Triangulations in Low Dimensional Geometry \& Topology

Sam Ballas

Florida State University

Cal Poly San Luis Obispo

Colloquium
Feb 19, 2021

Motivation

Triangulations

Calculating $\pi_{1}(M)$

Building hyperbolic metrics

Recent work

Geometric Topology

A biased and oversimplified viewpoint

Let M^{n} be a closed, orientable, smooth n-manifold.

Geometric Topology

A biased and oversimplified viewpoint

Let M^{n} be a closed, orientable, smooth n-manifold.

Dichotomy

High dimensions ($n \geqslant 5$)
Low dimensions ($n \leqslant 4$)

Geometric Topology

A biased and oversimplified viewpoint

Let M^{n} be a closed, orientable, smooth n-manifold.

Dichotomy

High dimensions ($n \geqslant 5$)
Low dimensions ($n \leqslant 4$)

- Lots of room to move around
- Algebra determines topology

Geometric Topology

A biased and oversimplified viewpoint

Let M^{n} be a closed, orientable, smooth n-manifold.

Dichotomy

High dimensions ($n \geqslant 5$)

- Lots of room to move around
- Algebra determines topology

Low dimensions ($n \leqslant 4$)

- Not as much room
- Geometry more important

Geometric Topology

A biased and oversimplified viewpoint

Let M^{n} be a closed, orientable, smooth n-manifold.

Dichotomy

High dimensions ($n \geqslant 5$)

- Lots of room to move around
- Algebra determines topology

Low dimensions ($n \leqslant 4$)

- Not as much room
- Geometry more important
- Dimension 4 is weird

Geometric Topology

A biased and oversimplified viewpoint

Let M^{n} be a closed, orientable, smooth n-manifold.

Dichotomy

High dimensions ($n \geqslant 5$)

- Lots of room to move around
- Algebra determines topology

Low dimensions ($n \leqslant 4$)

- Not as much room
- Geometry more important
- Dimension 4 is weird

For this talk we typically assume $n=2$ or 3 .

From topology to algebra and geometry

Let M be a closed orientable manifold.

From topology to algebra and geometry

Let M be a closed orientable manifold.

From topology to algebra and geometry

Let M be a closed orientable manifold.

- Forgets structure

From topology to algebra and geometry

Let M be a closed orientable manifold.

- Forgets structure

From topology to algebra and geometry

Let M be a closed orientable manifold.

- Forgets structure
- Adds structure

Quantitative questions

Given M we may ask...

Quantitative questions

Given M we may ask...

- What is the rank of $H_{1}(M)$?
- How many 5 -fold covers of M are there?
- What is the volume of M ?
- How many/what sorts of interesting surfaces live in M ?
- How many curves of length at most 10 are there?

Quantitative questions

Given M we may ask...

- What is the rank of $H_{1}(M)$?
- How many 5 -fold covers of M are there?
- What is the volume of M ?
- How many/what sorts of interesting surfaces live in M ?
- How many curves of length at most 10 are there?

A triangulation of M helps answer these questions by providing a combinatorial description of M.

Quantitative questions

Given M we may ask...

- What is the rank of $H_{1}(M)$?
- How many 5 -fold covers of M are there?
- What is the volume of M ?
- How many/what sorts of interesting surfaces live in M ?
- How many curves of length at most 10 are there?

A triangulation of M helps answer these questions by providing a combinatorial description of M.

Even better, answering these questions is algorithmic A computer can do it for you!!

Motivation

Triangulations

Calculating $\pi_{1}(M)$

Building hyperbolic metrics

Recent work

4ロ〉4氙〉

Simplices

An n-simplex is given by

$$
\Delta^{n}=\left\{\left(c_{1}, \ldots, c_{n+1}\right) \in \mathbb{R}^{n+1} \mid c_{i} \geqslant 0, \quad \sum_{i} c_{i}=1\right\}
$$

Simplices

An n-simplex is given by

$$
\Delta^{n}=\left\{\left(c_{1}, \ldots, c_{n+1}\right) \in \mathbb{R}^{n+1} \mid c_{i} \geqslant 0, \quad \sum_{i} c_{i}=1\right\}
$$

Simplices

An n-simplex is given by

$$
\Delta^{n}=\left\{\left(c_{1}, \ldots, c_{n+1}\right) \in \mathbb{R}^{n+1} \mid c_{i} \geqslant 0, \quad \sum_{i} c_{i}=1\right\}
$$

Faces

A face of an n-simplex is obtained by restricting a coordinate to zero

Face pairings

Let $\hat{\Delta}=\left\{\Delta_{1}^{n}, \ldots, \Delta_{k}^{n}\right\}$ (Disjoint union of n-simplices)
A collection Φ of orientation reversing affine maps between faces of simplices in $\hat{\Delta}$ is a face pairing if

- $\phi \in \Phi$ iff $\phi^{-1} \in \Phi$
- every face of every simplex in $\hat{\Delta}$ is the domain of a unique $\phi \in \Phi$.

