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Abstrat. The harateristi numbers for the family of smooth plane ubis are omputed,

verifying results of Maillard and Zeuthen

x1 Introdution. The last few years have witnessed a revived interest in the searh

for the `harateristi numbers' of families, i.e. the numbers of elements in a family

whih are tangent to assortments of linear subspaes in general position in the ambi-

ent projetive spae. By the `ontat Theorem' of Fulton-Kleiman-MaPherson, these

numbers determine the numbers of varieties in the family that satisfy tangeny ondi-

tions to arbitrary on�gurations of projetive varieties: this justi�es the entral role of

the omputation of the harateristi numbers in the �eld of enumerative geometry.

The problem reeived muh attention in the last entury, when in fat it on-

tributed signi�antly to the development of algebrai geometry. Shubert's \Kalk�ul

der abz�alenden Geometrie" ([S℄), published in 1879, is a ompendium of the results

obtained in a span of some deades by Shubert himself, Chasles, Halphen, Zeuthen

and others. The validity of these ahievements was soon questioned: in requesting

rigorous foundations for algebrai geometry, Hilbert's 15th problem (1900) expliitly

asked for a justi�ation of the results in Shubert's book. Algebrai geometry found

its foundations in the �fties; the hallenge of justifying enumerative geometry had to

wait somewhat longer to be aepted.

By now, most of the results in the \Kalk�ul der abz�alenden Geometrie" have been

veri�ed or orreted, but the enterprise is not yet ompleted. While rih satisfatory

theories are now available for quadris (Van der Waerden, Vainsenher, Demazure, De

Conini-Proesi, Laksov, Thorup-Kleiman, Tyrell, et.) and triangles (Collino-Fulton,

Roberts-Speiser), and muh is known about twisted ubis (Kleiman-Str�mme-Xamb�o),

the families of plane urves still o�er results whih were `known' in the last entury

and annot be laimed suh now.

The ahievements of the lassi shool are here quite impressive. By 1864 Chasles

(and others) had settled onis; already in 1871 a student of his, M.S. Maillard, om-

puted in his thesis ([M℄) the harateristi numbers for many families of plane ubi

urves, inluding uspidal, nodal, and smooth ones. One year later H.G. Zeuthen pub-

lished a series of three amazingly short papers ([Z1℄) again omputing the numbers for



uspidal, nodal and smooth ubis; his results agree with Maillard's. Zeuthen �nally

published in 1873 a long analysis for plane urves of any degree ([Z2℄), giving as an

appliation the omputation of the harateristi numbers for families of plane quartis.

Apparently, noone ever tried to expliitly work out higher degree ases.

The problem for ubis or higher degree urves remained untouhed - and therefore

eventually unsettled- for at least one entury. Then Sahiero (1984) and Kleiman-

Speiser (1985) veri�ed Zeuthen and Maillard's results for uspidal and nodal plane

ubis. Kleiman and Speiser's approah repliates and advanes Zeuthen and Mail-

lard's, so it is expeted to lead eventually to the veri�ation of the numbers for the

family of smooth ubis; but that program is not ompleted yet. Also, Sterz (1983)

onstruted a variety of `omplete ubis', by a sequene of 5 blow-ups over the IP

9

of

plane ubis, giving some intersetion relations ([St℄).

Later, I independently onstruted the same variety, by the same sequene of blow-

ups. My approah was in a sense more `geometri' than Sterz's, and I was able to use

this variety to atually ompute the harateristi numbers for the family of smooth

plane ubis. The result one more agrees with Zeuthen and Maillard's.

There is an important di�erene between this approah and the lassial one. Mail-

lard and Zeuthen were omputing the numbers by relating them to harateristi num-

bers of other more speial families (e.g. uspidal and nodal ubis); here, one aims

diretly to solving the spei� problem for smooth ubis, and other families don't

enter into play. This makes the problem more aessible in a sense, but it may on the

other hand sari�e the `general piture' to the spei� result.

In this note I desribe the blow-up onstrution and the omputation of the numbers.

Full details appear, together with partial results for urves of higher degree, in my Ph.D.

thesis ([A℄), written at Brown under the supervision of W. Fulton.

Aknowledgements. I wish to thank A. Collino and W. Fulton for suggesting the

problem, and for onstant guidane and enouragement.

x2 The problem and the approah. Let n

p

; n

`

be integers, with n

p

+ n

`

= 9. The

question to be answered is:

How many smooth plane ubis ontain n

p

points and are tangent to n

`

lines in

general position?

