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Abstrat. Two blow-ups over the projetive spae P

N

parametrizing plane urves of

a given degree yield a ompati�ation of the spae of redued urves used in [2℄ to

obtain partial enumerative results for families of non-singular plane urves. In this

paper it is shown how to employ the onstrution to obtain enumerative results for

families of plane urves with a node or a usp. The results reover known results

for ubis, give a �rst modern veri�ation of some omputations of of Zeuthen's

for quartis, and are new for higher degree. The heart of the omputation is the

derivation of key Segre lasses relating the intersetion alulus at the di�erent stages

of the blow-up onstrution.

0. Introdution. The k-th `harateristi number' of an r-parameter family F of

plane urves of degree d is the number of urves of F whih are tangent at smooth

points to k lines and ontain r � k points in general position in the plane.

Assume d > 2. Denote resp. by S

d

(k); S`

d

(k); Sp

d

(k); C

d

(k); C`

d

(k); Cp

d

(k) the

k-th harateristi number for the family of degree d:

� nodal urves;

� nodal urves with singularity on a given line;

� nodal urves with singularity at a given point;

� uspidal urves;

� uspidal urves with usp on a given line;

� uspidal urves with usp at a given point;

then multipliity alulations and B�ezout's theorem in the projetive spae P

N

=

P

d(d�3)

2

parametrizing all plane urves of degree d yield (see Corollary 1.9 in x1)
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In eah of these ases, we ompute here the next harateristi number, for whih

the geometry of P

N

alone does not provide adequate information. We work in a

di�erent ompati�ation (obtained in [2℄) of the variety parametrizing redued

plane urves of degree d; our result is
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For d = 3 these results reover a few of the many known enumerative results about

singular plane ubis (modern referenes for these are [5℄, [6℄ or [3℄). Notie that the

formulas above give for the 7-parameter family of uspidal ubis the harateristi

numbers C

3

(k) = 24; 60; 114; 168 for k = 0; 1; 2; 3; sine uspidal ubis are self-

dual, one an argue that neessarily C

3

(k) = C

3

(7� k), so that the results in this

note suÆe to give a derivation of the whole list:

C
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(k) = 24; 60; 114; 168; 168; 114; 60; 24 k = 0; : : : ; 7 :

For d = 4, the above formulas give
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verifying results in [9℄ (in [9℄ all harateristi numbers for many families of singular

quartis are presented!). The boxed numbers are the ones for whih we work in a

ompati�ation other than the projetive spaes parametrizing plane urves.

For d � 5 the results are new: for example, to our knowledge the number

432;016;832 of plane nodal quintis ontaining 11 points and tangent to 8 lines in

general position in the plane doesn't appear elsewhere in the literature. We know

of promising work in progress on similar questions that makes use of tehniques

originally developed by Z. Ran to ompute the degrees (i.e., the `0-th' harateris-

ti numbers) of varieties parametrizing families of singular plane urves. However,

those tehniques apparently have not yet yielded higher harateristi numbers for

the varieties studied here.

Let P

N

= P

d(d+3)

2

be the projetive spae parametrizing degree-d plane urves

over e.g. C , and let F � P

N

parametrize a family of urves. Any enumerative
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problem about the family is readily translated in a problem of intersetions in P

N

:

the set of urves ontaining a given point forms a hyperplane in P

N

, and the set of

urves tangent to a given line forms a hypersurfae (of degree 2d � 2) in P

N

(we

all these resp. `point-onditions' and `line-onditions'). If dimF = r, then the k-th

harateristi number of the family is the number of ertain speial points in the

intersetion of F with k general line-onditions and r � k general point-onditions:

spei�ally, those points orresponding to urves in F that are tangent to the given

lines at smooth points. One an hek (f. [1℄, Theorem I) that the intersetion is

transversal at suh points; it is therefore natural to hope B�ezout's theorem in P

N

should yield information about their number.

Problems with this approah arise beause the intersetion of the point- and line-

onditions along F may very well ontain urves that don't satisfy the requirement

on `proper' tangeny. For example, the intersetion of the set of singular ubis

with 8 general line-onditions ontains the whole 4-dimensional set of non-redued

ubis, as well as points orresponding to urves tangent to 7 of the lines and having

the node on the 8th, and points orresponding to urves tangent to 6 of the lines

and having a node at the intersetion of the remaining 2.

The �rst issue{the presene of non-redued urves{is the more fundamental one.

This is approahed by lifting the question to another ompati�ation of the spae

of redued urves, in whih non-redued urves don't enter into play: to obtain suh

a ompati�ation, one an for example resolve the rational map assoiating with

every smooth plane urve its dual (f. [1℄, x1). This program is exeuted in [1℄, [3℄ to

obtain enumerative results about smooth and singular plane ubis; unfortunately,

onstruting suh ompati�ations for higher degree while mantaining ontrol of

the relevant intersetion alulus seems a very hard task. In [2℄ we show that

a suitable sequene of two blow-ups at smooth enters over P

N

produes a variety

that suits our needs as long as the only non-redued urves in the intersetion onsist

of a `double line' and a (redued) degree-(d� 2) urve interseting transversally.

In this note we use the same ompati�ation. The limitation of the kind of non-

redued urves we an admit imposes severe restritions on the results: for eah

family, our onstrution will only reah here the �rst harateristi number beyond

the ones involving only redued urves. The atual omputation of the intersetion

numbers we need is performed by the same tehniques of [2℄: the missing information

we have to ompute here amounts essentially to Segre lasses of the intersetion of

the enters of the blow-ups with the parameter spaes of the families (or their proper

transforms).

The seond issue{redued urves that appear among the intersetions beause

they have singularities along the given lines{is easier to handle. The main remark

is that, for eah on�guration, the number of suh urves is itself a harateristi

number of another family. It will be easy to relate the intersetion numbers we

ompute to the atual harateristi numbers, the only ompliation being that we

will have to onsider several families at one.

The families we treat in this note are families of nodal and of uspidal plane

urves of degree d. We see these objets as projetions to P

N

of subvarieties of

P

2

�P

N

: for example, the disriminant hypersurfae in P

N

will be the projetion of

the bundle over P

2

whose �ber over p is the P

N�3

of urves singular at p. Similarly,

the proper transforms of these objets will be projetions of varieties lying in the
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produt of the blow-ups by P

2

.

Some of the geometry underlying these projetions is used in x1, to relate the

harateristi numbers to intersetion numbers in a ompati�ation of the set of

redued urves (Theorem I). As an immediate appliation, the �rst stok of har-

ateristi numbers is omputed by applying the result to suitable intersetions in

P

N

(Corollary 1.9). In x2 we exploit the blow-ups of [2℄ to obtain the Segre lasses

(Propositions 2.3, 2.5, 2.7); these are used in x3 to ompute the relevant inter-

setions numbers (Theorem II), and to omplete the omputations of the harder

harateristi numbers (Theorem III).

