
Two harateristi numbers for smooth plane urves

of any degree

Paolo Aluffi

Abstrat. We use a sequene of blow-ups over the projetive spae parametrizing

plane urves of degree d to obtain some enumerative results onerning smooth plane

urves of arbitrary degree. For d = 4, this gives a �rst modern veri�ation of results

of H. G. Zeuthen.

x0. Introdution. The k-th `harateristi number' of the

d(d+3)

2

-dimensional

family of smooth plane urves of degree d, denoted N

d

(k) in the following, is the

number of suh urves whih are tangent to k lines and ontain

d(d+3)

2

� k points

in general position in the plane. Elementary onsiderations and B�ezout's theorem

(see x1 below) show that N

d

(k) = (2d� 2)

k

for k < 2d� 1.

In this paper we ompute the next two ases as a losed form in terms of the

degree d; our result is

N

d

(2d� 1) = (2d� 2)

2d�1

� 2

d�3

d(d� 1)(d

2

� d+ 2)

N

d

(2d) = (2d� 2)

2d

� 2

d�4

d(d� 1)(8d

4

� 21d

3

+ 19d

2

� 20d+ 32)

Also, for d=4 we obtain the next harateristi number N

4

(9) = 9;840;040.

The harateristi numbers of a family are its basi enumerative information; the

problem of omputing them for families of plane urves has reeived quite some

attention in the reent past. For the family of smooth plane urves of degree d,

the modern literature lists the numbers N

2

(k); N

3

(k) for smooth onis and ubis

([F℄, [A℄, [KS℄); for d = 4, the numbers N

4

(7) = 279;600, N

4

(8) = 1;668;096 and

N

4

(9) = 9;840;040 omputed here verify lassi results of H.G.Zeuthen's ([Z℄, in

whih {among many others{ all the harateristi numbers N

4

(k) for smooth plane

quartis are obtained). For degree � 5, the results of this paper seem to be new

(we know of reent work of Leendert van Gastel on this problem, from a di�erent

viewpoint).

Our approah is in the spirit of the omputation of the harateristi numbers

for smooth plane ubis in [A℄. Let P

N

be the projetive spae parametrizing plane

urves of degree d. Call `point-ondition' the hyperplane in P

N

formed by the

urves C 2 P

N

whih ontain a given point, and `line-ondition' the hypersurfae

(of degree 2d�2) onsisting of the urves C 2 P

N

whih are tangent to a given line.

The intersetion of all line-onditions is supported on the set S � P

N

onsisting of

all urves C 2 P

N

ontaining a multiple omponent.

Let now

e

V be a smooth variety mapping birationally onto P

N

, and denote by

e

P ;

e

L

resp. the lasses of the proper transforms of the general point- and line- onditions.

In [A℄, Corollary I, we observed that if the intersetion of the proper transforms of

all line-onditions is empty, then N

d

(k) =

e

P

N�k

�

e

L

k

. We all suh a

e

V a smooth

variety of `omplete plane urves of degree d'. The omputation of the numbers for
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smooth plane ubis in [A℄ is ahieved by onstruting a variety of omplete ubis

by a sequene of �ve blow-ups along smooth enters over P

9

.

The point is to onstrut

e

V while maintaining ontrol of its Chow ring; this an be

aomplished e.g. by blowing-up along smooth enters. In this sense, onstruting

a `nie' variety of omplete urves of degree d for d � 4 seems a formidable task.

However, for a spei� k, it suÆes to onstrut the variety over an open set of P

N

ontaining the intersetion of k line-onditions and N � k point-onditions hosen

generally; for example, P

N

itself an be used if k � 2d� 2. For the results in this

note (i.e. k � 2d), we will onsider an open basially big enough as to ontain the

smooth part of the set B � P

N

onsisting of urves deomposing into a `double

line' and a urve of degree d � 2. For all d, we will use two blow-ups to onstrut

a variety

e

V satisfying our requirements for k � 2d � 1 (x3). For k = 2d, a third

blow-up (along a non-redued enter for d > 4) would be neessary to onstrut

the variety over the lous onsisting of urves deomposing into a urve of degree

d � 2 and a double line tangent to the urve. However, this last step amounts to

the omputation of the ontribution of isolated points to the intersetion number

of N divisors in

e

V , and it seems easier to evaluate this ontribution diretly (x4).

For d = 4 it is easy to analyze the third blow-up and onstrut the variety over

the set of quartis onsisting of a smooth oni and a double line tangent to it. As

a bonus we get a third harateristi number in this ase, after evaluating diretly

the ontribution due to a double oni and to quartis onsisting of a triple of lines,

one of whih double, meeting at a point (x5).

The two blow-ups we give in x3 generalize to arbitrary degree the last two blow-

ups onsidered in [A℄ for d = 3. As in [A℄, after onstruting the variety

e

V as a

sequene of blow-ups, we ompute

e

P

N�k

�

e

L

k

, k = 2d�1; 2d, by using an intersetion

formula involving some information about the normal bundles of the enters of the

blow-ups (x4).

A tehnial diÆulty in this approah to the omputation is the determination

of the intersetion of all proper transforms of line-onditions at eah new blow-

up. Heuristially speaking, more blow-ups are needed over points at whih the

sheme-intersetion of all line-onditions is riher in struture; an essential step in

our omputation is the estimation of this fator. Let S be a subsheme of a smooth

variety, and p a simple point of the support S of S. We de�ne the `thikness' of S

at p, th

p

(S) to be the maximum length of the intersetion of S with a urve germ

entered at p and transversal to S. For S � P

N

denoting (as above) the set of non-

redued urves, and S being the sheme-theoreti intersetion of all line-onditions,

supported on S, we ompute in a Lemma (x2) the th

p

(S) for p 2 P

N

orresponding

to ertain plane urves deomposing into a double line � and a urve C of degree

d� 2. We get th

p

(S) = 2 if � is not tangent to C, th

p

(S) = 3 if � is tangent to C

at a single smooth point of C. This information is used ruially to show that two

blow-ups suÆe for k = 2d � 1, and to gather information neessary to treat the

ase k = 2d.

It should be pointed out that in fat the ase k = 2d�1 amounts to the evaluation

of the ontribution to the intersetion multipliity ofN divisors in P

N

due to isolated

2



points of intersetion (orresponding to singular urves). Given the geometry of the

situation (the tangent spaes to the onditions interset in a d-dimensional spae),

the minimum that the ontribution of eah point `ould be' is 2

d

(see the remark in

x4); our result for k = 2d� 1 shows that this is preisely the ase. For k = 2d, we

are omputing the total ontribution of a union of urves to the intersetion number

of N divisors in P

N

. It would be interesting to interpret this result similarly, in

terms of simple geometry onsiderations, as a `minimal allowed' ontribution.

I would like to thank Alberto Collino, William Fulton, Joe Harris, and Sheldon

Katz for several inspiring onversations.

x1. Basi fats and notations. Let V be a three-dimensional omplex vetor

spae, P

2

= P(V), and P

N

= P(Sym

d

�

V) the projetive spae of dimension N =

d(d+3)

2

parametrizing plane urves of degree d. In the following it will be onvenient

to assume d � 4: however, the main results hold as stated for onis and ubis as

well.

If p is a point in the plane, the urves that ontain p determine a hyperplane P

p

in P

N

: a `point-ondition' in P

N

. Similarly, the urves tangent to a given line `

form a hypersurfae L

`

of degree 2d � 2: a `line-ondition' in P

N

. If p

1

; : : : ; p

N�k

and `

1

; : : : ; `

k

are general points and lines, we are interested in the number N

d

(k)

of smooth urves ontaining p

1

; : : : ; p

N�k

and tangent to `

1

; : : : ; `

k

, i.e. the number

of points in the intersetion P

p

1

\ � � � \ P

p

N�k

\ L

`

1

\ � � � \ L

`

k

that orrespond to

smooth urves.

Suppose now that

e

V is a variety mapping birationally to P

N

, suh that the in-

tersetion of the proper transforms in

e

V of all line-onditions is empty. We all any

suh variety a `variety of omplete urves of degree d' (suh varieties exist: for ex-

ample, blow-up P

N

along the sheme-theoreti intersetion of the line-onditions).

The proper transforms of the general point-ondition P and line-ondition L de-

termine divisor lasses

e

P ,

e

L in

e

V ; we observed in [A℄, Corollary I, that if

e

V is a

variety of omplete urves, then N

d

(k) =

e

P

N�k

�

e

L

k

for all k. We will use this fat

in a more spei� formulation.

For any variety

e

V mapping birationally to P

N

, all `point-onditions' and `line-

onditions' in

e

V the proper transforms of the point- and line-onditions in P

N

.

Denote as above by

e

P and

e

L the divisor lasses of the general point- and line-

ondition in

e

V .

Lemma I. Suppose

e

V

�

�! P

N

is a birational morphism suh that, for general point-

onditions P

1

; : : : ; P

N�k

in P

N

, the intersetion of all line-onditions in

e

V is disjoint

from �

�1

(P

1

\ � � � \ P

N�k

). Then N

d

(k) =

e

P

N�k

�

e

L

k

.

Proof: Let L

1

; : : : ; L

k

be general line-onditions in P

N

. If

e

P

i

;

e

L

j

are the proper

transforms of P

i

; L

j

in

e

V , the hypotheses guarantee that

e

V is isomorphi to a variety

of omplete urves of degree d in a neighborhood of

e

P

1

\ � � �\

e

P

N�k

\

e

L

1

\ � � �\

e

L

k

.

The laim follows then from the fat that

e

P

N�k

�

e

L

k

is a sum of loal ontributions.

The intersetion of all line-onditions on P

N

is supported on the set S onsisting of

3



urves with multiple omponents. The struture of S is in general very ompliated;

however, for our purposes the relevant observation is quite simple:

Lemma 1.1. The highest dimensional omponent in S is the set B formed by urves

ontaining a double line. B has odimension 2d � 1 in P

N

; the other omponents

of S and the singular lous of B have odimension > 2d.