Face pairings

Let $\hat{\Delta}=\left\{\Delta_{1}^{n}, \ldots, \Delta_{k}^{n}\right\}$ (Disjoint union of n-simplices)
A collection Φ of orientation reversing affine maps between faces of simplices in $\hat{\Delta}$ is a face pairing if

- $\phi \in \Phi$ iff $\phi^{-1} \in \Phi$
- every face of every simplex in $\hat{\Delta}$ is the domain of a unique $\phi \in \Phi$.
Let $\hat{M}:=\hat{\Delta} / \Phi$ (a triangulated pseudo-manifold)

Pseudo-manifolds

\hat{M} is almost, but not quite, a manifold.
\hat{M} may contain a "small" subset of non-manifold points (they live in the ($n-3$)-skeleton)

- The boundary of a neighborhood of a vertex is a triangulated surface
- Need not be a sphere!

Pseudo-manifolds

\hat{M} is almost, but not quite, a manifold.
\hat{M} may contain a "small" subset of non-manifold points (they live in the ($n-3$)-skeleton)
$M:=\hat{M}(n-3)$-skeleton is a (non-compact) manifold

- The boundary of a neighborhood of a vertex is a triangulated surface
- Need not be a sphere!

Pseudo-manifolds

\hat{M} is almost, but not quite, a manifold.
\hat{M} may contain a "small" subset of non-manifold points (they live in the ($n-3$)-skeleton)
$M:=\hat{M}(n-3)$-skeleton is a (non-compact) manifold
If $n=2$ then $M=\hat{M}$ and if $n=3$ then $M=\hat{M}\{$ vertices $\}$

- The boundary of a neighborhood of a vertex is a triangulated surface
- Need not be a sphere!

Examples

Torus

Examples

Figure-eight complement

Motivation

Triangulations

Calculating $\pi_{1}(M)$

Building hyperbolic metrics

Recent work

The dual graph

We can build an embedded (multi)-graph 「 with

- a vertex for each simplex of M
- and edge if two simplices are glued along a face.
Γ is called the dual graph of M.

Generators

Every curve in M can be homotoped onto Γ

Inclusion $\iota: \Gamma \rightarrow M$ gives $\iota_{*}: \pi_{1}(\Gamma) \rightarrow \pi_{1}(M)$.

Generators

Every curve in M can be homotoped onto Γ

Inclusion $\iota: \Gamma \rightarrow M$ gives $\iota_{*}: \pi_{1}(\Gamma) \rightarrow \pi_{1}(M)$.
Generators for $\pi_{1}(\Gamma)$ give generators for $\pi_{1}(M)$

Relations

ι_{*} not an isomorphism
(There are some "obvious" elements in the kernel)

Relations

ι_{*} not an isomorphism
(There are some "obvious" elements in the kernel)

Relations

ι_{*} not an isomorphism
(There are some "obvious" elements in the kernel)

These are all the relations, so

$$
\pi_{1}(M)=\left\langle\alpha, \beta \mid \alpha \beta \alpha^{-1} \beta^{-1}\right\rangle
$$

Summary

In general

- Dual graph gives generators for $\pi_{1}(M)$
- Codimension 2 cells give relations for $\pi_{1}(M)$ (vertices for $n=2$, edges for $n=3$)

Summary

In general

- Dual graph gives generators for $\pi_{1}(M)$
- Codimension 2 cells give relations for $\pi_{1}(M)$ (vertices for $n=2$, edges for $n=3$)

Another Example

Summary

In general

- Dual graph gives generators for $\pi_{1}(M)$
- Codimension 2 cells give relations for $\pi_{1}(M)$ (vertices for $n=2$, edges for $n=3$)

Another Example

Summary

In general

- Dual graph gives generators for $\pi_{1}(M)$
- Codimension 2 cells give relations for $\pi_{1}(M)$ (vertices for $n=2$, edges for $n=3$)

Another Example

$$
\pi_{1}(M)=\left\langle\alpha, \beta, \gamma \mid \alpha \beta^{-1} \alpha^{-1} \beta \gamma^{-1}, \gamma \alpha \gamma^{-1} \beta^{-1}\right\rangle
$$