I would like to thank the Mathematishes Institut of the University of Erlangen-

N�urnberg for hospitality while ompleting this projet.

1. Families of singular urves. We work over an algebraially losed �eld of

harateristi 0. The families we are going to onsider are parametrized by subsets

of the projetive spae P

N

= P(H

0

O

P

2

(d)), d > 2, parametrizing degree-d plane

urves. In this setion we will desribe these subsets as birational projetions of

subvarieties from P

2

� P

N

. This hoie will make it relatively easy to obtain infor-

mation suh as the relevant degrees and multipliities, and the relations between

the harateristi numbers and intersetion numbers in a suitable ompati�ation

of the family of redued urves.

To state these relations, we need to reall some of the notations in [1℄. For

any birational map

e

V �! P

N

, all `point-onditions' and `line-onditions in

e

V ' the

proper transforms of the onditions in P

N

(de�ned in the introdution). We say

that

e

V is a `variety of omplete urves of degree d' if the intersetion of all line-

onditions in

e

V is empty . Also, we denote by

e

P ,

e

L the lasses of the general point-

and line-ondition in

e

V .

Consider the following subsets of P

N

:

� S: singular urves;

� S`: singular urves with singularity on a given line;

� Sp: singular urves with singularity at a given point;

� C: uspidal urves;

� C`: uspidal urves with usp on a given line;

� Cp: uspidal urves with usp at a given point.

As in the introdution, denote the harateristi numbers of the orresponding

families by S

d

(k), S`

d

(k); : : : . In this setion we will prove:

Theorem I. Let

e

V be a variety of omplete urves of degree d, and denote by

e

S;

f

S`; et. the proper transforms in

e

V of S; S`; et. Then

S

d
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e

P

N�1�k

�

e

L

k

�

e

S � 2kS`

d
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k

2

�
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d
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P

N�2�k

�

e

L

k

�

f

S`� 2kSp

d

(k � 1)

Sp

d

(k) =

e

P

N�3�k

�

e

L

k

�

f

Sp

C
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�
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C`

d

(k) =

e

P

N�3�k

�

e

L

k

�

f

C`� 3kCp

d

(k � 1)

Cp

d

(k) =

e

P

N�4�k

�

e

L

k

�

f

Cp :

Remark. Basially, this says that for e.g. a on�guration of k general lines and

N�1�k general points, urves tangent to k�1 lines and having a node on the k-th

one `ount with multipliity 2', and urves tangent to k�2 lines and with a node at

the intersetion of the remaining 2 `ount with multipliity 4' (a similar statement

an be phrased mutatis mutandis for uspidal urves). This is ertainly folklore in

both lassial and modern enumerative geometry; we establish these results here for

lak of a referene, and sine we need them in the ontext of `varieties of omplete

urves'. In a somewhat di�erent ontext, suh results are impliit (at least for

d = 3) in e.g. [6℄, [7℄ (f. Proposition 7.4 in [7℄).

1.1. Families of nodal urves. To desribe the loi S; S`; Sp, give oordinates

(x

0

: x

1

: x

2

) to P

2

and onsider the odimension-3 subvariety

b

S of P

2

�P

N

de�ned
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(p; f) 2

b

S ()
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>

>

>

>
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>

>

>

>

>

>
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(p) = 0

�f

�x
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(p) = 0

:

Restriting the projetions P

2

�P

N

p

1

�! P

2

, P

2

�P

N

p

2

�! P

N

, gives maps

b

S �! P

2

,

b

S �! P

N

; observe that the �ber p

�1

1

(p) \

b

S of

b

S over p 2 P

2

onsists of all degree-d

urves singular at p, while the �ber p

�1

2

(f) \

b

S of

b

S over f 2 P

N

is the singular

sheme of f (in P

2

). In fat

b

S

p

1

�! P

2

is a P

N�3

bundle; in partiular,

b

S is smooth.

If ` � P

2

is a line, denote by



S` the inverse image p

�1

1

(`) \

b

S; if p 2 P

2

, let



Sp = p

�1

1

(p)\

b

S. Then learly S = p

2

(

b

S), S` = p

2

(



S`), Sp = p

2

(



Sp), and moreover

the restritions of p

2

to

b

S,



S`,



Sp are birational maps.

Let now k; h resp. denote the hyperplane lass in P

2

, P

N

, and their pull-baks.

The de�nitions give immediately the total Chern lasses of the normal bundles:

Lemma 1.1. (i) (N

b

S

P

2

� P

N

) = (1 + (d� 1)k + h)

3

;

(ii) (N

b

S`

b

S) = (1 + k);

(iii) (N

b

Sp

b

S) = (1 + k)

2

;

(iv) Also: [



S`℄

2

= [



Sp℄; [



S`℄

3

= 0 in

b

S.

All we need to ompute the �rst harateristi numbers for S; S`; Sp is the �rst

part of Theorem I (whih we will prove in a moment) and the degrees of S; S`; Sp.

These are:

Proposition 1.2. (i) deg(S) = 3(d� 1)

2

;

(ii) deg(S`) = 3(d� 1);

(iii) deg(Sp) = 1:
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Proof: As (i) is well known, and (iii) is a triviality, we only detail (ii). Denoting

the degree of a lass by

R

:

deg(S`) =

Z

P

N

h

N�2

� S`

=

Z

P

2

�P

N

h

N�2

�



S` by the projetion formula

=

Z

P

2

�P

N

h

N�2

(1 + k)(1 + (d� 1)k + h)

3

by Lemma 1.1 (i) and (ii)

=

Z

P

2

�P

N

h

N�2

� 3(d� 1)h

2

k

2

= 3(d� 1) :

To prove the �rst part of Theorem I, let L be the line-ondition in P

N

orre-

sponding to a general line ` � P

2

, and

b

L = p

�1

2

(L) � P

2

� P

N

. Then

b

L intersets

b

S

along



S` and along the losure

b

L

b

S

of the subset of

b

S onsisting of pairs (q; f) with

f singular at q and tangent to ` at smooth points.

We laim that to prove the �rst part of Theorem I we just need to show

Lemma 1.3. [

b

L \

b

S℄ = [

b

L

b

S

℄ + 2[



S`℄ as yles on

b

S.

Indeed, suppose this has been established. Let

e

L be the line-ondition in

e

V

orresponding to `.

e

L \

e

S splits in

f

S` and (at least) another omponent

e

L

e

S

(the

`omplete urves' tangent to ` at smooth points). The harateristi numbers are

the intersetion numbers of

e

P 's and

e

L

e

S

's: the intersetion is supported on the `right'

points, and transversal by Theorem I in [1℄. So for example S`

d

(k) = [

e

P \

e

S℄

N�2�k

�

[

e

L

e

S

℄

k

� [

f

S`℄ in

e

S.

