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Abstra
t. Two blow-ups over the proje
tive spa
e P

N

parametrizing plane 
urves of

a given degree yield a 
ompa
ti�
ation of the spa
e of redu
ed 
urves used in [2℄ to

obtain partial enumerative results for families of non-singular plane 
urves. In this

paper it is shown how to employ the 
onstru
tion to obtain enumerative results for

families of plane 
urves with a node or a 
usp. The results re
over known results

for 
ubi
s, give a �rst modern veri�
ation of some 
omputations of of Zeuthen's

for quarti
s, and are new for higher degree. The heart of the 
omputation is the

derivation of key Segre 
lasses relating the interse
tion 
al
ulus at the di�erent stages

of the blow-up 
onstru
tion.

0. Introdu
tion. The k-th `
hara
teristi
 number' of an r-parameter family F of

plane 
urves of degree d is the number of 
urves of F whi
h are tangent at smooth

points to k lines and 
ontain r � k points in general position in the plane.

Assume d > 2. Denote resp. by S

d

(k); S`

d

(k); Sp

d

(k); C

d

(k); C`

d

(k); Cp

d

(k) the

k-th 
hara
teristi
 number for the family of degree d:

� nodal 
urves;

� nodal 
urves with singularity on a given line;

� nodal 
urves with singularity at a given point;

� 
uspidal 
urves;

� 
uspidal 
urves with 
usp on a given line;

� 
uspidal 
urves with 
usp at a given point;

then multipli
ity 
al
ulations and B�ezout's theorem in the proje
tive spa
e P

N

=

P

d(d�3)

2

parametrizing all plane 
urves of degree d yield (see Corollary 1.9 in x1)
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In ea
h of these 
ases, we 
ompute here the next 
hara
teristi
 number, for whi
h

the geometry of P

N

alone does not provide adequate information. We work in a

di�erent 
ompa
ti�
ation (obtained in [2℄) of the variety parametrizing redu
ed

plane 
urves of degree d; our result is

S
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For d = 3 these results re
over a few of the many known enumerative results about

singular plane 
ubi
s (modern referen
es for these are [5℄, [6℄ or [3℄). Noti
e that the

formulas above give for the 7-parameter family of 
uspidal 
ubi
s the 
hara
teristi


numbers C

3

(k) = 24; 60; 114; 168 for k = 0; 1; 2; 3; sin
e 
uspidal 
ubi
s are self-

dual, one 
an argue that ne
essarily C

3

(k) = C

3

(7� k), so that the results in this

note suÆ
e to give a derivation of the whole list:

C

3

(k) = 24; 60; 114; 168; 168; 114; 60; 24 k = 0; : : : ; 7 :

For d = 4, the above formulas give
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verifying results in [9℄ (in [9℄ all 
hara
teristi
 numbers for many families of singular

quarti
s are presented!). The boxed numbers are the ones for whi
h we work in a


ompa
ti�
ation other than the proje
tive spa
es parametrizing plane 
urves.

For d � 5 the results are new: for example, to our knowledge the number

432;016;832 of plane nodal quinti
s 
ontaining 11 points and tangent to 8 lines in

general position in the plane doesn't appear elsewhere in the literature. We know

of promising work in progress on similar questions that makes use of te
hniques

originally developed by Z. Ran to 
ompute the degrees (i.e., the `0-th' 
hara
teris-

ti
 numbers) of varieties parametrizing families of singular plane 
urves. However,

those te
hniques apparently have not yet yielded higher 
hara
teristi
 numbers for

the varieties studied here.

Let P

N

= P

d(d+3)

2

be the proje
tive spa
e parametrizing degree-d plane 
urves

over e.g. C , and let F � P

N

parametrize a family of 
urves. Any enumerative
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problem about the family is readily translated in a problem of interse
tions in P

N

:

the set of 
urves 
ontaining a given point forms a hyperplane in P

N

, and the set of


urves tangent to a given line forms a hypersurfa
e (of degree 2d � 2) in P

N

(we


all these resp. `point-
onditions' and `line-
onditions'). If dimF = r, then the k-th


hara
teristi
 number of the family is the number of 
ertain spe
ial points in the

interse
tion of F with k general line-
onditions and r � k general point-
onditions:

spe
i�
ally, those points 
orresponding to 
urves in F that are tangent to the given

lines at smooth points. One 
an 
he
k (
f. [1℄, Theorem I) that the interse
tion is

transversal at su
h points; it is therefore natural to hope B�ezout's theorem in P

N

should yield information about their number.

Problems with this approa
h arise be
ause the interse
tion of the point- and line-


onditions along F may very well 
ontain 
urves that don't satisfy the requirement

on `proper' tangen
y. For example, the interse
tion of the set of singular 
ubi
s

with 8 general line-
onditions 
ontains the whole 4-dimensional set of non-redu
ed


ubi
s, as well as points 
orresponding to 
urves tangent to 7 of the lines and having

the node on the 8th, and points 
orresponding to 
urves tangent to 6 of the lines

and having a node at the interse
tion of the remaining 2.

The �rst issue{the presen
e of non-redu
ed 
urves{is the more fundamental one.

This is approa
hed by lifting the question to another 
ompa
ti�
ation of the spa
e

of redu
ed 
urves, in whi
h non-redu
ed 
urves don't enter into play: to obtain su
h

a 
ompa
ti�
ation, one 
an for example resolve the rational map asso
iating with

every smooth plane 
urve its dual (
f. [1℄, x1). This program is exe
uted in [1℄, [3℄ to

obtain enumerative results about smooth and singular plane 
ubi
s; unfortunately,


onstru
ting su
h 
ompa
ti�
ations for higher degree while mantaining 
ontrol of

the relevant interse
tion 
al
ulus seems a very hard task. In [2℄ we show that

a suitable sequen
e of two blow-ups at smooth 
enters over P

N

produ
es a variety

that suits our needs as long as the only non-redu
ed 
urves in the interse
tion 
onsist

of a `double line' and a (redu
ed) degree-(d� 2) 
urve interse
ting transversally.

In this note we use the same 
ompa
ti�
ation. The limitation of the kind of non-

redu
ed 
urves we 
an admit imposes severe restri
tions on the results: for ea
h

family, our 
onstru
tion will only rea
h here the �rst 
hara
teristi
 number beyond

the ones involving only redu
ed 
urves. The a
tual 
omputation of the interse
tion

numbers we need is performed by the same te
hniques of [2℄: the missing information

we have to 
ompute here amounts essentially to Segre 
lasses of the interse
tion of

the 
enters of the blow-ups with the parameter spa
es of the families (or their proper

transforms).

The se
ond issue{redu
ed 
urves that appear among the interse
tions be
ause

they have singularities along the given lines{is easier to handle. The main remark

is that, for ea
h 
on�guration, the number of su
h 
urves is itself a 
hara
teristi


number of another family. It will be easy to relate the interse
tion numbers we


ompute to the a
tual 
hara
teristi
 numbers, the only 
ompli
ation being that we

will have to 
onsider several families at on
e.

The families we treat in this note are families of nodal and of 
uspidal plane


urves of degree d. We see these obje
ts as proje
tions to P

N

of subvarieties of

P

2

�P

N

: for example, the dis
riminant hypersurfa
e in P

N

will be the proje
tion of

the bundle over P

2

whose �ber over p is the P

N�3

of 
urves singular at p. Similarly,

the proper transforms of these obje
ts will be proje
tions of varieties lying in the
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produ
t of the blow-ups by P

2

.

