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Abstra
t. We employ a variety of `
omplete 
ubi
s' to give formulas for the 
har-

a
teristi
 numbers of families parametrized by hypersurfa
es F in the P

9

of plane


ubi
s, in terms of information easily a

essible given the equation of F . As exam-

ples, we obtain expli
it results for families of 
ubi
s with given j-invariant and for

other families arising naturally from the geometry of plane 
ubi
s.

x0. Introdu
tion.

The answer to the question posed in the title is 50;448 for j 6= 0; 1728; 16;816

for j = 0; and 25;224 for j = 1728 (Theorem III, x3). These are `
hara
teristi


numbers' for the 
orresponding families of plane 
ubi
s: in general, if a family of


ubi
s is parametrized by a subvariety F of the P

9

of all plane 
ubi
s, then its `k-th


hara
teristi
 number' (denoted F (k) in the following), is the number of elements

in the family that are tangent at smooth points to k lines and 
ontain dimF � k

points in general position in the plane.

In [A1℄ we have studied a �ve blow-up 
onstru
tion over P

9

(also 
onsidered by

U. Sterz, [St℄) yielding a smooth variety of `
omplete 
ubi
s', and employed it to


ompute the 
hara
teristi
 numbers for the family of all smooth 
ubi
s (verifying


lassi
 results of Maillard [M℄ and Zeuthen [Z℄). Su
h a variety should in fa
t 
ontain

in nu
e the answer to all enumerative questions about 
onta
ts of (redu
ed) plane


ubi
s. Unfortunately, our analysis in [A1℄ doesn't provide one with su
h a 
lear

pi
ture as say the famous variety of `
omplete 
oni
s', and applying the 
onstru
tion

to obtain the 
hara
teristi
 numbers for a given family of 
ubi
s requires in general

a rather involved analysis of the behavior of the family through the blow-up stages.

Examples of su
h 
omputations are worked out in [A1℄, x5 for families of 
ubi
s

tangent to given lines at given points, and in [A2℄ for various families of singular


ubi
s.

In this note we will dis
uss one 
ase in whi
h the pro
ess is most transparent and

the answer 
an be expressed most expli
itly: the 
ase of families parametrized by

hypersurfa
es of P

9

. We will see that for su
h families the 
hara
teristi
 numbers


an be written expli
itly in terms of just three pie
es of information: the degree

of the hypersurfa
e parametrizing the family, and two numbers re
ording the lo
al

stru
ture of the family along the set of `triple lines' and along the set of 
ubi
s 
on-

sisting of a line and a `double line' (see Theorem I, x1). This is a modern version

of a formula of Zeuthen's (in [Z℄); Kleiman and Speiser [KS℄ also prove a similar

statement, from a viewpoint 
loser to Zeuthen's (we see Theorem I in x1 as the

meeting point of the two approa
hes of [A1℄ and [KS℄). We want to stress the new

element in our result: the analysis of [A1℄ makes the set of data straightforward to
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obtain if the hypersurfa
e is given expli
itly (Theorem II, x2). In fa
t, we will give

in an appendix a Maple pro
edure that will 
ompute all 
hara
teristi
 numbers of

an 8-dimensional family of smooth plane 
ubi
s, given the equation of the hyper-

surfa
e parametrizing it. We hope that this tool will be of some use in probing the

�eld in sear
h of general properties of these numbers, or as a 
ross-
he
k for other

approa
hes.

The numbers listed in the �rst paragraph 
an be obtained by applying the pro
e-

dure to the equations of the degree-4 and degree-6 invariants of plane 
ubi
s (whi
h

we give expli
itly in x3), giving the answer for j = 0; 1728 respe
tively, and extend-

ing the result to all other �nite j's with a simple argument. The 
ase j = 1, i.e.

the dis
riminant hypersurfa
e in P

9

, parametrizing all singular 
ubi
s, is spe
ial:


ontributions to the 
hara
teristi
 numbers may 
ome in this 
ase from 
on�gura-

tions in whi
h the singular point lies on one of the lines. We have studied this 
ase

in detail in [A2℄, so here we will deal with it only in passing.

Other 
on
rete examples we have 
hosen to illustrate the pro
edure are hyper-

surfa
es expressing spe
ial positions of a 
ex or of a 
ex line of the 
ubi
: the


omputation of the 
hara
teristi
 numbers for these families be
omes an elemen-

tary exer
ise (see the appendix); one of the results also settles the 
omputation of

a pair of 
onstants left unknown in [Z℄.

On a di�erent tra
k, Theorem I exposes general features of the 
hara
teristi


numbers for 8-dimensional families of 
ubi
s; some of these 
ould be expe
ted from

the general set-up of the problem, some others seem to us quite remarkable. For

example, the 8-th 
hara
teristi
 number of a family of plane 
ubi
s parametrized by

a hypersurfa
e F of P

9

depends only on the degree of F and on its lo
al stru
ture

along the set of triple lines: that this number doesn't depend on the behavior along

the larger set of non-redu
ed 
ubi
s re
e
ts the fa
t that the limit of the dual of

a 
urve as it approa
hes the union of a line and a (distin
t) double line forms a

set of dimension < 8 in the image of the dual map (this is also a result in [KS℄,

or 
an be derived from [K℄, Examples 3.4 d,e). The fa
t that the 
hara
teristi


numbers depend on just three numbers re
e
ts the fa
t that the Pi
ard group of the

normalization of the graph of the dual map (dominated by the variety 
onstru
ted

in [A1℄) has three basi
 generators, a result of [KS℄.

Another 
urious 
onsequen
e of the formulas in Theorem I in x1 is that the


hara
teristi
 numbers of any family parametrized by a hypersurfa
e of a given

degree d are 
ongruent to d mod 3. This also explains why the 10 
hara
teristi


numbers for smooth 
ubi
s are all 
ongruent to 1 mod 3: these 
an all be expressed

as 
hara
teristi
 numbers of the degree-4 hypersurfa
e of 
ubi
s tangent to a given

line, and of the hyperplane of 
ubi
s 
ontaining a given point.

