

� 864a

9

a

2

0

a

3

7

� 12a

4

4

a

3

a

5

+ 48a

2

4

a

2

3

a

2

5

+ 288a

3

5

a

3

a

6

a

1

+ 96a

8

a

2

2

a

2

7

a

1

� 864a

2

9

a

6

a

3

1

� 72a

2

5

a

6

a

2

4

a

1

� 576a

2

8

a

2

2

a

6

a

1

� 144a

8

a

2

3

a

2

a

4

a

5

+ 36a

9

a

3

a

3

4

a

1

+ 216a

2

5

a

2

2

a

2

6

� 12a

2

a

4

4

a

7

+ 864a

5

a

0

a

2

8

a

6

a

1

+ 3888a

2

a

0

a

5

a

9

a

2

6

� 864a

3

2

a

9

a

2

6

+ 216a

2

8

a

2

3

a

2

2

� 576a

2

2

a

2

3

a

9

a

7

� 72a

9

a

2

3

a

2

4

a

2

+ 864a

2

2

a

4

a

6

a

9

a

3

+ 96a

5

a

3

a

2

2

a

2

7

+ 36a

2

a

5

a

3

4

a

6

� 72a

8

a

6

a

2

4

a

2

2

� 144a

8

a

6

a

2

2

a

5

a

3

+ 96a

2

5

a

2

3

a

7

a

2

� 144a

3

a

2

5

a

6

a

4

a

2

+ 288a

8

a

9

a

7

a

3

1

+ 48a

2

2

a

2

4

a

2

7

+ 36a

8

a

3

4

a

2

a

3

+ 24a

3

a

5

a

2

4

a

2

a

7

+ 48a

2

8

a

2

4

a

2

1

+ 864a

8

a

0

a

2

3

a

9

a

4

+ 216a

2

7

a

2

5

a

2

1

� 576a

5

a

0

a

2

8

a

2

3

+ 288a

8

a

6

a

3

2

a

7

9



+ 864a

8

a

0

a

6

a

2

5

a

3

� 144a

2

2

a

4

a

6

a

5

a

7

+ 864a

5

a

6

a

9

a

4

a

2

1

� 576a

9

a

2

7

a

2

a

2

1

+ 864a

8

a

6

a

9

a

2

a

2

1

+ 96a

2

8

a

7

a

2

a

2

1

+ 96a

5

a

2

8

a

3

a

2

1

+ 96a

8

a

2

3

a

2

5

a

1

� 144a

8

a

9

a

4

a

3

a

2

1

+ 540a

9

a

0

a

6

a

3

4

� 144a

5

a

2

3

a

9

a

4

a

1

� 144a

8

a

2

3

a

9

a

2

a

1

+ 36a

5

a

3

4

a

7

a

1

� 144a

8

a

3

a

4

a

2

2

a

7

� 576a

8

a

6

a

2

5

a

2

1

� 648a

9

a

6

a

2

4

a

2

a

1

+ 864a

2

2

a

6

a

9

a

7

a

1

+ 720a

2

a

4

a

3

a

9

a

7

a

1

� 1296a

5

a

6

a

9

a

2

a

3

a

1

� 144a

2

5

a

6

a

2

a

7

a

1

� 144a

5

a

2

a

4

a

2

7

a

1

+ 720a

8

a

6

a

4

a

2

a

5

a

1

� 72a

2

8

a

0

a

3

a

2

4

+ 288a

3

8

a

0

a

3

a

1

� 72a

9

a

2

4

a

7

a

2

1

� 1296a

8

a

0

a

6

a

9

a

4

a

1

� 144a

5

a

3

a

9

a

7

a

2

1

� 144a

2

5

a

3

a

7

a

4

a

1

� 144a

2

8

a

3

a

4

a

2

a

1

+ 24a

8

a

2

4

a

2

a

7

a

1

+ 24a

8

a

2

4

a

5

a

3

a

1

� 1296a

8

a

0

a

6

a

9

a

2

a

3

+ 3888a

8

a

2

0

a

6

a

9

a

7

� 1296a

8

a

0

a

3

a

9

a

7

a

1

+ 864a

5

a

0

a

2

3

a

9

a

7

+ 864a

9

a

0

a

3

a

2

7

a

2

� 648a

9

a

0

a

2

4

a

7

a

3

+ 864a

9

a

0

a

2

7

a

4

a

1

� 648a

8

a

0

a

6

a

2

4

a

5

+ 3888a

2

9

a

0

a

3

a

6

a

1

� 1296a

5

a

0

a

3

a

6

a

9

a

4

� 1296a

5

a

0

a

6

a

9

a

7