Proof: B is the image of a map

P

(d�2)(d+1)

2

�

�

P

2

i

�! P

d(d+3)

2

(C; �) 7! C�

2

where P

(d�2)(d+1)

2

= P(Sym

d�2

�

V) parametrizes plane urves of degree d � 2, and

�

P

2

parametrizes lines. One veri�es easily that i is an embedding at points (C; �)

with C redued and not ontaining � (di is injetive if C does not ontain �). The

statement follows then from simple dimension omputations.

We will denote by C�

2

a point of B deomposing into the degree-(d� 2) urve C

and the double line supported on the line �. As observed in the proof, B is smooth

at C�

2

e.g. if C is redued and intersets � properly.

Lemma I gives immediately

Proposition 1.2. For k < 2d� 1, N

d

(k) = (2d� 2)

k

.

Proof: Indeed, for k < 2d�1 and N �k general point-onditions P

1

; : : : ; P

N�k

in

P

N

, P

1

\ � � � \P

N�k

\S = ; (this follows from Lemma 1.1 and e.g. from Remark 1,

x1 in [A℄). We an then apply Lemma I to

e

V = P

N

and � =identity, and ompute

e

P

N�k

�

e

L

k

using B�ezout's Theorem.

For k � 2d�1, the intersetion of N�k point-onditions is never disjoint from S.

In setion 3 we will onstrut a

e

V �tting the hypotheses of Lemma I for k = 2d�1,

by two suessive blow-ups over P

N

.

Lemma 1.3. (1) For k = 2d� 1, and P

1

; : : : ; P

N�k

general point-onditions in P

N

,

P

1

\ � � � \ P

N�k

\ S onsists of

d(d�1)(d

2

�d+2)

8

points C�

2

2 B, with C smooth and

� transversal to C.

(2) For k = 2d and P

1

; : : : ; P

N�k

general point-onditions in P

N

, P

1

\� � �\P

N�k

\S

onsists of 1-dimensional subsets of B. All C�

2

2 P

1

\� � �\P

N�k

\S have C redued,

and � interseting C properly, at smooth points of C. For �nitely many suh C�

2

,

� will be simply tangent (at a single point) to C.

In partiular, for k = 2d� 1 or 2d and P

1

; : : : ; P

N�k

general point-onditions in

P

N

, P

1

\ � � � \ P

N�k

\ S is entirely ontained in the smooth part of B.

Proof: Both (1) and (2) follow again easily from [A℄, Remark 1, x1 and dimension

ounts. The point is that one an hoose N � k point-onditions suh that P

1

\

� � � \ P

N�k

is disjoint from given subsets of P

N

of odimension > k. For example,

as observed in Lemma 1.1 all omponents of S other than B and the singular lous

4



of B have odimension > 2d: therefore, the intersetion of N � 2d or more general

point-onditions will miss these loi. As for the number

d(d�1)(d

2

�d+2)

8

, this is the

number

�

(

d

2

)

+1

2

�

of lines ontaining 2 out of

d(d+3)

2

�2d+1 =

�

d

2

�

+1 general points.

In view of Lemma 1.3 (1), to apply Lemma I for k = 2d� 1 we need to produe

a variety

e

V and a birational morphism � :

e

V �! P

N

, suh that the intersetion of

all line-onditions in

e

V is disjoint from eah �ber �

�1

(C�

2

) with � a line and C

a redued urve of degree d � 2 interseting � transversally. As we will see, two

blow-ups over P

N

will produe a variety

e

V satisfying this requirement.

e

V will not

suÆe for k = 2d: as we shall see, the intersetion of all line-onditions meets (at

one point) the �ber over C�

2

when � is tangent to C. However, the ontribution

given by this residual intersetion an be omputed diretly.

x2. Thikness. Let S be a subsheme of a smooth variety V , and p a simple point

of the support S of S. We de�ne the `thikness' of S at p, th

p

(S) to be the maximum

length of the intersetion of S with a urve germ entered at p and transversal to S.

In this setion we ompute the `thikness' th

p

(S) of the sheme-theoreti intersetion

S of all line-onditions in P

N

at points p of B. Our basi observation is: suppose

S is ut out by smooth hypersurfaes H

1

; : : : ; H

m

, let

e

V

�

�! V be the blow-up of V

along S, and denote by

e

H

i

the proper transform of H

i

; also, denote by

e

S the sheme

ut out by

e

H

1

; : : : ;

e

H

m

in

e

V . Then, for p 2 S,

e

S \ �

�1

(p) 6= ; () th

p

(S) � 2:

indeed, th

p

(S) � 2 preisely when there is a diretion normal to S and tangent to

all the H

i

. Also, if ~p 2

e

S \ �

�1

(p), then in good hypotheses th

~p

(

e

S) < th

p

(S) (in

our appliations these fats will follow diretly from the de�nition). The result of

our omputation will be needed at several plaes in x3 and x4; for the moment, the

hasty reader may want to assume Lemma II as stated below and skip the rest of

this setion.

We keep the notations of x1: P

N

is the projetive spae parametrizing degree-d

plane urves, and we all `line-ondition' orresponding to a line ` the hypersurfae

of P

N

onsisting of all urves tangent to `. The intersetion of all line-onditions

in P

N

is supported on the set formed by urves ontaining a multiple omponent;

B denotes the subvariety of P

N

onsisting of urves C�

2

deomposing in a degree-

(d� 2) urve and a `double line'.

Let C�

2

2 B � P

N

, with C a redued urve of degree d� 2, and � a line

interseting C at �nitely many smooth points (we notied in x1 that B is non-

singular at suh a C�

2

). The intersetion of all line-onditions is a sheme S one

of whose omponents is supported on B. Denote by th

C�

2

(S) (the `thikness' of S

at C�

2

) the maximum length of the intersetion with S at C�

2

of the germ of a

smooth urve entered at C�

2

and transversal to B. Also, if X is a plane urve not

ontaining �, denote by X

�

the divisor ut by X on �. We are going to show:

Lemma II.

(1) If � is transversal to C, then th

C�

2

(S) = 2;

(2) If � is simply tangent to C at preisely one smooth point, then th

C�

2

(S) = 3.

(3) In ase (2), the thikness is 3 only along diretions C�

2

+ tK� with K a

degree-(d� 1) urve suh that K

2

�

� C

�

.
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(1), (2) and (3) deal with urve germs and ertain hypersurfaes in the P

N

parametrizing degree-d urves in P

2

; we �rst analyze an analogous situation in

the P

d

parametrizing degree-d e�etive divisors in P

1

. In this P

d

we have the dis-

riminant hypersurfae �

d

: let �; � be homogeneous oordinates on P

1

, so that

points in P

d

are zeros of polynomials 

0

�

d

+ 

1

�

d�1

�+ � � �+ 

d

�

d

; then �

d

is given

by the vanishing of the disriminant �

d

(

0

; 

1

; : : : ; 

d

) of suh polynomials.

Let  be a urve germ entered at a general point D in �

d

; up to linear trans-

formations, we an assume D is double (only) at (0 : 1), and write

(t) = 

0

(t)�

d

+ 

1

(t)�

d�1

� + � � �+ 

d

(t)�

d

;

with 

0

(0) = 

1

(0) = 0; 

2

(0) 6= 0. We are interested in onditions on the 

i

(t)'s

related to the order of ontat (�

d

; )

0

of  and �

d

at t = 0.

Claim. (i) (�

d

; )

0

� 2 () 

0

0

(0) = 0;

(ii) (�

d

; )

0

� 3 () 

0

0

(0) = 0 and 

0

1

(0)

2

= 2

2

(0)

00

0

(0);

(iii) (�

d

; )

0

� 4 () 

0

0

(0) = 0; 

0

1

(0)

2

= 2

2

(0)

00

0

(0), and 2

2

(0)

2



000

0

(0) �

3

2

(0)

0

1

(0)

00

1

(0) + 6

2

(0)

0

2

(0)

00

0

(0)� 3

3

(0)

0

1

(0)

00

0

(0) = 0:

Proof: The disriminant hypersurfae is the projetion of the odimension-2 sub-

variety of P

d

� P

1

de�ned by

(

d

0

�

d�1

+(d� 1)

1

�

d�2

� + � � �+

d�1

�

d�1

=0



1

�

d�1

+ 2

2

�

d�2

� + � � �+ d

d

�

d�1

=0

:

By the projetion formula, (�

d

; )

0

is the intersetion multipliity of this variety

with the germ of surfae ((t); s) in P

d

� P

1

. In other words, (�

d

; )

0

is the inter-

setion multipliity at the origin of the urves

(

d

0

(t)+(d� 1)

1

(t)s+ � � �+

d�1

(t)s

d�1

=0



1

(t)+ 2

2

(t)s+ � � �+ d

d

(t)s

d�1

=0

:

in the (s; t)-plane.

Now observe that if d > 4, then the term 

d

(t)s

d�1

vanishes to order at least 4

at the origin: therefore this term is irrelevant to whether (�

d

; )

0

� 4. Hene, if

d > 4 we may assume 8t; 

d

(t) = 0: i.e., we may assume that all divisors (t) in P

1

ontain the point at in�nity (1 : 0). Also, sine (0) was general we may assume



d�1

(0) 6= 0.

Next, observe �

d

(

0

; : : : ; 

d�1

; 0) = 

2

d�1

�

d�1

(

0

; : : : ; 

d�1

): therefore, if d > 4

then the onditions for d are the same as the onditions for d�1. I.e., in determining

these onditions we may assume d = 4, and a diret omputation gives (i), (ii) and

(iii).

Now onsider a urve (t) in P

N

, suh that (0) = C�

2

2 B (C redued, �

interseting C at �nitely many smooth points), and transversal to B at 0. We write

(t) = P +Qt+Rt

2

+ St

3

+ : : : ;

6



where P;Q;R; � � � 2 P

N

. Choosing homogeneous oordinates (x

0

: x

1

: x

2

) in P

2

,

we will write e.g.