I thank the Mathematis
hes Institut of the Universit�at Erlangen-N�urnberg for

hospitality and for the use of its 
omputing fa
ilities. I'd espe
ially like to thank

W. Ruppert for dis
ussions that led me to write this paper.

x1. The main formula. As in [A1℄, we work over an algebrai
ally 
losed �eld of


hara
teristi
 6= 2; 3.
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Our main formula 
omes from spe
ializing the results of [A1℄ (spe
i�
ally Theo-

rem IV) to the 
ase in whi
h the family 
onsidered is parametrized by a 
odimension-

1 (maybe non-
omplete) subvariety F of P

9

. As observed in [A1℄, x1, the 
hara
-

teristi
 numbers don't 
hange if F is repla
ed by its 
losure in P

9

; so we just refer

to F as a hypersurfa
e, unless this might 
reate ambiguities; also, we assume that

the 
losure of F does not 
ontain the dis
riminant hypersurfa
e. As shown in [A1℄,


omputing the 
hara
teristi
 numbers for F amounts then to 
omputing �ve `full

interse
tion 
lasses'

B

i

Æ F

i

= 
(N

B

i

V

i

)s(B

i

\ F

i

; F

i

) ;

where B

0

; : : : ; B

4

are the varieties des
ribed in Theorem III in [A1℄, V

0

= P

9

, V

i

is

the blow-up of V

i�1

along B

i�1

, and F

i

denotes the proper transform in V

i

of the


losure F

0

of F in P

9

.

Given F , denote by m

i

, i = 0; : : : ; 4 the multipli
ity of F

i

along the 
enter B

i

of

the (i+ 1)-th blow-up; then let

M = 2m

0

+m

1

+m

2

; N = m

3

+m

4

:

So with ea
h hypersurfa
e F of P

9

there are asso
iated three numbers: the degree

d of F and the two numbers M;N .

Theorem I. Suppose (the 
losure of) F does not 
ontain the dis
riminant hyper-

surfa
e. Then, with d;M;N as above, the 
hara
teristi
 numbers for F are

F (k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

d

4d

16d

64d

256d� 24N

976d� 240N

3424d� 885N � 360M

9766d� 1470N � 2520M

21004d� 8400M

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

Note. These imply formula (1) in [Z℄, p. 727. Zeuthen pro
eeds then to �nd the

values for M , N (= B=40, A in his notations

1

) for the hypersurfa
e formed by the


ubi
s tangent to a given line, by a very beautiful interplay of di�erent relations

with other enumerative results. The point of Theorem I here is not so mu
h to give

a modern version of Zeuthen's formulas (for whi
h we 
ould quote [KS℄, Corollary

3.2 and Propositions 5.5, 6.2), but the fa
t that the blow-ups of [A1℄ give the

integers M;N expli
itly. We'll exploit this in x3, and give a method to 
ompute

M;N dire
tly for any given hypersurfa
e of P

9

.

1

This denominator `40' is ni
ely explained at the end of the introdu
tion of [KS℄.

3



Proof: We 
an assume that F is irredu
ible, and that the general element of F is

non-singular as a plane 
ubi
: so (in the terminology of [A1℄) the tangen
ies will

be automati
ally proper, and by Theorem I in [A1℄ elements of F will 
ontribute

with multipli
ity one. By Theorem IV in [A1℄, the k-th 
hara
teristi
 number for

F is given by

F (k) = 4

k

� d�

4

X

i=0

Z

B

i

(B

i

Æ P

i

)

8�k

(B

i

Æ L

i

)

k

(B

i

Æ F

i

)


(N

B

i

V

i

)

where B

i

Æ P

i

, B

i

Æ L

i

, 
(N

B

i

V

i

) are given in Theorem III in [A1℄. Also, B

i

Æ F

i

=

m

i

[B

i

℄ + B

i

� F

i

(by [A1℄, x2): it's 
lear then that all the information is there. As

an illustration, the 
omputation for k = 6 runs:

F (6) = 4

6

� d�

Z

B

0

(3h)

2

(2 + 12h)

6

(1 + h)

3

(m

0

+ 3dh)

(1 + 3h)

10

�

Z

B

1

et
.

= 4096d� (576m

0

)� (81m

0

+ 279m

1

)� (639m

0

+ 369m

1

+ 648m

2

)

� (390d+ 1092m

3

� 360m

0

� 180m

1

� 180m

2

)� (282d� 207m

3

+ 885m

4

� 216m

0

� 108m

1

� 108m

2

)

= 3424d� 885(m

3

+m

4

)� 360(2m

0

+m

1

+m

2

)

= 3424d� 885N � 360M :

The fa
t that all 
ontributions of the m

i

's will group in ea
h 
ase to 
ontribution

of M = 2m

0

+m

1

+m

2

and N = m

3

+m

4

seems rather magi
, but �nds partly

an explanation in the Pi
ard group of the normalization of the graph of the dual

map having three basi
 generators (see [KS℄, parti
ularly se
tion 2): indeed, the


hara
teristi
 numbers 
ompute the pull-ba
k of nine interse
tion produ
ts from

the graph (whi
h is dominated by

e

V ), so they all depend only on the three numbers

spe
ifying the 
lass in the graph of the divisor determined by F .

We quote a 
ouple of immediate 
onsequen
es of Theorem I here, sin
e they raise

questions that seem rather interesting to us.

Corollary 1. The maximum 
hara
teristi
 numbers for a hypersurfa
e F of P

9

of degree d are a
hieved by all and only the hypersurfa
es not 
ontaining the set of

triple lines, and they are in su
h 
ase

d; 4d; 16d; 64d; 256d; 976d; 3424d; 9766d; 21004d

Proof: M;N � 0 always; for hypersurfa
es not 
ontaining the lo
us of triple lines,

M = N = 0.

Can one give a lower bound? Is there a hypersurfa
e F of some degree d for

whi
h M = 5d=2? Su
h a family would have the impressively low F (8) = 4d. Can

this be a
hieved?

4



Corollary 2. The 
hara
teristi
 numbers of a family of 
ubi
s parametrized by

a hypersurfa
e of degree d of P

9

are 
ongruent to d modulo 3.

Proof: Just read Theorem I modulo 3.

It is tempting to 
onje
ture that su
h a pleasant symmetry must be an instan
e of

a very general statement. The obvious guess is that the the statement of Corollary 2

holds for plane 
urves of any degree, modulo a suitable integer. Unfortunately this

is in 
ontrast with known results about quarti
 
urves, so su
h general statement

must be dis
arded. What is the right 
onje
ture?

x2. The blow-ups in 
oordinates. As shown in x1, the 
hara
teristi
 numbers

for a family parametrized by a hypersurfa
e F of P

9

are determined by the degree

of F and by two numbers en
oding the behavior of F through the �ve blow-ups


onstru
ting the variety of 
omplete 
ubi
s. Computing these two numbers from

the equation of F will be easy on
e the blow-ups are expli
itly written out in


oordinates, over suitable open sets of the V

i

's (the only requirement on these open

sets is not to be disjoint from the B

i

's).

