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x1. Introdu
tion

Consider a general 
odimension-8 linear subspa
e of the P

14

parametrizing plane

quarti
 
urves. There is a generi
ally �nite dominant rational map from this P

6

to

the moduli spa
e of 
urves of genus 3; what is the degree of this map?

To approa
h this kind of questions, we embark in this paper on the study of the

natural a
tion of PGL(3), the group of automorphisms of P

2

, on the proje
tive spa
e

P

N

parametrizing plane 
urves of degree d (thus N = d(d+3)=2). We are 
on
erned

here with the orbits of (points 
orresponding to) smooth plane 
urves C of degree

d � 3. These orbits O

C

are 8-dimensional quasi-proje
tive (in fa
t, aÆne) varieties.

Their 
losures O

C

(in P

N

) are 8-dimensional proje
tive varieties, and one easily

understands that the answer to the above question is nothing but the degree of O

C

for the general plane quarti
 
urve C. In x2 we expli
itly 
onstru
t a resolution of

these varieties, whi
h we use in x3 to 
ompute their degree (for every smooth plane


urve C of degree d � 3). In fa
t the 
onstru
tion gives more naturally the so-
alled

predegree of the orbit 
losure O

C

: that is, the degree of O

C

multiplied by the order

of the PGL(3)-stabilizer of C. It turns out that, for a smooth 
urve C of degree d,

the predegree depends only on d and the nature of the 
exes of C. As is illustrated

in x3.6, this has ni
e 
onsequen
es related to the automorphism groups of smooth

plane 
urves.

We now des
ribe the 
ontents of this paper more pre
isely. Asso
iated with ea
h

plane 
urve C is a natural map PGL(3) ! P

N

with image O

C

; we view this as a

rational map �

C

from the P

8

of 3� 3 matri
es to P

N

. In x2 our obje
t is to resolve

this map by a sequen
e of blow-ups over P

8

, in fa
t 
onstru
ting a non-singular


ompa
ti�
ation of PGL(3) that dominates O

C

. For a smooth C, the base lo
us

of �

C

is a subvariety of P

8

isomorphi
 to P

2

� C, thus smooth; after blowing up

this support, we �nd that the support of the base lo
us of the indu
ed rational

map from the blow-up to P

N

is again smooth: and we 
hoose it as the 
enter of

a se
ond blow-up. Just 
ontinuing this pro
ess (whi
h requires a fair amount of

bookkeeping) gives a good resolution of the map. We �nd that the number of blow-

ups needed equals the maximum order of 
onta
t of C with a line: so, for example,

three blow-ups suÆ
e for the general 
urve.

Having resolved the map �

C

, we 
ompute in x3 the predegree of the 
losure of

the orbit of C as the 8-fold self-interse
tion of the pull-ba
k of the 
lass of a `point-


ondition', i.e., a hyperplane in P

N

parametrizing the 
urves passing through a given

point of P

2

. The main tool is an interse
tion formula for blow-ups from [AluÆ1℄;

to apply this formula, we extra
t from the geometry of the blow-ups detailed in x2

the relevant interse
tion-theoreti
 information, and parti
ularly the normal bundles

and interse
tion rings of the 
enters of the various blow-ups. This leads to expli
it

formulas for the predegree of O

C

in terms of the degree of C and of four numbers

en
oding the number and type of the 
exes of C. For example, the answer to the



question posed in the beginning (that is, the degree for a general quarti
) is 14;280

(d = 4 in the Corollary in x3.5).

Besides the appli
ations to automorphism groups of plane 
urves already alluded

to, and more examples given in x3.6 (e.g., we 
ompute the degree of the trise
ant

variety to the d-uple embedding of P

2

in P

N

), the 
omputation of the degree of

O

C

also has some enumerative signi�
an
e: it gives the number of translates of C

that pass through 8 points in general position. On a more global level, the degree

of the orbit 
losure of a general plane 
urve of degree d equals the degree of the

natural map from a general 
odimension-8 linear subspa
e of P

N

to the moduli

spa
e of smooth plane 
urves of degree d. A study of the boundaries of orbits and

of 1-dimensional families of orbits reveals where this map is proper: these matters

will be treated in a sequel to this paper. Also, we hope to be able to unify some

s
attered results we have 
on
erning orbits of singular 
urves; and we plan to study

the singular lo
us of orbit 
losures.

Ex
ellent pra
ti
e to be
ome familiar with the te
hniques of the paper is to ap-

ply them to the easier 
ase of the a
tion of the group PGL(2) on the spa
es P

d

parametrizing d-tuples of points on a line. Only one blow-up of the P

3

of 2 � 2

matri
es is needed in this 
ase, and one �nds the following: if the d-tuple 
onsists

of points p

1

; : : : ; p

s

, with multipli
ities m

i

(so that

P

s

i=1

m

i

= d), and one puts

m

(2)

=

P

m

2

i

, m

(3)

=

P

m

3

i

, then the predegree of its orbit-
losure equals

d

3

� 3dm

(2)

+ 2m

(3)

;

so it depends only on d and on m

(2)

, m

(3)

(one should 
ompare this result with

the degree of the orbit-
losure of a smooth plane 
urve as 
omputed in Theorem

III(B)). Details of this 
omputation, together with a dis
ussion of the boundary and

of 1-dimensional families of orbits, and multipli
ity results, 
an be found in [AluÆ-

Faber℄. We should point out that in this 
ase the degree 
an also be 
omputed by

using simple 
ombinatori
s.

Finally, to attra
t the attention of people working in representation theory, we

remark that we deal here with the orbits of general ve
tors in one of the standard

representations of one of the 
lassi
al algebrai
 groups. Can these questions be

approa
hed in a more general 
ontext? From this point of view, a whole lot of work

remains to be done.
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x2. A blow-up 
onstru
tion

In this se
tion we 
onstru
t a smooth proje
tive variety surje
ting onto the orbit


losure O

C

of a smooth plane 
urve C 2 P

N

= P

d(d+3)

2

, where d � 3. As we will

see, the 
onstru
tion depends essentially on the number and type of 
exes of C.

Fix 
oordinates (x

0

: x

1

: x

2

) of P

2

, and assume the degree-d 
urve C has equation

F (x

0

; x

1

; x

2

) = 0 :

2



Consider the proje
tive spa
e P

8

= PHom(C

3

; C

3

) of (homogeneous) 3� 3 matri
es

� = (�

ij

)

i;j=0;1;2

. So P

8

is a 
ompa
ti�
ation of PGL(3) = f� 2 P

8

: deg� 6= 0g.

To ease notations, in this se
tion we will refer to a point in P

8

and to any 3 � 3

matrix representing it by the same term; in the same vein, for � 2 P

8

we will 
all

`ker�' the linear subspa
e of P

2

on whi
h the map determined by � is not de�ned,

`im�' will be the image of this map, and the rank `rk�' of � will be 1+ dim(im�).

So:

� 2 PGL(3) () ker� = ; () im� = P

2

() rk� = 3:

The 
urve C determines a rational map


 : P

8

- - -

>

P

N

as follows: for � 2 P

8

, let 
(�) be the 
urve de�ned by the degree-d polynomial

equation F (�(x

0

; x

1

; x

2

)) = 0. So 
(�) is de�ned as long as F (�(x

0

; x

1

; x

2

)) doesn't

vanish identi
ally; i.e., pre
isely if im� 6� C.

If � 2 PGL(3), then 
(�) is the translate of C by �; therefore, 
(PGL(3)) is just

the orbit O

C

of C in P

N

for the natural a
tion of PGL(3).

As an alternative des
ription for the map 
, 
onsider for any point p 2 P

2

the

equation

F (�(p)) = 0 :

As an equation `in p', this de�nes the translate 
(�); as an equation `in �' this

de�nes the hypersurfa
e of P

8


onsisting of all � that map p to a point of C. We

will 
all these hypersurfa
es, that will play an important role in our dis
ussion,

`point-
onditions'. The rational map de�ned above is 
learly the map de�ned by

the linear system generated by the point-
onditions on P

8

.

Our task here is to resolve the indetermina
ies of the map 
 : P

8

- - -

>

P

N

, by a

sequen
e of blow-ups at smooth 
enters: we will get a smooth proje
tive variety

e

V

�lling a 
ommutative diagram

PGL(3) �

e

V

e


����! P

N










�

?

?

y










PGL(3) � P

8




- - - -

>

P

N

The image of

e

V in P

N

by e
 will then be the orbit 
losure O

C

. In x3 we will use e
 to

pull-ba
k questions about O

C

to

e

V ; the expli
it des
ription of

e

V obtained in this

se
tion will enable us to answer these questions.

The plan is to blow-up the support of the base lo
us of 
; we will get a variety

V

1

and a rational map 


1

: V

1

- - -

>

P

N

. We will then blow-up the support of the

base lo
us of 


1

, getting a variety V

2

and a rational map 


2

: V

2

- - -

>

P

N

; in the 
ase

we are 
onsidering here (i.e., the 
urve C is smooth to start with), repeating this

pro
ess yields eventually a variety

e

V as above. The support of the �rst base lo
us

is in fa
t a 
opy of P

2

� C in P

8

(see x2.1); if (k; q) 2 P

2

� C, and 


i

denotes the

map obtained at the i-th stage, we will �nd that 


i

still has indetermina
ies over

(k; q) if and only if the tangent line to C at q interse
ts C at q with multipli
ity > i.