Some of the geometry underlying these proje
tions is used in x1, to relate the


hara
teristi
 numbers to interse
tion numbers in a 
ompa
ti�
ation of the set of

redu
ed 
urves (Theorem I). As an immediate appli
ation, the �rst sto
k of 
har-

a
teristi
 numbers is 
omputed by applying the result to suitable interse
tions in

P

N

(Corollary 1.9). In x2 we exploit the blow-ups of [2℄ to obtain the Segre 
lasses

(Propositions 2.3, 2.5, 2.7); these are used in x3 to 
ompute the relevant inter-

se
tions numbers (Theorem II), and to 
omplete the 
omputations of the harder


hara
teristi
 numbers (Theorem III).

I would like to thank the Mathematis
hes Institut of the University of Erlangen-

N�urnberg for hospitality while 
ompleting this proje
t.

1. Families of singular 
urves. We work over an algebrai
ally 
losed �eld of


hara
teristi
 0. The families we are going to 
onsider are parametrized by subsets

of the proje
tive spa
e P

N

= P(H

0

O

P

2

(d)), d > 2, parametrizing degree-d plane


urves. In this se
tion we will des
ribe these subsets as birational proje
tions of

subvarieties from P

2

� P

N

. This 
hoi
e will make it relatively easy to obtain infor-

mation su
h as the relevant degrees and multipli
ities, and the relations between

the 
hara
teristi
 numbers and interse
tion numbers in a suitable 
ompa
ti�
ation

of the family of redu
ed 
urves.

To state these relations, we need to re
all some of the notations in [1℄. For

any birational map

e

V �! P

N

, 
all `point-
onditions' and `line-
onditions in

e

V ' the

proper transforms of the 
onditions in P

N

(de�ned in the introdu
tion). We say

that

e

V is a `variety of 
omplete 
urves of degree d' if the interse
tion of all line-


onditions in

e

V is empty . Also, we denote by

e

P ,

e

L the 
lasses of the general point-

and line-
ondition in

e

V .

Consider the following subsets of P

N

:

� S: singular 
urves;

� S`: singular 
urves with singularity on a given line;

� Sp: singular 
urves with singularity at a given point;

� C: 
uspidal 
urves;

� C`: 
uspidal 
urves with 
usp on a given line;

� Cp: 
uspidal 
urves with 
usp at a given point.

As in the introdu
tion, denote the 
hara
teristi
 numbers of the 
orresponding

families by S

d

(k), S`

d

(k); : : : . In this se
tion we will prove:

Theorem I. Let

e

V be a variety of 
omplete 
urves of degree d, and denote by

e

S;

f

S`; et
. the proper transforms in

e

V of S; S`; et
. Then

S

d

(k) =

e

P

N�1�k

�

e

L

k

�

e

S � 2kS`

d

(k � 1)� 4

�

k

2

�

Sp

d

(k � 2)

S`

d

(k) =

e

P

N�2�k

�

e

L

k

�

f

S`� 2kSp

d

(k � 1)

Sp

d

(k) =

e

P

N�3�k

�

e

L

k

�

f

Sp

C

d

(k) =

e

P

N�2�k

�

e

L

k

�

e

C � 3kC`

d

(k � 1)� 9

�

k

2

�

Cp

d

(k � 2)

4



C`

d

(k) =

e

P

N�3�k

�

e

L

k

�

f

C`� 3kCp

d

(k � 1)

Cp

d

(k) =

e

P

N�4�k

�

e

L

k

�

f

Cp :

Remark. Basi
ally, this says that for e.g. a 
on�guration of k general lines and

N�1�k general points, 
urves tangent to k�1 lines and having a node on the k-th

one `
ount with multipli
ity 2', and 
urves tangent to k�2 lines and with a node at

the interse
tion of the remaining 2 `
ount with multipli
ity 4' (a similar statement


an be phrased mutatis mutandis for 
uspidal 
urves). This is 
ertainly folklore in

both 
lassi
al and modern enumerative geometry; we establish these results here for

la
k of a referen
e, and sin
e we need them in the 
ontext of `varieties of 
omplete


urves'. In a somewhat di�erent 
ontext, su
h results are impli
it (at least for

d = 3) in e.g. [6℄, [7℄ (
f. Proposition 7.4 in [7℄).

1.1. Families of nodal 
urves. To des
ribe the lo
i S; S`; Sp, give 
oordinates

(x

0

: x

1

: x

2

) to P

2

and 
onsider the 
odimension-3 subvariety

b

S of P

2

�P

N

de�ned

by

(p; f) 2

b

S ()

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�f

�x

1

(p) = 0

�f

�x

2

(p) = 0

:

Restri
ting the proje
tions P

2

�P

N

p

1

�! P

2

, P

2

�P

N

p

2

�! P

N

, gives maps

b

S �! P

2

,

b

S �! P

N

; observe that the �ber p

�1

1

(p) \

b

S of

b

S over p 2 P

2


onsists of all degree-d


urves singular at p, while the �ber p

�1

2

(f) \

b

S of

b

S over f 2 P

N

is the singular

s
heme of f (in P

2

). In fa
t

b

S

p

1

�! P

2

is a P

N�3

bundle; in parti
ular,

b

S is smooth.

If ` � P

2

is a line, denote by




S` the inverse image p

�1

1

(`) \

b

S; if p 2 P

2

, let




Sp = p

�1

1

(p)\

b

S. Then 
learly S = p

2

(

b

S), S` = p

2

(




S`), Sp = p

2

(




Sp), and moreover

the restri
tions of p

2

to

b

S,




S`,




Sp are birational maps.

Let now k; h resp. denote the hyperplane 
lass in P

2

, P

N

, and their pull-ba
ks.

The de�nitions give immediately the total Chern 
lasses of the normal bundles:

Lemma 1.1. (i) 
(N

b

S

P

2

� P

N

) = (1 + (d� 1)k + h)

3

;

(ii) 
(N

b

S`

b

S) = (1 + k);

(iii) 
(N

b

Sp

b

S) = (1 + k)

2

;

(iv) Also: [




S`℄

2

= [




Sp℄; [




S`℄

3

= 0 in

b

S.

All we need to 
ompute the �rst 
hara
teristi
 numbers for S; S`; Sp is the �rst

part of Theorem I (whi
h we will prove in a moment) and the degrees of S; S`; Sp.

These are:

Proposition 1.2. (i) deg(S) = 3(d� 1)

2

;

(ii) deg(S`) = 3(d� 1);

(iii) deg(Sp) = 1:
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Proof: As (i) is well known, and (iii) is a triviality, we only detail (ii). Denoting

the degree of a 
lass by

R

:

deg(S`) =

Z

P

N

h

N�2

� S`

=

Z

P

2

�P

N

h

N�2

�




S` by the proje
tion formula

=

Z

P

2

�P

N

h

N�2

(1 + k)(1 + (d� 1)k + h)

3

by Lemma 1.1 (i) and (ii)

=

Z

P

2

�P

N

h

N�2

� 3(d� 1)h

2

k

2

= 3(d� 1) :

To prove the �rst part of Theorem I, let L be the line-
ondition in P

N


orre-

sponding to a general line ` � P

2

, and

b

L = p

�1

2

(L) � P

2

� P

N

. Then

b

L interse
ts

b

S

along




S` and along the 
losure

b

L

b

S

of the subset of

b

S 
onsisting of pairs (q; f) with

f singular at q and tangent to ` at smooth points.

We 
laim that to prove the �rst part of Theorem I we just need to show

Lemma 1.3. [

b

L \

b

S℄ = [

b

L

b

S

℄ + 2[




S`℄ as 
y
les on

b

S.