A des
ription of the �rst three blow-ups was already needed in [A1℄, and we

simply reprodu
e it here. We give homogeneous 
oordinates (x

0

: x

1

: x

2

) to P

2

and

(a

0

: a

1

: � � � : a

9

) to P

9

, so that the 
ubi
 of 
oordinates (a

0

: � � � : a

9

) has equation

a

0

x

3

0

+ a

1

x

2

0

x

1

+ a

2

x

2

0

x

2

+ a

3

x

0

x

2

1

+ a

4

x

0

x

1

x

2

+ a

5

x

0

x

2

2

+ a

6

x

3

1

+ a

7

x

2

1

x

2

+ a

8

x

1

x

2

2

+ a

9

x

3

2

= 0 :

Then we have 
oordinates (a

1

; : : : ; a

9

) for the open set fa

0

6= 0g in P

9

, and one


an give 
oordinates (b

1

; : : : ; b

9

) in V

1

, (


1

; : : : ; 


9

) in V

2

, and (d

1

; : : : ; d

9

) in V

3

su
h

that ([A1℄, xx3.1,2,3)

(1)

b

1

= a

1

b

2

= a

2

b

3

= 3a

3

� a

2

1

b

4

b

3

= 3a

4

� 2a

1

a

2

b

5

b

3

= 3a

5

� a

2

2

b

6

b

3

= 9a

6

� a

1

a

3

b

7

b

3

= 3a

7

� a

2

a

3

b

8

b

3

= 3a

8

� a

1

a

5

b

9

b

3

= 9a

9

� a

2

a

5

(2)




1

= b

1




2

= b

2




3




6

= b

3




4

= b

4




5

= b

5




6

= 3b

6

� 2b

1




7




6

= 3b

7

� b

1

b

4




8




6

= 3b

8

� b

2

b

4




9




6

= 3b

9

� 2b

2

b

5

(3)

d

1

= 


1

d

2

= 


2

d

3

= 


3

d

4

= 


4

d

5

= 


5

d

6

d

3

= 


6

d

7

= 


7

d

8

= 


8

d

9

= 


9

:

For the fourth and �fth blow-ups, re
all that the 
enters B

3

, B

4

are isomorphi


to the blow-up of P

2

� P

2

along its diagonal: we give 
oordinates (�

1

; �

2

; u; t) in

B

3

, B

4

so that the blow-up map to P

2

� P

2

is

(�

1

; �

2

; u; t) 7! ((�

1

+ u; �

2

+ ut); (�

1

; �

2

)) :

5



With this des
ription, the map B

3

,! V

3


an be written ([A1℄, x3.3)

(�

1

; �

2

; u; t) 7! (3�

1

+ u; 3�

2

+ ut;

u

2

; 2t; t

2

;�4; t; t

2

; t

3

) :

Equations for B

3

in (this open set of) V

3

are therefore

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

4d

5

� d

2

4

= 0

d

6

+ 4 = 0

2d

7

� d

4

= 0

4d

8

� d

2

4

= 0

8d

9

� d

3

4

= 0

;

and we 
an 
hoose 
oordinates (e

1

; : : : ; e

9

) for (an aÆne open set of) V

4

so that

(4)

e

1

= d

1

e

2

= d

2

e

3

= d

3

e

4

= d

4

e

5

= 4d

5

� d

2

4

e

6

e

5

= d

6

+ 4

e

7

e

5

= 2d

7

� d

4

e

8

e

5

= 4d

8

� d

2

4

e

9

e

5

= 8d

9

� d

3

4

To obtain equations for B

4

in V

4

, re
all its 
onstru
tion from [A1℄, x3.4. If a point

(�

1

; �

2

; u; t) 2 B

3

, and u 6= 0, then a neighborhood of its image in V

3

is isomorphi


to a neighborhood of the 
ubi


(x

0

+ (�

1

+ u)x

1

+ (�

2

+ ut)x

2

)(x

0

+ �

1

x

1

+ �

2

x

2

)

2

in P

9

, 
onsisting of the line x

0

+ (�

1

+ u)x

1

+ (�

2

+ ut)x

2

= 0 and of the double

line supported on x

0

+ �

1

x

1

+ �

2

x

2

= 0. The tangent spa
e to B

3

at (�

1

; �

2

; u; t)

is then identi�ed with the four-dimensional spa
e of 
ubi
s 
onsisting of the line

x

0

+ �

1

x

1

+ �

2

x

2

= 0 and of a 
oni
 
ontaining the point (�

1

t� �

2

: �t : 1) where

the two lines interse
t. The �ve-dimensional spa
e of 
ubi
s 
ontaining the line

x

0

+ �

1

x

1

+ �

2

x

2

= 0 determines then a point in the ex
eptional divisor E

4

over

(�

1

; �

2

; u; t): and B

4

is the set of all su
h points obtained as (�

1

; �

2

; u; t) moves in

B

3

. To get a parametrization of B

4

, 
onsider the dire
tion (in P

9

)

s 7! (x

0

+ �

1

x

1

+ �

2

x

2

)

2

(x

0

+ (�

1

+ u)x

1

+ (�

2

+ ut)x

2

) + s(x

0

+ �

1

x

1

+ �

2

x

2

)x

2

2

:

This is normal to B

3

and lies in the �ve-dimensional spa
e de�ned above, so it

determines the point in B

4

above (�

1

; �

2

; u; t). Tra
ing the 
oordinates, this gives

the 
urve

s 7! (3�

1

+ u; 3�

2

+ ut;

u

2

; 2t;�12

s

u

2

; 0; 0;

1

2

; 3t)

in V

4

, 
onverging to

(3�

1

+ u; 3�

2

+ ut;

u

2

; 2t; 0; 0; 0;

1

2

; 3t)

6



as s! 0. This parametrization globalizes over fu = 0g as well, so equations for B

4

are

8

>

>

>

>

>

<

>

>

>

>

>

:

e

5

= 0

e

6

= 0

e

7

= 0

2e

8

� 1 = 0

2e

9

� 3e

4

= 0

;

and we 
an 
hoose 
oordinates (f

1

; : : : ; f

9

) in V

5

so that

(5)

f

1

= e

1

f

2

= e

2

f

3

= e

3

f

4

= e

4

f

5

= e

5

f

6

f

5

= e

6

f

7

f

5

= e

7

f

8

f

5

= 2e

8

� 1 f

9

f

5

= 2e

9

� 3e

4

:

The equation of the ex
eptional divisor in V

5

=

e

V is then f

5

= 0.