3



So, for example, if C has only simple 
exes then the map 


3

is regular (Proposition

2.9); and in general the number of blow-ups needed equals the highest possible

multipli
ity of interse
tion of a line with C.

We should point out that (even for smooth C) this is not the only way to 
onstru
t

a variety

e

V as above: in fa
t, a di�erent sequen
e of blow-ups is the one that seems

to generalize naturally to approa
h the same problem for singular C.

x2.1. The �rst blow-up. The set of rank-1 matri
es in P

8

is the image of the

Segre embedding

�

P

2

� P

2

,! P

8

given in 
oordinates by

((k

0

: k

1

: k

2

); (q

0

: q

1

: q

2

)) 7!

0

�

k

0

q

0

k

1

q

0

k

2

q

0

k

0

q

1

k

1

q

1

k

2

q

1

k

0

q

2

k

1

q

2

k

2

q

2

1

A

where k

0

x

0

+ k

1

x

1

+ k

2

x

2

= 0 is the kernel of the matrix, and (q

0

: q

1

: q

2

) is its

image. Intrinsi
ally, this is just the map indu
ed from the map

�

C

3

� C

3

!

�

C

3


 C

3

= Hom(C

3

; C

3

)

(f; u) 7! f 
 u

We have already observed that the map 
 : P

8

- - -

>

P

N

is not de�ned at � 2 P

8

pre
isely when im� � C; if C is smooth (therefore irredu
ible), this means that the

image of � is a point of C. Therefore:

the support of the base lo
us of 
 is the image of

�

P

2

� C in P

8

via the Segre

embedding identifying

�

P

2

� P

2

with the set of rank-1 matri
es.

In parti
ular, the support of the base lo
us of 
 is smooth, sin
e C is. We let then

B =

�

P

2

�C, and we let V

1

�

1

�! P

8

be the blow-up of P

8

along B. Sin
e B\PGL(3) =

;, V

1


ontains a dense open set whi
h we 
an identify with PGL(3). Also, the linear

system generated by the proper transforms in V

1

of the point-
onditions (whi
h we

will 
all `point-
onditions in V

1

'), de�nes a rational map 


1

: V

1

- - -

>

P

N

making

the diagram

PGL(3) � V

1




1

- - - -

>

P

N










�

1

?

?

y










PGL(3) � P

8




- - - -

>

P

N


ommutative. The ex
eptional divisor E

1

in V

1

is the proje
tivized normal bundle

of B in P

8

: E

1

= P(N

B

P

8

). We will show now that the base lo
us of 


1

is supported

on a P

1

-subbundle of E

1

over B.

Let (k; q) be a point of B =

�

P

2

� C: i.e., a rank-1 � 2 P

8

with ker� = k,

im� = q 2 C. Also, let ` be the line tangent to C at q, let p be a point of P

2

, and

denote by P the point-
ondition in P

8


orresponding to p.

Lemma 2.1. (i) The tangent spa
e to B at (k; q) 
onsists of all ' 2 P

8

su
h that

im' � ` and '(k) � q.

4



(ii) P is non-singular at (k; q), and the tangent spa
e to P at (k; q) 
onsists of all

' 2 P

8

su
h that '(p) � `.

We are using our notations rather freely here. For example, in (i) � = (k; q) is in

the tangent spa
e sin
e �(k) = ; (as � is not de�ned along k).

Proof: (i) The tangent spa
e to B at (k; q) is spanned by the plane f(k

0

; q) 2

B : k

0

2

�

P

2

g = f' 2 P

8

: im' = qg and by the line f(k; q

0

) 2 B : q

0

2 `g =

f' 2 P

8

: ker' = k; im' 2 `g. Both these subspa
es of P

8

are 
ontained in

f' 2 P

8

: im' � `; '(k) � qg; sin
e this latter has 
learly dimension 3, we are

done.

(ii) For � = (k; q) and ' 2 P

8


onsider the line �+ ' t. Restri
ting the equation

for P to this line gives the polynomial equation in t

F ((�+ ' t)(p)) = 0 ; i.e.

F (�(p)) +

X

i

�

�F

�x

i

�

�(p)

'

i

(p) t+ � � � = 0

(where '

i

(p) denotes the i-th 
oordinate of '(p)).

F (�(p)) = 0 sin
e im� = q 2 C; the line is tangent to P at � when the linear

term also vanishes, i.e. if

P

i

(�F=�x

i

)

q

'

i

(p) = 0. This says pre
isely '(p) � `, as


laimed.

P is non-singular at � be
ause any ' not satisfying the 
ondition '(p) � ` gives

a line �+ ' t interse
ting P with multipli
ity 1 at �, by the above 
omputation.

With the same notations, the tangent spa
e to

�

P

2

� P

2

at � 
onsists of all '

with '(ker�) � im� (intrinsi
ally, all transformations ' indu
ing a map 
oim� �!


oker�).

The set of all ' su
h that im' � ` forms (for any �) a 5-dimensional spa
e


ontaining the tangent spa
e to B at �, and therefore determines a 2-dimensional

subspa
e of the �ber of N

B

P

8

over �. As � moves in B we get a rank-2 subbundle

of N

B

P

8

, and hen
e a P

1

-subbundle of E

1

= P(N

B

P

8

), whi
h we denote B

1

. Noti
e

that B

1

is non-singular, as a P

1

-bundle over the non-singular B.

Proposition 2.2. The base lo
us of the map 


1

: V

1

- - -

>

P

N

is supported on B

1

.

Proof: Sin
e 


1

is de�ned by the linear system generated by all point-
onditions

in V

1

, we simply need to show that the interse
tion of all point-
onditions in V

1

is

set-theoreti
ally B

1

. This assertion 
an be 
he
ked �berwise over � = (k; q) 2 B;

so all we need to observe is that the interse
tion of the tangent spa
es to all point-


onditions at � 
onsists (by Lemma 2.1 (ii)) of the ' 2 P

8

su
h that '(p) � ` for

all p; i.e., the 5-dimensional spa
e used above to de�ne B

1

.

If P

(p)

1

denotes the point-
ondition in V

1


orresponding to p 2 P

2

, we have just

shown

T

p2P

2

P

(p)

1

is supported on B

1

. The proof says a little more:

Remark 2.3.

T

p2P

2

P

(p)

1

\E

1

= B

1

(s
heme-theoreti
ally).

Indeed on ea
h �ber of E

1

(say over � 2 B) the �ber of B

1

, a linear subspa
e, is


ut out by the �bers of the P

(p)

1

\E

1

, linear subspa
es themselves; and the situation


learly globalizes as � moves in B.

5



x2.2. The se
ond blow-up. Let V

2

�

2

�! V

1

be the blow-up of V

1

along B

1

. The

new ex
eptional divisor is E

2

= P(N

B

1

V

1

); 
all `point-
onditions in V

2

' the proper

transforms of the point-
onditions of V

1

. The linear system generated by the point-


onditions de�nes a rational map 


2

: V

2

- - -

>

P

N

; again, we obtain a diagram

PGL(3) � V

2




2

- - - -

>

P

N










�

2

Æ�

1

?

?

y










PGL(3) � P

8




- - - -

>

P

N

and we pro
eed to determine the support of the base lo
us of 


2

.

Let

e

E

1

be the proper transform of E

1

in V

2

. Then

Lemma 2.4. The base lo
us of 


2

is disjoint from

e

E

1

.

Proof: This is basi
ally a reformulation of Remark 2.3:

e

E

1

is the blow-up of E

1

along B

1

, and B

1

is 
ut out s
heme-theoreti
ally by the interse
tions of E

1

with

the point-
onditions of V

1

. So the interse
tion of the point-
onditions in V

2

must

be empty along

e

E

1

, whi
h is the 
laim.

Lemma 2.4 redu
es the determination of the support of the base lo
us of 


2

to

a 
omputation in P

8

. Denote by B the s
heme-theoreti
 interse
tion of the point-


onditions in P

8

, so the support of B is B. For � 2 B, let th

�

(B) be the maximum

length of the interse
tion with B of the germ of a smooth 
urve 
entered at � and

transversal to B (the `thi
kness' of B at �, in the terminology of [AluÆ2℄).

Lemma 2.5. The base lo
us of 


2

is disjoint from (�

2

Æ �

1

)

�1

� if th

�

(B) � 2.

Proof: The base lo
us of 


2

is the interse
tion of all point-
onditions in V

2

, i.e.

the set of all dire
tions normal to B

1

and tangent to all point-
onditions in V

1

. Let

then 
(t) be a smooth 
urve germ 
entered at a point of B

1

above �, transversal to

B

1

, and tangent to all point-
onditions in V

1

. By Lemma 2.4, 
 is transversal to E

1

;

therefore �

1

(
(t)) is a smooth 
urve germ 
entered at � and transversal to B. Sin
e


(t) interse
ts all point-
onditions in V

1

with multipli
ity 2 or more, �

1

(
(t)) must

interse
t all point-
onditions in P

8

with multipli
ity 3 or more; B is the interse
tion

of all point-
onditions in P

8

, so this for
es th

�

(B) � 3.