Now observe that

b

S and

e

S are birational, as they are both birational to S. Let S

Æ

be a dense open subset of S isomorphi to subsets (whih we identify with S

Æ

) of

b

S

and

e

S. Apply Theorem I from [1℄ to S

Æ

: general points and lines an be hosen so

that the orresponding onditions in

e

V meet only in S

Æ

; in omputing

e

P

r�k

�

e

L

k

�

e

S

we may therefore restrit �rst to S

Æ

.

So we may assume [

e

L\

e
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e

L

e

S
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f

S`℄, sine this equality holds after restriting

to S

Æ

(as it holds on

b

S), by Lemma 1.3. Also, we may assume [

f

S`℄

2

= [

f

Sp℄, [

f

S`℄

3

= 0

sine this holds on S

Æ

, by Lemma 1.1 (iv). Putting all together:

[
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e

L
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S
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f

S`℄)

k
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e

L

e
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℄

k
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e
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℄
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L \
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S℄

k

= ([

e

L

e

S

℄ + 2[

f

S`℄)

k

= [

e
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e

S

℄

k

+ 2k[

e

L
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℄

k�1

� [

f

S`℄ + 4

�

k
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�

[

e

L

e
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℄

k�2

� [

f

Sp℄

and the �rst part of Theorem I follows.

We then need to verify [

b

L \

b

S℄ = [

b

L

b

S

℄ + 2[



S`℄.

Proof of Lemma 1.3: Equivalently, we an verify that [L \ S℄ = [L

S

℄ + 2[S`℄ in

P

N

, where L

S

denotes the losure of the set of singular urves tangent at a smooth
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point to the line ` � P

2

. To get this, we produe a urve in S and ompare the

restritions of L and of L

S

, S` to it. Let X 2 S be a general plane urve with one

node: we onsider the urve XÆ(t) in S obtained by translating X by elements in a

1-parameter family (t) of linear transformations of the plane: we have to examine

the restrition L

`

j

XÆ(t)

of the line-ondition L

`

orresponding to `.

Now, learly we may keep X �xed and move ` instead: i.e., L

`

j

XÆ(t)

equals

L

`Æ(t)

�1
j

X

as divisors on the t-line. Sine the line-onditions on P

2

are just point-

onditions on the dual plane

�

P

2

, L

`Æ(t)

�1
j

X

is the restrition

�

Xj

`Æ(t)

�1
of the dual

�

X of X to the urve ` Æ (t)

�1

in

�

P

2

. So to obtain the statement we only need to

remark that (see for example [8, IV.6℄) for X a degree-d plane urve with one node

and no other singularities,

�

X onsists of a simple omponent, giving the restrition

of L

S

with multipliity 1; and of a multiple omponent, supported on the line in

�

P

2

dual to the node of X, with multipliity 2: giving the restrition of S`, with

multipliity 2.

1.2. Families of uspidal urves. We say that a urve is `uspidal' at p if it is

singular at p and its tangent one at p is a double line. C � S is the losure of the

set of uspidal urves: i.e., the image in P

N

of the divisor

b

C of

b

S de�ned by

(p; f) 2

b

C ()
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<
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>

>

>
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(p) = 0

�f

�x

2

(p) = 0

;

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

"

�

�

2

f

�x

0

�x

1

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

1

#

(p) = 0

"

�

�

2

f

�x

0

�x

2

�

2

�

�

2

f

�x

2

0

�

2

f

�x

2

2

#

(p) = 0

"

�

�

2

f

�x

1

�x

2

�

2

�

�

2

f

�x

2

1

�

2

f

�x

2

2

#

(p) = 0

:

As with

b

S, restriting the projetions gives maps

b

C �! P

2

,

b

C �! P

N

; the �ber of

C over p 2 P

2

onsists of a quadri in the P

N�3

of urves singular at p, and the

�ber over f 2 P

N

is what we would all the `uspidal sheme' of f .

Letting



C` = p

�1

1

(`) \

b

C and



Cp = p

�1

1

(p) \

b

C, then C` = p

2

(



C`), Cp = p

2

(



Cp),

and the restritions of p

2

to

b

C,



C`,



Cp are birational morphisms.

As in x1.1, let k; h denote the hyperplane lass in P

2

;P

N

resp., and their pull-

baks. Then we get the Chern lasses:

Lemma 1.4. (i) (N

b

C

b

S) = (1 + 2(d� 3)k + 2h);

(ii) (N

b

C`

b

C) = (1 + k);

(iii) (N



Cp

b

C) = (1 + k)

2

;

(iv) Also: [



C`℄

2

= [



Cp℄; [



C`℄

3

= 0 on

b

C.

Proof: The only point that requires an argument is (i). Notie that, outside

fx

0

= 0g, the equation for

b

C in

b

S is

(*)

"

�

�

2

f

�x

1

�x

2

�

2

�

�

2

f

�x

2

1

�

2

f

�x

2

2

#

(p) = 0 ;
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therefore, globally (*) de�nes a divisor in

b

S onsisting of

b

C and of some multiple

�k of the divisor fx

0

= 0g. Restriting to a urve in

b

S interseting fx

0

= 0g

transversally away from

b

C (e.g.: t 7! ((t : 0 : 1); x

0

x

1

x

d�2

2

� tx

1

x

d�1

2

)) shows

� = 2, i.e. the divisor determined by (*) equals

b

C + 2k. Sine (*) is quadrati in

the oordinates of P

N

, and of degree 2(d� 2) in (x

0

: x

1

: x

2

),

b

C must have lass

2h� 2(d� 2)k � 2k = 2h� 2(d� 3)k, giving (i).

To ompute the �rst harateristi numbers for C;C`; Cp we need the seond

part of Theorem I and the degrees of C;C`; Cp.

Proposition 1.5. (i) deg(C) = 12(d� 1)(d� 2);

(ii) deg(C`) = 4(2d� 3);

(iii) deg(Cp) = 2:

Proof: These follow immediately from Lemma 1.4. For example:

deg(C) =

Z

P

N

h

N�2

� C

=

Z

P

2

�P

N

h

N�2

�

b

C by the projetion formula

=

Z

P

2

�P

N

h

N�2

(1 + 2(d� 3)k + 2h)(1 + (d� 1)k + h)

3

=

Z

P

2

�P

N

h

N�2

� (6(d� 1)

2

+ 6(d� 1)(2d� 3))h

2

k

2

= 12(d� 1)(d� 2) :

The argument to show the seond part of Theorem I is entirely analogous to the

argument for the �rst part, detailed in x1.1. If now we denote by

b

L

b

C

the losure of

the subset of

b

C onsisting of pairs (q; f) with f uspidal at q and tangent to a line

` � P

2

at a smooth point, the key omputation is:

Lemma 1.6. [

b

L \

b

C℄ = [

b

L

b

C

℄ + 3[



C`℄.

Proof: By the same argument as in the proof of Lemma 1.3, we just need to remark

that the dual of a degree-d plane urve with one usp (and no other singularities)

onsists of a simple omponent (that aounts for [

b

L

b

C

℄) and of the line dual to the

usp, with multipliity 3 (aounting for 3[



C`℄).

