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Abstra
t. We use a sequen
e of blow-ups over the proje
tive spa
e parametrizing

plane 
urves of degree d to obtain some enumerative results 
on
erning smooth plane


urves of arbitrary degree. For d = 4, this gives a �rst modern veri�
ation of results

of H. G. Zeuthen.

x0. Introdu
tion. The k-th `
hara
teristi
 number' of the

d(d+3)

2

-dimensional

family of smooth plane 
urves of degree d, denoted N

d

(k) in the following, is the

number of su
h 
urves whi
h are tangent to k lines and 
ontain

d(d+3)

2

� k points

in general position in the plane. Elementary 
onsiderations and B�ezout's theorem

(see x1 below) show that N

d

(k) = (2d� 2)

k

for k < 2d� 1.

In this paper we 
ompute the next two 
ases as a 
losed form in terms of the

degree d; our result is

N

d

(2d� 1) = (2d� 2)

2d�1

� 2

d�3

d(d� 1)(d

2

� d+ 2)

N

d

(2d) = (2d� 2)

2d

� 2

d�4

d(d� 1)(8d

4

� 21d

3

+ 19d

2

� 20d+ 32)

Also, for d=4 we obtain the next 
hara
teristi
 number N

4

(9) = 9;840;040.

The 
hara
teristi
 numbers of a family are its basi
 enumerative information; the

problem of 
omputing them for families of plane 
urves has re
eived quite some

attention in the re
ent past. For the family of smooth plane 
urves of degree d,

the modern literature lists the numbers N

2

(k); N

3

(k) for smooth 
oni
s and 
ubi
s

([F℄, [A℄, [KS℄); for d = 4, the numbers N

4

(7) = 279;600, N

4

(8) = 1;668;096 and

N

4

(9) = 9;840;040 
omputed here verify 
lassi
 results of H.G.Zeuthen's ([Z℄, in

whi
h {among many others{ all the 
hara
teristi
 numbers N

4

(k) for smooth plane

quarti
s are obtained). For degree � 5, the results of this paper seem to be new

(we know of re
ent work of Leendert van Gastel on this problem, from a di�erent

viewpoint).

Our approa
h is in the spirit of the 
omputation of the 
hara
teristi
 numbers

for smooth plane 
ubi
s in [A℄. Let P

N

be the proje
tive spa
e parametrizing plane


urves of degree d. Call `point-
ondition' the hyperplane in P

N

formed by the


urves C 2 P

N

whi
h 
ontain a given point, and `line-
ondition' the hypersurfa
e

(of degree 2d�2) 
onsisting of the 
urves C 2 P

N

whi
h are tangent to a given line.

The interse
tion of all line-
onditions is supported on the set S � P

N


onsisting of

all 
urves C 2 P

N


ontaining a multiple 
omponent.

Let now

e

V be a smooth variety mapping birationally onto P

N

, and denote by

e

P ;

e

L

resp. the 
lasses of the proper transforms of the general point- and line- 
onditions.

In [A℄, Corollary I, we observed that if the interse
tion of the proper transforms of

all line-
onditions is empty, then N

d

(k) =

e

P

N�k

�

e

L

k

. We 
all su
h a

e

V a smooth

variety of `
omplete plane 
urves of degree d'. The 
omputation of the numbers for
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smooth plane 
ubi
s in [A℄ is a
hieved by 
onstru
ting a variety of 
omplete 
ubi
s

by a sequen
e of �ve blow-ups along smooth 
enters over P

9

.

The point is to 
onstru
t

e

V while maintaining 
ontrol of its Chow ring; this 
an be

a

omplished e.g. by blowing-up along smooth 
enters. In this sense, 
onstru
ting

a `ni
e' variety of 
omplete 
urves of degree d for d � 4 seems a formidable task.

However, for a spe
i�
 k, it suÆ
es to 
onstru
t the variety over an open set of P

N


ontaining the interse
tion of k line-
onditions and N � k point-
onditions 
hosen

generally; for example, P

N

itself 
an be used if k � 2d� 2. For the results in this

note (i.e. k � 2d), we will 
onsider an open basi
ally big enough as to 
ontain the

smooth part of the set B � P

N


onsisting of 
urves de
omposing into a `double

line' and a 
urve of degree d � 2. For all d, we will use two blow-ups to 
onstru
t

a variety

e

V satisfying our requirements for k � 2d � 1 (x3). For k = 2d, a third

blow-up (along a non-redu
ed 
enter for d > 4) would be ne
essary to 
onstru
t

the variety over the lo
us 
onsisting of 
urves de
omposing into a 
urve of degree

d � 2 and a double line tangent to the 
urve. However, this last step amounts to

the 
omputation of the 
ontribution of isolated points to the interse
tion number

of N divisors in

e

V , and it seems easier to evaluate this 
ontribution dire
tly (x4).

For d = 4 it is easy to analyze the third blow-up and 
onstru
t the variety over

the set of quarti
s 
onsisting of a smooth 
oni
 and a double line tangent to it. As

a bonus we get a third 
hara
teristi
 number in this 
ase, after evaluating dire
tly

the 
ontribution due to a double 
oni
 and to quarti
s 
onsisting of a triple of lines,

one of whi
h double, meeting at a point (x5).

The two blow-ups we give in x3 generalize to arbitrary degree the last two blow-

ups 
onsidered in [A℄ for d = 3. As in [A℄, after 
onstru
ting the variety

e

V as a

sequen
e of blow-ups, we 
ompute

e

P

N�k

�

e

L

k

, k = 2d�1; 2d, by using an interse
tion

formula involving some information about the normal bundles of the 
enters of the

blow-ups (x4).

A te
hni
al diÆ
ulty in this approa
h to the 
omputation is the determination

of the interse
tion of all proper transforms of line-
onditions at ea
h new blow-

up. Heuristi
ally speaking, more blow-ups are needed over points at whi
h the

s
heme-interse
tion of all line-
onditions is ri
her in stru
ture; an essential step in

our 
omputation is the estimation of this fa
tor. Let S be a subs
heme of a smooth

variety, and p a simple point of the support S of S. We de�ne the `thi
kness' of S

at p, th

p

(S) to be the maximum length of the interse
tion of S with a 
urve germ


entered at p and transversal to S. For S � P

N

denoting (as above) the set of non-

redu
ed 
urves, and S being the s
heme-theoreti
 interse
tion of all line-
onditions,

supported on S, we 
ompute in a Lemma (x2) the th

p

(S) for p 2 P

N


orresponding

to 
ertain plane 
urves de
omposing into a double line � and a 
urve C of degree

d� 2. We get th

p

(S) = 2 if � is not tangent to C, th

p

(S) = 3 if � is tangent to C

at a single smooth point of C. This information is used 
ru
ially to show that two

blow-ups suÆ
e for k = 2d � 1, and to gather information ne
essary to treat the


ase k = 2d.

It should be pointed out that in fa
t the 
ase k = 2d�1 amounts to the evaluation

of the 
ontribution to the interse
tion multipli
ity ofN divisors in P

N

due to isolated

2



points of interse
tion (
orresponding to singular 
urves). Given the geometry of the

situation (the tangent spa
es to the 
onditions interse
t in a d-dimensional spa
e),

the minimum that the 
ontribution of ea
h point `
ould be' is 2

d

(see the remark in

x4); our result for k = 2d� 1 shows that this is pre
isely the 
ase. For k = 2d, we

are 
omputing the total 
ontribution of a union of 
urves to the interse
tion number

of N divisors in P

N

. It would be interesting to interpret this result similarly, in

terms of simple geometry 
onsiderations, as a `minimal allowed' 
ontribution.

I would like to thank Alberto Collino, William Fulton, Joe Harris, and Sheldon

Katz for several inspiring 
onversations.

x1. Basi
 fa
ts and notations. Let V be a three-dimensional 
omplex ve
tor

spa
e, P

2

= P(V), and P

N

= P(Sym

d

�

V) the proje
tive spa
e of dimension N =

d(d+3)

2

parametrizing plane 
urves of degree d. In the following it will be 
onvenient

to assume d � 4: however, the main results hold as stated for 
oni
s and 
ubi
s as

well.

If p is a point in the plane, the 
urves that 
ontain p determine a hyperplane P

p

in P

N

: a `point-
ondition' in P

N

. Similarly, the 
urves tangent to a given line `

form a hypersurfa
e L

`

of degree 2d � 2: a `line-
ondition' in P

N

. If p

1

; : : : ; p

N�k

and `

1

; : : : ; `

k

are general points and lines, we are interested in the number N

d

(k)

of smooth 
urves 
ontaining p

1

; : : : ; p

N�k

and tangent to `

1

; : : : ; `

k

, i.e. the number

of points in the interse
tion P

p

1

\ � � � \ P

p

N�k

\ L

`

1

\ � � � \ L

`

k

that 
orrespond to

smooth 
urves.

Suppose now that

e

V is a variety mapping birationally to P

N

, su
h that the in-

terse
tion of the proper transforms in

e

V of all line-
onditions is empty. We 
all any

su
h variety a `variety of 
omplete 
urves of degree d' (su
h varieties exist: for ex-

ample, blow-up P

N

along the s
heme-theoreti
 interse
tion of the line-
onditions).

The proper transforms of the general point-
ondition P and line-
ondition L de-

termine divisor 
lasses

e

P ,

e

L in

e

V ; we observed in [A℄, Corollary I, that if

e

V is a

variety of 
omplete 
urves, then N

d

(k) =

e

P

N�k

�

e

L

k

for all k. We will use this fa
t

in a more spe
i�
 formulation.

For any variety

e

V mapping birationally to P

N

, 
all `point-
onditions' and `line-


onditions' in

e

V the proper transforms of the point- and line-
onditions in P

N

.

Denote as above by

e

P and

e

L the divisor 
lasses of the general point- and line-


ondition in

e

V .

Lemma I. Suppose

e

V

�

�! P

N

is a birational morphism su
h that, for general point-


onditions P

1

; : : : ; P

N�k

in P

N

, the interse
tion of all line-
onditions in

e

V is disjoint

from �

�1

(P

1

\ � � � \ P

N�k

). Then N

d

(k) =

e

P

N�k

�

e

L

k

.

Proof: Let L

1

; : : : ; L

k

be general line-
onditions in P

N

. If

e

P

i

;

e

L

j

are the proper

transforms of P

i

; L

j

in

e

V , the hypotheses guarantee that

e

V is isomorphi
 to a variety

of 
omplete 
urves of degree d in a neighborhood of

e

P

1

\ � � �\

e

P

N�k

\

e

L

1

\ � � �\

e

L

k

.