Now the key 
omputation is

Lemma 2.6. If � = (k; q) 2 B, and ` is the line tangent to C at q, then th

�

(B)

equals the interse
tion multipli
ity of ` and C at q.

Proof: Letm be the interse
tion multipli
ity of ` and C at q. To show th

�

(B) � m,

we just have to produ
e a 
urve normal to B and interse
ting all point-
onditions

with multipli
ity at least m at �; su
h is the line � + ' t, with ' 2 P

8

su
h that

im' = ` and '(k) 6= q. Indeed, the last 
ondition guarantees normality (Lemma

2.1 (i)); and, for general p, q = �(p) and '(p) span `: so F ((�+ ' t)(p)) is just the

restri
tion of F to a parametrization of `, and it must vanish exa
tly m times at

t = 0. Noti
e that these dire
tions are pre
isely those de�ning B

1

.

To show th

�

(B) � m, let 
(t) be any smooth 
urve germ normal to B and 
entered

at �; we have to show that 
 interse
ts some point-
ondition with multipli
ity � m

at �. In an aÆne open of P

8


ontaining �, write


(t) = �+ ' t+ : : : :

6



The equation for the point-
ondition 
orresponding to p restri
ts on 
 to

F ((�+ ' t+ : : : )(p)) = F (�(p)) +

X

i

�

�F

�x

i

�

�(p)

'

i

(p) t+ � � � = 0 ;

where '

i

(p) denotes the i-th 
oordinate of '(p). The 
oeÆ
ient of t

m

in this ex-

pansion is

(*)

1

m!

X

i

1

;:::;i

m

�

�

m

F

�x

i

1

� � ��x

i

m

�

�(p)

'

i

1

(p) � � �'

i

m

(p)

+ terms involving derivatives of lower order,

and to 
on
lude the proof we have to show that for some p this term doesn't vanish.

To see this, observe that sin
e ` and C interse
t with multipli
ity exa
tly m at

q, then the form

X

i

1

;:::;i

m

�

�

m

F

�x

i

1

� � ��x

i

m

�

�(p)

x

i

1

� � �x

i

m

doesn't vanish identi
ally on `; sin
e '(ker�) 6� q (
 is normal to B), this implies

that the summand

1

m!

X

i

1

;:::;i

m

�

�

m

F

�x

i

1

� � ��x

i

m

�

�(p)

'

i

1

(p) � � �'

i

m

(p)

vanishes exa
tly d�m times along the line k = ker� (as a fun
tion of p). But sin
e

all the other summands in (*) involve derivatives of order < m, they vanish with

order > d � m along k. Therefore the order of vanishing of (*) along k must be

exa
tly d�m, and in parti
ular (*) 
an't be identi
ally 0, as we 
laimed.

We adopt the following 
onvention:

Definition. A point q of C is a `
ex of order r' if the line tangent to C at q

interse
ts C at q with multipli
ity r+ 2. We will say that q is a `
ex' of C if r � 1,

and that q is a `simple 
ex' if r = 1.

Now we observe that there is a se
tion s : B

1

�! E

2

: for �

1

2 B

1

, let � = �

1

(�

1

) 2

B, say � = (k; q), and let ` be the line tangent to C at q. By the 
onstru
tion of

B

1

, there is a matrix ' 2 P

8

with im' � ` su
h that �

1

is the interse
tion of E

1

and the proper transform of the line �+' t in V

1

; now let s(�

1

) be the interse
tion

of E

2

and the proper transform of the line �+ ' t in V

2

(it is 
lear that s(�

1

) does

not depend on the spe
i�
 ' 
hosen to represent �

1

).

Let B

2

be the image via s of the set f�

1

2 B

1

: q is a 
ex of Cg. Thus B

2


onsists of a number of smooth three-dimensional 
omponents, one for ea
h 
ex

of C: ea
h 
omponent maps isomorphi
ally to a P

1

-bundle over one of the planes

f(k; q) 2 B : q is a 
ex of Cg.

Proposition 2.7. The base lo
us of the map 


2

: V

2

- - -

>

P

N

is supported on B

2

.

Proof: Let �

1

2 B

1

, and � = (k; q) the image of �

1

in B, as above. Consider the

interse
tion of the base lo
us of 


2

with the �ber �

�1

2

(�

1

)

�

=

P

3

. By Lemma 2.5

7



and 2.6 this is empty if q is not a 
ex of C; even if q is a 
ex of C, the interse
tion

is a linear subspa
e of P

3

missing a P

2

(by Lemma 2.4), thus it 
onsists of at most

one point. Thus all we have to show is that s(�

1

) is in the base lo
us of 


2

if q is

a 
ex of C (of order r � 1). But, as observed in the proof of Lemma 2.6, the line

�+' t determining �

1

interse
ts ea
h point-
ondition in P

8

with multipli
ity at least

r+2 � 3; therefore the proper transform of �+' t is tangent to all point-
onditions

in V

1

, and it follows that s(�

1

) 2 all point-
onditions in V

2

, as needed.

x2.3. The third blow-up. Let V

3

�

3

�! V

2

be the blow-up of V

2

along B

2

. The

new ex
eptional divisor is E

3

; the `point-
onditions of V

3

' are the proper transforms

of the point-
onditions of V

2

. The linear system generated by the point-
onditions

de�nes a rational map 


3

: V

3

- - -

>

P

N

, making the diagram

PGL(3) � V

3




3

- - - -

>

P

N










�

3

Æ�

2

Æ�

1

?

?

y










PGL(3) � P

8




- - - -

>

P

N


ommute. We will show now that 


3

is a regular map if all the 
exes of C are

simple, so that in this 
ase V

3

is the variety we are looking for. For ea
h 
ex of

order > 1, we will �nd a four-dimensional 
omponent in the base lo
us of 


3

, and

more blow-ups will be needed.

Call B

2

the s
heme-theoreti
 interse
tion of the point-
onditions in V

2

, so B

2

is

supported on B

2

. For �

2

2 B

2

, de�ne the thi
kness th

�

2

(B

2

) of B

2

at �

2

as we

did above for th

�

(B). Also, let � = (k; q) be the image of �

2

in B. With these

notations:

Lemma 2.8. If q is an 
ex of order r of C, then th

�

2

(B

2

) = r.

Proof: We have to show that if 
(t) is a smooth 
urve germ in V

2

, 
entered at �

2

and transversal to B

2

, then the maximum length of the interse
tion of B

2

and 
 at

t = 0 is pre
isely r.

Suppose �rst that 
 is transversal to E

2

: then, as argued in the proof of Lemma

2.5, the image of 
 in P

8

is a smooth 
urve germ 
entered at � and transversal to

B: by Lemma 2.6, the length of the interse
tion of B and this 
urve is at most r+2;

it follows that the maximum length of the interse
tion of B

2

and su
h 
's is indeed

r (attained for example by the proper transform of �+ ' t, with ' as in the proof

of Lemma 2.6).

Thus we may assume that 
 is tangent to E

2

, and we have to show that

Claim. B

2

\ 
(t) vanishes at most r times at t = 0.

This is a lengthy but straightforward 
oordinate 
omputation, whi
h we leave to

the reader. The out
ome is that the maximum length is r, and it is attained in the

dire
tion normal to B

2

in the se
tion s(B

1

) � E

2

de�ned in x2.2.

The next results are now easy 
onsequen
es.

Proposition 2.9. If all 
exes of C are simple, then the map 


3

: V

3

- - -

>

P

N

is

regular.

8



Proof: We have to show that 


3

has no base lo
us, i.e. that the interse
tion of

all point-
onditions in V

3

is empty . But a point in the interse
tion of all point-


onditions in V

3

would determine a dire
tion normal to B

2

and tangent to all point-


onditions in V

2

; the thi
kness of B

2

would then be � 2 at some point. By Lemma

2.8, if all 
exes of C are simple (i.e., of order 1) the thi
kness of B

2

is pre
isely 1

everywhere on B

2

, so this 
an't happen.

By Proposition 2.9, we are done in the 
ase when C has only simple 
exes: V

3

is the variety

e

V we meant to 
onstru
t. We will show now that for ea
h 
ex of

C of order r > 1, the base lo
us of 


3

has a smooth four-dimensional 
onne
ted


omponent.

Let �

2

2 B

2

, mapping to � = (k; q) in B, and assume q is a 
ex of C of order

r > 1. B

2

is 3-dimensional, so the �ber �

�1

3

(�

2

) of E

3

= P(N

B

2

V

2

) over �

2

is a P

4

.