1.3. Charateristi numbers, I. The information olleted in x1.1,2 suÆes to

ompute the harateristi numbers of S; S`; : : : for on�gurations involving only

redued urves. Indeed, P

N

is isomorphi to a variety of omplete urves outside of

the set of non-redued urves (this point is made more formal in [2℄, Lemma I, for

harateristi numbers of non-singular urves. We don't repeat the argument here,

leaving the straightforward adjustments to the reader).

All we need to spot the right on�gurations is a dimension ount from [2℄:

Lemma 1.7. For j > N � 2d + 1 and P

1

; : : : ; P

j

general point-onditions in P

N

,

P

1

\� � �\P

j

meets S; S`; C; C` only at points orresponding to redued urves; also,

P

1

\ � � � \ P

j�1

meets Sp; Cp only at points orresponding to redued urves.

8



Proof: This follows from Lemma 1.1 in [2℄ and Remark 1, x1 in [1℄, sine the

set of non-redued urves is ontained in S; S`; C; C` and ut in odimension 1 by

Sp; Cp.

Proposition 1.8. Let

e

V be a variety of omplete urves of degree d. Denote by

e

P ;

e

L resp. the lasses of the general point- and line-onditions in

e

V ; also, denote by

e

S;

f

S`; : : : the proper transforms of S; S`; : : : . Then

e

P

N�1�k

�

e

L

k

�

e

S = 3(d� 1)

2

(2d� 2)

k

for k < 2d� 2

e

P

N�2�k

�

e

L

k

�

f

S` = 3(d� 1)(2d� 2)

k

for k < 2d� 3

e

P

N�3�k

�

e

L

k

�

f

Sp = (2d� 2)

k

for k < 2d� 3

e

P

N�2�k

�

e

L

k

�

e

C = 12(d� 1)(d� 2)(2d� 2)

k

for k < 2d� 3

e

P

N�3�k

�

e

L

k

�

f

C` = 4(2d� 3)(2d� 2)

k

for k < 2d� 4

e

P

N�4�k

�

e

L

k

�

f

Cp = 2(2d� 2)

k

for k < 2d� 4

Proof: In the spei�ed ranges, we an hoose point-onditions to avoid the lous

of non-redued urves, by Lemma 1.7. Therefore the intersetion numbers an be

omputed in P

N

, where they are given by B�ezout's Theorem: the degree of the

line-onditions in P

N

is (2d � 2), and the degrees of S; S`; : : : are omputed in

Propositions 1.2 and 1.5.

The �rst results listed in the introdution follow now immediately from Proposi-

tion 1.8 and Theorem I:

Corollary 1.9.

S

d

(k) = 2

k�1

(d� 1)

k�2

(6(d� 1)

4

� 6(d� 1)

2

k + k(k � 1)) for k < 2d� 2

S`

d

(k) = 2

k

(d� 1)

k�1

(3(d� 1)

2

� k) for k < 2d� 3

Sp

d

(k) = 2

k

(d� 1)

k

for k < 2d� 3

C

d

(k) = 3 � 2

k�2

(d� 1)

k�2

(16(d� 1)

4

� 16(d� 1)

3

� 16(d� 1)

2

k + 8(d� 1)k + 3k(k � 1)) for k < 2d� 3

C`

d

(k) = 2

k

(d� 1)

k�1

(8(d� 1)(2d� 3)� 3k) for k < 2d� 4

Cp

d

(k) = 2

k+1

(d� 1)

k

for k < 2d� 4

2. Segre lasses. To apply Theorem I to the �rst ases not overed by the formulas

in Corollary 1.9, we need to evaluate the intersetion produts

e

P

N�2d+1

�

e

L

2d�2

�

e

S

e

P

N�2d+1

�

e

L

2d�3

�

e

C

e

P

N�2d+1

�

e

L

2d�3

�

f

S` ;

e

P

N�2d+1

�

e

L

2d�4

�

f

C`

e

P

N�2d

�

e

L

2d�3

�

f

Sp

e

P

N�2d

�

e

L

2d�4

�

f

Cp

(notations as in Theorem I) in a variety of omplete urves. As in x1.3, we will

ompute these produts in a variety isomorphi to a variety of omplete urves

9



along an open set ontaining the intersetion points of a general hoie of onditions.

Following the notations of [2℄, denote by B � P

N

the set of urves �

2

onsisting of

a degree-(d� 2) urve  and of the double line supported on a line �. Also, denote

by B

Æ

the open subset of B formed by urves �

2

with  redued and transversal

to �. The analogue of Lemma 1.7 in the new situation is:

Lemma 2.1. For j = N � 2d + 1 and P

1

; : : : ; P

j

general point-onditions in P

N

,

P

1

\ � � � \ P

j

meets S; S`; C; C` at points orresponding to either redued urves or

urves in B

Æ

. The same onlusion applies to the intersetion of P

1

\� � �\P

j�1

and

Sp; Cp.

Proof: As for Lemma 1.7, this follows from Lemma 1.1 in [2℄ and Remark 1, x1

in [1℄ (also, f. Lemma 1.3 in [2℄).

Lemma 2.1 gives us the presription to ful�ll to ompute the produts

e

P

N�2d+1

�

e

L

2d�2

�

e

S, et. above: the produts may be omputed in any variety

e

V

�

�! P

N

suh

that �

�1

(B

Æ

) is disjoint from the intersetion of all line-onditions in

e

V . Indeed,

suh a

e

V is isomorphi to a variety of omplete urves along an open subset on-

taining �

�1

(B

Æ

), and general onditions won't interset in the omplement of this

open set, by Lemma 2.1.

Suh a variety is the variety obtained in [2℄, x3, by the following proedure.

1

Let V

1

�

1

�! P

N

be the blow-up of P

N

along B. B is smooth along B

Æ

(f. Lemma

1.1 in [2℄), so the �ber �

�1

1

(�

2

) over a �

2

2 B

Æ

is the P

2d�2

onsisting of all

normal diretions to B in P

N

entered at �

2

. Those diretions determined by lines

�

2

+ tk� in P

N

(k being a degree-(d� 1) urve) de�ne a P

d�3

in �

�1

1

(�

2

), and a

P

d�3

-bundle B

Æ

1

over B

Æ

as �

2

moves in B

Æ

. We let B

1

be the losure of B

Æ

1

in V

1

.

Next, let V

2

�

2

�! V

1

be the blow-up of V

1

along B

1

. It follows from Proposition 3.4

in [2℄ that �

�1

2

�

�1

1

(B

Æ

) is disjoint from the intersetion of all line-onditions in V

2

:

V

2

is therefore a variety satisfying our requirement.

Let then

e

V be V

2

,

e

P ;

e

L be the lasses of the general point- and line-onditions

in

e

V = V

2

, et.: by the above disussion, this swith in notation won't a�et the

result of omputing

e

P

N�2d+1

�

e

L

2d�2

�

e

S, et.