The 
laim follows then from the fa
t that

e

P

N�k

�

e

L

k

is a sum of lo
al 
ontributions.

The interse
tion of all line-
onditions on P

N

is supported on the set S 
onsisting of

3




urves with multiple 
omponents. The stru
ture of S is in general very 
ompli
ated;

however, for our purposes the relevant observation is quite simple:

Lemma 1.1. The highest dimensional 
omponent in S is the set B formed by 
urves


ontaining a double line. B has 
odimension 2d � 1 in P

N

; the other 
omponents

of S and the singular lo
us of B have 
odimension > 2d.

Proof: B is the image of a map

P

(d�2)(d+1)

2

�

�

P

2

i

�! P

d(d+3)

2

(C; �) 7! C�

2

where P

(d�2)(d+1)

2

= P(Sym

d�2

�

V) parametrizes plane 
urves of degree d � 2, and

�

P

2

parametrizes lines. One veri�es easily that i is an embedding at points (C; �)

with C redu
ed and not 
ontaining � (di is inje
tive if C does not 
ontain �). The

statement follows then from simple dimension 
omputations.

We will denote by C�

2

a point of B de
omposing into the degree-(d� 2) 
urve C

and the double line supported on the line �. As observed in the proof, B is smooth

at C�

2

e.g. if C is redu
ed and interse
ts � properly.

Lemma I gives immediately

Proposition 1.2. For k < 2d� 1, N

d

(k) = (2d� 2)

k

.

Proof: Indeed, for k < 2d�1 and N �k general point-
onditions P

1

; : : : ; P

N�k

in

P

N

, P

1

\ � � � \P

N�k

\S = ; (this follows from Lemma 1.1 and e.g. from Remark 1,

x1 in [A℄). We 
an then apply Lemma I to

e

V = P

N

and � =identity, and 
ompute

e

P

N�k

�

e

L

k

using B�ezout's Theorem.

For k � 2d�1, the interse
tion of N�k point-
onditions is never disjoint from S.

In se
tion 3 we will 
onstru
t a

e

V �tting the hypotheses of Lemma I for k = 2d�1,

by two su

essive blow-ups over P

N

.

Lemma 1.3. (1) For k = 2d� 1, and P

1

; : : : ; P

N�k

general point-
onditions in P

N

,

P

1

\ � � � \ P

N�k

\ S 
onsists of

d(d�1)(d

2

�d+2)

8

points C�

2

2 B, with C smooth and

� transversal to C.

(2) For k = 2d and P

1

; : : : ; P

N�k

general point-
onditions in P

N

, P

1

\� � �\P

N�k

\S


onsists of 1-dimensional subsets of B. All C�

2

2 P

1

\� � �\P

N�k

\S have C redu
ed,

and � interse
ting C properly, at smooth points of C. For �nitely many su
h C�

2

,

� will be simply tangent (at a single point) to C.

In parti
ular, for k = 2d� 1 or 2d and P

1

; : : : ; P

N�k

general point-
onditions in

P

N

, P

1

\ � � � \ P

N�k

\ S is entirely 
ontained in the smooth part of B.

Proof: Both (1) and (2) follow again easily from [A℄, Remark 1, x1 and dimension


ounts. The point is that one 
an 
hoose N � k point-
onditions su
h that P

1

\

� � � \ P

N�k

is disjoint from given subsets of P

N

of 
odimension > k. For example,

as observed in Lemma 1.1 all 
omponents of S other than B and the singular lo
us

4



of B have 
odimension > 2d: therefore, the interse
tion of N � 2d or more general

point-
onditions will miss these lo
i. As for the number

d(d�1)(d

2

�d+2)

8

, this is the

number

�

(

d

2

)

+1

2

�

of lines 
ontaining 2 out of

d(d+3)

2

�2d+1 =

�

d

2

�

+1 general points.

In view of Lemma 1.3 (1), to apply Lemma I for k = 2d� 1 we need to produ
e

a variety

e

V and a birational morphism � :

e

V �! P

N

, su
h that the interse
tion of

all line-
onditions in

e

V is disjoint from ea
h �ber �

�1

(C�

2

) with � a line and C

a redu
ed 
urve of degree d � 2 interse
ting � transversally. As we will see, two

blow-ups over P

N

will produ
e a variety

e

V satisfying this requirement.

e

V will not

suÆ
e for k = 2d: as we shall see, the interse
tion of all line-
onditions meets (at

one point) the �ber over C�

2

when � is tangent to C. However, the 
ontribution

given by this residual interse
tion 
an be 
omputed dire
tly.

x2. Thi
kness. Let S be a subs
heme of a smooth variety V , and p a simple point

of the support S of S. We de�ne the `thi
kness' of S at p, th

p

(S) to be the maximum

length of the interse
tion of S with a 
urve germ 
entered at p and transversal to S.

In this se
tion we 
ompute the `thi
kness' th

p

(S) of the s
heme-theoreti
 interse
tion

S of all line-
onditions in P

N

at points p of B. Our basi
 observation is: suppose

S is 
ut out by smooth hypersurfa
es H

1

; : : : ; H

m

, let

e

V

�

�! V be the blow-up of V

along S, and denote by

e

H

i

the proper transform of H

i

; also, denote by

e

S the s
heme


ut out by

e

H

1

; : : : ;

e

H

m

in

e

V . Then, for p 2 S,

e

S \ �

�1

(p) 6= ; () th

p

(S) � 2:

indeed, th

p

(S) � 2 pre
isely when there is a dire
tion normal to S and tangent to

all the H

i

. Also, if ~p 2

e

S \ �

�1

(p), then in good hypotheses th

~p

(

e

S) < th

p

(S) (in

our appli
ations these fa
ts will follow dire
tly from the de�nition). The result of

our 
omputation will be needed at several pla
es in x3 and x4; for the moment, the

hasty reader may want to assume Lemma II as stated below and skip the rest of

this se
tion.

We keep the notations of x1: P

N

is the proje
tive spa
e parametrizing degree-d

plane 
urves, and we 
all `line-
ondition' 
orresponding to a line ` the hypersurfa
e

of P

N


onsisting of all 
urves tangent to `. The interse
tion of all line-
onditions

in P

N

is supported on the set formed by 
urves 
ontaining a multiple 
omponent;

B denotes the subvariety of P

N


onsisting of 
urves C�

2

de
omposing in a degree-

(d� 2) 
urve and a `double line'.

Let C�

2

2 B � P

N

, with C a redu
ed 
urve of degree d� 2, and � a line

interse
ting C at �nitely many smooth points (we noti
ed in x1 that B is non-

singular at su
h a C�

2

). The interse
tion of all line-
onditions is a s
heme S one

of whose 
omponents is supported on B. Denote by th

C�

2

(S) (the `thi
kness' of S

at C�

2

) the maximum length of the interse
tion with S at C�

2

of the germ of a

smooth 
urve 
entered at C�

2

and transversal to B. Also, if X is a plane 
urve not


ontaining �, denote by X

�

the divisor 
ut by X on �. We are going to show:

Lemma II.

(1) If � is transversal to C, then th

C�

2

(S) = 2;

(2) If � is simply tangent to C at pre
isely one smooth point, then th

C�

2

(S) = 3.

(3) In 
ase (2), the thi
kness is 3 only along dire
tions C�

2

+ tK� with K a

degree-(d� 1) 
urve su
h that K

2

�

� C

�

.

5



(1), (2) and (3) deal with 
urve germs and 
ertain hypersurfa
es in the P

N

parametrizing degree-d 
urves in P

2

; we �rst analyze an analogous situation in

the P

d

parametrizing degree-d e�e
tive divisors in P

1

. In this P

d

we have the dis-


riminant hypersurfa
e �

d

: let �; � be homogeneous 
oordinates on P

1

, so that

points in P

d

are zeros of polynomials 


0

�

d

+ 


1

�

d�1

�+ � � �+ 


d

�

d

; then �

d

is given

by the vanishing of the dis
riminant �

d

(


0

; 


1

; : : : ; 


d

) of su
h polynomials.

Let 
 be a 
urve germ 
entered at a general point D in �

d

; up to linear trans-

formations, we 
an assume D is double (only) at (0 : 1), and write


(t) = 


0

(t)�

d

+ 


1

(t)�

d�1

� + � � �+ 


d

(t)�

d

;

with 


0

(0) = 


1

(0) = 0; 


2

(0) 6= 0. We are interested in 
onditions on the 


i

(t)'s

related to the order of 
onta
t (�

d

; 
)

0

of 
 and �

d

at t = 0.

Claim. (i) (�

d

; 
)

0

� 2 () 


0

0

(0) = 0;

(ii) (�

d

; 
)

0

� 3 () 


0

0

(0) = 0 and 


0

1

(0)

2

= 2


2

(0)


00

0

(0);

(iii) (�

d

; 
)

0

� 4 () 


0

0

(0) = 0; 


0

1

(0)

2

= 2


2

(0)


00

0

(0), and 2


2

(0)

2




000

0

(0) �

3


2

(0)


0

1

(0)


00

1

(0) + 6


2

(0)


0

2

(0)


00

0

(0)� 3


3

(0)


0

1

(0)


00

0

(0) = 0:

Proof: The dis
riminant hypersurfa
e is the proje
tion of the 
odimension-2 sub-

variety of P

d

� P

1

de�ned by

(

d


0

�

d�1

+(d� 1)


1

�

d�2

� + � � �+


d�1

�

d�1

=0




1

�

d�1

+ 2


2

�

d�2

� + � � �+ d


d

�

d�1

=0

:

By the proje
tion formula, (�

d

; 
)

0

is the interse
tion multipli
ity of this variety

with the germ of surfa
e (
(t); s) in P

d

� P

1

. In other words, (�

d

; 
)

0

is the inter-

se
tion multipli
ity at the origin of the 
urves

(

d


0

(t)+(d� 1)


1

(t)s+ � � �+


d�1

(t)s

d�1

=0




1

(t)+ 2


2

(t)s+ � � �+ d


d

(t)s

d�1

=0

:

in the (s; t)-plane.

Now observe that if d > 4, then the term 


d

(t)s

d�1

vanishes to order at least 4

at the origin: therefore this term is irrelevant to whether (�

d

; 
)

0

� 4. Hen
e, if

d > 4 we may assume 8t; 


d

(t) = 0: i.e., we may assume that all divisors 
(t) in P

1


ontain the point at in�nity (1 : 0). Also, sin
e 
(0) was general we may assume




d�1

(0) 6= 0.