We have two spe
ial points in this P

4

, namely the point determined by the proper

transform of the line � + ' t used in x2.2 to de�ne s, and the dire
tion normal to

B

2

in the se
tion s(B

1

). We have seen in the proof of Lemma 2.8 that the length

of the interse
tion of these dire
tions with B

2

is exa
tly r; also, these points are

distin
t for all �

2

(sin
e one of them 
orresponds to a dire
tion 
ontained in E

2

,

while the other 
omes from a dire
tion transversal to E

2

), so they determine a P

1

in the �ber �

�1

3

(�

2

). As �

2

moves in the 
omponent of B

2

over q, this P

1

tra
es a

P

1

-bundle over that 
omponent, a smooth four-dimensional subvariety B

(q)

3

of E

3

.

Call B

3

the union of all these (disjoint) subvarieties of E

3

, arising from non-simple


exes of C.

Proposition 2.10. The base lo
us of the map 


3

: V

3

- - -

>

P

N

is supported on B

3

.

Proof: The argument here is somewhat analogous to the argument in the proof

of 2.7. We have to show that in ea
h �ber �

�1

3

(�

2

)

�

=

P

4

as above, the interse
tion

of all point-
onditions is supported on the spe
i�ed P

1

. Observe that ea
h point-


ondition determines a hyperplane in this P

4

, so that the interse
tion of the base

lo
us of 


3

with �

�1

3

(�

2

) must be a linear subspa
e of this P

4

. Se
ondly, for the

same reason, no dire
tions tangent to the �ber of E

2


ontaining �

2


an be tangent

to all point-
onditions in V

2

. The �bers of E

2

are three-dimensional and transversal

to B

2

, thus this shows that the base lo
us of 


3

must miss a P

2

in the �ber �

�1

3

(�

2

).

Thus, the interse
tion of the base lo
us of 


3

with �

�1

3

(�

2

) 
an 
onsist of at most a

P

1

.

Therefore, we just have to show that the two points of �

�1

3

(�

2

) used in the


onstru
tion of B

3

are 
ontained in all point-
onditions of V

3

; or, equivalently, the

two dire
tions in V

2

used to de�ne these points are tangent to all point-
onditions

in V

2

. But this is pre
isely the result of the 
omputation in the proof of Lemma 2.8:

the length of the interse
tion of these 
urves with all point-
onditions is r � 2.

x2.4 Further blow-ups. As we have seen in x2.3, ea
h non-simple 
ex q of C gives

rise to a smooth four-dimensional 
omponent of the support B

3

of the base lo
us

of 


3

; and B

3

is the union of all su
h 
omponents. The plan is still to blow-up the

support of the base-lo
us; sin
e the 
omponents are disjoint, we 
an 
on
entrate on

a spe
i�
 one: say B

(q)

3

, 
orresponding to a 
ex q of C of order r � 2.

Let V

(q)

3

be the 
omplement of all 
omponents of B

3

other than B

(q)

3

in V

3

. Let

V

(q)

4

�! V

(q)

3

be the blow-up of V

(q)

3

along B

(q)

3

; again, the proper transforms in

9



V

(q)

4

of the point-
onditions de�ne a map 


(q)

4

: V

(q)

4

- - -

>

P

N

. The base lo
us of 


(q)

4

might have 
omponents over B

(q)

3

, whose union we denote B

(q)

4

; in this 
ase, we will

let V

(q)

5

be the blow-up of V

(q)

4

along B

(q)

4

. Iterating this pro
ess we get a tower of

varieties and maps:

.

.

.

.

.

.

.

.

.

B

(q)

i+1

� V

(q)

i+1




(q)

i+1

- - - -

>

P

N

?

?

y

?

?

y










B

(q)

i

� V

(q)

i




(q)

i

- - - -

>

P

N

?

?

y

?

?

y










.

.

.

.

.

.

.

.

.

B

(q)

3

� V

(q)

3




3

- - - -

>

P

N

where, indu
tively for i � 4: V

(q)

i

�! V

(q)

i�1

is the blow-up of V

(q)

i�1

along B

(q)

i�1

; 


(q)

i

:

V

(q)

i

- - -

>

P

N

is de�ned by the proper transforms in V

(q)

i

of the point-
onditions

(i.e., the `point-
onditions in V

(q)

i

'); and (for i � 3) B

(q)

i

is the support of the

interse
tion B

(q)

i

of the point-
onditions in V

(q)

i

(i.e., the base lo
us of 


(q)

i

). Also,

for i � 3 let E

(q)

i

be the ex
eptional divisor in V

(q)

i

, and let

e

E

(q)

i

be the proper

transform of E

(q)

i

in V

(q)

i+1

.

Lemma 2.11. If q is a 
ex of order r � 2, then for 3 � i � r + 1:

(1)

i

: V

(q)

i

is non-singular

(2)

i

: the 
omposition map B

(q)

i

�! B

(q)

3

is an isomorphism

(3)

i

: the thi
kness of B

(q)

i

is r + 2� i at ea
h point of B

(q)

i

(4)

i

: B

(q)

i+1

\

e

E

(q)

i

= ;

Proof: We have (1)

3

, (2)

3

trivially, and (3)

2

by Lemma 2.8. Also, sin
e B

3

is 
ut

out by linear spa
es in ea
h �ber of E

3

, we have (4)

3

. Now we will show that:

Claim. For 4 � i � r+1, (1)

i�1

, (2)

i�1

, (3)

i�2

and (4)

i�1

imply (1)

i

, (2)

i

, (3)

i�1

,

and (4)

i

.

Also, we will show that (3)

r

, (4)

r+1

imply (3)

r+1

: this will prove the statement.

Proof of the Claim: In this proof we will drop the

(q)

notation, to ease the

exposition. V

i

is then the blow-up of V

i�1

along B

i�1

, and these are both non-

singular by (1)

i�1

, (2)

i�1

: so V

i

must also be non-singular, giving (1)

i

.

Next, 
ompute the thi
kness of B

i�1

: let 
(t) be any smooth 
urve germ transver-

sal to B

i�1

and 
entered at any �

i�1

2 B

i�1

. If 
 is tangent to E

i�1

, then by (4)

i�1

its proper transform will miss the general point-
ondition in V

i

: i.e., the length of

the interse
tion of 
(t) with B

i�1

at t = 0 is 1. If 
 is transversal to E

i�1

(and

B

i�1

), then 
 maps down to a smooth 
urve germ 


�


entered at a point of B

i�2

and transversal to B

i�2

. By (3)

i�2

, the interse
tion of 


�

with the point-
onditions

in V

i�2

has length at most r � i + 4: it follows that the interse
tion of 
 with the

10



point-
onditions in V

i�1

has length at most r� i+3 � 2 (sin
e i � r+1). Therefore

the thi
kness of B

i�1

at �

i�1

is r � i+ 3, whi
h gives (3)

i�1

.

For (2)

i

, look at the interse
tion of B

i

with the �ber of E

i

over an arbitrary �

i�1

2

B

i�1

. First we argue this 
an't be empty: indeed, th

�

i�1

(B

i�1

) = r � i+ 3 � 2, so

through every �

i�1

in B

i�1

there are dire
tions tangent to all point-
onditions in

V

i�1

. To get (2)

i

, we need to show that the �ber of B

i

over �

i�1


onsists (s
heme-

theoreti
ally) of a simple point. But this is the interse
tion of B

i

with the �ber of

E

i

(

�

=

P

3

) over �

i�1

, thus a nonempty interse
tion of linear subspa
es in P

3

missing

a hyperplane (by (4)

i�1

): pre
isely a point, as needed for (2)

i

.

Finally, we need (4)

i

. On
e more observe that B

i

interse
ts ea
h �ber of E

i

in

an interse
tion of linear spa
es: thus there are no dire
tions in the �bers of E

i

and

tangent to all point-
onditions in V

i

. This says that B

i+1

must avoid the proper

transforms in V

i+1

of all �bers of E

i

, and therefore

e

E

i

, giving (4)

i

.

This proves the Claim. The only 
ase not 
overed yet is (3)

r+1

: to obtain this

and 
on
lude the proof of 2.11, apply the same argument as above to (3)

r

, (4)

r+1

.

Lemma 2.11 des
ribes the sequen
e of blow-ups over V

3

that takes 
are of a

spe
i�
 
ex q on C of order r � 2. The 
ase i = r+1 of the statement says that the

variety V

(q)

r+1

is non-singular, and the base lo
us of the map 


(q)

r+1

: V

(q)

r+1

- - -

>

P

N

is

supported on a variety B

(q)

r+1

isomorphi
 to B

(q)

3

; moreover, for all �

r+1

2 B

(q)

r+1

, we

got th

�

r+1

(B

r+1

) = 1. Let then V

(q)

r+2

�! V

(q)

r+1

be the blow-up of V

(q)

r+1

along B

(q)

r+1

,

and denote by 


(q)

r+2

the rational map V

(q)

r+2

- - -

>

P

N

de�ned by the point-
onditions

in V

(q)

r+2

. Then V

(q)

r+2

is 
learly non-singular, and

Corollary 2.12. 


(q)

r+2

is a regular map.