Indeed, suppose this has been established. Let

e

L be the line-
ondition in

e

V


orresponding to `.

e

L \

e

S splits in

f

S` and (at least) another 
omponent

e

L

e

S

(the

`
omplete 
urves' tangent to ` at smooth points). The 
hara
teristi
 numbers are

the interse
tion numbers of

e

P 's and

e

L

e

S

's: the interse
tion is supported on the `right'

points, and transversal by Theorem I in [1℄. So for example S`

d

(k) = [

e

P \

e

S℄

N�2�k

�

[

e

L

e

S

℄

k

� [

f

S`℄ in

e

S.

Now observe that

b

S and

e

S are birational, as they are both birational to S. Let S

Æ

be a dense open subset of S isomorphi
 to subsets (whi
h we identify with S

Æ

) of

b

S

and

e

S. Apply Theorem I from [1℄ to S

Æ

: general points and lines 
an be 
hosen so

that the 
orresponding 
onditions in

e

V meet only in S

Æ

; in 
omputing

e

P

r�k

�

e

L

k

�

e

S

we may therefore restri
t �rst to S

Æ

.

So we may assume [

e

L\

e

S℄ = [

e

L

e

S

℄+2[

f

S`℄, sin
e this equality holds after restri
ting

to S

Æ

(as it holds on

b

S), by Lemma 1.3. Also, we may assume [

f

S`℄

2

= [

f

Sp℄, [

f

S`℄

3

= 0

sin
e this holds on S

Æ

, by Lemma 1.1 (iv). Putting all together:

[

e

L \

e

S℄

k

� [

f

Sp℄ = ([

e

L

e

S

℄ + 2[

f

S`℄)

k

� [

f

Sp℄ = [

e

L

e

S

℄

k

� [

f

Sp℄

[

e

L \

e

S℄

k

� [

f

S`℄ = ([

e

L

e

S

℄ + 2[

f

S`℄)

k

� [

f

S`℄ = [

e

L

e

S

℄

k

� [

f

S`℄ + 2k[

e

L

e

S

℄

k�1

� [

f

Sp℄

[

e

L \

e

S℄

k

= ([

e

L

e

S

℄ + 2[

f

S`℄)

k

= [

e

L

e

S

℄

k

+ 2k[

e

L

e

S

℄

k�1

� [

f

S`℄ + 4

�

k

2

�

[

e

L

e

S

℄

k�2

� [

f

Sp℄

and the �rst part of Theorem I follows.

We then need to verify [

b

L \

b

S℄ = [

b

L

b

S

℄ + 2[




S`℄.

Proof of Lemma 1.3: Equivalently, we 
an verify that [L \ S℄ = [L

S

℄ + 2[S`℄ in

P

N

, where L

S

denotes the 
losure of the set of singular 
urves tangent at a smooth
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point to the line ` � P

2

. To get this, we produ
e a 
urve in S and 
ompare the

restri
tions of L and of L

S

, S` to it. Let X 2 S be a general plane 
urve with one

node: we 
onsider the 
urve XÆ
(t) in S obtained by translating X by elements in a

1-parameter family 
(t) of linear transformations of the plane: we have to examine

the restri
tion L

`

j

XÆ
(t)

of the line-
ondition L

`


orresponding to `.

Now, 
learly we may keep X �xed and move ` instead: i.e., L

`

j

XÆ
(t)

equals

L

`Æ
(t)

�1
j

X

as divisors on the t-line. Sin
e the line-
onditions on P

2

are just point-


onditions on the dual plane

�

P

2

, L

`Æ
(t)

�1
j

X

is the restri
tion

�

Xj

`Æ
(t)

�1
of the dual

�

X of X to the 
urve ` Æ 
(t)

�1

in

�

P

2

. So to obtain the statement we only need to

remark that (see for example [8, IV.6℄) for X a degree-d plane 
urve with one node

and no other singularities,

�

X 
onsists of a simple 
omponent, giving the restri
tion

of L

S

with multipli
ity 1; and of a multiple 
omponent, supported on the line in

�

P

2

dual to the node of X, with multipli
ity 2: giving the restri
tion of S`, with

multipli
ity 2.

1.2. Families of 
uspidal 
urves. We say that a 
urve is `
uspidal' at p if it is

singular at p and its tangent 
one at p is a double line. C � S is the 
losure of the

set of 
uspidal 
urves: i.e., the image in P

N

of the divisor

b

C of

b

S de�ned by

(p; f) 2

b

C ()

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�f

�x

0

(p) = 0

�f

�x

1

(p) = 0

�f

�x

2

(p) = 0

;

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

"

�

�

2

f

�x

0

�x

1

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

1

#

(p) = 0

"

�

�

2

f

�x

0

�x

2

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

2

#

(p) = 0

"

�

�

2

f

�x

1

�x

2

�

2

�

�

2

f

�x

2

1

�

2

f

�x

2

2

#

(p) = 0

:

As with

b

S, restri
ting the proje
tions gives maps

b

C �! P

2

,

b

C �! P

N

; the �ber of

C over p 2 P

2


onsists of a quadri
 in the P

N�3

of 
urves singular at p, and the

�ber over f 2 P

N

is what we would 
all the `
uspidal s
heme' of f .

Letting




C` = p

�1

1

(`) \

b

C and




Cp = p

�1

1

(p) \

b

C, then C` = p

2

(




C`), Cp = p

2

(




Cp),

and the restri
tions of p

2

to

b

C,




C`,




Cp are birational morphisms.

As in x1.1, let k; h denote the hyperplane 
lass in P

2

;P

N

resp., and their pull-

ba
ks. Then we get the Chern 
lasses:

Lemma 1.4. (i) 
(N

b

C

b

S) = (1 + 2(d� 3)k + 2h);

(ii) 
(N

b

C`

b

C) = (1 + k);

(iii) 
(N




Cp

b

C) = (1 + k)

2

;

(iv) Also: [




C`℄

2

= [




Cp℄; [




C`℄

3

= 0 on

b

C.

Proof: The only point that requires an argument is (i). Noti
e that, outside

fx

0

= 0g, the equation for

b

C in

b

S is

(*)

"

�

�

2

f

�x

1

�x

2

�

2

�

�

2

f

�x

2

1

�

2

f

�x

2

2

#

(p) = 0 ;
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therefore, globally (*) de�nes a divisor in

b

S 
onsisting of

b

C and of some multiple

�k of the divisor fx

0

= 0g. Restri
ting to a 
urve in

b

S interse
ting fx

0

= 0g

transversally away from

b

C (e.g.: t 7! ((t : 0 : 1); x

0

x

1

x

d�2

2

� tx

1

x

d�1

2

)) shows

� = 2, i.e. the divisor determined by (*) equals

b

C + 2k. Sin
e (*) is quadrati
 in

the 
oordinates of P

N

, and of degree 2(d� 2) in (x

0

: x

1

: x

2

),

b

C must have 
lass

2h� 2(d� 2)k � 2k = 2h� 2(d� 3)k, giving (i).

To 
ompute the �rst 
hara
teristi
 numbers for C;C`; Cp we need the se
ond

part of Theorem I and the degrees of C;C`; Cp.