The set of smooth plane ubis is given a struture of variety by identifying it with an

open subvariety U of the IP

9

parametrizing all plane ubis. The onditions `ontaining

a point' and `tangent to a line' determine divisors in U ; all them `point-onditions'

and `line-onditions' respetively. The question then translates into one of ardinality

of intersetion of n

p

point-onditions and n

`

line-onditions in U .

One veri�es that for general hoie of points and lines the onditions interset
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transversally in U , so that atually the ardinality of the intersetion an be omputed

as intersetion number of the divisors.

The �rst impulse is of ourse to work in the IP

9

that ompati�es U : losing the

onditions to divisors of IP

9

(one obtains hyperplanes from point-onditions, hypersur-

faes of degree 4 from line-onditions), and using B�ezout's Theorem to ompute the

intersetion numbers. This works if n

p

� 5: in this ase the intersetion of the divisors

in IP

9

is in fat ontained in U , and the result given by B�ezout's Theorem is orret.

If n

p

� 4, non-redued ubis appear in the intersetion of the divisors in IP

9

, sine

a urve ontaining a multiple omponent is `tangent' to any line and learly one an

always �nd non-redued ubis ontaining any 4 or less given points.

The onlusion is that IP

9

is not the `right' ompati�ation of the variety U of

smooth ubis for this problem, beause all line-onditions in IP

9

ontain the lous of

non-redued ubis.

The intersetion of all line-onditions is in fat a subsheme of IP

9

supported over the

lous of non-redued ubis. If we ould blow-up IP

9

along this subsheme, this would

provide us with a ompati�ation of U in whih the proper transforms of the point- and

line-onditions don't interset outside U , and taking their intersetion produt would

answer the original question. But performing suh a task requires muh non-trivial

information about the subsheme, and we are not able to proeed diretly.

What we an perform without losing ontrol of the situation is the blow-up of IP

9

along a ertain smooth subvariety of the lous of non-redued ubis. The blow-up

reates another ompati�ation of U , in whih one an again �nd the support of

the intersetion of the `line-onditions' (i.e., of the losure of the line-onditions of U).

Again, a smooth subvariety -in fat, a omponent- of this lous an be hosen as a enter

of a new blow-up, reating a new ompati�ation. The proess an be repeated, under

the heuristi priniple that at eah step, blowing-up the `largest' possible non-singular

subvariety/omponent of the intersetion of all line-onditions should somehow simplify

the situation.

In fat, 5 blow-ups do the job in this ase: a non-singular ompati�ation of U is

produed in whih 9 onditions interset only inside U . The knowledge of the Chern

lasses of the normal bundles of the enters of the blow-ups is then the essential ingre-

dient needed to ompute the intersetions and obtain the harateristi numbers. An

intersetion formula (see x4) that expliitly relates intersetions under blow-ups an be

used to reah the result.

Apparently, this step (the omputation of the Chern lasses of the normal bundles

and their utilization to get the harateristi numbers) is the only one missing in Sterz's

work.
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Alternatively, one an use the same information to ompute the Segre lass of the

sheme-theoreti intersetion of all line-onditions in IP

9

, and apply Fulton's interse-

tion formula ([F, Proposition 9.1.1℄). This Segre lass has interesting symmetries, whih

may shed some light on the internal struture of this sheme.

x3 The blow-ups. In this setion I will briey desribe the varieties obtained via the

5 blow-ups. Details are provided in [A, Chapter 2℄.

The diagram

e
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5
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?

?
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?

?
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 ���� B`
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�
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�
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2
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�bundle

?

?

y

?

?

y

?

?

y

?

?
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v

3

(

�

IP

2

) = B

0

����! IP

9

= V

0

 ���� S = S

0

 ����

�

IP

2

�

�

IP

2

ontains most of the notations that will be explained in this setion.

S

0

is the lous of non-redued ubis, B

0

= v

3

(

�

IP

2

) ,! IP

9

is the Veronese of triple

lines. B

i

will be the enters of the blow-ups, V

i

will be the blow-up B`

B

i�1

V

i�1

of V

i�1

along B

i�1

, S

i

will be the proper transforms of S

i�1

under the i-th blow-up.

L is a ertain sub-line bundle of the normal bundle N

B

3

V

3

of B

3

in V

3

. � is the

diagonal in

�

IP

2

�

�

IP

2

.

Also, E

i

will be the exeptional divisor of the i-th blow-up, and `line-onditions in

V

i

' will be the losure in V

i

of the line-onditions of U : i.e., the line-onditions in V

i

will be the proper transforms of the line-onditions in V

i�1

.