In the rest of this setion we will get the main ingredients needed to ompute

these intersetion produts: i.e., an information amounting to ertain terms in the

Segre lasses s(B \ S; S); s(B \ S`; S`); : : : and terms in orresponding lasses of

loi in V

1

. In x3 we will use these results to ompute the intersetion produts

listed at the beginning of this setion; these in turn (by Theorem I) will give the

harateristi numbers.

In fat, to optimize the omputations, we will obtain here the lasses in a di�erent

form. For W � V non-singular varieties, and X � V a subsheme, we denote by

W ÆX the lass (N

W

V ) \ s(W \X;X) (this is the `full intersetion lass' of [1℄,

x2). In x2.1 below we will ompute relevant terms in the lasses B

Æ

ÆS, B

Æ

ÆS`, et.

These are lasses in B

Æ

\ S, B

Æ

\ S` et.; however, the terms we will ompute here

will extend uniquely to lasses of B, (sine their odimension will be lower than

1

In [2℄ we had a blanket assumption d > 3; however, this onstrution and the results we will

quote from [2℄ work for d = 3 as well.
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the odimension of the omplement of B

Æ

), therefore we will write these lasses as

lasses of B, and denote them by BÆS, BÆS`, et. for short. Similar onsiderations

and hoie of notations apply to the lasses B

1

Æ S

1

, B

1

Æ S`

1

, et. (denoting by

S

1

; S`

1

; et. the proper transforms of S; S`; et. in V

1

), whih we will ompute in

x2.2, and to lasses

b

B Æ

b

S, et.

We should mention that only a small portion of the information enoded in the

above lasses is needed for our omputations. For example, as S is the disriminant

hypersurfae and B � S, the information we obtain here about B Æ S is basially

just the multipliity of the disriminant along the set of urves ontaining a double

line.

2.1. Classes in P

N

. Call B the lous of urves ontaining a double line (as above).

B is the image of a map P

(d�2)(d+1)

2

�

�

P

2

�! P

N

, where

�

P

2

parametrizes the double

line and P

(d�2)(d+1)

2

parametrizes the residual degree-(d� 2) urve; B

Æ

is identi�ed

via this map with an open subset of P

(d�2)(d+1)

2

�

�

P

2

(f. Lemma 1.1 in [2℄). Let

now

b

B = P

2

�B be the inverse image p

�1

2

(B) in P

2

� P

N

; so

b

B

Æ

= p

�1

2

(B

Æ

) an be

identi�ed with an open subset of P

2

� P

(d�2)(d+1)

2

�

�

P

2

.

We denote by k; h resp. the lasses of the hyperplane in P

2

;P

N

(and their pull-

baks). The Chow ring of P

(d�2)(d+1)

2

�

�

P

2

is generated by the pull-baks `;m of

the hyperplane lasses from the fators, with obvious relations: so h pulls-bak

to ` + 2m. The lasses of B that we will onsider will be push-forward of lasses

by P

(d�2)(d+1)

2

�

�

P

2

�! B; lasses in

b

B will be push-forward of lasses by P

2

�

P

(d�2)(d+1)

2

�

�

P

2

�!

b

B. To ease the exposition we will suppress push-forward and

pull-bak notations, so that e.g. lasses in

b

B will be denoted simply as polynomials

in k; `;m (unless we fear ambiguity).

|Nodal urves.

Reall the notations of x1: we have desribed the disriminant S � P

N

as the

projetion to P

N

of a odimension-3 smooth subvariety

b

S of P

2

� P

N

; similarly,

S`; Sp are projetions of subvarieties



S`;



Sp of

b

S.

Lemma 2.2. With the above notations:

(i) B Æ S = oeÆient of k

2

in

b

B Æ

b

S

(ii) B Æ S` = oeÆient of k

1

in

b

B Æ

b

S

(iii) B Æ Sp = oeÆient of k

0

in

b

B Æ

b

S

Proof: (i) follows from the birational invariane of Segre lasses ([4℄, Proposition

4.2): sine p

2

maps

b

S birationally to S, s(B \ S; S) = p

2

�

s(

b

B \

b

S;

b

S); then the

projetion formula gives (i), sine the only terms that don't vanish after pushing

forward via p

2

are the terms multiplying k

2

, and N

b

B

Æ

P

2

� P

N

is the pull-bak of

N

B

Æ

P

N

.

(ii), (iii) follow by the same argument, after remarking that s(

b

B

Æ

\



S`;



S`) =

k � s(

b

B

Æ

\

b

S;

b

S), s(

b

B

Æ

\



Sp;



Sp) = k

2

� s(

b

B

Æ

\

b

S;

b

S) (f. Lemma 1.1 (ii), (iii), and

observe that



S`;



Sp ut properly (in

b

S) the support of the one of

b

B

Æ

\

b

S in

b

S).

The highest dimensional terms in the lasses for nodal urves are given by:
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Proposition 2.3.

B Æ S = 2(2d� 3)[B℄ + : : :

B Æ S` = [B℄ + : : :

B Æ Sp = m+ : : :

Proof: By Lemma 2.2, we need to show that, disarding all but the highest di-

mensional terms involving powers of k:

b

B Æ

b

S = m+ k + 2(2d� 3)k

2

+ : : :

Now, sine

b

B

Æ

;

b

S and P

2

� P

N

are non-singular,

b

B Æ

b

S = (N

b

B

Æ

P

2

� P

N

)s(

b

B

Æ

\

b

S;

b

S)

= (N

b

S

P

2

� P

N

)s(

b

B

Æ

\

b

S;

b

B

Æ

)

= (1 + 3(d� 1)k + : : : )s(

b

B

Æ

\

b

S;

b

B

Æ

)

(this follows from [4℄, Example 4.2.6. The lass (N

b

S

P

2

� P

N

) was omputed in

Lemma 1.1). Regarding s(

b

B

Æ

\

b

S;

b

B

Æ

), pull-bak the equations for

b

S via P

2

�

P

(d�2)(d+1)

2

�

�

P

2

�! P

2

� P

N

. In odimension � 2 we �nd

b

B

Æ

\

b

S is supported

on a divisor of

b

B

Æ

, onsisting of pairs (p; �

2

) with p 2 �, and has an embedded

omponent supported on the set of pairs (p; �

2

) with p 2  \ �. The reader will

easily verify that the lasses of these loi are m+ k, (m+ k)(`+ (d� 2)k) resp., so

that

s(

b

B

Æ

\

b

S;

b

B

Æ

) = (m+ k)� (m+ k)

2

+ � � �+ (m+ k)(`+ (d� 2)k) + : : :

= (m+ k) + (m+ k)(`�m+ (d� 3)k) + : : :

Thus

b

B Æ

b

S = (1 + 3(d� 1)k + : : : )((m+ k) + (m+ k)(`�m+ (d� 3)k) + : : : )

= (m+ k) + (2(2d� 3)k

2

+ : : : ) + : : :

as laimed.

|Cuspidal urves.