a

1

� 1296a

2

a

0

a

4

a

6

a

9

a

7

:

Manipulating suh (seemingly huge) polynomials is well within reah of today's

personal omputers. We used the Maple implementation on a Cadmus omputer to

apply Theorem II and get

for C

4

: M = 8; N = 4 ;

for C

6

: M = 12; N = 6 :

Thus Theorem I gives immediately

Theorem III(1). The harateristi numbers for the families F

(0)

, F

(1728)

of ubi

urves with j-invariant = 0; 1728 are

F

(0)

(k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

4

16

64

256

928

2944

7276

13024

16816

F

(1728)

(k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

6

24

96

384

1392

4416

10914

19536

25224

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

For all other j, the equation is

(*) (j � 1728)C

3

4

� jC

2

6

= 0

Now, the initial form with respet to f

3

; f

5

of the pull-baks of C

4

, C

6

to

e

V , in the

oordinates (f

1

; : : : ; f

9

) are

{for C

4

:

64

81

f

8

3

f

4

5

(16f

2

4

f

2

7

+ f

6

� 8f

7

f

9

+ 4f

2

8

� 8f

4

f

7

f

8

)
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{for C

6

:

�

512

729

f

12

3

f

6

5

(�108f

2

7

� 6f

8

f

6

+ 64f

3

4

f

3

7

� f

2

9

f

6

+ 8f

3

8

+ 24f

4

f

7

f

6

� 24f

2

8

f

4

f

7

� 9f

2

8

f

6

f

2

4

� 48f

2

4

f

8

f

2

7

� 36f

4

4

f

6

f

2

7

+ 36f

3

4

f

8

f

6

f

7

+ 96f

9

f

4

f

2

7

� 12f

9

f

6

f

2

4

f

7

� 24f

8

f

9

f

7

+ 6f

8

f

6

f

9

f

4

)

One an then write the initial form for (*) in (f

1

; : : : ; f

9

), and hek that it doesn't

vanish for any j. By Theorem II, we an onlude that for all j 6= 0; 1728

M = 24; N = 12 :

Theorem I yields then

Theorem III(2). The harateristi numbers for the family F

(j)

of plane ubi

urves with given j-invariant 6= 0; 1728 are

F

(j)

(k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

12

48

192

768

2784

8832

21828

39072

50448

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

It seems to us that the geometry behind these numbers should be as follows. Fix

a general olletion of 8 points and lines, and onsider the smooth ubis with given

j-invariant that ontain the points and are tangent to the lines. As j ! 0 (or 1728),

all these urves will move toward eah other 3 by 3 (or 2 by 2), and as j hits 0 (or

1728), when the urves aquire an extra order-3 (or order-2) automorphism, they

ollide in groups of 3 (or 2). So

F

(0)

(k) =

1

3

F

(j)

(k); F

(1728)

(k) =

1

2

F

(j)

(k)

for j 6= 0; 1728. What Theorem III indiates is that for no j do these urves y o�

and onverge to non-redued ubis (is there an a priori reason why this should be

the ase?).