Proof: Indeed, the point-
onditions in V

(q)

r+2


annot interse
t anywhere alongE

(q)

r+2

:

if they did, any interse
tion point would 
orrespond to a dire
tion normal to B

(q)

r+1

and tangent to all point-
onditions in V

(q)

r+1

, and the thi
kness of B

(q)

r+1

would be

� 2, in 
ontradi
tion with Lemma 2.11.

By this last result, the sequen
e of r� 1 blow-ups over V

3

just des
ribed resolves

the indetermina
ies of 


3

: V

3

- - -

>

P

N

over the 
omponent B

(q)

3

of B

3

. To resolve

all indetermina
ies of 


3

, we just have to apply the 
onstru
tion simultaneously to

all 
omponents of B

3

: build the sequen
e

.

.

.

.

.

.

.

.

.

B

i+1

� V

i+1




i+1

- - - -

>

P

N

?

?

y

?

?

y










B

i

� V

i




i

- - - -

>

P

N

?

?

y

?

?

y










.

.

.

.

.

.

.

.

.

B

3

� V

3




3

- - - -

>

P

N
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where, for i � 4, V

i

�! V

i�1

is the blow-up of V

i�1

along B

i�1

, 


i

: V

i

- - -

>

P

N

is

de�ned by the proper transforms in V

i

of the point-
onditions, and B

i

is the support

of the base lo
us of 


i

. By Lemma 2.11 and Corollary 2.12 all V

i

's are non-singular,

and, for ea
h 
ex q of C of order r, B

i

has either exa
tly one 
omponent mapping

isomorphi
ally to B

(q)

3

if i � r + 1, or no 
omponent over B

(q)

3

if i � r + 2.

In parti
ular, this 
onstru
tion will stop! If r is the maximum among the order

of the 
exes of C, let

e

V = V

r+2

, e
 = 


r+2

, and let � be the 
omposition of the r+2

blow-up maps; then we have shown

Theorem II. e
 :

e

V �! P

N

is a regular map, and the diagram

PGL(3) �

e

V

e


����! P

N










�

?

?

y










PGL(3) � P

8




- - - -

>

P

N


ommutes.

whi
h was our obje
tive.

x3. The degree of the orbit 
losure

In this se
tion we employ the blow-up 
onstru
tion of x2 to 
ompute the degree

of the orbit 
losure O

C

of a smooth plane 
urve C 2 P

N

= P

d(d+3)

2

with at most

�nitely many automorphisms (if d = 3, we should spe
ify `indu
ed from PGL(3)'.

This will be understood in the following). The degree will depend on just six natural

numbers: the order of the group of automorphisms of C, the degree d of C, and

four numbers en
oding information about the number and order of the 
exes of C.

In fa
t, the blow-up 
onstru
tion of x2 yields most naturally the `predegree' of O

C

:

Definition. The `predegree' of O

C

is the 8-fold self-interse
tion

e

P

8

of the 
lass

e

P

of a point-
ondition in

e

V .

Lemma 3.1. The predegree of O

C

equals the produ
t of the degree of the orbit


losure of C by the order o

C

of the group of automorphisms of C indu
ed from

PGL(3).

Proof: The map e
 is de�ned by the linear system generated by the point-
onditions

on

e

V , so

e

P is the pull-ba
k of the hyperplane 
lass from P

N

. Therefore

e

P

8


omputes

the pull-ba
k of the interse
tion of e
(

e

V ) = O

C

with 8 hyperplanes of P

N

: i.e., the

produ
t of deg(O

C

) by the degree of the map e
. This latter equals o

C

sin
e, given

a general 
(�) 2 O

C

(� 2 P

8

), the �ber of 
(�) 
onsists of all produ
ts '�, where

' �xes C.

Observe that for the general C of degree � 4, the predegree of O

C

equals the

degree of the orbit 
losure. Our aim here is to 
ompute the predegree of O

C

, by

using the 
onstru
tion of

e

V des
ribed in x2: we will show that this number depends

only on d and on the type of the 
exes of C.

Our tool will be a formula relating interse
tion degrees under blow-ups:
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Proposition 3.2. Let B

i

,! V be non-singular proje
tive varieties, and let X � V

be a 
odimension-1 subvariety, smooth along B. Let

e

V be the blow-up of V along

B, and let

e

X be the proper transform of X. Then

Z

e

V

[

e

X℄

dimV

=

Z

V

[X℄

dimV

�

Z

B

([B℄ + i

�

[X℄)

dimV


(N

B

V )

where

R

e

V

, et
. denote the degree of a 
lass in

e

V , et
., 
f. [Fulton℄, Def. 1.4. Note: we

will omit the

R

sign and the 
lass bra
kets [�℄ when this doesn't 
reate ambiguities.

Proof: This follows from [AluÆ1℄, x2, Theorem II and Lemma (2), (3).

We will 
ompute the predegree of O

C

(i.e.

e

P

8

) by applying Proposition 3.2 to

ea
h blow-up in the sequen
e giving

e

V : the missing ingredients to be obtained at

this point are the Chern 
lasses of the normal bundles of the 
enters of the blow-ups,

and 
al
ulations in their interse
tion rings.

In the following, P; P

i

;

e

P will denote resp. (the 
lass of) point-
onditions in

V; V

i

;

e

V . The embedding of B

j

in V

j

is denoted i

j

, and p

jk

will be used for the

map B

j

�! B

k

(p

j

will be p

jj�1

for short). As a general 
onvention, we will omit

pull-ba
k notations unless we fear ambiguity.

x3.1. The �rst blow-up. The 
enter of the �rst blow-up is the variety B =

�

P

2

�C;

the embedding i : B ,! P

8

is given by 
omposition with the Segre embedding:

B =

�

P

2

� C �

�

P

2

� P

2

�! P

8

:

Call h; k resp. the hyperplane 
lass in P

2

;

�

P

2

. Our 
onvention on pull-ba
ks allows us

to write k; h for the pull-ba
ks of k; h from the fa
tors to

�

P

2

�P

2

, and to B �

�

P

2

�P

2

.

Also, sin
e the Segre embedding is linear on ea
h fa
tor, the hyperplane 
lass of P

8

pulls-ba
k to k + h on B.

Lemma 3.3. If C has degree d:

(i) In B: k

3

= 0; k

2

h = d; kh

2

= 0; h

3

= 0

(ii) 
(N

B

P

8

) =

(1 + k + h)

9

(1 + dh)

(1 + k)

3

(1 + h)

3

(iii) P

8

= d

8

; and P pulls-ba
k to dk + dh.

Proof: (i) is immediate.

(ii) 
(N

B

P

8

) = 
(N

B

�

P

2

� P

2

)
(N

�

P

2

�P

2

P

8

) by the Whitney formula and the exa
t

sequen
e of normal bundles. Now, sin
e B =

�

P

2

� C, 
(N

B

�

P

2

� P

2

) = 
(N

C

P

2

) =

1 + dh. The formula for 
(N

�

P

2

�P

2

P

8

) is standard.

(iii) Re
all from x2 that if p 2 P

2

, P is the point-
ondition 
orresponding to p,

and F (x

0

: x

1

: x

2

) is the (degree-d) polynomial de�ning C, then � 2 P ()

F (�(p)) = 0: so P is de�ned by a degree-d equation in P

8

.

We have already observed that the point-
onditions are non-singular (Lemma 2.1

(ii)), so we are ready for the key 
omputation needed to apply Proposition 3.2 to

the �rst blow-up:

13



Lemma 3.4.

Z

B

(B + i

�

P )

8


(N

B

P

8

)

= d(10d� 9)(14d

2

� 33d+ 21)

Proof: By Lemma 3.3, this is

Z

�

P

2

�C

(1 + dk + dh)

8

(1 + k)

3

(1 + h)

3

(1 + k + h)

9

(1 + dh)

:

the statement follows by 
omputing the 
oeÆ
ient of k

2

h (the only term with non-

zero degree, by Lemma 3.3(i)).

x3.2. The se
ond blow-up. The 
enter of the se
ond blow-up is a P

1

-bundle B

1

over B

B

1

i

1

����! V

1

p

1

?

?

y

?

?

y

B

i

����! P

8

so 
lasses on B

1

are 
ombinations of (the pull-ba
ks of) k; h and 


1

(O

B

1

(�1)); we


all this latter e, and observe it is the pull-ba
k from V

1

of the 
lass of the ex
eptional

divisor E

1

.

Lemma 3.5.

(i) p

1

�

e

i

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

�1

�3k + 2dh� 6h

�6k

2

+ 9dkh� 27kh

24dk

2

h� 72k

2

h

i = 0

i = 1

i = 2

i = 3

i = 4

(ii) 
(N

B

1

V

1

) = (1 + e)(1 + k + dh� e)

3

(iii) i

�

1

P

1

= dk + dh� e

Proof: (iii) is immediate, as P is non-singular and pulls-ba
k on B to dk + dh

(Lemma 3.3 (iii)).

For (i) and (ii) we need to produ
e B

1

� E

1

more expli
itly as the proje
tivization

of a rank-2 subbundle of N

B

P

8

.