Composing the maps des
ribed by the set of equations (1){(5), we get a 
oordinate

des
ription of the map

e

V �! P

9

from the variety of 
omplete 
ubi
s to the P

9

of

ordinary 
ubi
s. Expli
itly, one �nds the rather unpleasant-looking list of equations:

a

1

= f

1

; a

2

= f

2

; a

3

= �

4

3

f

2

3

+

1

3

f

2

3

f

2

5

f

6

+

1

3

f

2

1

;

a

4

= �

4

3

f

4

f

2

3

+

1

3

f

4

f

2

3

f

2

5

f

6

+

2

3

f

1

f

2

;

a

5

= �

1

3

f

2

4

f

2

3

+

1

12

f

2

4

f

2

3

f

2

5

f

6

�

1

3

f

5

f

2

3

+

1

12

f

3

5

f

2

3

f

6

+

1

3

f

2

2

a

6

=

16

27

f

3

3

�

8

27

f

3

3

f

2

5

f

6

+

1

27

f

3

3

f

4

5

f

2

6

�

4

9

f

1

f

2

3

+

1

9

f

1

f

2

3

f

2

5

f

6

+

1

27

f

3

1

;

a

7

=

8

9

f

4

f

3

3

�

4

9

f

4

f

3

3

f

2

5

f

6

+

1

18

f

4

f

3

3

f

4

5

f

2

6

+

8

9

f

7

f

2

5

f

3

3

�

4

9

f

7

f

4

5

f

3

3

f

6

+

1

18

f

7

f

6

5

f

3

3

f

2

6

�

4

9

f

1

f

4

f

2

3

+

1

9

f

1

f

4

f

2

3

f

2

5

f

6

�

4

9

f

2

f

2

3

+

1

9

f

2

f

2

3

f

2

5

f

6

+

1

9

f

2

f

2

1

;

a

8

=

4

9

f

2

4

f

3

3

�

2

9

f

2

4

f

3

3

f

2

5

f

6

+

1

36

f

2

4

f

3

3

f

4

5

f

2

6

+

2

9

f

8

f

2

5

f

3

3

�

1

9

f

8

f

4

5

f

3

3

f

6

+

1

72

f

8

f

6

5

f

3

3

f

2

6

+

2

9

f

5

f

3

3

�

1

9

f

3

5

f

3

3

f

6

+

1

72

f

5

5

f

3

3

f

2

6

�

4

9

f

2

f

4

f

2

3

+

1

9

f

2

f

4

f

2

3

f

2

5

f

6

�

1

9

f

1

f

2

4

f

2

3

+

1

36

f

1

f

2

4

f

2

3

f

2

5

f

6

�

1

9

f

1

f

5

f

2

3

+

1

36

f

1

f

3

5

f

2

3

f

6

+

1

9

f

1

f

2

2

;

a

9

=

2

27

f

3

4

f

3

3

�

1

27

f

3

4

f

3

3

f

2

5

f

6

+

1

216

f

3

4

f

3

3

f

4

5

f

2

6

+

1

27

f

9

f

2

5

f

3

3

�

1

54

f

9

f

4

5

f

3

3

f

6

+

1

432

f

9

f

6

5

f

3

3

f

2

6

+

1

9

f

4

f

5

f

3

3

�

1

18

f

4

f

3

5

f

3

3

f

6

+

1

144

f

4

f

5

5

f

3

3

f

2

6

�

1

9

f

2

f

2

4

f

2

3

+

1

36

f

2

f

2

4

f

2

3

f

2

5

f

6

�

1

9

f

2

f

5

f

2

3

+

1

36

f

2

f

3

5

f

2

3

f

6

+

1

27

f

3

2

;

these give the other main tool in the 
omputation:
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Theorem II. (Notations of Theorem I) If F (a

0

: � � � : a

9

) = 0 is the equation of

the hypersurfa
e parametrizing the family, then the numbers M;N are resp. the

highest power of f

3

; f

5

dividing

F (1 : f

1

: f

2

: �

4

3

f

2

3

+

1

3

f

2

3

f

2

5

f

6

+

1

3

f

2

1

: : : : ) :

Proof: The highest powers of f

3

, f

5

dividing F (1 : f

1

: f

2

: : : : ) are resp. the


oeÆ
ients of the third and �fth ex
eptional divisors in the inverse image of the

hypersurfa
e, and these are easily seen to beM;N . Or, simply tra
e (1){(5) and the

de�nition of the multipli
ities m

0

; : : : ;m

5

: for example, m

0

is the highest power of

b

3

dividing F (1 : b

1

: b

2

:

1

3

b

3

+

1

3

b

2

1

: : : : ), therefore the highest power of 


3

dividing

F (1 : 


1

: 


2

: : : : ); and m

0

+m

1

is the highest power of 


6

dividing F (1 : 


1

: 


2

:

: : : ), so M = 2m

0

+m

1

+m

2

is the highest power of d

3

dividing F (1 : d

1

: d

2

: : : : ).

The statement for M follows easily.

Noti
e that the 
oordinate des
ription does not 
over the 
ase F = a

0

; but in

this 
ase M = N = 0, and the statements hold trivially.

As an illustration, 
onsider the family parametrized by

F (a

0

: � � � : a

9

) = a

2

3

� 3a

1

a

6

;

pulling-ba
k to

e

V :

F (1 : f

1

: f

2

: : : : ) = (�

4

3

f

2

3

+

1

3

f

2

3

f

2

5

f

6

+

1

3

f

2

1

)

2

� 3f

1

(

16

27

f

3

3

�

8

27

f

3

3

f

2

5

f

6

+

1

27

f

3

3

f

4

5

f

2

6

�

4

9

f

1

f

2

3

+

1

9

f

1

f

2

3

f

2

5

f

6

+

1

27

f

3

1

)

= �

1

9

f

2

3

(�4 + f

2

5

f

6

)(�f

2

3

f

2

5

f

6

+ f

1

f

3

f

2

5

f

6

+ f

2

1

+ 4f

2

3

� 4f

1

f

3

)

Therefore M = 2; N = 0 by Theorem II, and the 
hara
teristi
 numbers for this

family are

2; 8; 32; 128; 512; 1952; 6128; 14492; 25208

as k = 0; : : : ; 8, by Theorem I.