Again as in x1, the set C of uspidal urves is the projetion to P

N

of a divisor

b

C (whith lass 2(d� 3)k+2h) of

b

S. C`; Cp are projetion of subvarieties



C`;



Cp of

b

C.

Lemma 2.4.

(i) B Æ C = oeÆient of k

2

in

b

B Æ

b

C

(ii) B Æ C` = oeÆient of k

1

in

b

B Æ

b

C

(iii) B Æ Cp = oeÆient of k

0

in

b

B Æ

b

C

Proof: As in Lemma 2.2, these follow from the birational invariane of Segre

lasses.

The highest dimensional terms in the lasses for uspidal urves are now given

by
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Proposition 2.5.

B Æ C = 6(d� 2)[B℄ + : : :

B Æ C` = [B℄ + : : :

B Æ Cp = m+ : : :

Proof: By Lemma 2.4, we need to ompute the highest dimensional terms involv-

ing powers of k in

b

BÆ

b

C. Now we observe that

b

C ontains

b

B\

b

S sheme-theoretially

(another oordinate omputation); by Lemma 1.4, the lass of

b

C in

b

S is 2(d�3)k+h,

restriting on

b

B to 2(d� 3)k + `+ 2m; we have then

s(

b

B

Æ

\

b

C;

b

C) = (1 + 2(d� 3)k + `+ 2m)s(

b

B

Æ

\

b

S;

b

S)

and therefore

b

B Æ

b

C = (1 + 2(d� 3)k + `+ 2m)

b

B Æ

b

S

= (1 + 2(d� 3)k + `+ 2m)(m+ k + 2(2d� 3)k

2

+ : : : )

= m+ k + (2(d� 3) + 2(2d� 3))k

2

+ : : :

= m+ k + 6(d� 2)k

2

+ : : :

from whih the statement follows.

2.2. Classes in V

1

. �

1

: V

1

�! P

N

is the blow-up of P

N

along B, E is the

exeptional divisor. For �

2

2 B

Æ

, the �ber �

�1

1

(�

2

) onsists of the P

2d�2

of

normal diretions to B in P

N

entered at �

2

. The diretions determined by lines

�

2

+ tk� in P

N

determine, as �

2

varies in B

Æ

, a subvariety B

Æ

1

of E; and we let

B

1

be the losure of B

Æ

1

in V

1

.

Denote by S

1

; S`

1

; et. the proper transforms of S; S

1

; et. in V

1

; also, denote by

b

S

1

;



S`

1

; et. the proper transforms of

b

S;



S`; et. via the map P

2

�V

1

id.��

1

����! P

2

� P

N

,

i.e. the blow-up of P

2

� P

N

along

b

B. Finally, let

b

B

Æ

1

= P

2

� B

Æ

1

;

b

B

1

= P

2

� B

1

.

Lemma 2.6.

B

1

Æ S

1

= oe�. of k

2

in

b

B

1

Æ

b

S

1

B

1

Æ S`

1

= oe�. of k

1

in

b

B

1

Æ

b

S

1

B

1

Æ Sp

1

= oe�. of k

0

in

b

B

1

Æ

b

S

1

B

1

Æ C

1

= oe�. of k

2

in

b

B

1

Æ

b

C

1

B

1

Æ C`

1

= oe�. of k

1

in

b

B

1

Æ

b

C

1

B

1

Æ Cp

1

= oe�. of k

0

in

b

B

1

Æ

b

C

1

Proof: These follow again from the birational invariane of Segre lasses, as in

Lemmas 2.2, 2.4.

Sine B

Æ

1

is a projetive bundle over B

Æ

, lasses of B

Æ

1

an be expressed in terms of

those of B

Æ

and of the lass of the universal line bundle on B

Æ

1

: this is the restrition

of the lass of the exeptional divisor, whih we denote e. This time we need the

highest dimensional terms involving powers of e. These are

Proposition 2.7.

B

1

Æ S

1

= 2(2d� 3)(1� e) + : : :

B

1

Æ S`

1

= (1� e)

2

+ : : :

13



B

1

Æ Sp

1

= m(1� e)

2

+ : : :

B

1

Æ C

1

= 6(d� 2)(1� e)

2

+ : : :

B

1

Æ C`

1

= (1� e)

3

+ : : :

B

1

Æ Cp

1

= m(1� e)

3

+ : : :

Proof: By Lemma 2.6, we have to show

b

B

1

Æ

b

S

1

= m+ k � 2em� 2ek + 2(2d� 3)k

2

+ e

2

m+ e

2

k � 2(2d� 3)ek

2

+ : : :

b

B

1

Æ

b

C

1

= m+ k � 3em� 3ek + 6(d� 2)k

2

+ 3e

2

m+ 3e

2

k

� 12(d� 2)ek

2

� e

3

m� e

3

k + 6(d� 2)e

2

k

2

+ : : :

(omitting all but the highest dimensional terms involving monomials e

i

k

j

).

Computing these lasses is a little triky. Let

g

P

2

� P

N

be the blow-up of P

2

�P

N

along the inidene orrespondene I = f(p; �

2

) 2

b

B : p 2 \�g (reall

b

B

Æ

\

b

S has

an embedded omponent along this lous). Let

g

P

2

� V

1

be the blow-up of P

2

� V

1

along (id. � �

1

)

�1

(I). By the universal property of blow-ups,

g

P

2

� V

1

is also the

blow-up of

g

P

2

� P

N

along the proper transform of

b

B:

g

P

2

� V

1

Blow-up (id.��

1

)

�1

(I)

��������������! P

2

� V

1

Blow-up proper transf. of

b

B

?

?

y

?

?

y

id.��

1

g

P

2

� P

N

Blow-up I

��������������! P

2

� P

N

Notie that the bottom map blows-up eah P

2

� �

2

�

b

B

Æ

at the �nite set of

points  \ �. The proper transform of

b

S in

g

P

2

� P

N

uts eah of these blown-up

P

2

along the proper transform of � and along the exeptional divisors. By hasing

the above diagram, one onludes that, above

b

B

Æ

,

b

S

1

intersets

b

E = P

2

� E in

two irreduible omponents, whose losures we denote

b

E

1

,

b

E

2

:

b

E

1

dominates the

support of

b

B

Æ

\

b

S,

b

E

2

dominates I, i. e. the embedded omponent in

b

B

Æ

\

b

S. One

an also see, again working in oordinates, that

b

S

1

intersets

b

B

Æ

1

preisely along

the divisor of

b

B

Æ

1

mapping to the support of

b

B

Æ

\

b

S (this time without embedded

omponents). So, with our onvention of omitting pull-bak notations:

s(

b

B

Æ

1

\

b

S;

b

B

Æ

1

) = (m+ k)� (m+ k)

2

+ : : :