Next, observe �

d

(


0

; : : : ; 


d�1

; 0) = 


2

d�1

�

d�1

(


0

; : : : ; 


d�1

): therefore, if d > 4

then the 
onditions for d are the same as the 
onditions for d�1. I.e., in determining

these 
onditions we may assume d = 4, and a dire
t 
omputation gives (i), (ii) and

(iii).

Now 
onsider a 
urve 
(t) in P

N

, su
h that 
(0) = C�

2

2 B (C redu
ed, �

interse
ting C at �nitely many smooth points), and transversal to B at 0. We write


(t) = P +Qt+Rt

2

+ St

3

+ : : : ;
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where P;Q;R; � � � 2 P

N

. Choosing homogeneous 
oordinates (x

0

: x

1

: x

2

) in P

2

,

we will write e.g.

P = P (x

0

: x

1

: x

2

) = P

d

(x

1

: x

2

) + P

d�1

(x

1

: x

2

)x

0

+ P

d�2

(x

1

: x

2

)x

2

0

+ : : : ;

with P

i

(x

1

: x

2

) homogeneous polynomials of degree i in x

1

; x

2

. In this notation,


(t) = (P

d

(x

1

: x

2

)+P

d�1

(x

1

: x

2

)x

0

+P

d�2

(x

1

: x

2

)x

2

0

+ : : : )

+(Q

d

(x

1

: x

2

)+Q

d�1

(x

1

: x

2

)x

0

+Q

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

+(R

d

(x

1

: x

2

)+R

d�1

(x

1

: x

2

)x

0

+R

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

2

+ : : : :

Assuming 
(0) = C�

2

imposes P

d

= P

d�1

= 0, P

d�2

6= 0.

Let ` be a general line. Up to a linear transformation of the plane, we 
an

assume ` has equation `

2

x

1

� `

1

x

2

= 0, i.e. it 
ontains the point (1 : 0 : 0). Then `

is parametrized by (� : �) via x

0

= �, x

1

= `

1

�, x

2

= `

2

�; for any t the degree-d


urve 
(t) 2 P

N


uts on ` the degree-d divisor




`

(t) = (P

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )

+(Q

d

(`

1

: `

2

)�

d

+Q

d�1

(`

1

: `

2

)�

d�1

�+Q

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

+(R

d

(`

1

: `

2

)�

d

+R

d�1

(`

1

: `

2

)�

d�1

�+R

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

2

+ : : : :

Applying part (i) of the 
laim gives:


 is tangent to the line-
ondition 
orresponding to ` at C�

2

if and only if Q

d

(`

1

:

`

2

) = 0.

Therefore, 
 is tangent to all line-
onditions if and only if Q

d

(`

1

: `

2

) = 0 for all

`

1

; `

2

: i.e. if and only if Q

d

= 0. Assume this is the 
ase, so that


(t) = (P

d�2

(x

1

: x

2

)x

2

0

+ : : : )

+(Q

d�1

(x

1

: x

2

)x

0

+Q

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

+(R

d

(x

1

: x

2

) +R

d�1

(x

1

: x

2

)x

0

+R

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

2

+ : : : :

Q

d

= 0 means that 
 is tangent to the line C�

2

+K�t, with K a degree-(d � 1)


urve. Noti
e that P

d�2

gives the divisor C

�

on �, and Q

d�1

gives K

�

. 
 is

transversal to B at C�

2

if K

�

� C

�

, i.e. if P

d�2

does not divide Q

d�1

(see x3.1,

(1)). Su
h 
 are tangent to all line-
onditions and transversal to B; therefore

th

C�

2

(S) � 2. We have to show that th

C�

2

(S) � 3 only if � is tangent to C, and

that th

C�

2

(S) � 3 if � is simply tangent to C at exa
tly one smooth point.

Restri
ting to ` as above, 
(t) 
uts now the divisor




`

(t) = (P

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )

+(Q

d�1

(`

1

: `

2

)�

d�1

�+Q

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

+(R

d

(`

1

: `

2

)�

d

+R

d�1

(`

1

: `

2

)�

d�1

�+R

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

2

+ : : :
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By the 
laim, 
 has 
onta
t with order at least 3 with the line-
ondition 
orrespond-

ing to ` if and only if

(*) Q

d�1

(`

1

: `

2

)

2

= 4R

d

(`

1

: `

2

)P

d�2

(`

1

: `

2

) ;

this 
an be realized for all `

1

; `

2

if and only if P

d�2

divides Q

2

d�1

: therefore, 


is transversal to B and meets all line-
onditions with order at least 3 at C�

2

if

and only if P

d�2

does not divide Q

d�1

but P

d�2

divides Q

2

d�1

: i.e., if and only if

K

�

� C

�

but K

2

�

� C

�

. This 
an happen only if C

�

has a `double' point, i.e. only

if � is tangent to C: Lemma II (1) and (3) follow. We note in passing that in fa
t

this 
on
lusion follows from requiring (*) for 2d�1 general lines (i.e. 2d�1 general

pairs `

1

; `

2

).

To �nish the proof of Lemma II we need to show that, in the hypotheses of (2), 



annot meet all line-
onditions with order � 4 at C�

2

. This follows from part (iii)

of the 
laim: 
 meets all line-
onditions with order at least 4 if and only if

(**) 2P

2

d�2

S

d

� P

d�2

Q

d�1

R

d�1

+ 2P

d�2

Q

d�2

R

d

� P

d�3

Q

d�1

R

d

= 0;

but the �rst three terms in this sum have multipli
ity at least 2 at the double point

in C

�

, while the last has multipli
ity 1 (P

d�3


annot vanish there sin
e we are

assuming C to be smooth at all interse
tions with �), so this 
annot o

ur.

x3. The blow-ups. The general plan is to blow-up the support S of the inter-

se
tion of all line-
onditions, then the support of the interse
tion of their proper

transforms. As remarked in x1, for our purposes we a
tually need only deal with

the 
omponent B of S 
onsisting of all 
urves 
ontaining a `double line'; and in

fa
t we are interested in analyzing the situation above non-singular points of B (
f.

Lemma 1.3 in x1).

3.1. The �rst blow-up. As above, we denote by B the subset of P

N

formed

by 
urves C�

2


ontaining a `double line'; we will �rst blow-up P

N

along B. Let

B

Æ

� B be the open subset of B 
onsisting of all C�

2

with C redu
ed and not


ontaining �; re
all that B

Æ

is smooth (
f. Lemma 1.1 in x1). Also, if � 6� X denote

by X

�

the divisor 
ut by the 
urve X on the line �. The reader will easily 
he
k

the following fa
ts:

(1) The tangent spa
e in P

N

to B at a point C�

2

2 B

Æ


onsists of all K� 2 P

N

with K

�

� C

�

or � � K.

(2) Let L be the line-
ondition in P

N


orresponding to a line `. For C�

2

2 B

Æ

and ` general, L is non-singular at C�

2

, and the tangent spa
e in P

N

to L at C�

2


onsists of all X 2 P

N

with ` \ � 2 X.

In parti
ular, it follows from (2) that the interse
tion of the tangent spa
es of all

line-
onditions at a point C�

2

2 B

Æ


onsists of all X 2 P

N

that 
ontain �: indeed,

a 
urve of degree d 
utting a line in more than d points must 
ontain it.

Let then V

1

�

1

�! P

N

be the blow-up of P

N

along B, and 
all E

1

the ex
eptional

divisor. Call `point-' and `line-
onditions' in V

1

the proper transforms of the 
ondi-

tions in P

N

. As seen in x1, we need to analyze the blow-up over B

Æ

.
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Consider �

�1

(B

Æ

), the subset of E

1

lying over B

Æ

. As B

Æ

is smooth, �

�1

(B

Æ

) �!

B

Æ

is a proje
tive bundle: spe
i�
ally, if N denotes the normal bundle to B

Æ

in P

N

,

then �

�1

(B

Æ

) = P(N ). So a point in �

�1

(B

Æ

) is a normal dire
tion to B 
entered

at a point C�

2

2 B

Æ

.

Proposition 3.1. Denote by S

1

the interse
tion of all line-
onditions in V

1

. Then

S

1

\ �

�1

(B

Æ

) is supported on a P

d�3

-bundle B

Æ

1

over B

Æ

.

Spe
i�
ally (as we will see in the proof), the immersions Sym

d�1

�

V ,! Sym

d

�

V

given by multipli
ation by linear forms determine naturally a rank-(d�2) subbundle

G of N , and B

Æ

1

= P(G).

Proof: Call B

Æ

1

the support of S

1

\�

�1

(B

Æ

). By (2) above, S

1

interse
ts the �ber

over C�

2

2 B

Æ

along normal dire
tions to B lying in the spa
e of 
urves X 2 P

N


ontaining �. These dire
tions (i.e. the �ber of B

Æ

1

over ea
h C�

2

) form a P

d�3

; in

fa
t, B

Æ

1

is the proje
tivization P(G) of a rank-(d�2) subbundle of N . To show this

(and to 
olle
t information we will use in x4.2), re
all from x1, proof of Lemma 1.1,

that B

Æ

is isomorphi
 to an open set in P

(d�2)(d+1)

2

�

�

P

2

, via (C; �) 7! C�

2

. Denote

by O

1

(1) (resp. O

2

(1)) the pull-ba
k to B

Æ

of O(1) from the �rst (resp. se
ond)

fa
tor of P

(d�2)(d+1)

2

�

�

P

2

. The Euler sequen
e giving the tangent bundle to P

N

:

0 �! O

P

N �! Sym

d

�

V 
O

P

N(1) �! TP

N

�! 0

pulls-ba
k on B

Æ

to:

0 �! O

B

Æ

�! Sym

d

�

V 
O

1

(1)
O

2

(2) �! TP

N

j

B

Æ

�! 0 :

Now, the immersion Sym

d�1

�

V 
O

2

(�1) ,! Sym

d

�

V gives an immersion

Sym

d�1

�

V 
O

1

(1)
O

2

(1) ,! Sym

d

�

V 
O

1

(1)
O

2

(2)

and determines a subbundle G

0

of TP

N

j

B

Æ


ontaining TB

Æ

, and hen
e a subbundle

G of N . The �ber of G

0

over C�

2

2 B

Æ

is the tangent spa
e at C�

2

to the set of


urves of degree d 
ontaining �, therefore (by the des
ription of B

Æ

1

given above),

B

Æ

1

= P(G).