P = P (x

0

: x

1

: x

2

) = P

d

(x

1

: x

2

) + P

d�1

(x

1

: x

2

)x

0

+ P

d�2

(x

1

: x

2

)x

2

0

+ : : : ;

with P

i

(x

1

: x

2

) homogeneous polynomials of degree i in x

1

; x

2

. In this notation,

(t) = (P

d

(x

1

: x

2

)+P

d�1

(x

1

: x

2

)x

0

+P

d�2

(x

1

: x

2

)x

2

0

+ : : : )

+(Q

d

(x

1

: x

2

)+Q

d�1

(x

1

: x

2

)x

0

+Q

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

+(R

d

(x

1

: x

2

)+R

d�1

(x

1

: x

2

)x

0

+R

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

2

+ : : : :

Assuming (0) = C�

2

imposes P

d

= P

d�1

= 0, P

d�2

6= 0.

Let ` be a general line. Up to a linear transformation of the plane, we an

assume ` has equation `

2

x

1

� `

1

x

2

= 0, i.e. it ontains the point (1 : 0 : 0). Then `

is parametrized by (� : �) via x

0

= �, x

1

= `

1

�, x

2

= `

2

�; for any t the degree-d

urve (t) 2 P

N

uts on ` the degree-d divisor



`

(t) = (P

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )

+(Q

d

(`

1

: `

2

)�

d

+Q

d�1

(`

1

: `

2

)�

d�1

�+Q

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

+(R

d

(`

1

: `

2

)�

d

+R

d�1

(`

1

: `

2

)�

d�1

�+R

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

2

+ : : : :

Applying part (i) of the laim gives:

 is tangent to the line-ondition orresponding to ` at C�

2

if and only if Q

d

(`

1

:

`

2

) = 0.

Therefore,  is tangent to all line-onditions if and only if Q

d

(`

1

: `

2

) = 0 for all

`

1

; `

2

: i.e. if and only if Q

d

= 0. Assume this is the ase, so that

(t) = (P

d�2

(x

1

: x

2

)x

2

0

+ : : : )

+(Q

d�1

(x

1

: x

2

)x

0

+Q

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

+(R

d

(x

1

: x

2

) +R

d�1

(x

1

: x

2

)x

0

+R

d�2

(x

1

: x

2

)x

2

0

+ : : : )t

2

+ : : : :

Q

d

= 0 means that  is tangent to the line C�

2

+K�t, with K a degree-(d � 1)

urve. Notie that P

d�2

gives the divisor C

�

on �, and Q

d�1

gives K

�

.  is

transversal to B at C�

2

if K

�

� C

�

, i.e. if P

d�2

does not divide Q

d�1

(see x3.1,

(1)). Suh  are tangent to all line-onditions and transversal to B; therefore

th

C�

2

(S) � 2. We have to show that th

C�

2

(S) � 3 only if � is tangent to C, and

that th

C�

2

(S) � 3 if � is simply tangent to C at exatly one smooth point.

Restriting to ` as above, (t) uts now the divisor



`

(t) = (P

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )

+(Q

d�1

(`

1

: `

2

)�

d�1

�+Q

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

+(R

d

(`

1

: `

2

)�

d

+R

d�1

(`

1

: `

2

)�

d�1

�+R

d�2

(`

1

: `

2

)�

d�2

�

2

+ : : : )t

2

+ : : :

7



By the laim,  has ontat with order at least 3 with the line-ondition orrespond-

ing to ` if and only if

(*) Q

d�1

(`

1

: `

2

)

2

= 4R

d

(`

1

: `

2

)P

d�2

(`

1

: `

2

) ;

this an be realized for all `

1

; `

2

if and only if P

d�2

divides Q

2

d�1

: therefore, 

is transversal to B and meets all line-onditions with order at least 3 at C�

2

if

and only if P

d�2

does not divide Q

d�1

but P

d�2

divides Q

2

d�1

: i.e., if and only if

K

�

� C

�

but K

2

�

� C

�

. This an happen only if C

�

has a `double' point, i.e. only

if � is tangent to C: Lemma II (1) and (3) follow. We note in passing that in fat

this onlusion follows from requiring (*) for 2d�1 general lines (i.e. 2d�1 general

pairs `

1

; `

2

).

To �nish the proof of Lemma II we need to show that, in the hypotheses of (2), 

annot meet all line-onditions with order � 4 at C�

2

. This follows from part (iii)

of the laim:  meets all line-onditions with order at least 4 if and only if

(**) 2P

2

d�2

S

d

� P

d�2

Q

d�1

R

d�1

+ 2P

d�2

Q

d�2

R

d

� P

d�3

Q

d�1

R

d

= 0;

but the �rst three terms in this sum have multipliity at least 2 at the double point

in C

�

, while the last has multipliity 1 (P

d�3

annot vanish there sine we are

assuming C to be smooth at all intersetions with �), so this annot our.

x3. The blow-ups. The general plan is to blow-up the support S of the inter-

setion of all line-onditions, then the support of the intersetion of their proper

transforms. As remarked in x1, for our purposes we atually need only deal with

the omponent B of S onsisting of all urves ontaining a `double line'; and in

fat we are interested in analyzing the situation above non-singular points of B (f.

Lemma 1.3 in x1).

3.1. The �rst blow-up. As above, we denote by B the subset of P

N

formed

by urves C�

2

ontaining a `double line'; we will �rst blow-up P

N

along B. Let

B

Æ

� B be the open subset of B onsisting of all C�

2

with C redued and not

ontaining �; reall that B

Æ

is smooth (f. Lemma 1.1 in x1). Also, if � 6� X denote

by X

�

the divisor ut by the urve X on the line �. The reader will easily hek

the following fats:

(1) The tangent spae in P

N

to B at a point C�

2

2 B

Æ

onsists of all K� 2 P

N

with K

�

� C

�

or � � K.

(2) Let L be the line-ondition in P

N

orresponding to a line `. For C�

2

2 B

Æ

and ` general, L is non-singular at C�

2

, and the tangent spae in P

N

to L at C�

2

onsists of all X 2 P

N

with ` \ � 2 X.

In partiular, it follows from (2) that the intersetion of the tangent spaes of all

line-onditions at a point C�

2

2 B

Æ

onsists of all X 2 P

N

that ontain �: indeed,

a urve of degree d utting a line in more than d points must ontain it.

Let then V

1

�

1

�! P

N

be the blow-up of P

N

along B, and all E

1

the exeptional

divisor. Call `point-' and `line-onditions' in V

1

the proper transforms of the ondi-

tions in P

N

. As seen in x1, we need to analyze the blow-up over B

Æ

.

8



Consider �

�1

(B

Æ

), the subset of E

1

lying over B

Æ

. As B

Æ

is smooth, �

�1

(B

Æ

) �!

B

Æ

is a projetive bundle: spei�ally, if N denotes the normal bundle to B

Æ

in P

N

,

then �

�1

(B

Æ

) = P(N ). So a point in �

�1

(B

Æ

) is a normal diretion to B entered

at a point C�

2

2 B

Æ

.

Proposition 3.1. Denote by S

1

the intersetion of all line-onditions in V

1

. Then

S

1

\ �

�1

(B

Æ

) is supported on a P

d�3

-bundle B

Æ

1

over B

Æ

.

Spei�ally (as we will see in the proof), the immersions Sym

d�1

�

V ,! Sym

d

�

V

given by multipliation by linear forms determine naturally a rank-(d�2) subbundle

G of N , and B

Æ

1

= P(G).

Proof: Call B

Æ

1

the support of S

1

\�

�1

(B

Æ

). By (2) above, S

1

intersets the �ber

over C�

2

2 B

Æ

along normal diretions to B lying in the spae of urves X 2 P

N

ontaining �. These diretions (i.e. the �ber of B

Æ

1

over eah C�

2

) form a P

d�3

; in

fat, B

Æ

1

is the projetivization P(G) of a rank-(d�2) subbundle of N . To show this

(and to ollet information we will use in x4.2), reall from x1, proof of Lemma 1.1,

that B

Æ

is isomorphi to an open set in P

(d�2)(d+1)

2

�

�

P

2

, via (C; �) 7! C�

2

. Denote

by O

1

(1) (resp. O

2

(1)) the pull-bak to B

Æ

of O(1) from the �rst (resp. seond)

fator of P

(d�2)(d+1)

2

�

�

P

2

. The Euler sequene giving the tangent bundle to P

N

:

0 �! O

P

N �! Sym

d

�

V 
O

P

N(1) �! TP

N

�! 0

pulls-bak on B

Æ

to:

0 �! O

B

Æ

�! Sym

d

�

V 
O

1

(1)
O

2

(2) �! TP

N

j

B

Æ

�! 0 :

Now, the immersion Sym

d�1

�

V 
O

2

(�1) ,! Sym

d

�

V gives an immersion

Sym

d�1

�

V 
O

1

(1)
O

2

(1) ,! Sym

d

�

V 
O

1

(1)
O

2

(2)

and determines a subbundle G

0

of TP

N

j

B

Æ

ontaining TB

Æ

, and hene a subbundle

G of N . The �ber of G

0

over C�

2

2 B

Æ

is the tangent spae at C�

2

to the set of

urves of degree d ontaining �, therefore (by the desription of B

Æ

1

given above),

B

Æ

1

= P(G).

As seen above, the �ber of B

Æ

1

over C�

2

onsists of the (d � 3)-dimensional

projetive spae of normal diretions to B entered at C�

2

and lying in the subspae

of P

N

formed by urves ontaining �. Call fKg

C�

2

the point in B

Æ

1

determined by

the line C�

2

+ tK� (parametrized by t), where K is a degree-(d� 1) urve. Notie

that for K to determine a point of B

Æ

1

{i.e. for C�

2

+ tK� to determine a normal

diretion to B{ we must have (by (1) above) K

�

� C

�

.