Proposition 1.5. (i) deg(C) = 12(d� 1)(d� 2);

(ii) deg(C`) = 4(2d� 3);

(iii) deg(Cp) = 2:

Proof: These follow immediately from Lemma 1.4. For example:

deg(C) =

Z

P

N

h

N�2

� C

=

Z

P

2

�P

N

h

N�2

�

b

C by the proje
tion formula

=

Z

P

2

�P

N

h

N�2

(1 + 2(d� 3)k + 2h)(1 + (d� 1)k + h)

3

=

Z

P

2

�P

N

h

N�2

� (6(d� 1)

2

+ 6(d� 1)(2d� 3))h

2

k

2

= 12(d� 1)(d� 2) :

The argument to show the se
ond part of Theorem I is entirely analogous to the

argument for the �rst part, detailed in x1.1. If now we denote by

b

L

b

C

the 
losure of

the subset of

b

C 
onsisting of pairs (q; f) with f 
uspidal at q and tangent to a line

` � P

2

at a smooth point, the key 
omputation is:

Lemma 1.6. [

b

L \

b

C℄ = [

b

L

b

C

℄ + 3[




C`℄.

Proof: By the same argument as in the proof of Lemma 1.3, we just need to remark

that the dual of a degree-d plane 
urve with one 
usp (and no other singularities)


onsists of a simple 
omponent (that a

ounts for [

b

L

b

C

℄) and of the line dual to the


usp, with multipli
ity 3 (a

ounting for 3[




C`℄).

1.3. Chara
teristi
 numbers, I. The information 
olle
ted in x1.1,2 suÆ
es to


ompute the 
hara
teristi
 numbers of S; S`; : : : for 
on�gurations involving only

redu
ed 
urves. Indeed, P

N

is isomorphi
 to a variety of 
omplete 
urves outside of

the set of non-redu
ed 
urves (this point is made more formal in [2℄, Lemma I, for


hara
teristi
 numbers of non-singular 
urves. We don't repeat the argument here,

leaving the straightforward adjustments to the reader).

All we need to spot the right 
on�gurations is a dimension 
ount from [2℄:

Lemma 1.7. For j > N � 2d + 1 and P

1

; : : : ; P

j

general point-
onditions in P

N

,

P

1

\� � �\P

j

meets S; S`; C; C` only at points 
orresponding to redu
ed 
urves; also,

P

1

\ � � � \ P

j�1

meets Sp; Cp only at points 
orresponding to redu
ed 
urves.

8



Proof: This follows from Lemma 1.1 in [2℄ and Remark 1, x1 in [1℄, sin
e the

set of non-redu
ed 
urves is 
ontained in S; S`; C; C` and 
ut in 
odimension 1 by

Sp; Cp.

Proposition 1.8. Let

e

V be a variety of 
omplete 
urves of degree d. Denote by

e

P ;

e

L resp. the 
lasses of the general point- and line-
onditions in

e

V ; also, denote by

e

S;

f

S`; : : : the proper transforms of S; S`; : : : . Then

e

P

N�1�k

�

e

L

k

�

e

S = 3(d� 1)

2

(2d� 2)

k

for k < 2d� 2

e

P

N�2�k

�

e

L

k

�

f

S` = 3(d� 1)(2d� 2)

k

for k < 2d� 3

e

P

N�3�k

�

e

L

k

�

f

Sp = (2d� 2)

k

for k < 2d� 3

e

P

N�2�k

�

e

L

k

�

e

C = 12(d� 1)(d� 2)(2d� 2)

k

for k < 2d� 3

e

P

N�3�k

�

e

L

k

�

f

C` = 4(2d� 3)(2d� 2)

k

for k < 2d� 4

e

P

N�4�k

�

e

L

k

�

f

Cp = 2(2d� 2)

k

for k < 2d� 4

Proof: In the spe
i�ed ranges, we 
an 
hoose point-
onditions to avoid the lo
us

of non-redu
ed 
urves, by Lemma 1.7. Therefore the interse
tion numbers 
an be


omputed in P

N

, where they are given by B�ezout's Theorem: the degree of the

line-
onditions in P

N

is (2d � 2), and the degrees of S; S`; : : : are 
omputed in

Propositions 1.2 and 1.5.

The �rst results listed in the introdu
tion follow now immediately from Proposi-

tion 1.8 and Theorem I:

Corollary 1.9.

S

d

(k) = 2

k�1

(d� 1)

k�2

(6(d� 1)

4

� 6(d� 1)

2

k + k(k � 1)) for k < 2d� 2

S`

d

(k) = 2

k

(d� 1)

k�1

(3(d� 1)

2

� k) for k < 2d� 3

Sp

d

(k) = 2

k

(d� 1)

k

for k < 2d� 3

C

d

(k) = 3 � 2

k�2

(d� 1)

k�2

(16(d� 1)

4

� 16(d� 1)

3

� 16(d� 1)

2

k + 8(d� 1)k + 3k(k � 1)) for k < 2d� 3

C`

d

(k) = 2

k

(d� 1)

k�1

(8(d� 1)(2d� 3)� 3k) for k < 2d� 4

Cp

d

(k) = 2

k+1

(d� 1)

k

for k < 2d� 4

2. Segre 
lasses. To apply Theorem I to the �rst 
ases not 
overed by the formulas

in Corollary 1.9, we need to evaluate the interse
tion produ
ts

e

P

N�2d+1

�

e

L

2d�2

�

e

S

e

P

N�2d+1

�

e

L

2d�3

�

e

C

e

P

N�2d+1

�

e

L

2d�3

�

f

S` ;

e

P

N�2d+1

�

e

L

2d�4

�

f

C`

e

P

N�2d

�

e

L

2d�3

�

f

Sp

e

P

N�2d

�

e

L

2d�4

�

f

Cp

(notations as in Theorem I) in a variety of 
omplete 
urves. As in x1.3, we will


ompute these produ
ts in a variety isomorphi
 to a variety of 
omplete 
urves
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along an open set 
ontaining the interse
tion points of a general 
hoi
e of 
onditions.

Following the notations of [2℄, denote by B � P

N

the set of 
urves 
�

2


onsisting of

a degree-(d� 2) 
urve 
 and of the double line supported on a line �. Also, denote

by B

Æ

the open subset of B formed by 
urves 
�

2

with 
 redu
ed and transversal

to �. The analogue of Lemma 1.7 in the new situation is:

Lemma 2.1. For j = N � 2d + 1 and P

1

; : : : ; P

j

general point-
onditions in P

N

,

P

1

\ � � � \ P

j

meets S; S`; C; C` at points 
orresponding to either redu
ed 
urves or


urves in B

Æ

. The same 
on
lusion applies to the interse
tion of P

1

\� � �\P

j�1

and

Sp; Cp.

Proof: As for Lemma 1.7, this follows from Lemma 1.1 in [2℄ and Remark 1, x1

in [1℄ (also, 
f. Lemma 1.3 in [2℄).

Lemma 2.1 gives us the pres
ription to ful�ll to 
ompute the produ
ts

e

P

N�2d+1

�

e

L

2d�2

�

e

S, et
. above: the produ
ts may be 
omputed in any variety

e

V

�

�! P

N

su
h

that �

�1

(B

Æ

) is disjoint from the interse
tion of all line-
onditions in

e

V . Indeed,

su
h a

e

V is isomorphi
 to a variety of 
omplete 
urves along an open subset 
on-

taining �

�1

(B

Æ

), and general 
onditions won't interse
t in the 
omplement of this

open set, by Lemma 2.1.

Su
h a variety is the variety obtained in [2℄, x3, by the following pro
edure.