As seen above, the �ber of B

Æ

1

over C�

2


onsists of the (d � 3)-dimensional

proje
tive spa
e of normal dire
tions to B 
entered at C�

2

and lying in the subspa
e

of P

N

formed by 
urves 
ontaining �. Call fKg

C�

2

the point in B

Æ

1

determined by

the line C�

2

+ tK� (parametrized by t), where K is a degree-(d� 1) 
urve. Noti
e

that for K to determine a point of B

Æ

1

{i.e. for C�

2

+ tK� to determine a normal

dire
tion to B{ we must have (by (1) above) K

�

� C

�

.

Now ea
h point p in C \ � determines a hyperplane in the �ber of B

Æ

1

over

C�

2

: namely the hyperplane 
onsisting of all fKg

C�

2

with p 2 K. If � and C

interse
t transversally, then � \ C 
onsists of d � 2 distin
t points, and the d � 2


orresponding hyperplanes in the �ber have empty interse
tion (be
ause K

�

� C

�

for all fKg

C�

2

2 B

Æ

1

).

If on the other hand � is tangent to C (at one point), the d�3 points of interse
tion

of � and C determine d � 3 hyperplanes in the �ber, interse
ting at exa
tly one
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point. This determines a subset T

Æ

1

� B

Æ

1

, mapping bije
tively onto the set T

Æ

=

fC�

2

2 B

Æ

s.t. � is tangent to Cg. Equivalently, T

Æ

1


onsists of all fKg

C�

2

2 B

Æ

with K

�

� C

�

, K

2

�

� C

�

. This set will play an important role in the following:

by Lemma 1.3 in x1, T

Æ

is disjoint from the interse
tion of N � 2d + 1 general

point-
onditions, and meets the interse
tion of N � 2d general point-
onditions at

�nitely many points {in fa
t, �nitely many points C�

2

with � tangent to C at a

single smooth point.

Finally, we let B

1

, T

1

be the 
losures of B

Æ

1

, T

Æ

1

in V

1

. B

1

will be the 
enter for

our se
ond blow-up.

x3.2. The se
ond blow-up. Let V

2

�

2

�! V

1

be the blow-up of V

1

along B

1

, and


all E

2

the new ex
eptional divisor. Again, we 
all `point-
onditions' and `line-


onditions' in V

2

the proper transforms of the 
onditions in V

1

.

As before, we need only analyze the part of this blow-up lying over B

Æ

. Now B

Æ

1

is non-singular, therefore �

�1

2

(B

Æ

1

) � E

2

is a proje
tive bundle over B

Æ

1

: denoting

by N

1

the normal bundle to B

Æ

1

in V

1

, we have �

�1

2

(B

Æ

1

) = P(N

1

).

Denote by E

1

the normal bundle to B

Æ

1

in E

1

: then the proper transform

e

E

1

of

E

1

in V

2

interse
ts �

�1

2

(B

Æ

1

) along P(E

1

) � P(N

1

). The �ber of

e

E

1

over a point of

B

Æ

1

is a hyperplane in the �ber of E

2

; we �rst show that the line-
onditions in V

2

don't meet anywhere along these hyperplanes:

Lemma 3.2. The interse
tion S

2

of all line-
onditions in V

2

is disjoint from

�

�1

2

(B

Æ

1

) \

e

E

1

.

Proof: Consider the Euler sequen
es for B

Æ

1

= P(G) and �

�1

1

(B

Æ

) = P(N ) (nota-

tions as in the proof of Proposition 3.1):

0 ����! O

P(G)

����! G 
O

P(G)

(1) ����! T

P(G)jB

Æ

����! 0

?

?

y

?

?

y

?

?

y

0 ����! O

P(N )

����! N 
O

P(N )

(1) ����! T

P(N )jB

Æ

����! 0

These give (with some abuse of notations):

E

1

= T

P(N )jB

Æ

=T

P(G)jB

Æ

= (N=G)
O

P(G)

(1) :

Re
alling how G was obtained:

E

1

= (T

P

N=G

0

)
O

P(G)

(1) =

Sym

d

�

V

Sym

d�1

�

V 
O

2

(�1)


O

1

(1)
O

2

(2)
O

P(G)

(1):

Let p 2 B

Æ

1

, mapping to C�

2

2 B

Æ

. The �ber of P(E

1

) over p 
an be identi�ed

with P(Sym

d

�

V=Sym

d�1

�

V), where the in
lusion Sym

d�1

�

V ,! Sym

d

�

V is given by

multipli
ation by �.

Therefore

e

E

1

\ �

�1

2

(p) 
an be identi�ed with the spa
e of d-tuples of points over

�; via this identi�
ation, the line-
ondition L

`

in V

2


orresponding to a general line
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` 
ontains a point in

e

E

1

\�

�1

2

(p) if and only if ` goes through a point of the d-tuple.

The assertion of the lemma follows from this.

Sin
e the general line-
ondition in V

1

is non-singular at a point p 2 B

Æ

1

, then

�

�1

2

(p) \ S

2

is (set-theoreti
ally) the interse
tion of hyperplanes of the �ber of

P(N

1

), and is therefore itself a linear spa
e. By Lemma 3.2, this interse
tion misses

a hyperplane in ea
h �ber, hen
e it 
onsists of at most one point over ea
h p 2 B

Æ

1

.

Lemma 3.2 is the main tool in our next observation. Re
all that, over B

Æ

, the

interse
tion S

1

of all line-
onditions in V

1

is supported on B

Æ

1

. Also, we found a

`spe
ial' subvariety T

Æ

1

� B

Æ

1

: denoting (as in x1) by fKg

C�

2

points of B

Æ

1

, T

Æ

1


onsists of all fKg

C�

2

2 B

Æ

1

with K

2

�

� C

�

.

Lemma 3.3. (1) th

p

(S

1

) = 1 if p 2 B

Æ

1

� T

Æ

1

(2) th

p

(S

1

) � 2 if p 2 T

Æ

1

, and th

p

(S

1

) = 2 if p = fKg

C�

2

, with � tangent to C

at a single smooth point.

Proof: The thi
kness of S

1

is (va
uously) at least 1 at all p 2 B

Æ

1

; we have to show

it is at most 1 outside of T

Æ

1

, and pre
isely 2 on T

Æ

1

if p maps to C�

2

, � tangent to

C at a single smooth point.

Let p = fKg

C�

2

2 B

Æ

1

. It follows from Lemma 3.2 that a non-singular 
urve

in V

1

tangent to E

1

and transversal to B

1

at p must be transversal to the general

line-
ondition in V

1

at p: indeed, otherwise the line-
onditions in V

2

would interse
t

along

e

E

1

\ E

2

above p. Therefore, germs 
entered at p, transversal to B

1

and

tangent to E

1

interse
t S

1

with multipli
ity 1 at p. On the other hand, 
onsider a

smooth 
urve germ 
(t) 
entered at fKg

C�

2

, transversal to B

1

and E

1

; su
h a 


maps down to a smooth 
urve germ in P

N

, 
entered at C�

2

and transversal to B.

Then (1) and (2) follow from Lemma II, by e.g. [F℄, Theorem 12.4 (a).

The last lemma is the main ingredient for:

Proposition 3.4. S

2

\ �

�1

2

(B

Æ

1

) is supported on a variety B

Æ

2

mapping bije
tively

onto T

Æ

1

.

Proof: By Lemma 3.2, the interse
tion 
onsists of at most one point in ea
h �ber

over p 2 B

Æ

1

. Now the line-
onditions in V

2


annot interse
t above points p 2 B

Æ

1

where th

p

(S

1

) < 2, and they must interse
t above p if th

p

(S

1

) � 2 (sin
e the line-


onditions in V

1

share a normal dire
tion to B

Æ

1

in this 
ase). The statement then

follows from the 
omputation of th

p

(S

1

) in Lemma 3.3.

In fa
t B

Æ

2

is a se
tion of E

2

over T

Æ

1

; we set

e

V = V

2

, and let B

2

be the 
losure of

B

Æ

2

in

e

V . In x4, we will use

e

V to 
ompute N

d

(2d� 1) and N

d

(2d).

We summarize the results of this se
tion in:

Lemma III. Let

e

P ,

e

L denote the 
lasses of the general point- and line-
ondition in

e

V . Then

(1) N

d

(2d� 1) =

e

P

N�2d+1

�

e

L

2d�1

, and

(2) N

d

(2d) =

e

P

N�2d

�

e

L

2d

� 
, where 
 is a (positive) 
ontribution due to �nitely

many points in B

Æ

2

.

Proof: This follows from Lemma I, Lemma 1.3 and Proposition 3.4: the interse
-

tion of N � 2d + 1 general point-
onditions in

e

V is disjoint from S

2

(giving (1)),

11



while the interse
tion of N � 2d general point-
onditions in

e

V meets S

2

at �nitely

many points of B

Æ

2

, so that

e

P

N�2d

�

e

L

2d

is the sum of N

d

(2d) and of a positive


ontribution 
.

x4. Two 
hara
teristi
 numbers for all degrees. In this se
tion we apply the


onstru
tion in x3 to prove:

Theorem IV. Denote by N

d

(k) the number of smooth plane 
urves of degree d

tangent to k lines and 
ontaining

d(d+3)

2

� k points in general position. Then

(1) N

d

(2d� 1) = (2d� 2)

2d�1

� 2

d�3

d(d� 1)(d

2

� d+ 2)

(2) N

d

(2d) = (2d� 2)

2d

� 2

d�4

d(d� 1)(8d

4

� 21d

3

+ 19d

2

� 20d+ 32)

Remark. By B�ezout's theorem in P

N

and Lemma 1.3, (2d � 2)

2d�1

must be the

sum of N

d

(2d � 1) and of a 
ontribution given by the

d(d�1)(d

2

�d+2)

8

non-redu
ed


urves C�

2

2 P

N

that 
ontain N � 2d + 1 general points p

1

; : : : ; p

N�2d+1

. Sup-

pose C�

2

is one su
h 
urve, and that p

1

; p

2

2 �, p

3

; : : : ; p

N�2d+1

2 C. Now d

general line-
onditions and the point-
onditions 
orresponding to p

3

; : : : ; p

N�2d+1

interse
t in a (d + 1)-dimensional variety Z � P

N

non-singular at C�

2

: their tan-

gent hyperplanes interse
t on the (d + 1)-dimensional subspa
e formed by 
urves


ontaining p

3

; : : : ; p

N�2d+1

and d points q

1

; : : : ; q

d

on � (
f. (2) in x3.1). A general

line-
ondition will now interse
t Z in a divisor non-singular at C�

2

, whose tan-

gent spa
e at C�

2

is the set of all 
urves 
ontaining � (a degree-d 
urve 
ontaining

d + 1 aligned points must 
ontain the line through them); the same holds for the

point-
onditions 
orresponding to p

1

and p

2

.