As an other example,

F (a

0

: � � � : a

9

) = 4a

3

5

a

0

� 18a

9

a

2

a

5

a

0

� a

2

2

a

2

5

+ 4a

3

2

a

9

+ 27a

2

9

a

2

0

is the equation of the set of all 
ubi
s tangent to the line x

1

= 0; therefore its


hara
teristi
 numbers will be the last 9 of the 
hara
teristi
 numbers for the family

of all smooth 
ubi
s. For this equation

F (1 : f

1

: f

2

: : : : ) =

1

6912

f

6

3

f

2

5

(f

2

5

f

6

� 4)

3

(f

2

9

f

4

5

f

6

+ 6f

9

f

3

5

f

4

f

6

+ 4f

3

4

f

9

f

2

5

f

6

+ 9f

2

4

f

6

f

2

5

� 4f

2

9

f

2

5

+ 12f

4

4

f

5

f

6

� 24f

9

f

5

f

4

+ 16f

5

+ 4f

6

4

f

6

� 16f

3

4

f

9

+ 12f

2

4

)
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so M = 6; N = 2, and the 
hara
teristi
 numbers are indeed

4; 16; 64; 256; 976; 3424; 9766; 21004; 33616 ;

as listed in [Z℄, [KS℄, or [A1℄.

x3. Cubi
s with given j-invariant. We want to illustrate Theorems I and II by

applying them to families of smooth 
ubi
 
urves with a given j-invariant. Re
all

then that the equation of su
h a family is

j =

1728C

3

4

C

3

4

� C

2

6

(j 6= 0; 1728)

where C

4

, C

6

are the 
lassi
 degree-4 and degree-6 invariants of plane 
ubi
s, suit-

ably normalized (see e.g. [Si℄, III, x1). For j = 0 or 1728, the above equation

be
omes resp. C

3

4

= 0, C

2

6

= 0 (as the extra automorphisms of the 
orresponding


urves 
ause these hypersurfa
es to wrap on themselves); redu
ed equations are

then C

4

= 0, C

6

= 0.

What are C

4

, C

6

expli
itly in the 
oordinates a

0

: � � � : a

9

of x2? At a loss with a

referen
e, we have to list them here! We will a
tually list 16C

4

and 64C

6

, to avoid

denominators:

� 16C

4

:

a

4

4

+ 16a

2

2

a

2

7

+ 16a

2

1

a

2

8

+ 16a

2

3

a

2

5

� 48a

2

a

2

3

a

9

� 48a

0

a

3

a

2

8

� 48a

2

1

a

7

a

9

� 48a

0

a

5

a

2

7

� 16a

2

a

3

a

5

a

7

+ 144a

1

a

2

a

9

a

6

+ 24a

1

a

3

a

4

a

9

� 216a

0

a

4

a

9

a

6

+ 24a

0

a

4

a

7

a

8

� 16a

1

a

3

a

5

a

8

� 8a

2

a

2

4

a

7

+ 24a

2

a

4

a

5

a

6

� 8a

1

a

2

4

a

8

� 16a

1

a

2

a

7

a

8

+ 144a

0

a

5

a

8

a

6

+ 24a

2

a

3

a

4

a

8

� 48a

1

a

2

5

a

6

+ 24a

1

a

4

a

5

a

7

� 8a

3

a

2

4

a

5

+ 144a

0

a

3

a

7

a

9

� 48a

2

2

a

8

a

6

� 64C

6

:

a

6

4

� 64a

3

5

a

3

3

� 64a

3

2

a

3

7

� 64a

3

8

a

3

1

� 864a

3

5

a

0

a

2

6

� 576a

2

7

a

0

a

3

a

2

5

+ 36a

8

a

0

a

3

4

a

7

+ 864a

2

8

a

0

a

2

a

4

a

6

+ 216a

2

9

a

2

3

a

2

1

� 1296a

8

a

0

a

6

a

2

a

5

a

7

� 144a

5

a

0

a

8

a

2

7

a

1

+ 720a

5

a

0

a

8

a

3

a

7

a

4

� 72a

5

a

0

a

2

4

a

2

7

+ 288a

2

a

0

a

5

a

3

7

� 144a

8

a

0

a

2

a

4

a

2

7

i

� 144a

2

8

a

0

a

7

a

4

a

1

� 144a

5

a

8

a

7

a

4

a

2

1

� 864a

3

8

a

2

0

a

6

� 144a

2

8

a

0

a

3

a

7

a

2

+ 216a

2

8

a

2

0

a

2

7

+ 48a

5

a

8

a

3

a

7

a

2

a

1

+ 864a

7

a

0

a

4

a

6

a

2

5

� 5832a

2

9

a

2

0

a

2

6

� 864a

2

9

a

0

a

3

3

� 12a

8

a

4

4

a

1

+ 288a

9

a

2

a

5

a

3

3

� 864a

9

a

2

0

a

3

7

� 12a

4

4

a

3

a

5

+ 48a

2

4

a

2

3

a

2

5

+ 288a

3

5

a

3

a

6

a

1

+ 96a

8

a

2

2

a

2

7

a

1

� 864a

2

9

a

6

a

3

1

� 72a

2

5

a

6

a

2

4

a

1

� 576a

2

8

a

2

2

a

6

a

1

� 144a

8

a

2

3

a

2

a

4

a

5

+ 36a

9

a

3

a

3

4

a

1

+ 216a

2

5

a

2

2

a

2

6

� 12a

2

a

4

4

a

7

+ 864a

5

a

0

a

2

8

a

6

a

1

+ 3888a

2

a

0

a

5

a

9

a

2

6

� 864a

3

2

a

9

a

2

6

+ 216a

2

8

a

2

3

a

2

2

� 576a

2

2

a

2

3

a

9

a

7

� 72a

9

a

2

3

a

2

4

a

2

+ 864a

2

2

a

4

a

6

a

9

a

3

+ 96a

5

a

3

a

2

2

a

2

7

+ 36a

2

a

5

a

3

4

a

6

� 72a

8

a

6

a

2

4

a

2

2

� 144a

8

a

6

a

2

2

a

5

a

3

+ 96a

2

5

a

2

3

a

7

a

2

� 144a

3

a

2

5

a

6

a

4

a

2

+ 288a

8

a

9

a

7

a

3

1

+ 48a

2

2

a

2

4

a

2

7

+ 36a

8

a

3

4

a

2

a

3

+ 24a

3

a

5

a

2

4

a

2

a

7

+ 48a

2

8

a

2

4

a

2

1

+ 864a

8

a

0

a

2

3

a

9

a

4

+ 216a

2

7

a

2

5

a

2

1

� 576a

5

a

0

a

2

8

a

2

3

+ 288a

8

a

6

a

3

2

a

7

9



+ 864a

8

a

0

a

6

a

2

5

a

3

� 144a

2

2

a

4

a

6

a

5

a

7

+ 864a

5

a

6

a

9

a

4

a

2

1

� 576a

9

a

2

7

a

2

a

2

1

+ 864a

8

a

6

a

9

a

2

a

2

1

+ 96a

2

8

a

7

a

2

a

2

1

+ 96a

5

a

2

8

a

3

a

2

1

+ 96a

8

a

2

3

a

2

5

a

1

� 144a

8

a

9

a

4

a

3

a

2

1

+ 540a

9

a

0

a

6

a

3

4

� 144a

5

a

2

3

a

9

a

4

a

1

� 144a

8

a

2

3

a

9

a

2

a

1

+ 36a

5

a

3

4

a

7

a

1

� 144a

8

a

3

a

4

a

2

2

a

7

� 576a

8

a

6

a

2

5

a

2

1

� 648a

9

a

6

a

2

4

a

2

a

1

+ 864a

2

2

a

6

a

9

a

7

a

1

+ 720a

2

a

4

a

3

a

9

a

7

a

1

� 1296a

5

a

6

a

9

a

2

a

3

a

1

� 144a

2

5

a

6

a

2

a

7

a

1

� 144a

5

a

2

a

4

a

2

7

a

1

+ 720a

8

a

6

a

4

a

2

a

5

a

1

� 72a

2

8

a

0

a

3

a

2

4

+ 288a

3

8

a

0

a

3

a

1

� 72a

9

a

2

4

a

7

a

2

1

� 1296a

8

a

0

a

6

a

9

a

4

a

1

� 144a

5

a

3

a

9

a

7

a

2

1

� 144a

2

5

a

3

a

7

a

4

a

1

� 144a

2

8

a

3

a

4

a

2

a

1

+ 24a

8

a

2

4

a

2

a

7

a

1

+ 24a

8

a

2

4

a

5

a

3

a

1

� 1296a

8

a

0

a

6

a

9

a

2

a

3

+ 3888a

8

a

2

0

a

6

a

9

a

7

� 1296a

8

a

0

a

3

a

9

a

7

a

1

+ 864a

5

a

0

a

2

3

a

9

a

7

+ 864a

9

a

0

a

3

a

2

7

a

2

� 648a

9

a

0

a

2

4

a

7

a

3

+ 864a

9

a

0

a

2

7

a

4

a

1

� 648a

8

a

0

a

6

a

2

4

a

5

+ 3888a

2

9

a

0

a

3

a

6

a

1

� 1296a

5

a

0

a

3

a

6

a

9

a

4

� 1296a

5

a

0

a

6

a

9

a

7

a

1

� 1296a

2

a

0

a

4

a

6

a

9

a

7

:

Manipulating su
h (seemingly huge) polynomials is well within rea
h of today's

personal 
omputers. We used the Maple implementation on a Cadmus 
omputer to

apply Theorem II and get

for C

4

: M = 8; N = 4 ;

for C

6

: M = 12; N = 6 :

Thus Theorem I gives immediately

Theorem III(1). The 
hara
teristi
 numbers for the families F

(0)

, F

(1728)

of 
ubi



urves with j-invariant = 0; 1728 are

F

(0)

(k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

4

16

64

256

928

2944

7276

13024

16816

F

(1728)

(k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

6

24

96

384

1392

4416

10914

19536

25224

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

For all other j, the equation is

(*) (j � 1728)C

3

4

� jC

2

6

= 0

Now, the initial form with respe
t to f

3

; f

5

of the pull-ba
ks of C

4

, C

6

to

e

V , in the


oordinates (f

1

; : : : ; f

9

) are

{for C

4

:

64

81

f

8

3

f

4

5

(16f

2

4

f

2

7

+ f

6

� 8f

7

f

9

+ 4f

2

8

� 8f

4

f

7

f

8

)
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{for C

6

:

�

512

729

f

12

3

f

6

5

(�108f

2

7

� 6f

8

f

6

+ 64f

3

4

f

3

7

� f

2

9

f

6

+ 8f

3

8

+ 24f

4

f

7

f

6

� 24f

2

8

f

4

f

7

� 9f

2

8

f

6

f

2

4

� 48f

2

4

f

8

f

2

7

� 36f

4

4

f

6

f

2

7

+ 36f

3

4

f

8

f

6

f

7

+ 96f

9

f

4

f

2

7

� 12f

9

f

6

f

2

4

f

7

� 24f

8

f

9

f

7

+ 6f

8

f

6

f

9

f

4

)

One 
an then write the initial form for (*) in (f

1

; : : : ; f

9

), and 
he
k that it doesn't

vanish for any j. By Theorem II, we 
an 
on
lude that for all j 6= 0; 1728

M = 24; N = 12 :

Theorem I yields then

Theorem III(2). The 
hara
teristi
 numbers for the family F

(j)

of plane 
ubi



urves with given j-invariant 6= 0; 1728 are

F

(j)

(k) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

12

48

192

768

2784

8832

21828

39072

50448

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

It seems to us that the geometry behind these numbers should be as follows. Fix

a general 
olle
tion of 8 points and lines, and 
onsider the smooth 
ubi
s with given

j-invariant that 
ontain the points and are tangent to the lines. As j ! 0 (or 1728),

all these 
urves will move toward ea
h other 3 by 3 (or 2 by 2), and as j hits 0 (or

1728), when the 
urves a
quire an extra order-3 (or order-2) automorphism, they


ollide in groups of 3 (or 2). So

F

(0)

(k) =

1

3

F

(j)

(k); F

(1728)

(k) =

1

2

F

(j)

(k)

for j 6= 0; 1728. What Theorem III indi
ates is that for no j do these 
urves 
y o�

and 
onverge to non-redu
ed 
ubi
s (is there an a priori reason why this should be

the 
ase?).