1

Let V

1

�

1

�! P

N

be the blow-up of P

N

along B. B is smooth along B

Æ

(
f. Lemma

1.1 in [2℄), so the �ber �

�1

1

(
�

2

) over a 
�

2

2 B

Æ

is the P

2d�2


onsisting of all

normal dire
tions to B in P

N


entered at 
�

2

. Those dire
tions determined by lines


�

2

+ tk� in P

N

(k being a degree-(d� 1) 
urve) de�ne a P

d�3

in �

�1

1

(
�

2

), and a

P

d�3

-bundle B

Æ

1

over B

Æ

as 
�

2

moves in B

Æ

. We let B

1

be the 
losure of B

Æ

1

in V

1

.

Next, let V

2

�

2

�! V

1

be the blow-up of V

1

along B

1

. It follows from Proposition 3.4

in [2℄ that �

�1

2

�

�1

1

(B

Æ

) is disjoint from the interse
tion of all line-
onditions in V

2

:

V

2

is therefore a variety satisfying our requirement.

Let then

e

V be V

2

,

e

P ;

e

L be the 
lasses of the general point- and line-
onditions

in

e

V = V

2

, et
.: by the above dis
ussion, this swit
h in notation won't a�e
t the

result of 
omputing

e

P

N�2d+1

�

e

L

2d�2

�

e

S, et
.

In the rest of this se
tion we will get the main ingredients needed to 
ompute

these interse
tion produ
ts: i.e., an information amounting to 
ertain terms in the

Segre 
lasses s(B \ S; S); s(B \ S`; S`); : : : and terms in 
orresponding 
lasses of

lo
i in V

1

. In x3 we will use these results to 
ompute the interse
tion produ
ts

listed at the beginning of this se
tion; these in turn (by Theorem I) will give the


hara
teristi
 numbers.

In fa
t, to optimize the 
omputations, we will obtain here the 
lasses in a di�erent

form. For W � V non-singular varieties, and X � V a subs
heme, we denote by

W ÆX the 
lass 
(N

W

V ) \ s(W \X;X) (this is the `full interse
tion 
lass' of [1℄,

x2). In x2.1 below we will 
ompute relevant terms in the 
lasses B

Æ

ÆS, B

Æ

ÆS`, et
.

These are 
lasses in B

Æ

\ S, B

Æ

\ S` et
.; however, the terms we will 
ompute here

will extend uniquely to 
lasses of B, (sin
e their 
odimension will be lower than

1

In [2℄ we had a blanket assumption d > 3; however, this 
onstru
tion and the results we will

quote from [2℄ work for d = 3 as well.
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the 
odimension of the 
omplement of B

Æ

), therefore we will write these 
lasses as


lasses of B, and denote them by BÆS, BÆS`, et
. for short. Similar 
onsiderations

and 
hoi
e of notations apply to the 
lasses B

1

Æ S

1

, B

1

Æ S`

1

, et
. (denoting by

S

1

; S`

1

; et
. the proper transforms of S; S`; et
. in V

1

), whi
h we will 
ompute in

x2.2, and to 
lasses

b

B Æ

b

S, et
.

We should mention that only a small portion of the information en
oded in the

above 
lasses is needed for our 
omputations. For example, as S is the dis
riminant

hypersurfa
e and B � S, the information we obtain here about B Æ S is basi
ally

just the multipli
ity of the dis
riminant along the set of 
urves 
ontaining a double

line.

2.1. Classes in P

N

. Call B the lo
us of 
urves 
ontaining a double line (as above).

B is the image of a map P

(d�2)(d+1)

2

�

�

P

2

�! P

N

, where

�

P

2

parametrizes the double

line and P

(d�2)(d+1)

2

parametrizes the residual degree-(d� 2) 
urve; B

Æ

is identi�ed

via this map with an open subset of P

(d�2)(d+1)

2

�

�

P

2

(
f. Lemma 1.1 in [2℄). Let

now

b

B = P

2

�B be the inverse image p

�1

2

(B) in P

2

� P

N

; so

b

B

Æ

= p

�1

2

(B

Æ

) 
an be

identi�ed with an open subset of P

2

� P

(d�2)(d+1)

2

�

�

P

2

.

We denote by k; h resp. the 
lasses of the hyperplane in P

2

;P

N

(and their pull-

ba
ks). The Chow ring of P

(d�2)(d+1)

2

�

�

P

2

is generated by the pull-ba
ks `;m of

the hyperplane 
lasses from the fa
tors, with obvious relations: so h pulls-ba
k

to ` + 2m. The 
lasses of B that we will 
onsider will be push-forward of 
lasses

by P

(d�2)(d+1)

2

�

�

P

2

�! B; 
lasses in

b

B will be push-forward of 
lasses by P

2

�

P

(d�2)(d+1)

2

�

�

P

2

�!

b

B. To ease the exposition we will suppress push-forward and

pull-ba
k notations, so that e.g. 
lasses in

b

B will be denoted simply as polynomials

in k; `;m (unless we fear ambiguity).

|Nodal 
urves.

Re
all the notations of x1: we have des
ribed the dis
riminant S � P

N

as the

proje
tion to P

N

of a 
odimension-3 smooth subvariety

b

S of P

2

� P

N

; similarly,

S`; Sp are proje
tions of subvarieties




S`;




Sp of

b

S.

Lemma 2.2. With the above notations:

(i) B Æ S = 
oeÆ
ient of k

2

in

b

B Æ

b

S

(ii) B Æ S` = 
oeÆ
ient of k

1

in

b

B Æ

b

S

(iii) B Æ Sp = 
oeÆ
ient of k

0

in

b

B Æ

b

S

Proof: (i) follows from the birational invarian
e of Segre 
lasses ([4℄, Proposition

4.2): sin
e p

2

maps

b

S birationally to S, s(B \ S; S) = p

2

�

s(

b

B \

b

S;

b

S); then the

proje
tion formula gives (i), sin
e the only terms that don't vanish after pushing

forward via p

2

are the terms multiplying k

2

, and N

b

B

Æ

P

2

� P

N

is the pull-ba
k of

N

B

Æ

P

N

.

(ii), (iii) follow by the same argument, after remarking that s(

b

B

Æ

\




S`;




S`) =

k � s(

b

B

Æ

\

b

S;

b

S), s(

b

B

Æ

\




Sp;




Sp) = k

2

� s(

b

B

Æ

\

b

S;

b

S) (
f. Lemma 1.1 (ii), (iii), and

observe that




S`;




Sp 
ut properly (in

b

S) the support of the 
one of

b

B

Æ

\

b

S in

b

S).

The highest dimensional terms in the 
lasses for nodal 
urves are given by:
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Proposition 2.3.