Therefore the 
ontribution of C�

2

to the total interse
tion number is the 
ontri-

bution of an isolated point of interse
tion of d+ 1 non-singular divisors all tangent

to one another in a (d + 1)-dimensional variety. Su
h a 
ontribution is at least 2

d

([F℄, Example 8.2.2). Part (1) of Theorem IV implies that the 
ontribution of ea
h

non-redu
ed 
urve in this enumerative problem is pre
isely 2

d

.

The rest of this se
tion is devoted to deriving Theorem IV from Lemma III. We

will use a formula relating interse
tions under blow-ups (see [A℄, x2 for the proof of

a statement implying this):

Proposition. Let V be a smooth n-dimensional variety, B

i

,! V a smooth subva-

riety, X

1

; : : : ; X

n

divisor of V , and denote by e

B

X the multipli
ity of X along B.

Let

e

V

�

�! V be the blow-up of V along B, and

e

X

1

; : : : ;

e

X

n

the proper transforms

of X

1

; : : : ; X

n

. Then

�

�

(

e

X

1

� : : : �

e

X

n

) = X

1

� : : : �X

n

+ i

�

�

Q

j

(e

B

X

j

[B℄ + i

�

[X

j

℄)


(N

B

V )

�

0

in A

0

(

T

j

X

j

) (here f�g

0

denotes the 0-dimensional 
omponent of the 
lass �).

If e.g. B and V are 
omplete, we 
an use this formula to 
ompare the degrees

of the interse
tion of X

1

; : : : ; X

n

in V and of

e

X

1

; : : : ;

e

X

n

in

e

V . We want to apply

12



this formula to the two blow-ups examined in x3; a little extra 
are has to be

taken sin
e we studied the blow-ups only over 
ertain (open) subsets of the varieties

involved. Suppose then that V is a 
omplete n-dimensional variety, i : B �! V ,

� :

e

V �! V are proper maps, X

1

; : : : ; X

n

are divisors in V , and

e

X

1

; : : : ;

e

X

n

are

divisors in

e

V . Suppose that there exists a non-singular dense open set V

Æ

� V su
h

that B

Æ

= i

�1

(V

Æ

) ,! V

Æ

is an embedding of smooth varieties, �

�1

(V

Æ

) �! V

Æ

is

the blow-up of V

Æ

along B

Æ

,

e

X

j

\ �

�1

(V

Æ

) are the proper transforms of X

j

\ V

Æ

,

and X

1

\ � � � \ X

n

� V

Æ

,

e

X

1

\ � � � \

e

X

n

� �

�1

(V

Æ

) (i.e., the situation pulls-ba
k

to that of the proposition when restri
ting to V

Æ

). Then, denoting by e

B

X the

multipli
ity of X along B

Æ

:

(*)

Z

e

V

e

X

1

� : : : �

e

X

n

=

Z

V

X

1

� : : : �X

n

+

Z

B

Q

j

(e

B

X

j

[B℄ + i

�

[X

j

℄)


(N

B

V )

;

where 
(N

B

V ) is any 
lass that pulls-ba
k to 
(N

B

Æ

V

Æ

) on B

Æ

.

This follows from the proposition above, sin
e all the terms are sums of lo
al


ontributions. As the reader will 
he
k, Lemma 1.3 and our 
hoi
es guarantee that

the hypotheses are satis�ed at both stages of our 
omputation.

x4.1. The �rst blow-up. We apply (*) to

P

(d�2)(d+1)

2

�

�

P

2

i

�! P

d(d+3)

2

(C; �) 7! C�

2

(
f. the proof of Lemma 1.1). Keeping the notation as in x3.1, the image of this

map is B; we analyzed the blow-up over B

Æ

, whi
h is identi�ed via this map with

the subset B

Æ

� P

(d�2)(d+1)

2

�

�

P

2


onsisting of the pairs (C; �) with C redu
ed and

not 
ontaining �. If P;L denote resp. point- and line-
onditions in P

N

, then e

B

P =

0; e

B

L = 1 (line-
onditions are generi
ally smooth along B, 
f. (2) in x3.1). The

Chow ring of P

(d�2)(d+1)

2

�

�

P

2

is generated by the pull-ba
ks `;m of the hyperplane


lasses from the fa
tors, with the relations `

i

m

j

= 0 if i >

(d�2)(d+1)

2

or j > 2, and

R

`

(d�2)(d+1)

2

m

2

= 1. Also, i

�

P = `+ 2m; i

�

L = (2d� 2)`+ (4d� 4)m. Denoting by

P

1

; L

1

the 
lasses of the line-
onditions in V

1

, B�ezout's Theorem and (*) give (for

k � 2d):

P

N�k

1

� L

k

1

= (2d� 2)

k

�

Z

(`+ 2m)

N�k

(1 + (2d� 2)`+ (4d� 4)m)

k


(N

B

P

N

)

;

where 
(N

B

P

N

) is any 
lass on P

(d�2)(d+1)

2

�

�

P

2

restri
ting to 
(N

B

Æ

P

N

) on B

Æ

.

Su
h is

i

�


(TP

N

)


(TP

(d�2)(d+1)

2

�

�

P

2

)

=

(1 + `+ 2m)

(

d+2

2

)

(1 + `)

(

d

2

)

(1 +m)

3

= 1 + (2d+ 1)`+ (d

2

+ 3d� 1)m+ : : :
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(only these terms are relevant for k � 2d). Therefore:

P

N�2d+1

1

� L

2d�1

1

= (2d� 2)

2d�1

�

Z

(`+ 2m)

(

d

2

)

+1

= (2d� 2)

2d�1

� 4

�

�

d

2

�

+ 1

2

�

; and

P

N�2d

1

� L

2d

1

= (2d� 2)

2d

�

Z

(`+ 2m)

(

d

2

)

(1 + 2d(2d� 2)`+ 2d(4d� 4)m)

1 + (2d+ 1)`+ (d

2

+ 3d� 1)m

= (2d� 2)

2d

�

Z

(`+ 2m)

(

d

2

)

((4d

2

� 6d� 1)`+ (7d

2

� 11d+ 1)m):

x4.2. The se
ond blow-up; N

d

(2d � 1). The 
enter of the se
ond blow-up is

the 
losure of B

Æ

1

, a P

d�3

-bundle over B

Æ

. More pre
isely (see proposition 3.1)

the immersion Sym

d�1

�

V 
 O

1

(1) 
 O

2

(1) ,! Sym

d

�

V 
 O

1

(1) 
 O

2

(2) determines

a subbundle G

0

of TP

N

j

B

Æ


ontaining TB

Æ

, therefore a subbundle G of the normal

bundle N to B

Æ

in P

N

, and B

Æ

1

= P(G).

Now 
all P(G) any 
ompa
ti�
ation of P(G) �lling the diagram

P(G)

i

1

����! V

1

p

?

?

y

?

?

y

�

1

P

(d�2)(d+1)

2

�

�

P

2

i

����! P

d(d+3)

2

with i

1

proper, identifying i

�1

1

B

Æ

1

with B

Æ

1

, and B

Æ

1

p

�! B

Æ

with the bundle P(G)

de�ned above. Also, denote by `;m the pull-ba
ks of `;m via p, and by e the 
lass

of the `universal line bundle' (i.e., the pull-ba
k of the 
lass of E

1

via i

1

).

Lemma 4.1.

p

�

e

j

=

8

>

>

<

>

>

:

0; j < d� 3

(�1)

d�1

; j = d� 3

(�1)

d�1

(d`+

d

2

+ d� 6

2

m); j = d� 2

:

Proof: The 
odimension of the 
omplement of B

Æ

in P

(d�2)(d+1)

2

�

�

P

2

is � 2, so

it's enough to observe that, over B

Æ

,

P

j

e

j

pushes forward to the Segre 
lass s(G)

of G: tra
ing the de�nition of G

s(G) =


(TP

(d�2)(d+1)

2

�

�

P

2

)


(G

0

)

=


(TP

(d�2)(d+1)

2

)
(

�

P

2

)


(Sym

d�1

�

V 
O

1

(1)
O

2

(1))

=

(1 + `)

(

d

2

)

(1 +m)

3

(1 + `+m)

(

d+1

2

)

= 1� d`�

d

2

+ d� 6

2

m+ : : : :
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Denote (as above) by P

1

; L

1

the 
lasses of the point- and line-
onditions in V

1

,

and by

e

P;

e

L the 
lasses of the 
onditions in

e

V = V

2

. We have e

B

1

P

1

= 0, e

B

1

L

1

= 1,

and i

�

1

P

1

= `+2m, i

�

1

L

1

= (2d� 2)`+ (4d� 4)m� e, i

�

1

E

1

= e. Therefore (*) gives

(for k � 2d)

e

P

N�k

�

e

L

k

= P

N�k

1

� L

k

1

�

Z

(`+ 2m)

N�k

(1 + (2d� 2)`+ (4d� 4)m� e)

k


(N

B

1

V

1

)

;

where 
(N

B

1

V

1

) is any 
lass on P(G) restri
ting to 
(N

B

Æ

1

V

1

) on B

Æ

1

. Now N

B

Æ

1

V

1

is

an extension of N

E

1

V

1

and E

1

= N

B

Æ

1

E

1

(notations as in x3.2); we 
omputed E

1

in

the proof of Lemma 3.2, getting

E

1

=

Sym

d

�

V

Sym

d�1

�

V 
O

2

(�1)


O

1

(1)
O

2

(2)
O

P(G)

(1) :

Putting all together, we 
an set


(N

B

1

V

1

) = (1 + e)

(1 + `+ 2m� e)

(

d+2

2

)

(1 + `+m� e)

(

d+1

2

)

:

Hen
e in order to apply (*) we have to evaluate the degree on P (G) of

(`+ 2m)

N�k

(1 + (2d� 2)`+ (4d� 4)m� e)

k

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

for k = 2d� 1; 2d, or equivalently the degree on P

(d�2)(d+1)

2

�

�

P

2

of

(`+ 2m)

N�k

p

�

(1 + (2d� 2)`+ (4d� 4)m� e)

k

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

:

For k = 2d� 1, the only relevant term 
omes from the push-forward via p of the

term of degree d� 3 in

(1 + (2d� 2)`+ (4d� 4)m� e)

2d�1

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

:

By the proje
tion formula and Lemma 4.1, the only degree-(d � 3) monomial in

`;m; e with non-zero push-forward is e

d�3

; thus the only relevant term is the term

of degree d� 3 in

(1� e)

2d�1

(1� e)

(

d+1

2

)

(1 + e)(1� e)

(

d+2

2

)

=

(1� e)

d�2

1 + e

:
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This is (�1)

d�1

(2

d�2

� 1)e

d�3

, therefore Lemma 4.1 gives

Z

(`+ 2m)

(

d

2

)

+1

p

�

(1 + (2d� 2)`+ (4d� 4)m� e)

2d�1

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

=

Z

(2

d�2

� 1)(`+ 2m)

(

d

2

)

+1

= 4(2

d�2

� 1)

�

�

d

2

�

+ 1

2

�

:

This 
omputation, Lemma III at the end of x3, and P

N�2d+1

1

� L

2d�1

1

as obtained

in x4.1 yield

N

d

(2d� 1) =

e

P

N�2d+1

�

e

L

2d�1

= (2d� 2)

2d�1

� 2

d

�

�

d

2

�

+ 1

2

�

;

whi
h is part (1) of Theorem IV.