Now eah point p in C \ � determines a hyperplane in the �ber of B

Æ

1

over

C�

2

: namely the hyperplane onsisting of all fKg

C�

2

with p 2 K. If � and C

interset transversally, then � \ C onsists of d � 2 distint points, and the d � 2

orresponding hyperplanes in the �ber have empty intersetion (beause K

�

� C

�

for all fKg

C�

2

2 B

Æ

1

).

If on the other hand � is tangent to C (at one point), the d�3 points of intersetion

of � and C determine d � 3 hyperplanes in the �ber, interseting at exatly one

9



point. This determines a subset T

Æ

1

� B

Æ

1

, mapping bijetively onto the set T

Æ

=

fC�

2

2 B

Æ

s.t. � is tangent to Cg. Equivalently, T

Æ

1

onsists of all fKg

C�

2

2 B

Æ

with K

�

� C

�

, K

2

�

� C

�

. This set will play an important role in the following:

by Lemma 1.3 in x1, T

Æ

is disjoint from the intersetion of N � 2d + 1 general

point-onditions, and meets the intersetion of N � 2d general point-onditions at

�nitely many points {in fat, �nitely many points C�

2

with � tangent to C at a

single smooth point.

Finally, we let B

1

, T

1

be the losures of B

Æ

1

, T

Æ

1

in V

1

. B

1

will be the enter for

our seond blow-up.

x3.2. The seond blow-up. Let V

2

�

2

�! V

1

be the blow-up of V

1

along B

1

, and

all E

2

the new exeptional divisor. Again, we all `point-onditions' and `line-

onditions' in V

2

the proper transforms of the onditions in V

1

.

As before, we need only analyze the part of this blow-up lying over B

Æ

. Now B

Æ

1

is non-singular, therefore �

�1

2

(B

Æ

1

) � E

2

is a projetive bundle over B

Æ

1

: denoting

by N

1

the normal bundle to B

Æ

1

in V

1

, we have �

�1

2

(B

Æ

1

) = P(N

1

).

Denote by E

1

the normal bundle to B

Æ

1

in E

1

: then the proper transform

e

E

1

of

E

1

in V

2

intersets �

�1

2

(B

Æ

1

) along P(E

1

) � P(N

1

). The �ber of

e

E

1

over a point of

B

Æ

1

is a hyperplane in the �ber of E

2

; we �rst show that the line-onditions in V

2

don't meet anywhere along these hyperplanes:

Lemma 3.2. The intersetion S

2

of all line-onditions in V

2

is disjoint from

�

�1

2

(B

Æ

1

) \

e

E

1

.

Proof: Consider the Euler sequenes for B

Æ

1

= P(G) and �

�1

1

(B

Æ

) = P(N ) (nota-

tions as in the proof of Proposition 3.1):

0 ����! O

P(G)

����! G 
O

P(G)

(1) ����! T

P(G)jB

Æ

����! 0

?

?

y

?

?

y

?

?

y

0 ����! O

P(N )

����! N 
O

P(N )

(1) ����! T

P(N )jB

Æ

����! 0

These give (with some abuse of notations):

E

1

= T

P(N )jB

Æ

=T

P(G)jB

Æ

= (N=G)
O

P(G)

(1) :

Realling how G was obtained:

E

1

= (T

P

N=G

0

)
O

P(G)

(1) =

Sym

d

�

V

Sym

d�1

�

V 
O

2

(�1)


O

1

(1)
O

2

(2)
O

P(G)

(1):

Let p 2 B

Æ

1

, mapping to C�

2

2 B

Æ

. The �ber of P(E

1

) over p an be identi�ed

with P(Sym

d

�

V=Sym

d�1

�

V), where the inlusion Sym

d�1

�

V ,! Sym

d

�

V is given by

multipliation by �.

Therefore

e

E

1

\ �

�1

2

(p) an be identi�ed with the spae of d-tuples of points over

�; via this identi�ation, the line-ondition L

`

in V

2

orresponding to a general line
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` ontains a point in

e

E

1

\�

�1

2

(p) if and only if ` goes through a point of the d-tuple.

The assertion of the lemma follows from this.

Sine the general line-ondition in V

1

is non-singular at a point p 2 B

Æ

1

, then

�

�1

2

(p) \ S

2

is (set-theoretially) the intersetion of hyperplanes of the �ber of

P(N

1

), and is therefore itself a linear spae. By Lemma 3.2, this intersetion misses

a hyperplane in eah �ber, hene it onsists of at most one point over eah p 2 B

Æ

1

.

Lemma 3.2 is the main tool in our next observation. Reall that, over B

Æ

, the

intersetion S

1

of all line-onditions in V

1

is supported on B

Æ

1

. Also, we found a

`speial' subvariety T

Æ

1

� B

Æ

1

: denoting (as in x1) by fKg

C�

2

points of B

Æ

1

, T

Æ

1

onsists of all fKg

C�

2

2 B

Æ

1

with K

2

�

� C

�

.

Lemma 3.3. (1) th

p

(S

1

) = 1 if p 2 B

Æ

1

� T

Æ

1

(2) th

p

(S

1

) � 2 if p 2 T

Æ

1

, and th

p

(S

1

) = 2 if p = fKg

C�

2

, with � tangent to C

at a single smooth point.

Proof: The thikness of S

1

is (vauously) at least 1 at all p 2 B

Æ

1

; we have to show

it is at most 1 outside of T

Æ

1

, and preisely 2 on T

Æ

1

if p maps to C�

2

, � tangent to

C at a single smooth point.

Let p = fKg

C�

2

2 B

Æ

1

. It follows from Lemma 3.2 that a non-singular urve

in V

1

tangent to E

1

and transversal to B

1

at p must be transversal to the general

line-ondition in V

1

at p: indeed, otherwise the line-onditions in V

2

would interset

along

e

E

1

\ E

2

above p. Therefore, germs entered at p, transversal to B

1

and

tangent to E

1

interset S

1

with multipliity 1 at p. On the other hand, onsider a

smooth urve germ (t) entered at fKg

C�

2

, transversal to B

1

and E

1

; suh a 

maps down to a smooth urve germ in P

N

, entered at C�

2

and transversal to B.

Then (1) and (2) follow from Lemma II, by e.g. [F℄, Theorem 12.4 (a).

The last lemma is the main ingredient for:

Proposition 3.4. S

2

\ �

�1

2

(B

Æ

1

) is supported on a variety B

Æ

2

mapping bijetively

onto T

Æ

1

.

Proof: By Lemma 3.2, the intersetion onsists of at most one point in eah �ber

over p 2 B

Æ

1

. Now the line-onditions in V

2

annot interset above points p 2 B

Æ

1

where th

p

(S

1

) < 2, and they must interset above p if th

p

(S

1

) � 2 (sine the line-

onditions in V

1

share a normal diretion to B

Æ

1

in this ase). The statement then

follows from the omputation of th

p

(S

1

) in Lemma 3.3.

In fat B

Æ

2

is a setion of E

2

over T

Æ

1

; we set

e

V = V

2

, and let B

2

be the losure of

B

Æ

2

in

e

V . In x4, we will use

e

V to ompute N

d

(2d� 1) and N

d

(2d).

We summarize the results of this setion in:

Lemma III. Let

e

P ,

e

L denote the lasses of the general point- and line-ondition in

e

V . Then

(1) N

d

(2d� 1) =

e

P

N�2d+1

�

e

L

2d�1

, and

(2) N

d

(2d) =

e

P

N�2d

�

e

L

2d

� , where  is a (positive) ontribution due to �nitely

many points in B

Æ

2

.

Proof: This follows from Lemma I, Lemma 1.3 and Proposition 3.4: the interse-

tion of N � 2d + 1 general point-onditions in

e

V is disjoint from S

2

(giving (1)),

11



while the intersetion of N � 2d general point-onditions in

e

V meets S

2

at �nitely

many points of B

Æ

2

, so that

e

P

N�2d

�

e

L

2d

is the sum of N

d

(2d) and of a positive

ontribution .

x4. Two harateristi numbers for all degrees. In this setion we apply the

onstrution in x3 to prove:

Theorem IV. Denote by N

d

(k) the number of smooth plane urves of degree d

tangent to k lines and ontaining

d(d+3)

2

� k points in general position. Then

(1) N

d

(2d� 1) = (2d� 2)

2d�1

� 2

d�3

d(d� 1)(d

2

� d+ 2)

(2) N

d

(2d) = (2d� 2)

2d

� 2

d�4

d(d� 1)(8d

4

� 21d

3

+ 19d

2

� 20d+ 32)

Remark. By B�ezout's theorem in P

N

and Lemma 1.3, (2d � 2)

2d�1

must be the

sum of N

d

(2d � 1) and of a ontribution given by the

d(d�1)(d

2

�d+2)

8

non-redued

urves C�

2

2 P

N

that ontain N � 2d + 1 general points p

1

; : : : ; p

N�2d+1

. Sup-

pose C�

2

is one suh urve, and that p

1

; p

2

2 �, p

3

; : : : ; p

N�2d+1

2 C. Now d

general line-onditions and the point-onditions orresponding to p

3

; : : : ; p

N�2d+1

interset in a (d + 1)-dimensional variety Z � P

N

non-singular at C�

2

: their tan-

gent hyperplanes interset on the (d + 1)-dimensional subspae formed by urves

ontaining p

3

; : : : ; p

N�2d+1

and d points q

1

; : : : ; q

d

on � (f. (2) in x3.1). A general

line-ondition will now interset Z in a divisor non-singular at C�

2

, whose tan-

gent spae at C�

2

is the set of all urves ontaining � (a degree-d urve ontaining

d + 1 aligned points must ontain the line through them); the same holds for the

point-onditions orresponding to p

1

and p

2

.