For eah blow-up I will desribe the intersetion of all line-onditions and indiate

the hoie of the enter of the next blow-up. The basi strategy is to blow-up along

the `largest possible' non-singular subvariety/omponent of the intersetion of all line-

onditions. In fat, the �rst three blow-ups desingularize the support of this interse-

tion, the last two separate the onditions.
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x3.0 The IP

9

of plane ubis. We notied already that the intersetion of all line-

onditions in IP

9

is supported on the lous S

0

of non-redued ubis. This lous is the

image of a map

�

IP

2

�

�

IP

2

�

�! IP

9

sending the pair of lines (�; �) to the ubi onsisting of the line � and of a double line

supported on �.

The map

�

IP

2

�

�

IP

2

�

�! S

0

is an isomorphism o� the diagonal � in

�

IP

2

�

�

IP

2

; therefore

S

0

is non-singular o� the (smooth) lous B

0

= �(�) of triple lines. In fat S

0

is singular

along B

0

.

B

0

is the enter of the �rst blow-up.

x3.1 The �rst blow-up. Let V

1

be the blow-up of IP

9

along B

0

, E

1

the exeptional

divisor, S

1

the proper transform of S

0

.

S

1

is isomorphi to the blow-up B`

�

�

IP

2

�

�

IP

2

of

�

IP

2

�

�

IP

2

along the diagonal (all e

the exeptional divisor of this blow-up); in partiular, it is non-singular.

The line-onditions in V

1

interset along the smooth 4-dimensional S

1

and along a

smooth 4-dimensional subvariety of E

1

.

To see this, notie that the line-ondition in IP

9

orresponding to a line ` has multi-

pliity 2 along B

0

, and tangent one at a triple line �

3

supported on the hyperplane of

ubis ontaining � \ `. Thus, the tangent ones at �

3

to all line-onditions in IP

9

in-

terset along the 5-dimensional spae of ubis ontaining �. It follows that the normal

ones to B

0

in the line-onditions interset in a rank-3 vetor subbundle of N

B

0

IP

9

, and

orrespondingly that the line-onditions in V

1

interset also along a IP

2

-bundle over B

0

ontained in E

1

.

Call this subvariety B

1

, and hoose it as the enter for the next blow-up. B

1

intersets

S

1

�

=

B`

�

�

IP

2

�

�

IP

2

along the exeptional divisor e.

x3.2 The seond blow-up. Let V

2

be the blow-up of V

1

along B

1

, E

2

the exeptional

divisor,

e

E

1

; S

2

the proper transforms of E

1

; S

1

respetively.

S

2

is the blow-up of S

1

along a divisor, thus it is isomorphi to S

1

and hene to

B`

�

�

IP

2

�

�

IP

2

.

A oordinate omputation shows that the line-onditions in V

1

are generially smooth

along B

1

, and tangent to E

1

. As a onsequene, their proper transforms interset in

E

2

along

e

E

1

\ E

2

, whih is a IP

3

-bundle over B

1

ontained in E

2

.

Therefore the line-onditions in V

2

interset along the smooth 4-dimensional S

2

and

along a smooth 7-dimensional subvariety of E

2

.

Choose this subvariety as the new enter, all it B

2

.

5



x3.3 The third blow-up. Let V

3

be the blow-up of V

2

along B

2

, E

3

the exeptional

divisor, S

3

the proper transform of S

2

.

Again, S

3

is isomorphi to B`

�

�

IP

2

�

�

IP

2

.

E

3

is a IP

1

-bundle over B

2

. In eah �ber of this bundle there are two distinguished

distint points r

1

; r

2

: namely the intersetions with the proper transforms of

e

E

1

and

E

2

. Now, over any point in B

2

away from S

3

\ E

3

, one an �nd line-onditions that

hit the �ber preisely at r

1

or preisely at r

2

. This implies that over suh points the

line-onditions in V

3

annot interset.

Thus the line-onditions in V

3

interset only along the smooth 4-dimensional S

3

.

This ompletes the `desingularization of the support' of the intersetion of all line-

onditions, and we are ready to hoose B

3

= S

3

as the next enter.

x3.4 The fourth blow-up. Let V

4

be the blow-up of V

3

along B

3

, E

4

the exeptional

divisor.

The line-onditions in V

4

meet along a subvariety of the exeptional divisor E

4

=

IP(N

B

3

V

3

). Notie that above B

3

� E

3

�

=

S

0

� B

0

, E

4

restrits to IP(N

S

0

�B

0

IP

9

).