First de�ne for any p 2 P

2

a rank-8 subbundle H

p

of the trivial bundle B � C

9

over B: if F is a polynomial de�ning C, and (k; q) 2 B, A 2 C

9

= Hom(C

3

; C

3

),

say

((k; q); A) 2 H

p

()

2

X

i=0

�

�F

�x

i

�

q

A(p)

i

= 0

where A(p)

i

is the i-th 
oordinate of A(p). So the �ber ofH

p

over q is the hyperplane

of matri
es A 2 C

9

su
h that A(p) 2 line tangent to C at q. Noti
e that the above

equation has degree d� 1 in the 
oordinates of q: thus (denoting by C

9

the trivial

bundle B � C

9

, for short)




1

�

C

9

H

p

�

= (d� 1)h :
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Now restri
t the Euler sequen
e for P

8

to B via B

i

,! P

8

: H

p

� C

9

determines

a subbundle H

p

of i

�

TP

8

and we have the following diagram of bundles over B

(suppressing pull-ba
k as usual)

0 0 0

?

?

y

?

?

y

?

?

y

0 ����! O ����! H

p


O

P

8

(1) ����! H

p

����! 0










?

?

y

?

?

y

0 ����! O ����! C

9


O

P

8

(1) ����! TP

8

����! 0

?

?

y

?

?

y

?

?

y

0 ����!

C

9

H

p


O

P

8

(1)

TP

8

H

p

����! 0

?

?

y

?

?

y

0 0

from whi
h it follows




�

TP

8

H

p

�

= 


�

C

9

H

p


O

P

8

(1)

�

= 1 + k + dh :

Also, observe that ea
h H

p


ontains TB.

Now let p

1

; p

2

; p

3

be non-
ollinear points. A matrix has image 
ontained in a line

if and only if it sends three non-
ollinear points to that line, thus the interse
tion

H

p

1

\H

p

2

\H

p

3

is the rank-6 bundle over B =

�

P

2

� C whose �ber over (k; q) 2 B


onsists of all matri
es whose image is 
ontained in the line tangent to C at q. This

is the spa
e we used to de�ne B

1

: if we set Q = H

p

1

\H

p

2

\ H

p

3

, then

B

1

= P

�

Q

TB

�

� P(N

B

P

8

) = E

1

; and 


�

TP

8

Q

�

= (1 + k + dh)

3

:

Finally, the Euler sequen
es for E

1

and B

1

give the diagram

0 0 0

?

?

y

?

?

y

?

?

y

0 ����! O ����!

Q

TB


O

B

1

(1) ����! TB

1

jB ����! 0










?

?

y

?

?

y

0 ����! O ����! N

B

P

8


O

B

1

(1) ����! TE

1

jB ����! 0

?

?

y

?

?

y

?

?

y

0 ����!

TP

8

Q


O

B

1

(1) N

B

1

E

1

����! 0

?

?

y

?

?

y

0 0
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(here TB

1

jB, TE

1

jB denote the relative tangent bundles of B

1

, E

1

over B) from

whi
h


(N

B

1

E

1

) = 


�

TP

8

Q


O

B

1

(1)

�

= (1 + k + dh� e)

3

:

From this dis
ussion, it's easy to obtain (i) and (ii):

(i) p

1

�

X

i

(�1)

i

e

i

= 


�

Q

TB

�

�1

by [Fulton℄, Proposition 3.1 (a)

= 


�

TP

8

Q

�


(N

B

P

8

)

�1

by Whitney's formula

=

(1 + k + dh)

3

(1 + k)

3

(1 + h)

3

(1 + k + h)

9

(1 + dh)

by the above and Lemma 3.3 (ii)

= 1� 3k + 2dh� 6h+ 6k

2

� 9dkh+ 27kh+ 24dk

2

h� 72k

2

h :

(ii) 
(N

B

1

V

1

) = 
(N

E

1

V

1

)
(N

B

1

E

1

) = (1 + e)(1 + k + dh� e)

3

:

Lemma 3.5 allows us to 
ompute the term needed to apply Proposition 3.2 to the

se
ond blow-up:

Lemma 3.6.

Z

B

1

(B

1

+ i

�

1

P

1

)

8


(N

B

1

V

1

)

= d(2d� 3)(322d

2

� 1257d+ 1233)

Proof: This is

Z

B

1

(1 + dk + dh� e)

8

(1 + e)(1 + k + dh� e)

3

by Lemma 3.5 (ii) and (iii). Sin
e the degree doesn't 
hange after push-forwards,

this is also

Z

B

p

1

�

(1 + dk + dh� e)

8

(1 + e)(1 + k + dh� e)

3

:

Computing the degree-4 term in the expansion of the fra
tion and applying Lemma

3.5 (i) and the proje
tion formula, this is 
omputed as a sum of degree-3 terms in

k; h over B. Lemma 3.3 (i) is used then to obtain the stated expression.

x3.3. The third blow-up. At this point we have to start taking 
exes into

a

ount. For any q 2 C, let f`(q) be the order of q as a 
ex of C, in the sense of

x2.2: so f`(q) = 0 if q is not a 
ex of C, f`(q) = 1 if q is a simple 
ex of C, and so

on.

The 
enter B

2

i

2

,! V

2

of the third blow-up is the disjoint union

B

2

=

[

f`(q)>0

B

(q)

2

;

where ea
h B

(q)

2

maps isomorphi
ally to the restri
tion B

(q)

1

of the P

1

-bundle B

1

to

�

P

2

� fqg � B. Moreover, B

2

\

e

E

1

= ; (Lemma 2.4). As h restri
ts to 0

on ea
h

�

P

2

� fqg, the interse
tion ring of B

(q)

2

is generated by k; e (de�ned as in

x3.2). Also, we denote by e

0

the pull-ba
k of E

2

to B

(q)

2

, and by p

20

the map

B

(q)

2

�!

�

P

2

� fqg

�

=

P

2

.

16



Lemma 3.7.

(i) e

0

= e

(ii) p

20

�

e

i

=

8

>

>

>

<

>

>

>

:

0

�1

�3k

�6k

2

i = 0

i = 1

i = 2

i = 3

(iii) 
(N

B

(q)

2

V

2

) = (1 + e)(1 + k � 2e)

3

(iv) i

�

2

P

2

= dk � 2e

Proof: (ii) follows from Lemma 3.5 (i), sin
e the restri
tion of h to B

(q)

2

is 0.

The key observation for the other points is that B

(q)

2

\

e

E

1

= ;. Realize B

(q)

2

�

P(N

B

1

V

1

) as P(L), where L is a sub-line bundle of N

B

1

V

1

.

e

E

1

\E

2

is the ex
eptional

divisor of the blow-up of E

1

along B

1

, i.e. the proje
tivization of N

B

1

E

1

in N

B

1

V

1

.

That P(L) and P(N

B

1

E

1

) are disjoint says that L \ N

B

1

E

1

is the zero-se
tion of

N

B

1

V

1

, and therefore

L

�

=

N

B

1

V

1

N

B

1

E

1

= N

E

1

V

1

as bundles on B

(q)

1

.

(i) With the same notations, L is tautologi
ally the universal line bundle over

P(L); it must then equal the restri
tion to B

(q)

2

of the universal line bundle O

E

2

(�1)

�

=

N

E

2

V

2

. In other words

L

�

=

N

E

2

V

2

as bundles on B

(q)

2

.

Sin
e the proje
tion from B

(q)

2

to B

(q)

1

is an isomorphism, it follows that

e = 


1

(N

E

1

V

1

) = 


1

(L) = 


1

(N

E

2

V

2

) = e

0

:

(iii) Call E

(q)

2

the restri
tion of E

2

= P(N

B

1

V

1

) to B

(q)

1

. We have Euler sequen
es

0 ����! O ����! L
O(1) ����! TB

(q)

2

jB

(q)

1

����! 0

?

?

y

?

?

y

?

?

y

0 ����! O ����! N

B

1

V

1


O(1) ����! TE

(q)

2

jB

(q)

1

����! 0

and we just argued L

�

=

O(�1): so


(N

B

(q)

2

E

(q)

2

) = 


�

N

B

1

V

1

L




�

L

�

(restri
ted to B

(q)

2

)

=

(1 + e� e

0

)(1 + k � e� e

0

)

3

(1 + e

0

� e

0

)

= (1 + k � 2e)

3

by (i);

next, sin
e N

B

(q)

1

B

1

is 
learly trivial, we have 
(N

E

(q)

2

E

2

) = 1; so putting N

B

(q)

2

V

2

together:


(N

B

(q)

2

V

2

) = 
(N

E

2

V

2

)
(N

E

(q)

2

E

2

)
(N

B

(q)

2

E

(q)

2

) = (1 + e)(1 + k � 2e)

3

;

as 
laimed.

(iv) Sin
e P

1

is non-singular along B

1

, P

2

restri
ts to dk � e � e

0

= dk � 2e by

(i).

We are ready for the term needed to apply Proposition 3.2 to the third blow-up:
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Lemma 3.8.