Therefore the ontribution of C�

2

to the total intersetion number is the ontri-

bution of an isolated point of intersetion of d+ 1 non-singular divisors all tangent

to one another in a (d + 1)-dimensional variety. Suh a ontribution is at least 2

d

([F℄, Example 8.2.2). Part (1) of Theorem IV implies that the ontribution of eah

non-redued urve in this enumerative problem is preisely 2

d

.

The rest of this setion is devoted to deriving Theorem IV from Lemma III. We

will use a formula relating intersetions under blow-ups (see [A℄, x2 for the proof of

a statement implying this):

Proposition. Let V be a smooth n-dimensional variety, B

i

,! V a smooth subva-

riety, X

1

; : : : ; X

n

divisor of V , and denote by e

B

X the multipliity of X along B.

Let

e

V

�

�! V be the blow-up of V along B, and

e

X

1

; : : : ;

e

X

n

the proper transforms

of X

1

; : : : ; X

n

. Then

�

�

(

e

X

1

� : : : �

e

X

n

) = X

1

� : : : �X

n

+ i

�

�

Q

j

(e

B

X

j

[B℄ + i

�

[X

j

℄)

(N

B

V )

�

0

in A

0

(

T

j

X

j

) (here f�g

0

denotes the 0-dimensional omponent of the lass �).

If e.g. B and V are omplete, we an use this formula to ompare the degrees

of the intersetion of X

1

; : : : ; X

n

in V and of

e

X

1

; : : : ;

e

X

n

in

e

V . We want to apply

12



this formula to the two blow-ups examined in x3; a little extra are has to be

taken sine we studied the blow-ups only over ertain (open) subsets of the varieties

involved. Suppose then that V is a omplete n-dimensional variety, i : B �! V ,

� :

e

V �! V are proper maps, X

1

; : : : ; X

n

are divisors in V , and

e

X

1

; : : : ;

e

X

n

are

divisors in

e

V . Suppose that there exists a non-singular dense open set V

Æ

� V suh

that B

Æ

= i

�1

(V

Æ

) ,! V

Æ

is an embedding of smooth varieties, �

�1

(V

Æ

) �! V

Æ

is

the blow-up of V

Æ

along B

Æ

,

e

X

j

\ �

�1

(V

Æ

) are the proper transforms of X

j

\ V

Æ

,

and X

1

\ � � � \ X

n

� V

Æ

,

e

X

1

\ � � � \

e

X

n

� �

�1

(V

Æ

) (i.e., the situation pulls-bak

to that of the proposition when restriting to V

Æ

). Then, denoting by e

B

X the

multipliity of X along B

Æ

:

(*)

Z

e

V

e

X

1

� : : : �

e

X

n

=

Z

V

X

1

� : : : �X

n

+

Z

B

Q

j

(e

B

X

j

[B℄ + i

�

[X

j

℄)

(N

B

V )

;

where (N

B

V ) is any lass that pulls-bak to (N

B

Æ

V

Æ

) on B

Æ

.

This follows from the proposition above, sine all the terms are sums of loal

ontributions. As the reader will hek, Lemma 1.3 and our hoies guarantee that

the hypotheses are satis�ed at both stages of our omputation.

x4.1. The �rst blow-up. We apply (*) to

P

(d�2)(d+1)

2

�

�

P

2

i

�! P

d(d+3)

2

(C; �) 7! C�

2

(f. the proof of Lemma 1.1). Keeping the notation as in x3.1, the image of this

map is B; we analyzed the blow-up over B

Æ

, whih is identi�ed via this map with

the subset B

Æ

� P

(d�2)(d+1)

2

�

�

P

2

onsisting of the pairs (C; �) with C redued and

not ontaining �. If P;L denote resp. point- and line-onditions in P

N

, then e

B

P =

0; e

B

L = 1 (line-onditions are generially smooth along B, f. (2) in x3.1). The

Chow ring of P

(d�2)(d+1)

2

�

�

P

2

is generated by the pull-baks `;m of the hyperplane

lasses from the fators, with the relations `

i

m

j

= 0 if i >

(d�2)(d+1)

2

or j > 2, and

R

`

(d�2)(d+1)

2

m

2

= 1. Also, i

�

P = `+ 2m; i

�

L = (2d� 2)`+ (4d� 4)m. Denoting by

P

1

; L

1

the lasses of the line-onditions in V

1

, B�ezout's Theorem and (*) give (for

k � 2d):

P

N�k

1

� L

k

1

= (2d� 2)

k

�

Z

(`+ 2m)

N�k

(1 + (2d� 2)`+ (4d� 4)m)

k

(N

B

P

N

)

;

where (N

B

P

N

) is any lass on P

(d�2)(d+1)

2

�

�

P

2

restriting to (N

B

Æ

P

N

) on B

Æ

.

Suh is

i

�

(TP

N

)

(TP

(d�2)(d+1)

2

�

�

P

2

)

=

(1 + `+ 2m)

(

d+2

2

)

(1 + `)

(

d

2

)

(1 +m)

3

= 1 + (2d+ 1)`+ (d

2

+ 3d� 1)m+ : : :

13



(only these terms are relevant for k � 2d). Therefore:

P

N�2d+1

1

� L

2d�1

1

= (2d� 2)

2d�1

�

Z

(`+ 2m)

(

d

2

)

+1

= (2d� 2)

2d�1

� 4

�

�

d

2

�

+ 1

2

�

; and

P

N�2d

1

� L

2d

1

= (2d� 2)

2d

�

Z

(`+ 2m)

(

d

2

)

(1 + 2d(2d� 2)`+ 2d(4d� 4)m)

1 + (2d+ 1)`+ (d

2

+ 3d� 1)m

= (2d� 2)

2d

�

Z

(`+ 2m)

(

d

2

)

((4d

2

� 6d� 1)`+ (7d

2

� 11d+ 1)m):

x4.2. The seond blow-up; N

d

(2d � 1). The enter of the seond blow-up is

the losure of B

Æ

1

, a P

d�3

-bundle over B

Æ

. More preisely (see proposition 3.1)

the immersion Sym

d�1

�

V 
 O

1

(1) 
 O

2

(1) ,! Sym

d

�

V 
 O

1

(1) 
 O

2

(2) determines

a subbundle G

0

of TP

N

j

B

Æ

ontaining TB

Æ

, therefore a subbundle G of the normal

bundle N to B

Æ

in P

N

, and B

Æ

1

= P(G).

Now all P(G) any ompati�ation of P(G) �lling the diagram

P(G)

i

1

����! V

1

p

?

?

y

?

?

y

�

1

P

(d�2)(d+1)

2

�

�

P

2

i

����! P

d(d+3)

2

with i

1

proper, identifying i

�1

1

B

Æ

1

with B

Æ

1

, and B

Æ

1

p

�! B

Æ

with the bundle P(G)

de�ned above. Also, denote by `;m the pull-baks of `;m via p, and by e the lass

of the `universal line bundle' (i.e., the pull-bak of the lass of E

1

via i

1

).

Lemma 4.1.

p

�

e

j

=

8

>

>

<

>

>

:

0; j < d� 3

(�1)

d�1

; j = d� 3

(�1)

d�1

(d`+

d

2

+ d� 6

2

m); j = d� 2

:

Proof: The odimension of the omplement of B

Æ

in P

(d�2)(d+1)

2

�

�

P

2

is � 2, so

it's enough to observe that, over B

Æ

,

P

j

e

j

pushes forward to the Segre lass s(G)

of G: traing the de�nition of G

s(G) =

(TP

(d�2)(d+1)

2

�

�

P

2

)

(G

0

)

=

(TP

(d�2)(d+1)

2

)(

�

P

2

)

(Sym

d�1

�

V 
O

1

(1)
O

2

(1))

=

(1 + `)

(

d

2

)

(1 +m)

3

(1 + `+m)

(

d+1

2

)

= 1� d`�

d

2

+ d� 6

2

m+ : : : :
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Denote (as above) by P

1

; L

1

the lasses of the point- and line-onditions in V

1

,

and by

e

P;

e

L the lasses of the onditions in

e

V = V

2

. We have e

B

1

P

1

= 0, e

B

1

L

1

= 1,

and i

�

1

P

1

= `+2m, i

�

1

L

1

= (2d� 2)`+ (4d� 4)m� e, i

�

1

E

1

= e. Therefore (*) gives

(for k � 2d)

e

P

N�k

�

e

L

k

= P

N�k

1

� L

k

1

�

Z

(`+ 2m)

N�k

(1 + (2d� 2)`+ (4d� 4)m� e)

k

(N

B

1

V

1

)

;

where (N

B

1

V

1

) is any lass on P(G) restriting to (N

B

Æ

1

V

1

) on B

Æ

1

. Now N

B

Æ

1

V

1

is

an extension of N

E

1

V

1

and E

1

= N

B

Æ

1

E

1

(notations as in x3.2); we omputed E

1

in

the proof of Lemma 3.2, getting

E

1

=

Sym

d

�

V

Sym

d�1

�

V 
O

2

(�1)


O

1

(1)
O

2

(2)
O

P(G)

(1) :

Putting all together, we an set

(N

B

1

V

1

) = (1 + e)

(1 + `+ 2m� e)

(

d+2

2

)

(1 + `+m� e)

(

d+1

2

)

:

Hene in order to apply (*) we have to evaluate the degree on P (G) of

(`+ 2m)

N�k

(1 + (2d� 2)`+ (4d� 4)m� e)

k

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

for k = 2d� 1; 2d, or equivalently the degree on P

(d�2)(d+1)

2

�

�

P

2

of

(`+ 2m)

N�k

p

�

(1 + (2d� 2)`+ (4d� 4)m� e)

k

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

:

For k = 2d� 1, the only relevant term omes from the push-forward via p of the

term of degree d� 3 in

(1 + (2d� 2)`+ (4d� 4)m� e)

2d�1

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

:

By the projetion formula and Lemma 4.1, the only degree-(d � 3) monomial in

`;m; e with non-zero push-forward is e

d�3

; thus the only relevant term is the term

of degree d� 3 in

(1� e)

2d�1

(1� e)

(

d+1

2

)

(1 + e)(1� e)

(

d+2

2

)

=

(1� e)

d�2

1 + e

:
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This is (�1)

d�1

(2

d�2

� 1)e

d�3

, therefore Lemma 4.1 gives

Z

(`+ 2m)

(

d

2

)

+1

p

�

(1 + (2d� 2)`+ (4d� 4)m� e)

2d�1

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

=

Z

(2

d�2

� 1)(`+ 2m)

(

d

2

)

+1

= 4(2

d�2

� 1)

�

�

d

2

�

+ 1

2

�

:

This omputation, Lemma III at the end of x3, and P

N�2d+1

1

� L

2d�1

1

as obtained

in x4.1 yield

N

d

(2d� 1) =

e

P

N�2d+1

�

e

L

2d�1

= (2d� 2)

2d�1

� 2

d

�

�

d

2

�

+ 1

2

�

;

whih is part (1) of Theorem IV.