A word about the 
ase j = 1, i.e. the dis
riminant hypersurfa
e. Similar 
om-

putations as above reveal M = 24, N = 12 in this 
ase as well (these are G=40, F

in Zeuthen's notation for formula (4) in [Z℄, p. 727, derived on p. 728), so the list

of Theorem III(2) holds for the dis
riminant (see also [KS℄, Proposition 7.4); but

it loses enumerative signi�
an
e, sin
e 
urves that are not `properly' tangent to the

11



lines will 
ontribute to these numbers. We dis
uss the situation in [A2℄, together

with another (more `geometri
') derivation of the same list (Proposition 3.1, �rst


olumn). It is interesting to observe that the intermediate multipli
itiesm

0

; : : : ;m

4

(see x1) are for all �nite j 6= 0; 1728

m

0

= 8; m

1

= 444; m

2

= 444; m

3

= 6; m

4

= 6 ;

while for j =1 they are

m

0

= 8; m

1

= 555; m

2

= 333; m

3

= 6; m

4

= 6

(see [A2℄). As it happens, this di�eren
e does not in
uen
e M;N . Is this an

a

ident, or is it the manifestation of a general prin
iple?

Appendix: A Maple pro
edure. Here we work over the 
omplex numbers.

The Maple

2

pro
edures that follow will 
ompute the 
hara
teristi
 numbers of a

family of plane 
ubi
s parametrized by a hypersurfa
e F , given its equation. This

simply implements Theorem I and II from xx1,2.

Note. The pro
edures as listed below are not `exa
t': they employ Maple's

random number generator to speed the 
omputation of the highest power of f

3

; f

5

dividing F (1 : f

1

: f

2

: : : ) (as requested by Theorem II). Of 
ourse it is possible

that the `random' 
hoi
es produ
e a zero of the initial form of F (1 : f

1

: : : : ), and

therefore a mis
al
ulation of M;N . To reassure the reader of the statisti
al relia-

bility of our short
ut, we should point out that the pro
edures below have never

been 
aught wrong (of 
ourse all results listed in this paper have been 
he
ked with

an exa
t|but slower|pro
edure): for example, in a test we have run them 5; 000

times on the degree-4 invariant C

4

of x3, without observing a single mistake. How-

ever, to obtain exa
t pro
edures just repla
e the lines from die := rand(1..500);

to the next end; with

multi := pro
(exp)

expand(subs(blowup,exp));

[ldegree(",f3),ldegree(",f5)℄;

end;

In the version below, the pro
edures are quite fast: for example, the implemen-

tation of Maple on the Cadmus at the Math. Inst. of Erlangen pro
esses C

4

in less

than 5 se
onds, and C

6

in less than 40.

blowup := fa0 = 1,a1 = f1,a2 = f2,

a3 = -4/3*f3**2+1/3*f3**2*f5**2*f6+1/3*f1**2,

a4 = -4/3*f4*f3**2+1/3*f4*f3**2*f5**2*f6+2/3*f1*f2,

a5 = -1/3*f4**2*f3**2+1/12*f4**2*f3**2*f5**2*f6-1/3*f5*f3**2+

1/12*f5**3*f3**2*f6+1/3*f2**2,

a6 = 16/27*f3**3-8/27*f3**3*f5**2*f6+1/27*f3**3*f5**4*f6**2

-4/9*f1*f3**2 +1/9*f1*f3**2*f5**2*f6+1/27*f1**3,

a7 = 8/9*f4*f3**3-4/9*f4*f3**3*f5**2*f6+8/9*f7*f5**2*f3**3

2

Maple is a trademark of the University of Waterloo
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+1/18*f4*f3**3*f5**4*f6**2-4/9*f7*f5**4*f3**3*f6

+1/18*f7*f5**6*f3**3*f6**2-4/9*f1*f4*f3**2

+1/9*f1*f4*f3**2*f5**2*f6-4/9*f2*f3**2+1/9*f2*f3**2*f5**2*f6

+1/9*f2*f1**2,

a8 = 4/9*f4**2*f3**3-2/9*f4**2*f3**3*f5**2*f6

+1/36*f4**2*f3**3*f5**4*f6**2+2/9*f8*f5**2*f3**3

-1/9*f8*f5**4*f3**3*f6+1/72*f8*f5**6*f3**3*f6**2+2/9*f5*f3**3

-1/9*f5**3*f3**3*f6+1/72*f5**5*f3**3*f6**2-4/9*f2*f4*f3**2

+1/9*f2*f4*f3**2*f5**2*f6-1/9*f1*f4**2*f3**2

+1/36*f1*f4**2*f3**2*f5**2*f6-1/9*f1*f5*f3**2

+1/36*f1*f5**3*f3**2*f6+1/9*f1*f2**2,

a9 = 2/27*f4**3*f3**3-1/27*f4**3*f3**3*f5**2*f6

+1/216*f4**3*f3**3*f5**4*f6**2+1/27*f9*f5**2*f3**3

-1/54*f9*f5**4*f3**3*f6+1/432*f9*f5**6*f3**3*f6**2

+1/9*f4*f5*f3**3-1/18*f4*f5**3*f3**3*f6

+1/144*f4*f5**5*f3**3*f6**2-1/9*f2*f4**2*f3**2

+1/36*f2*f4**2*f3**2*f5**2*f6-1/9*f2*f5*f3**2

+1/36*f2*f5**3*f3**2*f6+1/27*f2**3g;

die := rand(1..500);

multi := pro
 (exp)

subs(f1 = die(),f2 = die(),f4 = die(),f6 = die(),f7 = die(),

f8 = die(),f9 = die(),f5 = die(),blowup);

subs(f1 = die(),f2 = die(),f4 = die(),f6 = die(),f7 = die(),

f8 = die(),f9 = die(),f3 = die(),blowup);

expand(subs("",exp)); expand(subs("",exp));

[ldegree("",f3),ldegree(",f5)℄;

end;

pro
ess:=pro
 (M, N, g)