A word about the ase j = 1, i.e. the disriminant hypersurfae. Similar om-

putations as above reveal M = 24, N = 12 in this ase as well (these are G=40, F

in Zeuthen's notation for formula (4) in [Z℄, p. 727, derived on p. 728), so the list

of Theorem III(2) holds for the disriminant (see also [KS℄, Proposition 7.4); but

it loses enumerative signi�ane, sine urves that are not `properly' tangent to the
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lines will ontribute to these numbers. We disuss the situation in [A2℄, together

with another (more `geometri') derivation of the same list (Proposition 3.1, �rst

olumn). It is interesting to observe that the intermediate multipliitiesm

0

; : : : ;m

4

(see x1) are for all �nite j 6= 0; 1728

m

0

= 8; m

1

= 444; m

2

= 444; m

3

= 6; m

4

= 6 ;

while for j =1 they are

m

0

= 8; m

1

= 555; m

2

= 333; m

3

= 6; m

4

= 6

(see [A2℄). As it happens, this di�erene does not inuene M;N . Is this an

aident, or is it the manifestation of a general priniple?

Appendix: A Maple proedure. Here we work over the omplex numbers.

The Maple

2

proedures that follow will ompute the harateristi numbers of a

family of plane ubis parametrized by a hypersurfae F , given its equation. This

simply implements Theorem I and II from xx1,2.

Note. The proedures as listed below are not `exat': they employ Maple's

random number generator to speed the omputation of the highest power of f

3

; f

5

dividing F (1 : f

1

: f

2

: : : ) (as requested by Theorem II). Of ourse it is possible

that the `random' hoies produe a zero of the initial form of F (1 : f

1

: : : : ), and

therefore a misalulation of M;N . To reassure the reader of the statistial relia-

bility of our shortut, we should point out that the proedures below have never

been aught wrong (of ourse all results listed in this paper have been heked with

an exat|but slower|proedure): for example, in a test we have run them 5; 000

times on the degree-4 invariant C

4

of x3, without observing a single mistake. How-

ever, to obtain exat proedures just replae the lines from die := rand(1..500);

to the next end; with

multi := pro(exp)

expand(subs(blowup,exp));

[ldegree(",f3),ldegree(",f5)℄;

end;

In the version below, the proedures are quite fast: for example, the implemen-

tation of Maple on the Cadmus at the Math. Inst. of Erlangen proesses C

4

in less

than 5 seonds, and C

6

in less than 40.