For k = 2d, the 
omputation runs along the same lines. We need now the term

of degree d� 2 in

(1 + (2d� 2)`+ (4d� 4)m� e)

2d

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

;

by Lemma 4.1, the only monomials with non-zero push-forward are e

d�2

, `e

d�3

,

me

d�3

. As above, the 
oeÆ
ient of e

d�2

in the expression is the 
oeÆ
ient of e

d�2

in

(1� e)

2d

(1� e)

(

d+1

2

)

(1 + e)(1� e)

(

d+2

2

)

=

(1� e)

d�1

1 + e

;

i.e. (�1)

d

(2

d�1

� 1). One 
omputes similarly the 
oeÆ
ients of `e

d�3

;me

d�3

; the

result is that the only relevant term in the expression above is

(�1)

d

�

(2

d�1

� 1)e

d�2

� (2

d�2

� 1)[(4d

2

� 5d� 1)`+

15d

2

� 21d� 4

2

m℄

�

:

Applying Lemma 4.1, the push-forward of this 
lass is

� (2

d�1

�1)(d`+

d

2

+ d� 6

2

m)+ (2

d�2

�1)[(4d

2

�5d�1)`+

15d

2

� 21d� 4

2

m℄)

= 2

d�3

((4d

2

�9d�1)`+(13d

2

�23d+8)m)+

4d

2

� 7d� 1

2

`+(7d

2

�11d+1)m;

hen
e applying (*) and the 
omputation of P

N�2d

1

� L

2d

1

in x4.1 yields

e

P

N�2d

�

e

L

2d

:

(2d� 2)

2d

�

Z

(`+ 2m)

(

d

2

)

(2

d�2

(4d

2

� 7d� 1)`+ 2

d�3

(13d

2

� 23d+ 8)m)

= (2d� 2)

2d

� 4

�

�

d

2

�

2

�

2

d�2

(4d

2

� 7d� 1)� 2

�

d

2

�

2

d�3

(13d

2

� 23d+ 8); or
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e

P

N�2d

�

e

L

2d

= (2d� 2)

2d

� 2

d�3

d(d� 1)(4d

4

� 11d

3

+ 11d

2

� 8d+ 10):

In the next se
tion, we use this result and Lemma III(2) from x3 to 
on
lude the

proof of Theorem IV.

x4.3 N

d

(2d). By Lemma III(2) and the result in x4.2, in

e

V

e

P

N�2d

�

e

L

2d

= (2d� 2)

2d

� 2

d�3

d(d� 1)(4d

4

� 11d

3

+ 11d

2

� 8d+ 10)

is the sum of N

d

(2d) and of a 
ontribution due to �nitely many points of B

2

.

More pre
isely, let

e

P

1

; : : : ;

e

P

N�2d

be general point-
onditions, and let

e

L

1

; : : : ;

e

L

2d

be general line-
onditions in

e

V = V

2

(notations as in x3). We have shown that

e

P

1

\ � � � \

e

P

N�2d

\

e

L

1

\ � � � \

e

L

2d


onsists of N

d

(2d) `good' points 
orresponding

to smooth degree-d 
urves satisfying the 
onditions, and �nitely many `bad' points

in B

Æ

2

. The interse
tion is transversal at the good points; we have to evaluate the


ontribution to

e

P

1

� : : : �

e

P

N�2d

�

e

L

1

� : : : �

e

L

2d

due to points of B

Æ

2

. Our plan is the

following: we will basi
ally produ
e expli
itly the (s
heme-theoreti
) 
omponent B

2

of

e

L

1

\ � � � \

e

L

2d

that 
ontains the `bad' points. B

2

is supported on B

2

; in fa
t, we

will 
ompute [B

2

℄ = 2

d�4

[B

2

℄. Then

e

P

N�2d

�

e

L

2d

= N

d

(2d) + 2

d�4

e

P

1

� : : : �

e

P

N�2d

�B

2

;

part (2) of Theorem IV follows by 
omparing this to the other expression for

e

P

N�2d

�

e

L

2d

obtained above.

Let p 2 B

2

be a `bad' point; by Lemma 1.3 (2), p maps down to a C�

2

2 B

with � tangent to C at a single smooth point. We have to express B

2

expli
itly in

a neighborhood of p; the main observation to this e�e
t is:

Claim 1. S

2

� E

2

s
heme-theoreti
ally in a neighborhood of p.

Proof: Choose lo
al parameters ff

1

; : : : ; f

N

g for V

2

at p, su
h that f

1

= 0 is a

lo
al equation for E

2

at p, and ff

2

; : : : ; f

N

g are lo
al parameters for E

2

at p. Let

I

p

(S

2

) be the ideal of S

2

in the lo
al ring for V

2

at p; sin
e S

2

is 
ontained in E

2

set-theoreti
ally in a neighborhood of p, then there is a least integer k su
h that

f

k

1

2 I

p

(S

2

). We 
laim that k = 1. Indeed, 
onsider the 
urve germ 
 de�ned by


(t) = (t; 0; : : : ; 0). 
 is transversal to E

2

, and interse
ts S

2

with multipli
ity k at

0; therefore it maps down to a 
urve germ �

2

(
) transversal to B

1

at �

2

(p) 2 T

Æ

1

,

interse
ting S

1

with multipli
ity k + 1 at 0. But the thi
kness of S

1

at �

2

(p) is 2

(Lemma 3.3), so this implies k = 1.

In fa
t this argument shows that, for 2d general line-
onditions

e

L

1

; : : : ;

e

L

2d

, we

have

e

L

1

\ � � � \

e

L

2d

� E

2

s
heme-theoreti
ally in a neighborhood of p (the in
lusion

holds set-theoreti
ally, and the thi
kness of the interse
tion of the 
orresponding

line-
onditions in V

1

is 2 by the same argument used in x3.3); sin
e there are only

�nitely many `bad' points, for a general 
hoi
e of lines the in
lusion will hold in a

neighborhood of all of them.

By the pre
eding observation,

e

L

1

\ � � � \

e

L

2d

= (

e

L

1

\ E

2

) \ � � � \ (

e

L

2d

\ E

2

) in a

neighborhood of the bad points. This is useful be
ause the

e

L

j

\E

2


an be des
ribed
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very expli
itly by mean of the 
omputation in x2. Indeed, 
onsider C�

2

2 B

Æ

� P

N

,

and fKg

C�

2

2 B

Æ

1

(re
all fKg

C�

2

denotes the point in E

1

determined by the

line C�

2

+ K�t, with K a degree-(d � 1) 
urve su
h that K

�

� C

�

). We 
an

assume � is the line x

0

= 0; also, 
hoose forms P and Q of degree d in x

0

; x

1

; x

2

representing C�

2

and K�. If R

d

is a form of degree d in x

1

; x

2

, look at the 
urve


 : 
(t) = P +Qt+R

d

t

2

. Any su
h 
urve determines a point in the �ber of E

2

over

fKg

C�

2

; this identi�es the (d+1)-dimensional ve
tor spa
e of forms over � with the


omplement of

e

E

1

in the �ber of E

2

over fKg

C�

2

(the identi�
ation depends on the


hoi
e of P and Q). We have seen in x2 (equation (*)) that 
 has 
onta
t of order

at least 3 with the line-
ondition 
orresponding to a (general) line ` interse
ting �

at (0 : `

1

: `

2

) if and only if (notations as in x2)

(**) Q

d�1

(`

1

; `

2

)

2

� 4R

d

(`

1

; `

2

)P

d�2

(`

1

; `

2

) = 0:

Let

e

L

`

be the line-
ondition in V

2


orresponding to `. In terms of the above iden-

ti�
ation, (**) gives the equation of the �ber of

e

L

`

\ E

2

over fKg

C�

2

(given P , Q

and `

1

; `

2

there is an aÆne hyperplane of R

d

's satisfying (**)). Imposing that (**)

be true for all `

1

; `

2

gives the equation

Q

2

d�1

� 4R

d

P

d�2

= 0

for the s
heme-theoreti
 interse
tion of the line-
onditions in

e

V over fKg

C�

2

. As

fKg

C�

2

moves in B

Æ

1

, this de�nes a s
heme B

Æ

2

supported on B

Æ

2

.

Claim 2. In a neighborhood of the bad points, B

Æ

2

is the part of S

2

supported on

B

Æ

2

.

Proof: It suÆ
es to observe that S

2

is the interse
tion

T

`

e

L

`

of all line-
onditions

in

e

V , while by de�nition B

Æ

2

is the interse
tion of S

2

with E

2

near bad points . As

seen above, S

2

� E

2

near su
h points, and the assertion follows.

In fa
t, this argument shows B

Æ

2


oin
ides with

e

L

1

\ � � � \

e

L

2d

in a neighborhood

of the bad points, where

e

L

1

; : : : ;

e

L

2d

are general line-
onditions in

e

V

2

.

Let now B

2

be the 
losure of B

Æ

2

. So far, the dis
ussion above shows that

e

P

1

\

� � �\

e

P

N�2d

\

e

L

1

\� � �\

e

L

2d


onsists of the good points and of

e

P

1

\� � �\

e

P

N�2d

\B

2

;

therefore

e

P

N�2d

�

e

L

2d

= N

d

(2d) +

e

P

1

� : : : �

e

P

N�2d

� [B

2

℄ :

For the next step in our program we need to show

Claim 3. [B

2

℄ = 2

d�4

[B

2

℄.