Now, the tangent hyperplanes to the line-onditions in IP

9

at a non-redued ubi

��

2

2 S

0

� B

0

interset in the 5-dimensional spae of ubis ontaining �. It follows

that the line-onditions in V

4

meet above B

3

�E

3

along the projetivization of a line-

subbundle of IP(N

B

3

�E

3

V

3

). This fat holds on the whole of B

3

: the line-onditions in

V

4

interset along a smooth 4-dimensional subvariety of E

4

= IP(N

B

3

V

3

), whih is the

projetivization IP(L) of a line-subbundle of N

B

3

V

3

.

Choose IP(L) to be the next enter B

4

.

x3.5 The �fth blow-up. Let V

5

be the blow-up of V

4

along B

4

, E

5

the exeptional

divisor,

e

E

4

the proper transform of E

4

.

Finally, the intersetion of all line-onditions is empty in V

5

.

The veri�ation of this fat is similar to the one in 3.3. Here, eah �ber of E

5

over

a point of B

4

is a 4-dimensional projetive spae; in this IP

4

lies a distinguished IP

3

,

namely the intersetion of the �ber with

e

E

4

. Now, one an produe line-onditions

whose intersetion is disjoint from this IP

3

, and a line-ondition whih intersets the

�ber preisely along this IP

3

. Thus the intersetion of the line-onditions must be

empty.

V

5

is the ompati�ation of U we were looking for.

By slightly re�ning the arguments, one sees that the intersetion of 9 point/line-

onditions in general position in V

5

must be ontained in U . The harateristi numbers

are then the intersetion numbers of the onditions in V

5

, and one an proeed with

the atual omputation.
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x4 The numbers. The essential ingredients to obtain the harateristi numbers from

the onstrution in x3 are the Chern lasses of the normal bundles of the enters of

the blow-ups. In fat this information would be enough to determine the whole Chow

ring of the blow-ups; but we don't need that muh. We have 9 divisors in IP

9

, and we

wish to ompute the intersetion numbers of their proper transforms in some blow-up

of IP

9

, one the Chern lasses of the normal bundles of the enters are known.

This task an be aomplished diretly, by repeatedly applying the

Proposition. Let V be a non-singular n-dimensional variety, B

i

,! V a non-singular

losed subvariety of V , X

1

; : : : ; X

n

divisors on V . Let

e

V = B`

B

V , and

e

X

1

; : : :

e

X

n

the

proper transforms of X

1

; : : :X

n

. Moreover, let e

i

= e

B

X

i

be the multipliity of X

i

along B. Then

Z

e

V

e

X

1

� � �

e

X

n

=

Z

V

X

1

� � �X

n

�

Z

B

(e

1

[B℄ + i

�

[X

1

℄) � � � (e

n

[B℄ + i

�

[X

n

℄)

(N

B

V )

:

This speializes to well-known formulas when B is a point, and is itself a speialization

of a more general relation among Segre lasses (see [A, Chapter 1℄). An elementary

proof of the form stated here an be obtained by expanding

Z

V

X

1

� � �X

n

=

Z

e

V

([

e

X

1

℄ + e

1

[E℄) � � � ([

e

X

n

℄ + e

n

[E℄)

(E is the exeptional divisor) and realling that

P

i�0

[E℄

i

pushes forward to (N

B

V )

�1

by Corollary 4.2 and Proposition 4.1(a) in [F℄.

What we need to ompute the intersetion numbers of the onditions in V

5

is then,

for eah V

i

:

(1) The Chern lasses of N

B

i

V

i

;

(2) The multipliities of the onditions in V

i

along B

i

;

(3) The Chow ring of B

i

.

We will now indiate how this information an be obtained.

As for the multipliities, they are obtained along the onstrution: the line-onditions

in IP

9

have multipliity 2 along the lous B

0

of triple lines, while line-onditions in

V

i

, i > 0, are generially smooth (hene have multipliity 1) along B

i

. Also, point-

onditions never ontain B

i

, so their multipliities along the enters are always 0.

The Chow rings and the normal bundles of the enters an be obtained as follows.

B

0

is the lous of ubis onsisting of `triple lines', hene it is isomorphi to IP

2

; all

h the hyperplane lass in B

0

. In fat B

0

is the third Veronese imbedding of IP

2

in IP

9

:

it follows that

(N

B

0

IP

9

) =

(1 + 3h)

10

(1 + h)

3

:
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B

1

is a IP

2

-bundle over B

0

, thus its Chow ring is generated by the pull-bak h of

h from B

0

and the lass � of the universal line bundle O

B

1

(�1). A loser analysis of

the situation (see x3.1) reveals that B

1

is atually isomorphi to the projetivization

of the normal bundle to the lous of double lines in the IP

5

of onis. This determines

the relations between h and �, and gives substantial information about the imbedding