B Æ S = 2(2d� 3)[B℄ + : : :

B Æ S` = [B℄ + : : :

B Æ Sp = m+ : : :

Proof: By Lemma 2.2, we need to show that, dis
arding all but the highest di-

mensional terms involving powers of k:

b

B Æ

b

S = m+ k + 2(2d� 3)k

2

+ : : :

Now, sin
e

b

B

Æ

;

b

S and P

2

� P

N

are non-singular,

b

B Æ

b

S = 
(N

b

B

Æ

P

2

� P

N

)s(

b

B

Æ

\

b

S;

b

S)

= 
(N

b

S

P

2

� P

N

)s(

b

B

Æ

\

b

S;

b

B

Æ

)

= (1 + 3(d� 1)k + : : : )s(

b

B

Æ

\

b

S;

b

B

Æ

)

(this follows from [4℄, Example 4.2.6. The 
lass 
(N

b

S

P

2

� P

N

) was 
omputed in

Lemma 1.1). Regarding s(

b

B

Æ

\

b

S;

b

B

Æ

), pull-ba
k the equations for

b

S via P

2

�

P

(d�2)(d+1)

2

�

�

P

2

�! P

2

� P

N

. In 
odimension � 2 we �nd

b

B

Æ

\

b

S is supported

on a divisor of

b

B

Æ

, 
onsisting of pairs (p; 
�

2

) with p 2 �, and has an embedded


omponent supported on the set of pairs (p; 
�

2

) with p 2 
 \ �. The reader will

easily verify that the 
lasses of these lo
i are m+ k, (m+ k)(`+ (d� 2)k) resp., so

that

s(

b

B

Æ

\

b

S;

b

B

Æ

) = (m+ k)� (m+ k)

2

+ � � �+ (m+ k)(`+ (d� 2)k) + : : :

= (m+ k) + (m+ k)(`�m+ (d� 3)k) + : : :

Thus

b

B Æ

b

S = (1 + 3(d� 1)k + : : : )((m+ k) + (m+ k)(`�m+ (d� 3)k) + : : : )

= (m+ k) + (2(2d� 3)k

2

+ : : : ) + : : :

as 
laimed.

|Cuspidal 
urves.

Again as in x1, the set C of 
uspidal 
urves is the proje
tion to P

N

of a divisor

b

C (whith 
lass 2(d� 3)k+2h) of

b

S. C`; Cp are proje
tion of subvarieties




C`;




Cp of

b

C.

Lemma 2.4.

(i) B Æ C = 
oeÆ
ient of k

2

in

b

B Æ

b

C

(ii) B Æ C` = 
oeÆ
ient of k

1

in

b

B Æ

b

C

(iii) B Æ Cp = 
oeÆ
ient of k

0

in

b

B Æ

b

C

Proof: As in Lemma 2.2, these follow from the birational invarian
e of Segre


lasses.

The highest dimensional terms in the 
lasses for 
uspidal 
urves are now given

by
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Proposition 2.5.

B Æ C = 6(d� 2)[B℄ + : : :

B Æ C` = [B℄ + : : :

B Æ Cp = m+ : : :

Proof: By Lemma 2.4, we need to 
ompute the highest dimensional terms involv-

ing powers of k in

b

BÆ

b

C. Now we observe that

b

C 
ontains

b

B\

b

S s
heme-theoreti
ally

(another 
oordinate 
omputation); by Lemma 1.4, the 
lass of

b

C in

b

S is 2(d�3)k+h,

restri
ting on

b

B to 2(d� 3)k + `+ 2m; we have then

s(

b

B

Æ

\

b

C;

b

C) = (1 + 2(d� 3)k + `+ 2m)s(

b

B

Æ

\

b

S;

b

S)

and therefore

b

B Æ

b

C = (1 + 2(d� 3)k + `+ 2m)

b

B Æ

b

S

= (1 + 2(d� 3)k + `+ 2m)(m+ k + 2(2d� 3)k

2

+ : : : )

= m+ k + (2(d� 3) + 2(2d� 3))k

2

+ : : :

= m+ k + 6(d� 2)k

2

+ : : :

from whi
h the statement follows.

2.2. Classes in V

1

. �

1

: V

1

�! P

N

is the blow-up of P

N

along B, E is the

ex
eptional divisor. For 
�

2

2 B

Æ

, the �ber �

�1

1

(
�

2

) 
onsists of the P

2d�2

of

normal dire
tions to B in P

N


entered at 
�

2

. The dire
tions determined by lines


�

2

+ tk� in P

N

determine, as 
�

2

varies in B

Æ

, a subvariety B

Æ

1

of E; and we let

B

1

be the 
losure of B

Æ

1

in V

1

.

Denote by S

1

; S`

1

; et
. the proper transforms of S; S

1

; et
. in V

1

; also, denote by

b

S

1

;




S`

1

; et
. the proper transforms of

b

S;




S`; et
. via the map P

2

�V

1

id.��

1

����! P

2

� P

N

,

i.e. the blow-up of P

2

� P

N

along

b

B. Finally, let

b

B

Æ

1

= P

2

� B

Æ

1

;

b

B

1

= P

2

� B

1

.

Lemma 2.6.

B

1

Æ S

1

= 
oe�. of k

2

in

b

B

1

Æ

b

S

1

B

1

Æ S`

1

= 
oe�. of k

1

in

b

B

1

Æ

b

S

1

B

1

Æ Sp

1

= 
oe�. of k

0

in

b

B

1

Æ

b

S

1

B

1

Æ C

1

= 
oe�. of k

2

in

b

B

1

Æ

b

C

1

B

1

Æ C`

1

= 
oe�. of k

1

in

b

B

1

Æ

b

C

1

B

1

Æ Cp

1

= 
oe�. of k

0

in

b

B

1

Æ

b

C

1

Proof: These follow again from the birational invarian
e of Segre 
lasses, as in

Lemmas 2.2, 2.4.

Sin
e B

Æ

1

is a proje
tive bundle over B

Æ

, 
lasses of B

Æ

1


an be expressed in terms of

those of B

Æ

and of the 
lass of the universal line bundle on B

Æ

1

: this is the restri
tion

of the 
lass of the ex
eptional divisor, whi
h we denote e. This time we need the

highest dimensional terms involving powers of e. These are

Proposition 2.7.

B

1

Æ S

1

= 2(2d� 3)(1� e) + : : :

B

1

Æ S`

1

= (1� e)

2

+ : : :
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B

1

Æ Sp

1

= m(1� e)

2

+ : : :

B

1

Æ C

1

= 6(d� 2)(1� e)

2

+ : : :

B

1

Æ C`

1

= (1� e)

3

+ : : :

B

1

Æ Cp

1

= m(1� e)

3

+ : : :

Proof: By Lemma 2.6, we have to show

b

B

1

Æ

b

S

1

= m+ k � 2em� 2ek + 2(2d� 3)k

2

+ e

2

m+ e

2

k � 2(2d� 3)ek

2

+ : : :

b

B

1

Æ

b

C

1

= m+ k � 3em� 3ek + 6(d� 2)k

2

+ 3e

2

m+ 3e

2

k

� 12(d� 2)ek

2

� e

3

m� e

3

k + 6(d� 2)e

2

k

2

+ : : :

(omitting all but the highest dimensional terms involving monomials e

i

k

j

).

Computing these 
lasses is a little tri
ky. Let

g

P

2

� P

N

be the blow-up of P

2

�P

N

along the in
iden
e 
orresponden
e I = f(p; 
�

2

) 2

b

B : p 2 
\�g (re
all

b

B

Æ

\

b

S has

an embedded 
omponent along this lo
us). Let

g

P

2

� V

1

be the blow-up of P

2

� V

1

along (id. � �

1

)

�1

(I). By the universal property of blow-ups,

g

P

2

� V

1

is also the

blow-up of

g

P

2

� P

N

along the proper transform of

b

B:

g

P

2

� V

1

Blow-up (id.��

1

)

�1

(I)

��������������! P

2

� V

1

Blow-up proper transf. of

b

B

?

?

y

?