Proof: B

2

is a subs
heme of E

2

of 
odimension 2d�1. We are going to 
ut B

2

with

a (2d�1)-dimensional variety Z interse
ting the support B

2

of B

2

transversally at a

point p. To prove the assertion we must show that Z interse
ts B

2

with multipli
ity

2

d�4

at that point.

To obtain Z, we �x � to be the line x

0

= 0; �x a 2-dimensional net of degree-(d�2)


urves C 
utting � into divisors

(x

2

1

+ �x

1

x

2

+ �x

2

2

)(x

d�4

1

+ x

d�5

1

x

2

+ � � �+ x

d�4

2

);
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this gives a 2-dimensional family of 
urves C�

2

in B, parametrized by �; �, hen
e

determining a (d � 1)-dimensional subvariety of B

1

: all fKg

C�

2

with C and � as

above. We de�ne the (d� 2)-dimensional subvariety of B

1

obtained by 
onsidering

fKg

C�

2

with C�

2

as above and K in the form

x

1

(x

d�4

1

+ 


1

x

d�5

x

2

+ � � �+ 


d�4

x

d�4

2

)x

2

2

:

This in turn determines a (2d� 1)-dimensional subvariety Z of E

2

. The reader will

easily verify that Z interse
ts B

2

transversally at a point p over the point fKg

C�

2

determined by � = � = 0, 


1

= � � � = 


d�4

= 1.

We 
an parametrize the �ber over su
h fKg

C�

2

near p as above by forms

1

4

(a

0

x

d

1

+ a

1

x

d�1

1

x

2

+ � � �+ a

d

x

d

2

);

this parametrizes Z at p by the data

(�; �; 


1

; : : : ; 


d�4

; a

0

; : : : ; a

3

; a

4

; : : : ; a

d

);

in these terms p has 
oordinates (0; 0; 1; : : : ; 1; 0; : : : ; 0; 1; : : : ; 1). We 
an now restri
t

the equations for B

2

to Z: we get

x

2

1

(x

d�4

1

+ 


1

x

d�5

x

2

+ � � �+ 


d�4

x

d�4

2

)

2

x

4

2

= (x

2

1

+ �x

1

x

2

+ �x

2

2

)�

� (x

d�4

1

+ x

d�5

1

x

2

+ � � �+ x

d�4

2

)(a

0

x

d

1

+ a

1

x

d�1

1

x

2

+ � � �+ a

d

x

d

2

);

i.e., 2d � 1 equations in �; �, 


1

; : : : ; 


d�4

and a

0

; : : : ; a

d�4

. Che
king that the

multipli
ity of interse
tion of the 
orresponding lo
i at p is 2

d�4

is a standard


omputation, whi
h we also leave to the reader.

It follows from the above that the 
ontribution to

e

P

1

\ � � � \

e

P

N�2d

\

e

L

1

\ � � � \

e

L

2d

due to the `bad' points (
 in the statement of Lemma III(2)) is

2

d�4

e

P

1

� : : : �

e

P

N�2d

� [B

2

℄ = 2

d�4

e

P

N�2d

� [B

2

℄:

The 
omputation in N

d

(2d) will now be 
omplete if we show

Claim.

R

e

V

e

P

N�2d

� [B

2

℄ = d(d� 1)(d� 3)(d� 2)(d+ 2).

Proof: Observe that the general line-
ondition

e

P in

e

V is a
tually the pull-ba
k of

the general line-
ondition P in P

N

(indeed, the 
enters of the blow-ups 
ut point-


onditions properly). Also, re
all that B

2

maps down on P

N

to the subvariety T of

B 
onsisting of C�

2

with C tangent to �. Then, by the proje
tion formula

Z

e

V

e

P

N�2d

� [B

2

℄ =

Z

P

N

P

N�2d

� [T ℄:

19



On the other hand, 
onsider the subvariety T

0

of P

(d�2)(d+1)

2

�

�

P

2

given by all pairs

(C; �) with C tangent to �. Then i

�

[T

0

℄ = [T ℄ (notations as in x3.1), and sin
e

i

�

P = `+ 2m we get, again by the proje
tion formula,

Z

e

V

e

P

N�2d

� [B

2

℄ =

Z

P

(d�2)(d+1)

2

�

�

P

2

(`+ 2m)

N�2d

[T

0

℄:

Now [T

0

℄ = (2d�6)`+(d�2)(d�3)m (indeed, 2(d�2)�2 
urves of degree d�2 in

a pen
il are tangent to a given line, and (d� 2)(d� 3) lines in a pen
il are tangent

to a given 
urve of degree d� 2); therefore

Z

e

V

e

P

N�2d

� [B

2

℄ =

Z

(`+ 2m)

N�2d

((2d� 6)`+ (d� 2)(d� 3)m)

= d(d� 1)(d� 3)(d� 2)(d+ 2):

Thus, we have shown

e

P

N�2d

�

e

L

2d

= N

d

(2d) + 2

d�4

d(d� 1)(d� 3)(d� 2)(d+ 2):

Comparing with

e

P

N�2d

�

e

L

2d

= (2d� 2)

2d

� 2

d�3

d(d� 1)(4d

4

� 11d

3

+ 11d

2

� 8d+ 10)

(from x4.2) gives

N

d

(2d) = (2d� 2)

2d

� 2

d�4

d(d� 1)(8d

4

� 21d

3

+ 19d

2

� 20d+ 32);

whi
h 
on
ludes the proof of Theorem IV.

x5. N

4

(9). In his Almindelige Egenskaber ved Systemer af plane Kurver , Zeuthen

provides an exhaustive analysis of families of plane quarti
s, and lists many enu-

merative results (several of these appear also in [S℄, x26). We are very far from

re
overing all his results; however, for smooth quarti
s, Proposition 1.2 and Theo-

rem IV in x4 give for d = 4

N

4

(k) = 6

k

0 � k � 6; N

4

(7) = 279;600; N

4

(8) = 1;668;096;

in agreement with Zeuthen. In this se
tion we indi
ate how to extend the 
onstru
-

tion of x3 to obtain the next 
hara
teristi
 number:

Theorem V. The number of smooth quarti
s 
ontaining 5 general points and

tangent to 9 general lines in the plane is

N

4

(9) = 9;840;040

The result again agrees with Zeuthen's 
omputations. To our knowledge, the

remaining 5 
hara
teristi
 numbers for smooth plane quarti
s still await a modern

veri�
ation.
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The approa
h is roughly the following: by the 
onsiderations in x4.3, B

2

is gener-

i
ally redu
ed for d = 4; it will then be easy to blow-up V

2

along B

2

, thereby

extending the 
onstru
tion of a variety of 
omplete quarti
s over the set of 
urves


onsisting of a smooth 
oni
 and a double line tangent to it. In the new variety, the

interse
tion of 5 general point-
onditions and 9 general line-
onditions will 
onsist

of isolated points: N

4

(9) `good' points, the double 
oni
 
ontaining the 5 points,

and �nitely many points 
orresponding to quarti
s 
onsisting of a triple of distin
t

lines, one of whi
h double, meeting at a point. The 
ontribution of the degenerate

points 
an be 
omputed dire
tly, giving the result.

Exe
uting this plan involves the same te
hniques we employed in the rest of the

note: we will indi
ate the main points here, leaving many details to the reader.

x5.1. The third blow-up. We keep the notations of the rest of the note: for

d = 4, S � P

14

denotes the the lo
us of non-redu
ed quarti
s, B is the set of 
urves

C�

2


ontaining a double line �, and T � B is the set of 
urves C�

2

with � tangent

to C. B

Æ

is the set of quarti
s C�

2


onsisting of a double line � and of a redu
ed


oni
 C not 
ontaining �, and T

Æ

= T \B

Æ

; both B

Æ

and T

Æ

are non-singular. Also,

we will denote by U the subset of T 
onsisting of quarti
s C�

2

with C a singular


oni
, and � a line interse
ting C at a singular point; and we will let U

Æ

= U \ T

Æ

:

so points of U

Æ

are triples of distin
t lines, one of them double, meeting at a point.

In Lemma II we 
omputed the thi
kness of S at points of B � T and T � U ; the

additional information we need now is

Lemma II. (4) If p 2 U

Æ

, then th

p

(S) = 4.

The veri�
ation is left to the reader: it is analogous to the proof of Lemma II in

x2.

The analogue of Lemma 1.3 in the new situation is:

Remark. The interse
tion of 5 general point-
onditions and S in P

14


onsists of

an isolated point 
orresponding to the double 
oni
 
ontaining the 5 given points,

and of a 2-dimensional subset of B

Æ

. This subset 
ontains a 1-dimensional subset

of T

Æ

and �nitely many points of U

Æ

.

In x3 we analyzed the two blow-ups over B

Æ

: by this remark that dis
ussion takes


are of the new situation as well. We get an extension of Lemma III for d = 4:

Lemma III. (3) Denote by P

2

; L

2

the 
lasses of the general point and line-
onditions

in V

2

. Then P

5

2

�L

9

2

is the sum of N

4

(9) and of a 
ontribution due to a 1-dimensional

subset of B

Æ

2

and to an isolated point (
orresponding to a double 
oni
).

Re
all that B

Æ

2

is isomorphi
 to T

Æ

; also, T

Æ

�

=

B

Æ

2

is smooth for d = 4. We are

going to blow-up V

2

along B

2

, and examine the preimage of points of B

Æ

2

: denoting

by U

Æ

2

the subset of B

Æ

2

identi�ed with U

Æ

, U

Æ

2

will be the set that `survives' the

third blow-up.

Let then V

3

�

3

�! V

2

be the blow-up of V

2

along B

2

,

e

E

2

the proper transform of

E

2

in V

3

.