blowup := fa0 = 1,a1 = f1,a2 = f2,

a3 = -4/3*f3**2+1/3*f3**2*f5**2*f6+1/3*f1**2,

a4 = -4/3*f4*f3**2+1/3*f4*f3**2*f5**2*f6+2/3*f1*f2,

a5 = -1/3*f4**2*f3**2+1/12*f4**2*f3**2*f5**2*f6-1/3*f5*f3**2+

1/12*f5**3*f3**2*f6+1/3*f2**2,

a6 = 16/27*f3**3-8/27*f3**3*f5**2*f6+1/27*f3**3*f5**4*f6**2

-4/9*f1*f3**2 +1/9*f1*f3**2*f5**2*f6+1/27*f1**3,

a7 = 8/9*f4*f3**3-4/9*f4*f3**3*f5**2*f6+8/9*f7*f5**2*f3**3

2

Maple is a trademark of the University of Waterloo

12



+1/18*f4*f3**3*f5**4*f6**2-4/9*f7*f5**4*f3**3*f6

+1/18*f7*f5**6*f3**3*f6**2-4/9*f1*f4*f3**2

+1/9*f1*f4*f3**2*f5**2*f6-4/9*f2*f3**2+1/9*f2*f3**2*f5**2*f6

+1/9*f2*f1**2,

a8 = 4/9*f4**2*f3**3-2/9*f4**2*f3**3*f5**2*f6

+1/36*f4**2*f3**3*f5**4*f6**2+2/9*f8*f5**2*f3**3

-1/9*f8*f5**4*f3**3*f6+1/72*f8*f5**6*f3**3*f6**2+2/9*f5*f3**3

-1/9*f5**3*f3**3*f6+1/72*f5**5*f3**3*f6**2-4/9*f2*f4*f3**2

+1/9*f2*f4*f3**2*f5**2*f6-1/9*f1*f4**2*f3**2

+1/36*f1*f4**2*f3**2*f5**2*f6-1/9*f1*f5*f3**2

+1/36*f1*f5**3*f3**2*f6+1/9*f1*f2**2,

a9 = 2/27*f4**3*f3**3-1/27*f4**3*f3**3*f5**2*f6

+1/216*f4**3*f3**3*f5**4*f6**2+1/27*f9*f5**2*f3**3

-1/54*f9*f5**4*f3**3*f6+1/432*f9*f5**6*f3**3*f6**2

+1/9*f4*f5*f3**3-1/18*f4*f5**3*f3**3*f6

+1/144*f4*f5**5*f3**3*f6**2-1/9*f2*f4**2*f3**2

+1/36*f2*f4**2*f3**2*f5**2*f6-1/9*f2*f5*f3**2

+1/36*f2*f5**3*f3**2*f6+1/27*f2**3g;

die := rand(1..500);

multi := pro (exp)

subs(f1 = die(),f2 = die(),f4 = die(),f6 = die(),f7 = die(),

f8 = die(),f9 = die(),f5 = die(),blowup);

subs(f1 = die(),f2 = die(),f4 = die(),f6 = die(),f7 = die(),

f8 = die(),f9 = die(),f3 = die(),blowup);

expand(subs("",exp)); expand(subs("",exp));

[ldegree("",f3),ldegree(",f5)℄;

end;

proess:=pro (M, N, g)

[g,4*g,16*g, 64*g, 256*g-24*N, 976*g-240*N, 3424*g-885*N-360*M,

9766*g-1470*N-2520*M, 21004*g-8400*M℄;

end;

numbers:=pro (exp)

mult:=multi(exp);

answer:=proess(op("),degree(exp));

end;

The proedure multi omputes M;N by applying Theorem II; the proedure

proess omputes the harateristi numbers from M;N and the degree of F ,

by use of Theorem I; and numbers exeutes both proedures. At the end of the

omputation, the variable answer ontains the list of harateristi numbers; the

variable mult ontains M;N .
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Examples

> a9;

a9

> numbers(");

[1, 4, 16, 64, 256, 976, 3424, 9766, 21004℄

These are the harateristi numbers for the family of plane ubis ontaining the

point (0 : 0 : 1); of ourse they give the �rst 9 harateristi numbers for the family

of all smooth ubis.

3 2 2 3 2 2

4 a5 a0 - 18 a9 a2 a5 a0 - a2 a5 + 4 a2 a9 + 27 a9 a0

> numbers(");

[4, 16, 64, 256, 976, 3424, 9766, 21004, 33616℄

This is the family of ubis tangent to the line x

1

= 0, f. x2.

In ase the equation is given by a determinant, the following modi�ations (re-

plae the highlighted lines) will aelerate the omputation onsiderably, as Maple

won't have to ompute the determinant until the last moment:

� � �

die := rand(1..500); with(linalg,det);

multi := pro (exp)

� � �

f8 = die(),f9 = die(),f3 = die(),blowup);

det(subs("",op(exp))); det(subs("",op(exp)));

[ldegree(

00 00

,f3),ldegree(

00

,f5)℄;

� � �

end;

numbers:=pro (exp,g)

mult:=multi(exp);

answer:=proess(op("),g);

end;

In this ase, provide the degree of the expression together with a matrix whose

determinant gives the polynomial.

Examples

|Charateristi numbers for the family of ubis with ex on a given line.