?

y

id.��

1

g

P

2

� P

N

Blow-up I

��������������! P

2

� P

N

Noti
e that the bottom map blows-up ea
h P

2

� 
�

2

�

b

B

Æ

at the �nite set of

points 
 \ �. The proper transform of

b

S in

g

P

2

� P

N


uts ea
h of these blown-up

P

2

along the proper transform of � and along the ex
eptional divisors. By 
hasing

the above diagram, one 
on
ludes that, above

b

B

Æ

,

b

S

1

interse
ts

b

E = P

2

� E in

two irredu
ible 
omponents, whose 
losures we denote

b

E

1

,

b

E

2

:

b

E

1

dominates the

support of

b

B

Æ

\

b

S,

b

E

2

dominates I, i. e. the embedded 
omponent in

b

B

Æ

\

b

S. One


an also see, again working in 
oordinates, that

b

S

1

interse
ts

b

B

Æ

1

pre
isely along

the divisor of

b

B

Æ

1

mapping to the support of

b

B

Æ

\

b

S (this time without embedded


omponents). So, with our 
onvention of omitting pull-ba
k notations:

s(

b

B

Æ

1

\

b

S;

b

B

Æ

1

) = (m+ k)� (m+ k)

2

+ : : :

Next, we 
ompute the �rst Chern 
lass of the normal bundle to

b

S

1

in

g

P

2

� V

1

(

b

S

1

is regularly embedded in low 
odimension). We leave to the reader to 
hase the

above diagram and verify that: if b denotes the 
odimension of

b

B in P

2

� P

N

, then




1

(TP

2

� V

1

) = 


1

(TP

2

� P

N

) � (b � 1)

b

E restri
ts on

b

S to 


1

(TP

2

� P

N

) � (b �

1)

b

E

1

� 2(b� 1)

b

E

2

; while 


1

(T

b

S

1

) = 


1

(T

b

S)� (b� 3)

b

E

1

� (2b� 5)

b

E

2

. So




1

(N

b

S

1

P

2

� V

1

) = 


1

(N

b

S

P

2

� P

N

)� 2

b

E

1

� 3

b

E

2

= 


1

(N

b

S

P

2

� P

N

)� 2

b

E +

b

E

2
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(
f. this 
omputation for d = 3 in [3℄; there b = 5). Now, on

b

B

1

, 


1

(N

b

S

P

2

� P

N

)

pulls-ba
k to 3(d � 1)k + 3` + 6m (Lemma 1.1),

b

E restri
ts to e, and

b

E

2

restri
ts

to `+ (d� 2)k (
f. the proof of Proposition 2.3), so




1

(N

b

S

1

P

2

� V

1

) restri
ts to 3(d� 1)k + 3`+ 6m� 2e+ `+ (d� 2)k

= (4d� 5)k � 2e+ 4`+ 6m :

Applying again [4℄, Example 4.2.6 (as in Proposition 2.3) gives the �rst terms of

b

B

1

Æ

b

S

1

:

b

B

1

Æ

b

S = 
(N

b

B

Æ

1

P

2

� V

1

)s(

b

B

Æ

1

\

b

S

1

;

b

S

1

)

= 
(N

b

S

1

P

2

� V

1

)s(

b

B

Æ

1

\

b

S

1

;

b

B

Æ

1

)

= (1 + (4d� 5)k � 2e+ 4`+ 6m+ : : : )((m+ k)� (m+ k)

2

+ : : : )

= (m+ k) + (m+ k)(2(2d� 3)k � 2e+ 4`+ 5m) + terms in 
od.� 3

Finally, we observe that the only term in 
odimension � 3 in

b

B

1

Æ

b

S

1

is

b

B

1

�

b

S

1

(as de�ned in [4℄; see the Lemma in [1℄, x2); i.e., the pull-ba
k to

b

B

1

of the 
lass

of

b

S

1

. This latter 
an be obtained by applying [4℄, Theorem 6.7; in terms of `full

interse
tion 
lasses' (and omitting pull-ba
ks as usual):

[

b

S

1

℄ = [

b

S℄� E � 
od. 2 terms in

b

B Æ

b

S

1 + E

(see the Claim in the proof of Theorem II in [1℄, x2, with r = 1). By Lemma 1.1,

(i),

b

S has 
lass ((d� 1)k + h)

3

; so

b

B

1

�

b

S

1

= ((d� 1)k + `+ 2m)

3

� e � 
od. 2 terms in

m+ k + 2(2d� 3)k

2

+ : : :

1 + e

= e

2

m+ e

2

k � 2(2d� 3)ek

2

+ � � �

omitting all but the highest dimensional terms involving e

i

k

j

. Putting all together

(and omitting irrelevant terms):

b

B

1

Æ

b

S

1

= m+ k � 2em� 2ek + 2(2d� 3)k

2

+ e

2

m+ e

2

k � 2(2d� 3)ek

2

+ : : :

as 
laimed.

To get

b

B

1

Æ

b

C

1

we pro
eed as in Proposition 2.5: one 
he
ks that

b

C

1


ontains

b

B

Æ

1

\

b

S

1

=

b

B

Æ

1

; and sin
e

b

C 
ontains

b

B

Æ

\

b

S and is generi
ally smooth along it, the


lass of the divisor

b

C

1

in

b

S

1

must be 2(d� 3)k+h� e (
f. Lemma 1.4). So, arguing

as in Proposition 2.5,

b

B

1

Æ

b

C

1

= (1 + 2(d� 3)� e+ : : : )

b

B

1

Æ

b

S

1

;

whi
h gives the result stated at the beginning of the proof.
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3. Chara
teristi
 numbers, II. After Propositions 2.3, 2.5, 2.7, 
omputing the

interse
tion numbers

e

P

N�2d+1

�

e

L

2d�2

�

e

S

e

P

N�2d+1

�

e

L

2d�3

�

e

C

e

P

N�2d+1

�

e

L

2d�3

�

f

S` ;

e

P

N�2d+1

�

e

L

2d�4

�

f

C`

e

P

N�2d

�

e

L

2d�3

�

f

Sp

e

P

N�2d

�

e

L

2d�4

�

f

Cp

is a rather straightforward pro
edure, given the details of the blow-up 
onstru
tion

(as in [2℄, x4). The main tool is a formula from [1℄:

Proposition. Let B � V be smooth varieties, X

1

; : : : ; X

n

subvarieties of V ,

e

V �!

V the blow-up of V along B, and

e

X

1

; : : : ;

e

X

n

the proper transforms of X

1

; : : : ; X

n

in

e

V . If the 
odimensions of the X

i

's add to the dimension of V , then

(*)

e

X

1

� : : : �

e

X

n

= X

1

� : : : �X

n

�

Z

B

Q

j

(B ÆX

j

)


(N

B

V )

([1℄, Theorem II). As seen in [2℄, x4, this extends to our 
ase: ea
h of the two

blow-up restri
ts to the situation of the proposition on a dense open set 
ontaining

all the interse
tion points. In fa
t, we 
an use for B in (*) (as in [2℄, x4.2,3) suitable

varieties mapping birationally onto the 
enters of the blow-ups: P

(d�2)(d+1)

2

�

�

P

2

for

the �rst blow-up, and a variety we 
alled P(G) in [2℄, x4.2, for the se
ond. Con
ern-

ing P(G), we only need to remark that there is a surje
tion P(G)

p

�! P

(d�2)(d+1)

2

�

�

P

2

,

making the diagram

P(G) ����! V

1

p

?

?

y

?

?

y

�

1

P

(d�2)(d+1)

2

�

�

P

2

����! P

N


ommutative; if we denote by e the pull-ba
k of the ex
eptional divisor from V

1

to

P(G), then

Lemma 3.1. p

�

e

j

= 0 for j < d� 3; p

�

e

d�3

= (�1)

d�1

.

Proof: See [2℄, Lemma 4.1.