Proposition 5.1. Denote by S

3

the interse
tion of all line-
onditions in V

3

. Then

S

3

\ �

�1

3

(B

Æ

2

) is supported on a variety B

Æ

3

mapping bije
tively onto U

Æ

2

.
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Proof: This follows from the dis
ussion in x4.3. First observe that B

Æ

2

:= S

2

\

�

�1

2

(B

Æ

1

) 
oin
ides with B

Æ

2

for d = 4 (
f. x4.3: we gave equations for B

Æ

2

for all d;

for d = 4 the equations de�ne a redu
ed s
heme). As a 
onsequen
e, mu
h as in

Lemma 3.2, S

3

\ �

�1

3

(B

Æ

2

) must be disjoint from

e

E

2

, and therefore it 
onsists of

at most one point over ea
h point of B

Æ

2

. On the other hand, by Claim 2 in x4.3,

B

Æ

2

= B

Æ

2


oin
ides with the s
heme-interse
tion S

2

of the line-
onditions along

B

Æ

2

�U

Æ

2

: therefore S

3

\�

�1

3

(B

Æ

2

�U

Æ

2

) = ;. The assertion amounts then to showing

that S

3

\ �

�1

3

(U

Æ

2

) 6= ;: whi
h follows from the fa
t that th

p

(S) � 4 if p 2 U

Æ

(Lemma II (4) above), similarly to Lemma 3.3.

We let B

3

be the 
losure of B

Æ

3

in V

3

. From Proposition 5.1 we get the main tool

for the 
omputation:

Lemma 5.2. Let P

3

; L

3

be the 
lasses of the general point- and line-
onditions in

V

3

. Then P

5

3

� L

9

3

is the sum of N

4

(9) and of a 
ontribution due to �nitely many

points of B

Æ

3

and to an isolated point (
orresponding to a double 
oni
).

This follows from Lemma I, the remark in the beginning of this se
tion, and

Proposition 5.1.

x5.2. P

5

3

� L

9

3

. The 
omputation of N

4

(9) is now redu
ed to applying formula (*)

in x4 (in order to 
ompute P

5

3

�L

9

3

), and evaluating the 
ontribution due to the `bad'

points in V

3

. The only new element needed to apply (*) is an expli
it realization of

T

Æ

�

=

T

Æ

1

�

=

B

Æ

2

.

The �rst two stages of the 
omputation follow the steps of x4.1, 4.2:

P

5

1

� L

9

1

= 6

9

�

Z

(`+ 2m)

5

(1 + 6`+ 12m)

9

(1 + `)

6

(1 +m)

3

(1 + `+ 2m)

15

= 10; 077; 696� 67; 131 = 10; 010; 565 ;

and (using p

�

e = �1; p

�

e

2

= �4`� 7m, and p

�

e

3

= �10`

2

� 38`m� 28m

2

obtained

as in Lemma 4.1)

P

5

2

� L

9

2

= P

5

1

� L

9

1

�

Z

(`+ 2m)

5

(1 + 6`+ 12m� e)

9

(1 + `+m� e)

10

(1 + e)(1 + `+ 2m� e)

15

= 10; 010; 565� 149; 465 = 9; 861; 100 :

To apply formula (*) from x4 to the third blow-up, we need to gather information

about B

Æ

2

: spe
i�
ally, we need a 
ompa
ti�
ation T of T

Æ

�

=

T

Æ

1

�

=

B

Æ

2

with a

manageable Chow ring and a 
lass restri
ting to 
(N

B

Æ

2

V

2

) on T

Æ

.

Now, T

Æ

parametrizes pairs (C; �) where C is a redu
ed 
oni
 and � 6� C is a line

tangent to C. We 
hoose for T the 
losure of the subset of P

5

�

�

P

2

� P

2


onsisting

of triples (C; �; p) where � is a line, p 2 �, and C is a smooth 
oni
 tangent to �

at p. T is smooth (as a P

3

-bundle over a P

1

-bundle over P

2

) and 
ontains T

Æ

as an

open set. The Chow ring of T is generated by the hyperplane 
lasses ` of P

5

, m of

�

P

2

, and k of P

2

; the reader will easily 
he
k the relations:

Z

`

4

m

2

= 2;

Z

`

5

m = 2;

Z

k`

3

m

2

= 1;

Z

k`

4

m = 3;

Z

k`

5

= 2;

Z

k

2

`

3

m = 1;

Z

k

2

`

4

= 1
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(all other degree-6 monomials give 0).

The 
lass of the point-
onditions pulls-ba
k to `+ 2m via the natural map T �!

P

5

�

�

P

2

�! P

14

. We also need the pull-ba
k (to B

Æ

2

) of the 
lasses of E

1

and E

2

; the

key observation is

Claim. The pull-ba
k of the 
lasses of E

1

and E

2

to B

Æ

2


oin
ide.

Proof: This follows from Lemma 3.2, whi
h showed that B

Æ

2

is disjoint from

e

E

1

.

B

Æ

2

is a se
tion of E

2

over T

Æ

1

, say B

Æ

2

= P(L) � P(N

B

Æ

1

V

1

) = E

2

for L a rank-1

subbundle of N

B

Æ

1

V

1

(notations as in x3.2). Tautologi
ally L = O

P(L)

(�1) is the

restri
tion of O

P(N

B

Æ

1

V

1

)

(�1), so that 


1

(L) is the pull-ba
k of the 
lass of E

2

; on

the other hand, sin
e B

Æ

2

is disjoint from

e

E

1

, then L is transversal to N

B

Æ

1

E

1

j

T

Æ

1

in

N

B

Æ

1

V

1

j

T

Æ

1

, so L

�

=

N

E

1

V

1

j

T

Æ

1

: therefore 


1

(L) is also the restri
tion of the 
lass of

E

1

.

By 
onsisten
y with the notation of x4, we denote by e a 
lass of T restri
ting to

the pull-ba
k of the 
lass of E

1

(or E

2

) on B

Æ

2

. At this stage we 
an apply (*) from

x4 and write

P

5

3

� L

9

3

= P

5

2

� L

9

2

�

Z

T

(`+ 2m)

5

(1 + 6`+ 12m� 2e)

9


(N

B

2

V

2

)

;

where 
(N

B

2

V

2

) is any 
lass of T restri
ting to 
(N

B

Æ

2

V

2

) on B

Æ

2

. To obtain 
(N

B

2

V

2

)

we apply a few Euler sequen
es as usual. With some abuse of notation, we get:


(N

B

2

V

2

) = 
(N

T

1

B

1

)
(N

B

1

V

1




�

L)
(L)

= 
(N

T

B)
(G 


�

L)
(N

B

1

V

1




�

L)
(L) ;

with L as in the proof of the 
laim and G as in x4.2. This gives in parti
ular




1

(N

B

2

V

2

) = (2`+ 2m) + (4`+ 7m� 2e) + (5`+ 20m� 10e) + e

= 11`+ 29m� 11e :

Therefore

P

5

3

� L

9

3

= P

5

2

� L

9

2

�

Z

T

(`+ 2m)

5

(1 + 6`+ 12m� 2e)

9

(1 + 11`+ 29m� 11e+ : : : )

:

Claim. e = 3`+ 6m� 3k on T .

Proof: Let L be as above: so L is the restri
tion of O

E

1

(�1) to T

Æ

1

�

=

T

Æ

, and e

restri
ts to 


1

(L). Noti
e that then L is a subbundle of (the restri
tion of) G on

T

Æ

, and T

Æ

1

= P(L) � P(G). Now there is a natural map

T �! T � P

9

sending the triple (C; �; p) to (C; �; p; C�) (thinking of C� as a plane 
ubi
 2 P

9

).

Tra
ing the de�nitions of L and G, we �nd that 


1

(G=L) is the pull-ba
k to T of the

23



divisor in T � P

9


onsisting of quadruples (C; �; p;K); with K a 
ubi
 
ontaining

p. Therefore




1

(G=L) = `+m+ 3k ;

and the 
laim follows from this and the previously known 


1

(G) = 4` + 7m (
f.

Lemma 4.1).

We 
an �nally dedu
e

P

5

3

� L

9

3

= P

5

2

� L

9

2

�

Z

T

(`+ 2m)

5

(1 + 6k)

9

(1� 22`� 37m+ 33k + : : : )

= 9; 861; 100� 4; 526 = 9; 856; 574 :

x5.3. N

4

(9) = 9;840;040. Combining the 
omputation of x5.2 and Lemma 5.2 in

x5.1, we 
an 
laim now that N

4

(9) = 9; 856; 574 minus a 
ontribution due to �nitely

many points of B

3

and to a point 
orresponding to a double 
oni
.

The 
omputation of the 
ontribution due to the points in B

3

is similar to the


omputation in x4.3. By Proposition 5.1, the s
heme-interse
tion S

3

of all line-


onditions is supported on B

3

in a neighborhood of the points; the reader will

verify that S

3

is redu
ed in a neighborhood of these points (similarly to x4.3, one


an use (**) from x2 to write equations for S

3

in a neighborhood of the points), so

that the 
ontribution equals

R

V

3

P

5

3

� [B

3

℄. By the proje
tion formula, this equals

R

P

14

P

5

� [U ℄; and by the proje
tion formula again this is

Z

P

5

�

�

P

2

(`+ 2m)

5

[U

0

℄ ;

where U

0

� P

5

�

�

P

2

is the set of pairs (C; �) 2 P

5

�

�

P

2

with � a line interse
ting

the (singular) 
oni
 C at a singular point. The 
lass of U

0

in P

5

�

�

P

2

is easily

found to be 3`

2

+ 3`m (indeed, `

5

[U

0

℄ = 0, `

4

m[U

0

℄ = 3, `

3

m

2

[U

0

℄ = 3), so that the


ontribution equals

R

(`+ 2m)

5

(3`

2

+ 3`m) = 150. Therefore

N

4

(9) + 
ontr. due to a double 
oni
 = 9; 856; 574� 150 = 9; 856; 424 :

Finally, we have to evaluate the 
ontribution due to the double 
oni
 
ontaining

the 5 given points. Sin
e this depends only on lo
al data, we may 
ompute it in

P

14

.

Double 
oni
s form a subvariety D � P

14

, the image of the se
ond Veronese

embedding of P

5

. Denote by h the hyperplane 
lass in P

5

; then point-
onditions

restri
ts to 2h on D. At a general point C

2

of D, the line-
ondition 
orresponding

to a general line � has multipli
ity 2, and in fa
t its tangent 
one is the union of

the point-
onditions 
orresponding to the two points of interse
tion of � and C.

Now blow-up P

14

along D. From the above it follows that the proper transforms

of the line-
onditions do not meet over a general point of D; a last appli
ation of

(*) from x4 
omputes then the 
ontribution of a double 
oni
 to the interse
tion of

5 point-
onditions and 9 line-
onditions by

Z

P

5

(2h)

5

(2 + 12h)

9

(1 + : : : )

= 2

14

:
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Therefore

N

4

(9) = 9; 856; 424� 16; 384 = 9;840;040 ;

as 
laimed.
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