Z

B

2

(B

2

+ i

�

2

P

2

)

8


(N

B

2

V

2

)

=

X

f`(q)>0

(196d

2

� 960d+ 1125)

Proof: By Lemma 3.7 (iii) and (iv), this is

X

f`(q)>0

Z

B

(q)

2

(1 + dk � 2e)

8

(1 + e)(1 + k � 2e)

3

=

X

f`(q)>0

Z

P

2

p

20

�

(1 + dk � 2e)

8

(1 + e)(1 + k � 2e)

3

(pushing forward doesn't 
hange degrees) and one 
on
ludes with the proje
tion

formula and Lemma 3.7 (ii).

x3.4. Further blow-ups. Further blow-ups are ne
essary if there are points q on

C with f`(q) > 1. We �rst atta
k the initial step.

The 
enter B

3

i

3

,! V

3

of the fourth blow-up is the disjoint union

B

3

=

[

f`(q)>1

B

(q)

3

;

where ea
h B

(q)

3

is a P

1

-bundle over B

(q)

2

. The interse
tion ring of B

(q)

3

is generated

by (the pull-ba
k of) the 
lasses k; e of B

(q)

2

, and by the 
lass of the universal line

bundle, i.e. the pull ba
k f of E

3

from V

3

. Denote by p

3

the proje
tion B

(q)

3

�! B

(q)

2

.

Lemma 3.9.

(i) p

3

�

f

i

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

�1

�e

�e

2

�e

3

i = 0

i = 1

i = 2

i = 3

i = 4

(ii) 
(N

B

(q)

3

V

3

) = (1 + f)(1 + k � 2e� f)

3

(iii) i

�

3

P

3

= dk � 2e� f

Proof: (iii) is 
lear, as P

2

is non-singular along B

(q)

3

.

For the other items, we have to produ
e B

(q)

3

� E

(q)

3

= P(N

B

(q)

2

V

2

) expli
itly as

the proje
tivization of a rank-2 subbundle of N

B

(q)

2

V

2

. Re
all that ea
h �ber of B

(q)

3

is spanned by two points 
orresponding respe
tively to (1) a dire
tion transversal to

E

2

, and (2) a dire
tion in E

2

, transversal to the �ber of E

2

. Sin
e these two points

are always distin
t, B

(q)

3

= P(L

1

� L

2

), where PL

1

, PL

2

give the two distinguished

points on ea
h �ber. Now, L

1

\ N

B

(q)

2

E

2

is the zero-se
tion in N

B

(q)

2

V

2

(the �rst

dire
tion is transversal to E

2

); so, with L as in the proof of 3.7,

L

1

�

=

N

E

2

V

2

�

=

L :
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Similarly, sin
e the se
ond dire
tion is transversal to the �ber of E

2

, whose normal

bundle in E

2

is trivial, L

2

�

=

O; and therefore we have

B

(q)

3

= P(L � O) :

(i) As in the proof of 3.5 (i),

p

3

�

X

i

(�1)

i

f

i

= 
(L �O)

�1

=

X

i

(�1)

i

e

i

and (i) follows by mat
hing dimensions.

(ii) Another pair of Euler sequen
es: on B

(q)

3

0 ����! O ����! (L� O)
O(1) ����! TB

(q)

3

jB

(q)

2

����! 0

?

?

y

?

?

y

?

?

y

0 ����! O ����! N

B

(q)

2

V

2


O(1) ����! TE

(q)

3

jB

(q)

2

����! 0

Sin
e 


1

(O(1)) = �f and E

3

is the disjoint union of the E

(q)

3

:


(N

B

(q)

3

E

3

) = 
(N

B

(q)

3

E

(q)

3

)

= 


 

N

B

(q)

2

V

2

L �O


O(1)

!

= (1 + k � 2e� f)

3

(the Chern roots of N

B

(q)

2

V

2

are e; k � 2e; k � 2e; k � 2e; 0 by Lemma 3.7 (iii)).

Finally:


(N

B

(q)

3

V

3

) = 
(N

E

3

V

3

)
(N

B

(q)

3

E

3

) = (1 + f)(1 + k � 2e� f)

3

as stated.

Lemma 3.9 des
ribes the situation at the fourth blow-up. The next blow-ups are

built on this in the sequen
e des
ribed in x2.4: the 
enter B

j

i

j

,! V

j

of the (j+1)-st

blow-up (j � 3) is the disjoint union

B

j

=

[

f`(q)>j�2

B

(q)

j

;

where ea
h B

(q)

j

maps isomorphi
ally down to B

(q)

3

, and is disjoint from

e

E

i�1

(Lemma 2.11). The interse
tion ring of ea
h B

(q)

j

�

=

B

(q)

3

is then generated by k; e; f ,

and the relations stated in Lemma 3.9 (i) hold, for the proje
tion p

j2

: B

(q)

j

�! B

(q)

2

.

Denote by f

j

the pull-ba
k of E

j

to B

(q)

j

; Lemma 3.9 
an be extended to all stages

in the sequen
e:
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Lemma 3.9 (
ontinued). For 3 � j � f`(q) + 1

(i)

j

f

j

= f

(ii)

j


(N

B

(q)

j

V

j

) = (1 + f)(1 + k � 2e� (j � 2)f)

3

(iii)

j

i

�

j

P

j

= dk � 2e� (j � 2)f

Proof: For j = 3 this is given by Lemma 3.9. So it suÆ
es to show that, for

3 � j � f`(q), (i)

j

; (ii)

j

; (iii)

j

imply (i)

j+1

; (ii)

j+1

; (iii)

j+1

. Consider then B

(q)

j+1

=

P(L

j+1

) � P(N

B

(q)

j

V

j

). So f

j+1

is the 
lass of O

B

(q)

j+1

(�1), i.e. of L

j+1

. Sin
e

B

(q)

j+1

\

e

E

j

= ; (Lemma 2.11 (iv)), we get by the usual argument

f

j+1

= 


1

(L

j+1

) = 


1

(N

E

j

V

j

) = f

j

:

and f

j

= f by (i)

j

; so f

j+1

= f , giving (i)

j+1

.

(iii)

j+1

follows then from (iii)

j

and (i)

j+1

, sin
e P

j

is non-singular along B

j

.

Finally, we use the Euler sequen
es

0 ����! O ����! L

j+1


O(1) ����! TB

(q)

j+1

jB

(q)

j

����! 0

?

?

y

?

?

y

?

?

y

0 ����! O ����! N

B

(q)

j

V

j


O(1) ����! TE

(q)

j+1

jB

(q)

j

����! 0

to get (sin
e E

j+1

is the disjoint union of the E

(q)

j+1

)


(N

B

(q)

j+1

E

j+1

) = 
(N

B

(q)

j+1

E

(q)

j+1

)

= 


 

N

B

(q)

j

V

j

L

j+1


O(1)

!

=

(1 + f � f)(1 + k � 2e� (j � 2)f � f)

3

(1 + f � f)

by (ii)

j

= (1 + k � 2e� (j � 1)f)

3

;

so


(N

B

(q)

j+1

V

j+1

) = 
(N

E

j+1

V

j+1

)
(N

B

(q)

j+1

E

j+1

) = (1 + f)(1 + k � 2e� (j � 1)f)

3

;

i.e. (ii)

j+1

.

We get then the key term to apply Proposition 3.2 to the j-th blow up in the

sequen
e. In fa
t, we 
an 
over Lemma 3.8 as well in one statement:

Lemma 3.10. For j � 2

Z

B

j

(B

j

+ i

�

j

P

j

)

8


(N

B

j

V

j

)

=

X

f`(q)>j�2

30j

4

� 96(d� 1)j

3

+ 12(d� 1)(7d� 11)j

2

+ 84(d� 1)

2

j � 7(2d� 3)(22d� 39):
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Proof: For j = 2, this is Lemma 3.8. For j � 3, by Lemma 3.9 this is

X

f`(q)>j�2

Z

B

(q)

j

(1 + dk � 2e� (j � 2)f)

8

(1 + f)(1 + k � 2e� (j � 2)f)

3

:

If p

j2

denotes the proje
tionB

(q)

j

�! B

(q)

2

, (and p

20

is the mapB

(q)

2

�!

�

P

2

�fqg

�

=

P

2

,

as in x3.3), this 
an be 
omputed as

X

f`(q)>j�2

Z

P

2

p

20

�

p

j2

�

(1 + dk � 2e� (j � 2)f)

8

(1 + f)(1 + k � 2e� (j � 2)f)

3

;

whi
h is evaluated by using the proje
tion formula, 3.9 (i) and 3.7 (ii).

x3.5. The predegree of O

C

. Computing the predegree of O

C

is now a straightfor-

ward appli
ation of Proposition 3.2 and Lemmas 3.4, 3.6 and 3.10: by Proposition

3.2

e

P

8

= P

8

�

X

j�0

Z

B

j

(B

j

� i

�

j

P

j

)

8


(N

B

j

V

j

)

(where B

0

= B, et
.), and the terms in the summation have been 
omputed in

se
tions 3.1{3.4. This gives

Proposition 3.11. The predegree of O

C

is

d

8

� d(10d� 9)(14d

2

� 33d+ 21)� d(2d� 3)(322d

2

� 1257d+ 1233)

�

X

j�2

X

q2C

f`(q)>j�2

(30j

4

� 96(d� 1)j

3

+ 12(d� 1)(7d� 11)j

2

+ 84(d� 1)

2

j � 7(2d� 3)(22d� 39)):

This result 
an be given in handier forms. For example:

Theorem III(a). The predegree of O

C

is

d(d� 2)(d

6

+ 2d

5

+ 4d

4

+ 8d

3

� 1356d

2

+ 5280d� 5319)�

X

q2C

f`(q)(f`(q)� 1)

�

6f`(q)

3

+ (75� 24d)f`(q)

2

+ (28d

2

� 240d+ 393)f`(q) + 196d

2

� 960d+ 1125

�

Proof: Invert the order of the summations in Proposition 3.11, then use the fa
t

that

P

q2C

f`(q) = 3d(d � 2) (the number of 
exes of C, 
ounted with multipli
-

ity).