We apply (*) to the two blow-ups giving the variety

e

V of x2:

Proposition 3.2. For X = S; S`; : : : ; X

1

= S

1

; S`

1

; : : : the proper transform of

X in V

1

;

e

X =

e

S;

f

S`; : : : the proper transform of X

1

in

e

V ; P;L, P

1

; L

1

,

e

P ;

e

L resp.

point- and line-
onditions in P

N

, V

1

,

e

V ; and 
 = 
odim

P

N
X,

P

N�k�


1

� L

k

1

�X

1

= P

N�k�


� L

k

�X �

Z

P

(d�2)(d+1)

2

�

�

P

2

(`+ 2m)

N�k�


B ÆX

e

P

N�k�


�

e

L

k

�

e

X = P

N�k�


1

� L

k

1

�X

1

�

Z

P(G)

(`+ 2m)

N�k�


(1� e)

k�d+1

(1 + e)

B

1

ÆX

1
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where k � 2d � 2 for X = S, k � 2d � 3 for X = S`; Sp; C, and k � 2d � 4 for

X = C`; Cp.

Proof: This are just the results obtained applying (*) and omitting terms that

give no 
ontribution in the spe
i�ed range. For example, applying (*) to the se
ond

blow-up gives really

e

P

N�k�


�

e

L

k

�

e

X = P

N�k�


1

� L

k

1

�X

1

�

Z

P(G)

(`+ 2m)

N�k�


�

(1 + (2d� 2)`+ (4d� 4)m� e)

k

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

B

1

ÆX

1

(see [2℄ x4.2); however, in the spe
i�ed range the fra
tion 
ontributes terms in


odimension d�3; and by Lemma 3.1 and the proje
tion formula, the only monomial

in `;m; e that 
an have non-zero degree in 
odimension d � 3 is e

d�3

; so ` and m


an be dis
arded in the fra
tion, and one gets the se
ond formula as stated.

Now the 
omputation of the interse
tion numbers is a straightforward appli
ation

of Propositions 1.2, 1.5, 2.3, 2.5, 2.7. and 3.2. As an illustration, we tra
e the


omputation for the lo
us of 
uspidal 
urves:

|by Proposition 1.5,

P

N�2d+1

� L

2d�3

� C = (2d� 2)

2d�3

� 12(d� 1)(d� 2)

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2);

|by Proposition 2.5 and the �rst formula in Proposition 3.2,

P

N�2d+1

1

�L

2d�3

1

� C

1

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)�

Z

(`+ 2m)

N�2d+1

B ÆX

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)�

Z

(`+ 2m)

N�2d+1

(6(d� 2) + : : : )

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

|by Proposition 2.7 and the se
ond formula in Proposition 3.2,

e

P

N�2d+1

�

e

L

2d�3

�

e

C = 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

�

Z

P(G)

(`+ 2m)

N�2d+1

(1� e)

d�4

(1 + e)

(6(d� 2)(1� e)

2

+ : : : );

sin
e the term of degree d� 3 in

(1� e)

d�2

(1 + e)

is (�1)

d�1

(2

d�2

� 1)e

d�3

, Lemma 3.1
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and the proje
tion formula give

e

P

N�2d+1

�

e

L

2d�3

�

e

C = 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

� 6(d� 2)(2

d�2

� 1)

Z

P

(d�2)(d+1)

2

�

�

P

2

(`+ 2m)

N�2d+1

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

� 6(d� 2)(2

d�2

� 1) � 4

�

�

d

2

�

+ 1

2

�

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 3 � 2

d+1

(d� 2)

�

�

d

2

�

+ 1

2

�

This pro
edure, applied to all lo
i, gives the list:

Theorem II.

e

P

N�2d+1

�

e

L

2d�2

�

e

S = 3 � 2

2d�2

(d� 1)

2d

� 2

d+1

(2d� 3)

�

�

d

2

�

+ 1

2

�

e

P

N�2d+1

�

e

L

2d�3

�

f

S` = 3 � 2

2d�3

(d� 1)

2d�2

� 2

d

�

�

d

2

�

+ 1

2

�

e

P

N�2d

�

e

L

2d�3

�

f

Sp = 2

2d�3

(d� 1)

2d�3

� 2

d�1

�

d

2

�

e

P

N�2d+1

�

e

L

2d�3

�

e

C = 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 3 � 2

d+1

(d� 2)

�

�

d

2

�

+ 1

2

�

e

P

N�2d+1

�

e

L

2d�4

�

f

C` = 2

2d�2

(2d� 3)(d� 1)

2d�4

� 2

d

�

�

d

2

�

+ 1

2

�

e

P

N�2d

�

e

L

2d�4

�

f

Cp = 2

2d�3

(d� 1)

2d�4

� 2

d�1

�

d

2

�

By the dis
ussion in the beginning of x2, these are the interse
tion numbers of the

lo
i in any varieties of 
omplete 
urves

e

V , so we 
an pro
eed and apply Theorem I

from x1 to 
on
lude the 
omputation of the 
hara
teristi
 numbers. Taking again


uspidal 
urves as an example,

Cp

d

(2d� 5) = 2

2d�4

(d� 1)

2d�5

by Corollary 1.9, so

C`

d

(2d� 4) =

e

P

N�2d+1

�

e

L

2d�4

�

f

C`� 3(2d� 4)Cp

d

(2d� 5)

= 2

2d�2

(2d� 3)(d� 1)

2d�4

� 2

d

�

�

d

2

�

+ 1

2

�

� 3 � 2

2d�3

(d� 1)

2d�5

(d� 2)

= 2

2d�3

(d� 1)

2d�5

(4d

2

� 13d+ 12)� 2

d

�

�

d

2

�

+ 1

2

�
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by Theorem I and Theorem II; and therefore

C

d

(2d� 3) =

e

P

N�2d+1

�

e

L

2d�3

�

e

C � 3(2d� 3)C`

d

(2d� 4)

� 9

�

2d� 3

2

�

Cp

d

(2d� 5)

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 3 � 2

d+1

(d� 2)

�

�

d

2

�

+ 1

2

�

� 3(2d� 3)

"

2

2d�3

(d� 1)

2d�5

(4d

2

� 13d+ 12)� 2

d

�

�

d

2

�

+ 1

2

�

#

� 9

�

2d� 3

2

�

�

2

2d�4

(d� 1)

2d�5

�

= 3 � 2

2d�4

(d� 1)

2d�5

(8d

4

� 56d

3

+ 142d

2

� 161d+ 70) + 3 � 2

d

�

�

d

2

�

+ 1

2

�

by Theorems I and II again.

This pro
edure gives

Theorem III.

S

d

(2d� 2) = 2

2d�2

(d� 1)

2d�3

(3d

3

� 15d

2

+ 23d� 12) + 2

d+1

�

�

d

2

�

+ 1

2

�

S`

d

(2d� 3) = 2

2d�3

(d� 1)

2d�4

(3d

2

� 8d+ 6)� 2

d

�

�

d

2

�

+ 1

2

�

Sp

d

(2d� 3) = 2

2d�3

(d� 1)

2d�3

� 2

d�1

�

d

2

�

C

d

(2d� 3) = 3 � 2

2d�4

(d� 1)

2d�5

(8d

4

� 56d

3

+ 142d

2

� 161d+ 70) + 3 � 2

d

�

�

d

2

�

+ 1

2

�

C`

d

(2d� 4) = 2

2d�3

(d� 1)

2d�5

(4d

2

� 13d+ 12)� 2

d

�

�

d

2

�

+ 1

2

�

Cp

d

(2d� 4) = 2

2d�3

(d� 1)

2d�4

� 2

d�1

�

d

2

�

as stated in the introdu
tion.
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