For k = 2d, the omputation runs along the same lines. We need now the term

of degree d� 2 in

(1 + (2d� 2)`+ (4d� 4)m� e)

2d

(1 + `+m� e)

(

d+1

2

)

(1 + e)(1 + `+ 2m� e)

(

d+2

2

)

;

by Lemma 4.1, the only monomials with non-zero push-forward are e

d�2

, `e

d�3

,

me

d�3

. As above, the oeÆient of e

d�2

in the expression is the oeÆient of e

d�2

in

(1� e)

2d

(1� e)

(

d+1

2

)

(1 + e)(1� e)

(

d+2

2

)

=

(1� e)

d�1

1 + e

;

i.e. (�1)

d

(2

d�1

� 1). One omputes similarly the oeÆients of `e

d�3

;me

d�3

; the

result is that the only relevant term in the expression above is

(�1)

d

�

(2

d�1

� 1)e

d�2

� (2

d�2

� 1)[(4d

2

� 5d� 1)`+

15d

2

� 21d� 4

2

m℄

�

:

Applying Lemma 4.1, the push-forward of this lass is

� (2

d�1

�1)(d`+

d

2

+ d� 6

2

m)+ (2

d�2

�1)[(4d

2

�5d�1)`+

15d

2

� 21d� 4

2

m℄)

= 2

d�3

((4d

2

�9d�1)`+(13d

2

�23d+8)m)+

4d

2

� 7d� 1

2

`+(7d

2

�11d+1)m;

hene applying (*) and the omputation of P

N�2d

1

� L

2d

1

in x4.1 yields

e

P

N�2d

�

e

L

2d

:

(2d� 2)

2d

�

Z

(`+ 2m)

(

d

2

)

(2

d�2

(4d

2

� 7d� 1)`+ 2

d�3

(13d

2

� 23d+ 8)m)

= (2d� 2)

2d

� 4

�

�

d

2

�

2

�

2

d�2

(4d

2

� 7d� 1)� 2

�

d

2

�

2

d�3

(13d

2

� 23d+ 8); or
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e

P

N�2d

�

e

L

2d

= (2d� 2)

2d

� 2

d�3

d(d� 1)(4d

4

� 11d

3

+ 11d

2

� 8d+ 10):

In the next setion, we use this result and Lemma III(2) from x3 to onlude the

proof of Theorem IV.

x4.3 N

d

(2d). By Lemma III(2) and the result in x4.2, in

e

V

e

P

N�2d

�

e

L

2d

= (2d� 2)

2d

� 2

d�3

d(d� 1)(4d

4

� 11d

3

+ 11d

2

� 8d+ 10)

is the sum of N

d

(2d) and of a ontribution due to �nitely many points of B

2

.

More preisely, let

e

P

1

; : : : ;

e

P

N�2d

be general point-onditions, and let

e

L

1

; : : : ;

e

L

2d

be general line-onditions in

e

V = V

2

(notations as in x3). We have shown that

e

P

1

\ � � � \

e

P

N�2d

\

e

L

1

\ � � � \

e

L

2d

onsists of N

d

(2d) `good' points orresponding

to smooth degree-d urves satisfying the onditions, and �nitely many `bad' points

in B

Æ

2

. The intersetion is transversal at the good points; we have to evaluate the

ontribution to

e

P

1

� : : : �

e

P

N�2d

�

e

L

1

� : : : �

e

L

2d

due to points of B

Æ

2

. Our plan is the

following: we will basially produe expliitly the (sheme-theoreti) omponent B

2

of

e

L

1

\ � � � \

e

L

2d

that ontains the `bad' points. B

2

is supported on B

2

; in fat, we

will ompute [B

2

℄ = 2

d�4

[B

2

℄. Then

e

P

N�2d

�

e

L

2d

= N

d

(2d) + 2

d�4

e

P

1

� : : : �

e

P

N�2d

�B

2

;

part (2) of Theorem IV follows by omparing this to the other expression for

e

P

N�2d

�

e

L

2d

obtained above.

Let p 2 B

2

be a `bad' point; by Lemma 1.3 (2), p maps down to a C�

2

2 B

with � tangent to C at a single smooth point. We have to express B

2

expliitly in

a neighborhood of p; the main observation to this e�et is:

Claim 1. S

2

� E

2

sheme-theoretially in a neighborhood of p.

Proof: Choose loal parameters ff

1

; : : : ; f

N

g for V

2

at p, suh that f

1

= 0 is a

loal equation for E

2

at p, and ff

2

; : : : ; f

N

g are loal parameters for E

2

at p. Let

I

p

(S

2

) be the ideal of S

2

in the loal ring for V

2

at p; sine S

2

is ontained in E

2

set-theoretially in a neighborhood of p, then there is a least integer k suh that

f

k

1

2 I

p

(S

2

). We laim that k = 1. Indeed, onsider the urve germ  de�ned by

(t) = (t; 0; : : : ; 0).  is transversal to E

2

, and intersets S

2

with multipliity k at

0; therefore it maps down to a urve germ �

2

() transversal to B

1

at �

2

(p) 2 T

Æ

1

,

interseting S

1

with multipliity k + 1 at 0. But the thikness of S

1

at �

2

(p) is 2

(Lemma 3.3), so this implies k = 1.

In fat this argument shows that, for 2d general line-onditions

e

L

1

; : : : ;

e

L

2d

, we

have

e

L

1

\ � � � \

e

L

2d

� E

2

sheme-theoretially in a neighborhood of p (the inlusion

holds set-theoretially, and the thikness of the intersetion of the orresponding

line-onditions in V

1

is 2 by the same argument used in x3.3); sine there are only

�nitely many `bad' points, for a general hoie of lines the inlusion will hold in a

neighborhood of all of them.

By the preeding observation,

e

L

1

\ � � � \

e

L

2d

= (

e

L

1

\ E

2

) \ � � � \ (

e

L

2d

\ E

2

) in a

neighborhood of the bad points. This is useful beause the

e

L

j

\E

2

an be desribed
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very expliitly by mean of the omputation in x2. Indeed, onsider C�

2

2 B

Æ

� P

N

,

and fKg

C�

2

2 B

Æ

1

(reall fKg

C�

2

denotes the point in E

1

determined by the

line C�

2

+ K�t, with K a degree-(d � 1) urve suh that K

�

� C

�

). We an

assume � is the line x

0

= 0; also, hoose forms P and Q of degree d in x

0

; x

1

; x

2

representing C�

2

and K�. If R

d

is a form of degree d in x

1

; x

2

, look at the urve

 : (t) = P +Qt+R

d

t

2

. Any suh urve determines a point in the �ber of E

2

over

fKg

C�

2

; this identi�es the (d+1)-dimensional vetor spae of forms over � with the

omplement of

e

E

1

in the �ber of E

2

over fKg

C�

2

(the identi�ation depends on the

hoie of P and Q). We have seen in x2 (equation (*)) that  has ontat of order

at least 3 with the line-ondition orresponding to a (general) line ` interseting �

at (0 : `

1

: `

2

) if and only if (notations as in x2)

(**) Q

d�1

(`

1

; `

2

)

2

� 4R

d

(`

1

; `

2

)P

d�2

(`

1

; `

2

) = 0:

Let

e

L

`

be the line-ondition in V

2

orresponding to `. In terms of the above iden-

ti�ation, (**) gives the equation of the �ber of

e

L

`

\ E

2

over fKg

C�

2

(given P , Q

and `

1

; `

2

there is an aÆne hyperplane of R

d

's satisfying (**)). Imposing that (**)

be true for all `

1

; `

2

gives the equation

Q

2

d�1

� 4R

d

P

d�2

= 0

for the sheme-theoreti intersetion of the line-onditions in

e

V over fKg

C�

2

. As

fKg

C�

2

moves in B

Æ

1

, this de�nes a sheme B

Æ

2

supported on B

Æ

2

.

Claim 2. In a neighborhood of the bad points, B

Æ

2

is the part of S

2

supported on

B

Æ

2

.

Proof: It suÆes to observe that S

2

is the intersetion

T

`

e

L

`

of all line-onditions

in

e

V , while by de�nition B

Æ

2

is the intersetion of S

2

with E

2

near bad points . As

seen above, S

2

� E

2

near suh points, and the assertion follows.

In fat, this argument shows B

Æ

2

oinides with

e

L

1

\ � � � \

e

L

2d

in a neighborhood

of the bad points, where

e

L

1

; : : : ;

e

L

2d

are general line-onditions in

e

V

2

.

Let now B

2

be the losure of B

Æ

2

. So far, the disussion above shows that

e

P

1

\

� � �\

e

P

N�2d

\

e

L

1

\� � �\

e

L

2d

onsists of the good points and of

e

P

1

\� � �\

e

P

N�2d

\B

2

;

therefore

e

P

N�2d

�

e

L

2d

= N

d

(2d) +

e

P

1

� : : : �

e

P

N�2d

� [B

2

℄ :

For the next step in our program we need to show

Claim 3. [B

2

℄ = 2

d�4

[B

2

℄.