Next, we ompute the �rst Chern lass of the normal bundle to

b

S

1

in

g

P

2

� V

1

(

b

S

1

is regularly embedded in low odimension). We leave to the reader to hase the

above diagram and verify that: if b denotes the odimension of

b

B in P

2

� P

N

, then



1

(TP

2

� V

1

) = 

1

(TP

2

� P

N

) � (b � 1)

b

E restrits on

b

S to 

1

(TP

2

� P

N

) � (b �

1)

b

E

1

� 2(b� 1)

b

E

2

; while 

1

(T

b

S

1

) = 

1

(T

b

S)� (b� 3)

b

E

1

� (2b� 5)

b

E

2

. So



1

(N

b

S

1

P

2

� V

1

) = 

1

(N

b

S

P

2

� P

N

)� 2

b

E

1

� 3

b

E

2

= 

1

(N

b

S

P

2

� P

N

)� 2

b

E +

b

E

2

14



(f. this omputation for d = 3 in [3℄; there b = 5). Now, on

b

B

1

, 

1

(N

b

S

P

2

� P

N

)

pulls-bak to 3(d � 1)k + 3` + 6m (Lemma 1.1),

b

E restrits to e, and

b

E

2

restrits

to `+ (d� 2)k (f. the proof of Proposition 2.3), so



1

(N

b

S

1

P

2

� V

1

) restrits to 3(d� 1)k + 3`+ 6m� 2e+ `+ (d� 2)k

= (4d� 5)k � 2e+ 4`+ 6m :

Applying again [4℄, Example 4.2.6 (as in Proposition 2.3) gives the �rst terms of

b

B

1

Æ

b

S

1

:

b

B

1

Æ

b

S = (N

b

B

Æ

1

P

2

� V

1

)s(

b

B

Æ

1

\

b

S

1

;

b

S

1

)

= (N

b

S

1

P

2

� V

1

)s(

b

B

Æ

1

\

b

S

1

;

b

B

Æ

1

)

= (1 + (4d� 5)k � 2e+ 4`+ 6m+ : : : )((m+ k)� (m+ k)

2

+ : : : )

= (m+ k) + (m+ k)(2(2d� 3)k � 2e+ 4`+ 5m) + terms in od.� 3

Finally, we observe that the only term in odimension � 3 in

b

B

1

Æ

b

S

1

is

b

B

1

�

b

S

1

(as de�ned in [4℄; see the Lemma in [1℄, x2); i.e., the pull-bak to

b

B

1

of the lass

of

b

S

1

. This latter an be obtained by applying [4℄, Theorem 6.7; in terms of `full

intersetion lasses' (and omitting pull-baks as usual):

[

b

S

1

℄ = [

b

S℄� E � od. 2 terms in

b

B Æ

b

S

1 + E

(see the Claim in the proof of Theorem II in [1℄, x2, with r = 1). By Lemma 1.1,

(i),

b

S has lass ((d� 1)k + h)

3

; so

b

B

1

�

b

S

1

= ((d� 1)k + `+ 2m)

3

� e � od. 2 terms in

m+ k + 2(2d� 3)k

2

+ : : :

1 + e

= e

2

m+ e

2

k � 2(2d� 3)ek

2

+ � � �

omitting all but the highest dimensional terms involving e

i

k

j

. Putting all together

(and omitting irrelevant terms):

b

B

1

Æ

b

S

1

= m+ k � 2em� 2ek + 2(2d� 3)k

2

+ e

2

m+ e

2

k � 2(2d� 3)ek

2

+ : : :

as laimed.

To get

b

B

1

Æ

b

C

1

we proeed as in Proposition 2.5: one heks that

b

C

1

ontains

b

B

Æ

1

\

b

S

1

=

b

B

Æ

1

; and sine

b

C ontains

b

B

Æ

\

b

S and is generially smooth along it, the

lass of the divisor

b

C

1

in

b

S

1

must be 2(d� 3)k+h� e (f. Lemma 1.4). So, arguing

as in Proposition 2.5,

b

B

1

Æ

b

C

1

= (1 + 2(d� 3)� e+ : : : )

b

B

1

Æ

b

S

1

;

whih gives the result stated at the beginning of the proof.
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3. Charateristi numbers, II. After Propositions 2.3, 2.5, 2.7, omputing the

intersetion numbers

e

P

N�2d+1

�

e

L

2d�2

�

e

S

e

P

N�2d+1

�

e

L

2d�3

�

e

C

e

P

N�2d+1

�

e

L

2d�3

�

f

S` ;

e

P

N�2d+1

�

e

L

2d�4

�

f

C`

e

P

N�2d

�

e

L

2d�3

�

f

Sp

e

P

N�2d

�

e

L

2d�4

�

f

Cp

is a rather straightforward proedure, given the details of the blow-up onstrution

(as in [2℄, x4). The main tool is a formula from [1℄:

Proposition. Let B � V be smooth varieties, X

1

; : : : ; X

n

subvarieties of V ,

e

V �!

V the blow-up of V along B, and

e

X

1

; : : : ;

e

X

n

the proper transforms of X

1

; : : : ; X

n

in

e

V . If the odimensions of the X

i

's add to the dimension of V , then

(*)

e

X

1

� : : : �

e

X

n

= X

1

� : : : �X

n

�

Z

B

Q

j

(B ÆX

j

)

(N

B

V )

([1℄, Theorem II). As seen in [2℄, x4, this extends to our ase: eah of the two

blow-up restrits to the situation of the proposition on a dense open set ontaining

all the intersetion points. In fat, we an use for B in (*) (as in [2℄, x4.2,3) suitable

varieties mapping birationally onto the enters of the blow-ups: P

(d�2)(d+1)

2

�

�

P

2

for

the �rst blow-up, and a variety we alled P(G) in [2℄, x4.2, for the seond. Conern-

ing P(G), we only need to remark that there is a surjetion P(G)

p

�! P

(d�2)(d+1)

2

�

�

P

2

,

making the diagram

P(G) ����! V

1

p

?

?

y

?

?

y

�

1

P

(d�2)(d+1)

2

�

�

P

2

����! P

N

ommutative; if we denote by e the pull-bak of the exeptional divisor from V

1

to

P(G), then

Lemma 3.1. p

�

e

j

= 0 for j < d� 3; p

�

e

d�3

= (�1)

d�1

.

Proof: See [2℄, Lemma 4.1.

We apply (*) to the two blow-ups giving the variety

e

V of x2:

Proposition 3.2. For X = S; S`; : : : ; X

1

= S

1

; S`

1

; : : : the proper transform of

X in V

1

;

e

X =

e

S;

f

S`; : : : the proper transform of X

1

in

e

V ; P;L, P

1

; L

1

,

e

P ;

e

L resp.

point- and line-onditions in P

N

, V

1

,

e

V ; and  = odim

P

N
X,

P

N�k�

1

� L

k

1

�X

1

= P

N�k�

� L

k

�X �

Z

P

(d�2)(d+1)

2

�

�

P

2

(`+ 2m)

N�k�

B ÆX

e

P

N�k�

�

e

L

k

�

e

X = P

N�k�

1

� L

k

1

�X

1

�

Z

P(G)

(`+ 2m)

N�k�

(1� e)

k�d+1

(1 + e)

B

1

ÆX

1
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where k � 2d � 2 for X = S, k � 2d � 3 for X = S`; Sp; C, and k � 2d � 4 for

X = C`; Cp.