We an hoose the line. We require then the ubi (a

0

: � � � : a

9

) and its hessian

to vanish simultaneously somewhere on the line x

0

= 0, whih amounts to the

simultaneous vanishing of

C = a

6

x

3

+ a

7

x

2

+ a

8

x+ a

9
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and

H = �6a

2

4

x

3

a

6

� 8a

2

3

x

3

a

8

� 6a

2

4

a

9

� 8a

1

x

3

a

2

7

� 8a

2

a

2

8

� 8a

2

5

a

7

+ 24a

1

x

3

a

8

a

6

+ 8a

4

x

3

a

3

a

7

+ 24a

2

a

9

a

7

+ 8a

5

a

4

a

8

� 8a

1

x

2

a

8

a

7

+ 72a

1

x

2

a

9

a

6

+ 24a

1

xa

9

a

7

� 8a

1

xa

2

8

+ 24a

2

a

8

x

2

a

6

� 8a

2

a

8

xa

7

+ 72a

2

a

9

a

6

x� 8a

2

a

2

7

x

2

� 24a

4

x

2

a

5

a

6

+ 2a

2

4

xa

8

� 24a

2

5

a

6

x+ 16a

5

a

3

x

2

a

7

+ 16a

5

a

3

xa

8

� 24a

2

3

x

2

a

9

� 24a

3

xa

4

a

9

+ 2a

2

4

x

2

a

7

The equation is the resultant of these two polynomials with respet to x, a degree-12

polynomial. Its harateristi numbers are then:

> with(linalg,bezout):

> matr:=bezout(C,H,x):

> numbers(matr,12);

[12, 48, 192, 768, 2856, 9552, 25563, 51042, 75648℄

The ombined multipliities are in this ase M = 21; N = 9.

|Charateristi numbers for the family of ubis with ex line ontaining a given

point.

We an hoose the point. We have to impose that the ubi with oordinates

(a

0

: � � � : a

9

) restrits to a triple point on some line between say (1 : 0 : 0) and

(0 : 1 : s). The ubi restrits to the polynomial (in t)

a

0

t

3

+ a

1

t

2

+ a

2

t

2

s+ a

3

t+ a

4

ts+ a

5

ts

2

+ a

6

+ a

7

s+ a

8

s

2

+ a

9

s

3

on suh a line; requiring that its seond derivative vanishes where the polynomial

and its �rst derivative do amounts to the simultaneous vanishing of

Q = 2a

3

1

+ 6a

2

1

a

2

s+ 6a

1

a

2

2

s

2

+ 2a

3

2

s

3

� 9a

3

a

1

a

0

� 9a

3

a

2

sa

0

� 9a

4

a

1

a

0

s

� 9a

4

a

2

s

2

a

0

� 9a

5

a

1

a

0

s

2

� 9a

5

a

2

s

3

a

0

+ 27a

6

a

2

0

+ 27a

7

sa

2

0

+ 27a

8

s

2

a

2

0

+ 27a

9

s

3

a

2

0

and

R = �a

2

1

� 2a

1

a

2

s� a

2

2

s

2

+ 3a

3

a

0

+ 3a

4

sa

0

+ 3a

5

s

2

a

0

:

So the degree-9 equation for this hypersurfae is the resultant of Q;R with respet

to s, divided by its fator a

3

0

. The harateristi numbers:

> with(linalg,bezout):

> matr:=bezout(Q,R,s):

> numbers(matr,9);

[9, 36, 144, 576, 2232, 8064, 23841, 53244, 88236℄

(By speifying that the degree is 9, the ontribution of a

3

0

to the resultant is

disarded, as it doesn't a�et M = 12; N = 3.)

Did Zeuthen know these numbers? He onsiders this last family (`

0

' in formulas

(2) and (3) in [Z℄, p. 727) in deriving his relations, but he stops short of determining

the key oeÆients giving the harateristi numbers (C, D in his notations), maybe
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beause he didn't need them for his immediate purposes. The result listed above

implies C = D = 1.
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