[g,4*g,16*g, 64*g, 256*g-24*N, 976*g-240*N, 3424*g-885*N-360*M,

9766*g-1470*N-2520*M, 21004*g-8400*M℄;

end;

numbers:=pro
 (exp)

mult:=multi(exp);

answer:=pro
ess(op("),degree(exp));

end;

The pro
edure multi 
omputes M;N by applying Theorem II; the pro
edure

pro
ess 
omputes the 
hara
teristi
 numbers from M;N and the degree of F ,

by use of Theorem I; and numbers exe
utes both pro
edures. At the end of the


omputation, the variable answer 
ontains the list of 
hara
teristi
 numbers; the

variable mult 
ontains M;N .
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Examples

> a9;

a9

> numbers(");

[1, 4, 16, 64, 256, 976, 3424, 9766, 21004℄

These are the 
hara
teristi
 numbers for the family of plane 
ubi
s 
ontaining the

point (0 : 0 : 1); of 
ourse they give the �rst 9 
hara
teristi
 numbers for the family

of all smooth 
ubi
s.

3 2 2 3 2 2

4 a5 a0 - 18 a9 a2 a5 a0 - a2 a5 + 4 a2 a9 + 27 a9 a0

> numbers(");

[4, 16, 64, 256, 976, 3424, 9766, 21004, 33616℄

This is the family of 
ubi
s tangent to the line x

1

= 0, 
f. x2.

In 
ase the equation is given by a determinant, the following modi�
ations (re-

pla
e the highlighted lines) will a

elerate the 
omputation 
onsiderably, as Maple

won't have to 
ompute the determinant until the last moment:

� � �

die := rand(1..500); with(linalg,det);

multi := pro
 (exp)

� � �

f8 = die(),f9 = die(),f3 = die(),blowup);

det(subs("",op(exp))); det(subs("",op(exp)));

[ldegree(

00 00

,f3),ldegree(

00

,f5)℄;

� � �

end;

numbers:=pro
 (exp,g)

mult:=multi(exp);

answer:=pro
ess(op("),g);

end;

In this 
ase, provide the degree of the expression together with a matrix whose

determinant gives the polynomial.

Examples

|Chara
teristi
 numbers for the family of 
ubi
s with 
ex on a given line.

We 
an 
hoose the line. We require then the 
ubi
 (a

0

: � � � : a

9

) and its hessian

to vanish simultaneously somewhere on the line x

0

= 0, whi
h amounts to the

simultaneous vanishing of

C = a

6

x

3

+ a

7

x

2

+ a

8

x+ a

9

14



and

H = �6a

2

4

x

3

a

6

� 8a

2

3

x

3

a

8

� 6a

2

4

a

9

� 8a

1

x

3

a

2

7

� 8a

2

a

2

8

� 8a

2

5

a

7

+ 24a

1

x

3

a

8

a

6

+ 8a

4

x

3

a

3

a

7

+ 24a

2

a

9

a

7

+ 8a

5

a

4

a

8

� 8a

1

x

2

a

8

a

7

+ 72a

1

x

2

a

9

a

6

+ 24a

1

xa

9

a

7

� 8a

1

xa

2

8

+ 24a

2

a

8

x

2

a

6

� 8a

2

a

8

xa

7

+ 72a

2

a

9

a

6

x� 8a

2

a

2

7

x

2

� 24a

4

x

2

a

5

a

6

+ 2a

2

4

xa

8

� 24a

2

5

a

6

x+ 16a

5

a

3

x

2

a

7

+ 16a

5

a

3

xa

8

� 24a

2

3

x

2

a

9

� 24a

3

xa

4

a

9

+ 2a

2

4

x

2

a

7

The equation is the resultant of these two polynomials with respe
t to x, a degree-12

polynomial. Its 
hara
teristi
 numbers are then:

> with(linalg,bezout):

> matr:=bezout(C,H,x):

> numbers(matr,12);

[12, 48, 192, 768, 2856, 9552, 25563, 51042, 75648℄

The 
ombined multipli
ities are in this 
ase M = 21; N = 9.

|Chara
teristi
 numbers for the family of 
ubi
s with 
ex line 
ontaining a given

point.

We 
an 
hoose the point. We have to impose that the 
ubi
 with 
oordinates

(a

0

: � � � : a

9

) restri
ts to a triple point on some line between say (1 : 0 : 0) and

(0 : 1 : s). The 
ubi
 restri
ts to the polynomial (in t)

a

0

t

3

+ a

1

t

2

+ a

2

t

2

s+ a

3

t+ a

4

ts+ a

5

ts

2

+ a

6

+ a

7

s+ a

8

s

2

+ a

9

s

3

on su
h a line; requiring that its se
ond derivative vanishes where the polynomial

and its �rst derivative do amounts to the simultaneous vanishing of

Q = 2a

3

1

+ 6a

2

1

a

2

s+ 6a

1

a

2

2

s

2

+ 2a

3

2

s

3

� 9a

3

a

1

a

0

� 9a

3

a

2

sa

0

� 9a

4

a

1

a

0

s

� 9a

4

a

2

s

2

a

0

� 9a

5

a

1

a

0

s

2

� 9a

5

a

2

s

3

a

0

+ 27a

6

a

2

0

+ 27a

7

sa

2

0

+ 27a

8

s

2

a

2

0

+ 27a

9

s

3

a

2

0

and

R = �a

2

1

� 2a

1

a

2

s� a

2

2

s

2

+ 3a

3

a

0

+ 3a

4

sa

0

+ 3a

5

s

2

a

0

:

So the degree-9 equation for this hypersurfa
e is the resultant of Q;R with respe
t

to s, divided by its fa
tor a

3

0

. The 
hara
teristi
 numbers:

> with(linalg,bezout):

> matr:=bezout(Q,R,s):

> numbers(matr,9);

[9, 36, 144, 576, 2232, 8064, 23841, 53244, 88236℄

(By spe
ifying that the degree is 9, the 
ontribution of a

3

0

to the resultant is

dis
arded, as it doesn't a�e
t M = 12; N = 3.)

Did Zeuthen know these numbers? He 
onsiders this last family (`


0

' in formulas

(2) and (3) in [Z℄, p. 727) in deriving his relations, but he stops short of determining

the key 
oeÆ
ients giving the 
hara
teristi
 numbers (C, D in his notations), maybe

15



be
ause he didn't need them for his immediate purposes. The result listed above

implies C = D = 1.
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