Proof: This are just the results obtained applying (*) and omitting terms that

give no ontribution in the spei�ed range. For example, applying (*) to the seond

blow-up gives really

e

P

N�k�

�

e

L

k

�

e

X = P

N�k�

1

� L

k

1

�X

1

�

Z

P(G)

(`+ 2m)

N�k�

�

(1 + (2d� 2)`+ (4d� 4)m� e)

k

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

B

1

ÆX

1

(see [2℄ x4.2); however, in the spei�ed range the fration ontributes terms in

odimension d�3; and by Lemma 3.1 and the projetion formula, the only monomial

in `;m; e that an have non-zero degree in odimension d � 3 is e

d�3

; so ` and m

an be disarded in the fration, and one gets the seond formula as stated.

Now the omputation of the intersetion numbers is a straightforward appliation

of Propositions 1.2, 1.5, 2.3, 2.5, 2.7. and 3.2. As an illustration, we trae the

omputation for the lous of uspidal urves:

|by Proposition 1.5,

P

N�2d+1

� L

2d�3

� C = (2d� 2)

2d�3

� 12(d� 1)(d� 2)

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2);

|by Proposition 2.5 and the �rst formula in Proposition 3.2,

P

N�2d+1

1

�L

2d�3

1

� C

1

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)�

Z

(`+ 2m)

N�2d+1

B ÆX

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)�

Z

(`+ 2m)

N�2d+1

(6(d� 2) + : : : )

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

|by Proposition 2.7 and the seond formula in Proposition 3.2,

e

P

N�2d+1

�

e

L

2d�3

�

e

C = 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

�

Z

P(G)

(`+ 2m)

N�2d+1

(1� e)

d�4

(1 + e)

(6(d� 2)(1� e)

2

+ : : : );

sine the term of degree d� 3 in

(1� e)

d�2

(1 + e)

is (�1)

d�1

(2

d�2

� 1)e

d�3

, Lemma 3.1
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and the projetion formula give

e

P

N�2d+1

�

e

L

2d�3

�

e

C = 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

� 6(d� 2)(2

d�2

� 1)

Z

P

(d�2)(d+1)

2

�

�

P

2

(`+ 2m)

N�2d+1

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 24(d� 2)

�

�

d

2

�

+ 1

2

�

� 6(d� 2)(2

d�2

� 1) � 4

�

�

d

2

�

+ 1

2

�

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 3 � 2

d+1

(d� 2)

�

�

d

2

�

+ 1

2

�

This proedure, applied to all loi, gives the list:

Theorem II.

e

P

N�2d+1

�

e

L

2d�2

�

e

S = 3 � 2

2d�2

(d� 1)

2d

� 2

d+1

(2d� 3)

�

�

d

2

�

+ 1

2

�

e

P

N�2d+1

�

e

L

2d�3

�

f

S` = 3 � 2

2d�3

(d� 1)

2d�2

� 2

d

�

�

d

2

�

+ 1

2

�

e

P

N�2d

�

e

L

2d�3

�

f

Sp = 2

2d�3

(d� 1)

2d�3

� 2

d�1

�

d

2

�

e

P

N�2d+1

�

e

L

2d�3

�

e

C = 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 3 � 2

d+1

(d� 2)

�

�

d

2

�

+ 1

2

�

e

P

N�2d+1

�

e

L

2d�4

�

f

C` = 2

2d�2

(2d� 3)(d� 1)

2d�4

� 2

d

�

�

d

2

�

+ 1

2

�

e

P

N�2d

�

e

L

2d�4

�

f

Cp = 2

2d�3

(d� 1)

2d�4

� 2

d�1

�

d

2

�

By the disussion in the beginning of x2, these are the intersetion numbers of the

loi in any varieties of omplete urves

e

V , so we an proeed and apply Theorem I

from x1 to onlude the omputation of the harateristi numbers. Taking again

uspidal urves as an example,

Cp

d

(2d� 5) = 2

2d�4

(d� 1)

2d�5

by Corollary 1.9, so

C`

d

(2d� 4) =

e

P

N�2d+1

�

e

L

2d�4

�

f

C`� 3(2d� 4)Cp

d

(2d� 5)

= 2

2d�2

(2d� 3)(d� 1)

2d�4

� 2

d

�

�

d

2

�

+ 1

2

�

� 3 � 2

2d�3

(d� 1)

2d�5

(d� 2)

= 2

2d�3

(d� 1)

2d�5

(4d

2

� 13d+ 12)� 2

d

�

�

d

2

�

+ 1

2

�
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by Theorem I and Theorem II; and therefore

C

d

(2d� 3) =

e

P

N�2d+1

�

e

L

2d�3

�

e

C � 3(2d� 3)C`

d

(2d� 4)

� 9

�

2d� 3

2

�

Cp

d

(2d� 5)

= 3 � 2

2d�1

(d� 1)

2d�2

(d� 2)� 3 � 2

d+1

(d� 2)

�

�

d

2

�

+ 1

2

�

� 3(2d� 3)

"

2

2d�3

(d� 1)

2d�5

(4d

2

� 13d+ 12)� 2

d

�

�

d

2

�

+ 1

2

�

#

� 9

�

2d� 3

2

�

�

2

2d�4

(d� 1)

2d�5

�

= 3 � 2

2d�4

(d� 1)

2d�5

(8d

4

� 56d

3

+ 142d

2

� 161d+ 70) + 3 � 2

d

�

�

d

2

�

+ 1

2

�

by Theorems I and II again.

This proedure gives

Theorem III.

S

d

(2d� 2) = 2

2d�2

(d� 1)

2d�3

(3d

3

� 15d

2

+ 23d� 12) + 2

d+1

�

�

d

2

�

+ 1

2

�

S`

d

(2d� 3) = 2

2d�3

(d� 1)

2d�4

(3d

2

� 8d+ 6)� 2

d

�

�

d

2

�

+ 1

2

�

Sp

d

(2d� 3) = 2

2d�3

(d� 1)

2d�3

� 2

d�1

�

d

2

�

C

d

(2d� 3) = 3 � 2

2d�4

(d� 1)

2d�5

(8d

4

� 56d

3

+ 142d

2

� 161d+ 70) + 3 � 2

d

�

�

d

2

�

+ 1

2

�

C`

d

(2d� 4) = 2

2d�3

(d� 1)

2d�5

(4d

2

� 13d+ 12)� 2

d

�

�

d

2

�

+ 1

2

�

Cp

d

(2d� 4) = 2

2d�3

(d� 1)

2d�4

� 2

d�1

�

d

2

�

as stated in the introdution.
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