Proof: B

2

is a subsheme of E

2

of odimension 2d�1. We are going to ut B

2

with

a (2d�1)-dimensional variety Z interseting the support B

2

of B

2

transversally at a

point p. To prove the assertion we must show that Z intersets B

2

with multipliity

2

d�4

at that point.

To obtain Z, we �x � to be the line x

0

= 0; �x a 2-dimensional net of degree-(d�2)

urves C utting � into divisors

(x

2

1

+ �x

1

x

2

+ �x

2

2

)(x

d�4

1

+ x

d�5

1

x

2

+ � � �+ x

d�4

2

);
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this gives a 2-dimensional family of urves C�

2

in B, parametrized by �; �, hene

determining a (d � 1)-dimensional subvariety of B

1

: all fKg

C�

2

with C and � as

above. We de�ne the (d� 2)-dimensional subvariety of B

1

obtained by onsidering

fKg

C�

2

with C�

2

as above and K in the form

x

1

(x

d�4

1

+ 

1

x

d�5

x

2

+ � � �+ 

d�4

x

d�4

2

)x

2

2

:

This in turn determines a (2d� 1)-dimensional subvariety Z of E

2

. The reader will

easily verify that Z intersets B

2

transversally at a point p over the point fKg

C�

2

determined by � = � = 0, 

1

= � � � = 

d�4

= 1.

We an parametrize the �ber over suh fKg

C�

2

near p as above by forms

1

4

(a

0

x

d

1

+ a

1

x

d�1

1

x

2

+ � � �+ a

d

x

d

2

);

this parametrizes Z at p by the data

(�; �; 

1

; : : : ; 

d�4

; a

0

; : : : ; a

3

; a

4

; : : : ; a

d

);

in these terms p has oordinates (0; 0; 1; : : : ; 1; 0; : : : ; 0; 1; : : : ; 1). We an now restrit

the equations for B

2

to Z: we get

x

2

1

(x

d�4

1

+ 

1

x

d�5

x

2

+ � � �+ 

d�4

x

d�4

2

)

2

x

4

2

= (x

2

1

+ �x

1

x

2

+ �x

2

2

)�

� (x

d�4

1

+ x

d�5

1

x

2

+ � � �+ x

d�4

2

)(a

0

x

d

1

+ a

1

x

d�1

1

x

2

+ � � �+ a

d

x

d

2

);

i.e., 2d � 1 equations in �; �, 

1

; : : : ; 

d�4

and a

0

; : : : ; a

d�4

. Cheking that the

multipliity of intersetion of the orresponding loi at p is 2

d�4

is a standard

omputation, whih we also leave to the reader.

It follows from the above that the ontribution to

e

P

1

\ � � � \

e

P

N�2d

\

e

L

1

\ � � � \

e

L

2d

due to the `bad' points ( in the statement of Lemma III(2)) is

2

d�4

e

P

1

� : : : �

e

P

N�2d

� [B

2

℄ = 2

d�4

e

P

N�2d

� [B

2

℄:

The omputation in N

d

(2d) will now be omplete if we show

Claim.

R

e

V

e

P

N�2d

� [B

2

℄ = d(d� 1)(d� 3)(d� 2)(d+ 2).

Proof: Observe that the general line-ondition

e

P in

e

V is atually the pull-bak of

the general line-ondition P in P

N

(indeed, the enters of the blow-ups ut point-

onditions properly). Also, reall that B

2

maps down on P

N

to the subvariety T of

B onsisting of C�

2

with C tangent to �. Then, by the projetion formula

Z

e

V

e

P

N�2d

� [B

2

℄ =

Z

P

N

P

N�2d

� [T ℄:
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On the other hand, onsider the subvariety T

0

of P

(d�2)(d+1)

2

�

�

P

2

given by all pairs

(C; �) with C tangent to �. Then i

�

[T

0

℄ = [T ℄ (notations as in x3.1), and sine

i

�

P = `+ 2m we get, again by the projetion formula,

Z

e

V

e

P

N�2d

� [B

2

℄ =

Z

P

(d�2)(d+1)

2

�

�

P

2

(`+ 2m)

N�2d

[T

0

℄:

Now [T

0

℄ = (2d�6)`+(d�2)(d�3)m (indeed, 2(d�2)�2 urves of degree d�2 in

a penil are tangent to a given line, and (d� 2)(d� 3) lines in a penil are tangent

to a given urve of degree d� 2); therefore

Z

e

V

e

P

N�2d

� [B

2

℄ =

Z

(`+ 2m)

N�2d

((2d� 6)`+ (d� 2)(d� 3)m)

= d(d� 1)(d� 3)(d� 2)(d+ 2):

Thus, we have shown

e

P

N�2d

�

e

L

2d

= N

d

(2d) + 2

d�4

d(d� 1)(d� 3)(d� 2)(d+ 2):

Comparing with

e

P

N�2d

�

e

L

2d

= (2d� 2)

2d

� 2

d�3

d(d� 1)(4d

4

� 11d

3

+ 11d

2

� 8d+ 10)

(from x4.2) gives

N

d

(2d) = (2d� 2)

2d

� 2

d�4

d(d� 1)(8d

4

� 21d

3

+ 19d

2

� 20d+ 32);

whih onludes the proof of Theorem IV.

x5. N

4

(9). In his Almindelige Egenskaber ved Systemer af plane Kurver , Zeuthen

provides an exhaustive analysis of families of plane quartis, and lists many enu-

merative results (several of these appear also in [S℄, x26). We are very far from

reovering all his results; however, for smooth quartis, Proposition 1.2 and Theo-

rem IV in x4 give for d = 4

N

4

(k) = 6

k

0 � k � 6; N

4

(7) = 279;600; N

4

(8) = 1;668;096;

in agreement with Zeuthen. In this setion we indiate how to extend the onstru-

tion of x3 to obtain the next harateristi number:

Theorem V. The number of smooth quartis ontaining 5 general points and

tangent to 9 general lines in the plane is

N

4

(9) = 9;840;040

The result again agrees with Zeuthen's omputations. To our knowledge, the

remaining 5 harateristi numbers for smooth plane quartis still await a modern

veri�ation.
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The approah is roughly the following: by the onsiderations in x4.3, B

2

is gener-

ially redued for d = 4; it will then be easy to blow-up V

2

along B

2

, thereby

extending the onstrution of a variety of omplete quartis over the set of urves

onsisting of a smooth oni and a double line tangent to it. In the new variety, the

intersetion of 5 general point-onditions and 9 general line-onditions will onsist

of isolated points: N

4

(9) `good' points, the double oni ontaining the 5 points,

and �nitely many points orresponding to quartis onsisting of a triple of distint

lines, one of whih double, meeting at a point. The ontribution of the degenerate

points an be omputed diretly, giving the result.

Exeuting this plan involves the same tehniques we employed in the rest of the

note: we will indiate the main points here, leaving many details to the reader.

x5.1. The third blow-up. We keep the notations of the rest of the note: for

d = 4, S � P

14

denotes the the lous of non-redued quartis, B is the set of urves

C�

2

ontaining a double line �, and T � B is the set of urves C�

2

with � tangent

to C. B

Æ

is the set of quartis C�

2

onsisting of a double line � and of a redued

oni C not ontaining �, and T

Æ

= T \B

Æ

; both B

Æ

and T

Æ

are non-singular. Also,

we will denote by U the subset of T onsisting of quartis C�

2

with C a singular

oni, and � a line interseting C at a singular point; and we will let U

Æ

= U \ T

Æ

:

so points of U

Æ

are triples of distint lines, one of them double, meeting at a point.

In Lemma II we omputed the thikness of S at points of B � T and T � U ; the

additional information we need now is

Lemma II. (4) If p 2 U

Æ

, then th

p

(S) = 4.

The veri�ation is left to the reader: it is analogous to the proof of Lemma II in

x2.

The analogue of Lemma 1.3 in the new situation is:

Remark. The intersetion of 5 general point-onditions and S in P

14

onsists of

an isolated point orresponding to the double oni ontaining the 5 given points,

and of a 2-dimensional subset of B

Æ

. This subset ontains a 1-dimensional subset

of T

Æ

and �nitely many points of U

Æ

.

In x3 we analyzed the two blow-ups over B

Æ

: by this remark that disussion takes

are of the new situation as well. We get an extension of Lemma III for d = 4:

Lemma III. (3) Denote by P

2

; L

2

the lasses of the general point and line-onditions

in V

2

. Then P

5

2

�L

9

2

is the sum of N

4

(9) and of a ontribution due to a 1-dimensional

subset of B

Æ

2

and to an isolated point (orresponding to a double oni).

Reall that B

Æ

2

is isomorphi to T

Æ

; also, T

Æ

�

=

B

Æ

2

is smooth for d = 4. We are

going to blow-up V

2

along B

2

, and examine the preimage of points of B

Æ

2

: denoting

by U

Æ

2

the subset of B

Æ

2

identi�ed with U

Æ

, U

Æ

2

will be the set that `survives' the

third blow-up.

Let then V

3

�

3

�! V

2

be the blow-up of V

2

along B

2

,

e

E

2

the proper transform of

E

2

in V

3

.