Or, in another form:

Theorem III(b). Denote by f

(r)

C

the sum

P

q2C

f`(q)

r

. Then the predegree of

O

C

is

d

8

� 8d(98d

3

� 492d

2

+ 843d� 486)� (168d

2

� 720d+ 732)f

(2)

C

� (28d

2

� 216d+ 318)f

(3)

C

� (69� 24d)f

(4)

C

� 6f

(5)

C

:
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By Theorem III(B), if C is smooth then the predegree of O

C

depends only on the

degree d of C and on the four numbers f

(2)

C

, f

(3)

C

, f

(4)

C

and f

(5)

C

.

If C only has simple 
exes, then f`(q) = 0 or 1 for all q 2 C, so Theorem III(A)

gives

Corollary. If all 
exes of C are simple, then the predegree of O

C

is

d(d� 2)(d

6

+ 2d

5

+ 4d

4

+ 8d

3

� 1356d

2

+ 5280d� 5319)

= d

8

� 1372d

4

+ 7992d

3

� 15879d

2

+ 10638d :

Denoting this polynomial in d by P (d), we remark that it gives the degree of

the orbit 
losure of the general smooth plane 
urve of degree d � 4 (indeed, su
h

a 
urve C has no non-trivial automorphisms, so by Lemma 3.1 the degree of O

C

equals the predegree).

Remark. Denoting by f

k

(d) the (negative) 
ontribution to the predegree arising

from a 
ex of order k on a 
urve of degree d, we have, as an immediate 
onsequen
e

of Theorem III(A):

f

k

(d) = �k(k�1)((28k+196)d

2

�(24k

2

+240k+960)d+(6k

3

+75k

2

+393k+1125)):

E.g., f

2

(d) = �6(84d

2

�512d+753) and f

3

(d) = �6(280d

2

�1896d+3141). It is an

easy 
al
ulus exer
ise to show that f

k

(d) < 0 whenever d � k + 2 � 4. This proves

that the predegree is maximal for a 
urve with only simple 
exes.

x3.6. Examples. It is a 
onsequen
e of Lemma 3.1 that the predegree of the

orbit of a smooth plane 
urve is divisible by the order of its PGL(3)-stabilizer.

This 
uts both ways. On the one hand, ea
h 
urve with non-trivial automorphisms

provides us with a non-trivial 
he
k of the formulas above. On the other hand,

these formulas might help in determining whi
h automorphism groups of smooth

plane 
urves o

ur. We illustrate this below.

Consider, for d � 3, the Fermat 
urve x

d

+ y

d

+ z

d

. Its 3d 
exes have order d�2,

so the predegree of its orbit is P (d) + 3d � f

d�2

(d). So for ea
h d this number is

divisible by 6d

2

, the order of the stabilizer. This implies that in the ring Z[d℄ the

polynomial P (d) + 3d � f

d�2

(d) is divisible by d

2

and that the quotient polynomial

takes values divisible by 6. Indeed

P (d) + 3d � f

d�2

(d) = d

2

(d� 2)(d

5

+ 2d

4

� 26d

3

� 7d

2

+ 192d� 192) :

Dividing this by 6d

2

, we get the degree of the orbit 
losure of the Fermat 
urve,

i.e., of the trise
ant variety to the d-uple embedding of P

2

in P

N

, as mentioned in

the introdu
tion.

Here is a similar example for all d � 5: the 
urve x

d�1

y + y

d�1

z + z

d�1

x. The

points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) are 
exes of order d � 3; 
ounted with

multipli
ity, 3(d

2

� 3d+ 3) 
exes remain. The group D of diagonal matri
es with

entries (1; �; �

2�d

), where � is a (d

2

� 3d + 3)-rd root of unity, a
ts on the latter


exes without �xed points; so either there is one orbit of 
exes of order 3, or one

orbit of 
exes of order 2 and one orbit of simple 
exes, or, �nally, three orbits of
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simple 
exes. Now one uses the automorphism �: (x : y : z) 7! (y : z : x) to ex
lude

the �rst two possibilities; moreover, one veri�es that the automorphism group G

of the 
urve is the semidire
t produ
t of D and < � > (and that the simple 
exes

form one G-orbit). So the degree of the orbit 
losure is

P (d) + 3f

d�3

(d)

3(d

2

� 3d+ 3)

=

1

3

(d

6

+ 3d

5

+ 6d

4

� 21d

3

� 1354d

2

+ 5463d� 5508) :

Next we list, for some small values of d, the numbers (and their fa
torizations)

we get from the 
orollary to Theorem III:

d P (d) P (d) fa
tored

3 216 2

3

� 3

3

4 14280 2

3

� 3 � 5 � 7 � 17

5 188340 2

2

� 3 � 5 � 43 � 73

6 1119960 2

3

� 3

3

� 5 � 17 � 61

7 4508280 2

3

� 3

2

� 5 � 7 � 1789

8 14318256 2

4

� 3 � 317 � 941

9 38680740 2

2

� 3

6

� 5 � 7 � 379

10 92790480 2

4

� 3 � 5 � 59 � 6553

So for d = 3 we get 216 for the predegree of the orbit of any smooth plane 
ubi



urve. This gives the well-known numbers 12, resp. 6, resp. 4 for the degree of the

orbit 
losure of a smooth plane 
ubi
 with j 6= 0; 1728, resp. j = 1728, resp. j = 0.

Note that the group of proje
tive automorphisms of a smooth 
ubi
 
ontains the

9 translations over points of order dividing 3 as a normal subgroup. The quotient


an be identi�ed with the automorphisms that �x a given 
ex. Thus there exist

18, resp. 36, resp. 54 proje
tive automorphisms when j 6= 0; 1728, resp. j = 1728,

resp. j = 0.

For d = 4 we get 14280 for the predegree of the orbit of a smooth plane quarti


with only simple 
exes. An example of su
h a 
urve is the Klein 
urve x

3

y+y

3

z+z

3

x;

it has 168 automorphisms, so the degree of its orbit 
losure is 14280=168 = 85.

If a smooth quarti
 has n hyper
exes (i.e., 
exes of order 2), the predegree of its

orbit equals 14280�294n. E.g., the degree of the orbit 
losure of the Fermat quarti


is 112, as there are 12 hyper
exes and 96 automorphisms. As another example,


onsider the 
urve x

4

+ xy

3

+ yz

3

. It has 1 hyper
ex and 9 automorphisms, so

the degree of its orbit 
losure is (14280� 294)=9 = 1554. In fa
t, in [Vermeulen℄

there is a 
omplete list of the automorphism groups that o

ur for a quarti
 with

a given number of hyper
exes. The implied 
ongruen
e 
onditions are equivalent

to requiring that P (4) be divisible by 168 and that P (4) + 28f

2

(4) be divisible by

2016. (This follows already from the existen
e of the 3 quarti
s above.)

In the other dire
tion, these formulas give non-trivial information on the automor-

phism groups of plane 
urves. Consider smooth plane 
urves of degree d with only

simple 
exes. The least 
ommon multiple of the orders of the stabilizers of these


urves divides P (d). Now it is well-known that a smooth 
urve of positive genus

g(=

�

d�1

2

�

) 
annot have an automorphism of prime order p > 2g+1(= d

2

�3d+3).
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Using the Hurwitz formula one also ex
ludes the 
ases (d; g; p) = (4; 3; 5), (6; 10; 17)

and (10; 36; 59). Looking at the table above, we 
on
lude then that said l.
.m. di-

vides 216, 168, 60, 1080, 2520, 48, 102060, 240 respe
tively for d equal to 3, 4, 5, 6,

7, 8, 9, 10 respe
tively.

These bounds seem to be pretty good: by the above, the a
tual l.
.m. equals 108

(resp. 168) for d = 3 (resp. 4); it's not unreasonable to expe
t that the bound is sharp

for d = 5, 8 and 10 (perhaps there even exist 
urves with automorphism groups of

this order); the Valentiner sexti
 has only simple 
exes and 360 automorphisms (
f.

[BHH℄), so the bound for d = 6 is sharp if and only if there exists a sexti
 with

only simple 
exes and with 27 dividing the order of its stabilizer. Finally, for d = 9

the bound is probably not optimal.
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