B

1

,! E

1

. N

B

1

V

1

is an extension of N

B

1

E

1

and N

E

1

V

1

, and one obtaines

(N

B

1

V

1

) = (1 + �)

(1 + 3h� �)

10

(1 + 2h� �)

6

:

B

2

is a IP

3

-bundle over B

1

: its Chow ring is generated by the pull-baks h; � of h; �

from B

1

and by the lass ' of O

B

2

(�1). Reall from 3.2 that B

2

=

e

E

1

\ E

2

: i.e., B

2

is the exeptional divisor in the blow-up of E

1

along B

1

, and hene it is isomorphi to

IP(N

B

1

E

1

). This observation gives relation among h; �; '. Also, B

2

=

e

E

1

\E

2

gives at

one

(N

B

2

V

2

) = (1 + ')(1 + �� '):

B

3

= S

3

is isomorphi to the blow-up B`

�

�

IP

2

�

�

IP

2

of

�

IP

2

�

�

IP

2

along the diagonal.

Its Chow ring is then generated by the pull-baks `;m of the hyperplanes from the

fators, and by the exeptional divisor e. One obtaines the relations

Z

B

3

`

2

m

2

= 1;

Z

B

3

e

2

`

2

= �1;

Z

B

3

e

2

m

2

= �1;

Z

B

3

e

3

` = �3;

Z

B

3

e

3

m = �3;

Z

B

3

e

4

= �6:

The total Chern lass of N

B

3

V

3

an be obtained as

(TV

3

)

(TB

3

)

: both (TV

3

) and (TB

3

)

an be omputed using the formula for Chern lasses of blow-ups (Theorem 15.4 in

[F℄). The result is

(N

B

3

V

3

) = 1 + 7`+ 17m� 16e+ 126m

2

+ 99`m+ 21`

2

� 315e`+ 105e

2

+ 582`m

2

+ 237`

2

m� 2517e`

2

+ 1611e

2

`� 358e

3

+ 1026`

2

m

2

+ 9174e

2

`

2

� 3912e

3

`+ 652e

4

:

Finally, B

4

= IP(L) is also isomorphi to B`

�

�

IP

2

�

�

IP

2

; the Chern lasses of N

B

4

V

4

are easily obtained from 

1

(L), whih an be omputed diretly as 3`+ 3m� 4�. One

gets

(N

B

4

V

4

) = 1� 5`+ 5m+ 18m

2

� 27`m+ 3`

2

+ 21e`� 7e

2

� 30`m

2

+ 75`

2

m

� 225e`

2

+ 135e

2

`� 30e

3

+ 75`

2

m

2

:
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One this information is obtained, 5 appliations of the proposition for eah number

n

p

of points and n

`

of lines give the orresponding harateristi number. For example,

the reader may now enjoy heking by hand that

numbers of smooth ubis through 4 points and tangent to 5 lines =

= 4

5

� 0� 0� 0� 24� 24 = 976;

or that

numbers of smooth ubis through 3 points and tangent to 6 lines =

= 4

5

� 0� 0� 0� 390� 282 = 3424:

The �nal result is the list

1 n

p

= 9; n

`

= 0

4 n

p

= 8; n

`

= 1

16 n

p

= 7; n

`

= 2

64 n

p

= 6; n

`

= 3

256 n

p

= 5; n

`

= 4

976 n

p

= 4; n

`

= 5

3424 n

p

= 3; n

`

= 6

9766 n

p

= 2; n

`

= 7

21004 n

p

= 1; n

`

= 8

33616 n

p

= 0; n

`

= 9

for the number of urves ontaining n

p

points and tangent to n

`

lines, agreeing with

Maillard and Zeuthen.

x5 Conluding remarks. It seems plausible that the same proedure worked out here

for ubis ould in priniple be exeuted to get the harateristi numbers for smooth

quartis or for higher degree plane urves, but the usefulness of suh an endeavor is

questionable at this point. Until these `blow-up onstrutions' are part of a general

theory, the ompliation of the tehnial details is bound to keep the work at the level

of brute fore omputation. Part of the onstrution (essentially the last two blow-ups)

an in fat be arried out, giving the �rst `non-trivial' harateristi number for smooth

plane urves of any degree (see [A, Chapter 3℄), but this seems to be in some sense

a speial ase. The next `non-trivial' number an still be omputed for quartis (the

results agree with Zeuthen's!), but not via a straightforward generalization from the

omputation for ubis ([A, Chapter 4℄).

Perhaps Kleiman and Speiser's approah, pointing in the diretion of Zeuthen's mon-

umental `general theory', will strike more deeply into the heart of the problem.
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