Proposition 5.1. Denote by S

3

the intersetion of all line-onditions in V

3

. Then

S

3

\ �

�1

3

(B

Æ

2

) is supported on a variety B

Æ

3

mapping bijetively onto U

Æ

2

.
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Proof: This follows from the disussion in x4.3. First observe that B

Æ

2

:= S

2

\

�

�1

2

(B

Æ

1

) oinides with B

Æ

2

for d = 4 (f. x4.3: we gave equations for B

Æ

2

for all d;

for d = 4 the equations de�ne a redued sheme). As a onsequene, muh as in

Lemma 3.2, S

3

\ �

�1

3

(B

Æ

2

) must be disjoint from

e

E

2

, and therefore it onsists of

at most one point over eah point of B

Æ

2

. On the other hand, by Claim 2 in x4.3,

B

Æ

2

= B

Æ

2

oinides with the sheme-intersetion S

2

of the line-onditions along

B

Æ

2

�U

Æ

2

: therefore S

3

\�

�1

3

(B

Æ

2

�U

Æ

2

) = ;. The assertion amounts then to showing

that S

3

\ �

�1

3

(U

Æ

2

) 6= ;: whih follows from the fat that th

p

(S) � 4 if p 2 U

Æ

(Lemma II (4) above), similarly to Lemma 3.3.

We let B

3

be the losure of B

Æ

3

in V

3

. From Proposition 5.1 we get the main tool

for the omputation:

Lemma 5.2. Let P

3

; L

3

be the lasses of the general point- and line-onditions in

V

3

. Then P

5

3

� L

9

3

is the sum of N

4

(9) and of a ontribution due to �nitely many

points of B

Æ

3

and to an isolated point (orresponding to a double oni).

This follows from Lemma I, the remark in the beginning of this setion, and

Proposition 5.1.

x5.2. P

5

3

� L

9

3

. The omputation of N

4

(9) is now redued to applying formula (*)

in x4 (in order to ompute P

5

3

�L

9

3

), and evaluating the ontribution due to the `bad'

points in V

3

. The only new element needed to apply (*) is an expliit realization of

T

Æ

�

=

T

Æ

1

�

=

B

Æ

2

.

The �rst two stages of the omputation follow the steps of x4.1, 4.2:

P

5

1

� L

9

1

= 6

9

�

Z

(`+ 2m)

5

(1 + 6`+ 12m)

9

(1 + `)

6

(1 +m)

3

(1 + `+ 2m)

15

= 10; 077; 696� 67; 131 = 10; 010; 565 ;

and (using p

�

e = �1; p

�

e

2

= �4`� 7m, and p

�

e

3

= �10`

2

� 38`m� 28m

2

obtained

as in Lemma 4.1)

P

5

2

� L

9

2

= P

5

1

� L

9

1

�

Z

(`+ 2m)

5

(1 + 6`+ 12m� e)

9

(1 + `+m� e)

10

(1 + e)(1 + `+ 2m� e)

15

= 10; 010; 565� 149; 465 = 9; 861; 100 :

To apply formula (*) from x4 to the third blow-up, we need to gather information

about B

Æ

2

: spei�ally, we need a ompati�ation T of T

Æ

�

=

T

Æ

1

�

=

B

Æ

2

with a

manageable Chow ring and a lass restriting to (N

B

Æ

2

V

2

) on T

Æ

.

Now, T

Æ

parametrizes pairs (C; �) where C is a redued oni and � 6� C is a line

tangent to C. We hoose for T the losure of the subset of P

5

�

�

P

2

� P

2

onsisting

of triples (C; �; p) where � is a line, p 2 �, and C is a smooth oni tangent to �

at p. T is smooth (as a P

3

-bundle over a P

1

-bundle over P

2

) and ontains T

Æ

as an

open set. The Chow ring of T is generated by the hyperplane lasses ` of P

5

, m of

�

P

2

, and k of P

2

; the reader will easily hek the relations:

Z

`

4

m

2

= 2;

Z

`

5

m = 2;

Z

k`

3

m

2

= 1;

Z

k`

4

m = 3;

Z

k`

5

= 2;

Z

k

2

`

3

m = 1;

Z

k

2

`

4

= 1
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(all other degree-6 monomials give 0).

The lass of the point-onditions pulls-bak to `+ 2m via the natural map T �!

P

5

�

�

P

2

�! P

14

. We also need the pull-bak (to B

Æ

2

) of the lasses of E

1

and E

2

; the

key observation is

Claim. The pull-bak of the lasses of E

1

and E

2

to B

Æ

2

oinide.

Proof: This follows from Lemma 3.2, whih showed that B

Æ

2

is disjoint from

e

E

1

.

B

Æ

2

is a setion of E

2

over T

Æ

1

, say B

Æ

2

= P(L) � P(N

B

Æ

1

V

1

) = E

2

for L a rank-1

subbundle of N

B

Æ

1

V

1

(notations as in x3.2). Tautologially L = O

P(L)

(�1) is the

restrition of O

P(N

B

Æ

1

V

1

)

(�1), so that 

1

(L) is the pull-bak of the lass of E

2

; on

the other hand, sine B

Æ

2

is disjoint from

e

E

1

, then L is transversal to N

B

Æ

1

E

1

j

T

Æ

1

in

N

B

Æ

1

V

1

j

T

Æ

1

, so L

�

=

N

E

1

V

1

j

T

Æ

1

: therefore 

1

(L) is also the restrition of the lass of

E

1

.

By onsisteny with the notation of x4, we denote by e a lass of T restriting to

the pull-bak of the lass of E

1

(or E

2

) on B

Æ

2

. At this stage we an apply (*) from

x4 and write

P

5

3

� L

9

3

= P

5

2

� L

9

2

�

Z

T

(`+ 2m)

5

(1 + 6`+ 12m� 2e)

9

(N

B

2

V

2

)

;

where (N

B

2

V

2

) is any lass of T restriting to (N

B

Æ

2

V

2

) on B

Æ

2

. To obtain (N

B

2

V

2

)

we apply a few Euler sequenes as usual. With some abuse of notation, we get:

(N

B

2

V

2

) = (N

T

1

B

1

)(N

B

1

V

1




�

L)(L)

= (N

T

B)(G 


�

L)(N

B

1

V

1




�

L)(L) ;

with L as in the proof of the laim and G as in x4.2. This gives in partiular



1

(N

B

2

V

2

) = (2`+ 2m) + (4`+ 7m� 2e) + (5`+ 20m� 10e) + e

= 11`+ 29m� 11e :

Therefore

P

5

3

� L

9

3

= P

5

2

� L

9

2

�

Z

T

(`+ 2m)

5

(1 + 6`+ 12m� 2e)

9

(1 + 11`+ 29m� 11e+ : : : )

:

Claim. e = 3`+ 6m� 3k on T .

Proof: Let L be as above: so L is the restrition of O

E

1

(�1) to T

Æ

1

�

=

T

Æ

, and e

restrits to 

1

(L). Notie that then L is a subbundle of (the restrition of) G on

T

Æ

, and T

Æ

1

= P(L) � P(G). Now there is a natural map

T �! T � P

9

sending the triple (C; �; p) to (C; �; p; C�) (thinking of C� as a plane ubi 2 P

9

).

Traing the de�nitions of L and G, we �nd that 

1

(G=L) is the pull-bak to T of the
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divisor in T � P

9

onsisting of quadruples (C; �; p;K); with K a ubi ontaining

p. Therefore



1

(G=L) = `+m+ 3k ;

and the laim follows from this and the previously known 

1

(G) = 4` + 7m (f.

Lemma 4.1).

We an �nally dedue

P

5

3

� L

9

3

= P

5

2

� L

9

2

�

Z

T

(`+ 2m)

5

(1 + 6k)

9

(1� 22`� 37m+ 33k + : : : )

= 9; 861; 100� 4; 526 = 9; 856; 574 :

x5.3. N

4

(9) = 9;840;040. Combining the omputation of x5.2 and Lemma 5.2 in

x5.1, we an laim now that N

4

(9) = 9; 856; 574 minus a ontribution due to �nitely

many points of B

3

and to a point orresponding to a double oni.

The omputation of the ontribution due to the points in B

3

is similar to the

omputation in x4.3. By Proposition 5.1, the sheme-intersetion S

3

of all line-

onditions is supported on B

3

in a neighborhood of the points; the reader will

verify that S

3

is redued in a neighborhood of these points (similarly to x4.3, one

an use (**) from x2 to write equations for S

3

in a neighborhood of the points), so

that the ontribution equals

R

V

3

P

5

3

� [B

3

℄. By the projetion formula, this equals

R

P

14

P

5

� [U ℄; and by the projetion formula again this is

Z

P

5

�

�

P

2

(`+ 2m)

5

[U

0

℄ ;

where U

0

� P

5

�

�

P

2

is the set of pairs (C; �) 2 P

5

�

�

P

2

with � a line interseting

the (singular) oni C at a singular point. The lass of U

0

in P

5

�

�

P

2

is easily

found to be 3`

2

+ 3`m (indeed, `

5

[U

0

℄ = 0, `

4

m[U

0

℄ = 3, `

3

m

2

[U

0

℄ = 3), so that the

ontribution equals

R

(`+ 2m)

5

(3`

2

+ 3`m) = 150. Therefore

N

4

(9) + ontr. due to a double oni = 9; 856; 574� 150 = 9; 856; 424 :

Finally, we have to evaluate the ontribution due to the double oni ontaining

the 5 given points. Sine this depends only on loal data, we may ompute it in

P

14

.

Double onis form a subvariety D � P

14

, the image of the seond Veronese

embedding of P

5

. Denote by h the hyperplane lass in P

5

; then point-onditions

restrits to 2h on D. At a general point C

2

of D, the line-ondition orresponding

to a general line � has multipliity 2, and in fat its tangent one is the union of

the point-onditions orresponding to the two points of intersetion of � and C.

Now blow-up P

14

along D. From the above it follows that the proper transforms

of the line-onditions do not meet over a general point of D; a last appliation of

(*) from x4 omputes then the ontribution of a double oni to the intersetion of

5 point-onditions and 9 line-onditions by

Z

P

5

(2h)

5

(2 + 12h)

9

(1 + : : : )

= 2

14

:
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Therefore

N

4

(9) = 9; 856; 424� 16; 384 = 9;840;040 ;

as laimed.
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