Summary

In general

- Dual graph gives generators for $\pi_{1}(M)$
- Codimension 2 cells give relations for $\pi_{1}(M)$ (vertices for $n=2$, edges for $n=3$)

Another Example

$$
\pi_{1}(M)=\left\langle\alpha, \beta, \gamma \mid \alpha \beta^{-1} \alpha^{-1} \beta \gamma^{-1}, \gamma \alpha \gamma^{-1} \beta^{-1}\right\rangle
$$

so $H_{1}(M)=\mathbb{Z}$

Motivation

Triangulations

Calculating $\pi_{1}(M)$

Building hyperbolic metrics

Recent work

Metrics on surfaces

Let Σ_{g} be a surface of genus g. We want to build a nice metric on Σ_{g}

Metrics on surfaces

Let Σ_{g} be a surface of genus g. We want to build a nice metric on Σ_{g}

- $g=0: \Sigma_{g} \cong S^{2}$ (spherical metric)

Metrics on surfaces

Let Σ_{g} be a surface of genus g. We want to build a nice metric on Σ_{g}

- $g=0: \Sigma_{g} \cong S^{2}$ (spherical metric)
- $g=1: \Sigma_{g} \cong T^{2}$ (Euclidean metric)

Metrics on surfaces

Let Σ_{g} be a surface of genus g. We want to build a nice metric on Σ_{g}

- $g=0: \Sigma_{g} \cong S^{2}$ (spherical metric)
- $g=1: \Sigma_{g} \cong T^{2}$ (Euclidean metric)
- $g \geqslant 2: \Sigma_{g}$ admits a hyperbolic metric (Lots of them!)

Hyperbolic 2-space

A crash course

- $\mathbb{H}^{2} \cong B^{2}$

Hyperbolic 2-space

A crash course

- $\mathbb{H}^{2} \cong B^{2}$
- $\partial \mathbb{H}^{2} \cong S^{1} \cong \mathbb{R} \cup\{\infty\}$

Hyperbolic 2-space

A crash course

- $\mathbb{H}^{2} \cong B^{2}$
- $\partial \mathbb{H}^{2} \cong S^{1} \cong \mathbb{R} \cup\{\infty\}$
- $G=\operatorname{PSL}_{2}(\mathbb{R}):=\operatorname{SL}_{2}(\mathbb{R}) /\{ \pm /\}$
- G acts on $\partial \mathbb{H}^{2}$ via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot x=\frac{a x+b}{c x+d}
$$

- G acts simply transitively on triples of distinct points in $\partial \mathbb{H}^{2}$

Hyperbolic 2-space

- $G \frown \partial \mathbb{H}^{2}$ induces $G \frown \mathbb{H}^{2}$

Hyperbolic 2-space

- $G \frown \partial \mathbb{H}^{2}$ induces $G \frown \mathbb{H}^{2}$

Hyperbolic 2-space

- $G \frown \partial \mathbb{H}^{2}$ induces $G \frown \mathbb{H}^{2}$
- There is G-invariant metric \mathbb{H}^{2}

Hyperbolic 2-space

- $G \frown \partial \mathbb{H}^{2}$ induces $G \frown \mathbb{H}^{2}$
- There is G-invariant metric \mathbb{H}^{2}
- $G=\operatorname{lsom}^{+}\left(\mathbb{H}^{2}\right)$

Hyperbolic 2-space

- $G \frown \partial \mathbb{H}^{2}$ induces $G \frown \mathbb{H}^{2}$
- There is G-invariant metric \mathbb{H}^{2}
- $G=\operatorname{lsom}^{+}\left(\mathbb{H}^{2}\right)$
- Geodesics in this metric are straight lines

Pair of pants

A toy example
Triangulate a pair of pants, P, using two ideal (no vertices) triangles

Pair of pants

A toy example
Triangulate a pair of pants, P, using two ideal (no vertices) triangles
Decorate the edges of P with positive real numbers

Pair of pants

Get a tiling in \mathbb{H}^{2}.

Pair of pants

Get a tiling in \mathbb{H}^{2}.

Triangles disjoint $\Leftrightarrow x>0$

Pair of pants

Get a tiling in \mathbb{H}^{2}.

Pair of pants

Get a tiling in \mathbb{H}^{2}.

Pair of pants

Get a tiling in \mathbb{H}^{2}.

Pair of pants

Get a tiling in \mathbb{H}^{2}. Metric on \mathbb{H}^{2} pulls back to a metric on P !

Pair of pants

This metric is typically not complete

Pair of pants

This metric is typically not complete

Pair of pants

This metric is typically not complete Metric completion is closed pair of pants with geodesic boundary

$$
\begin{gathered}
\left\{(x, y, z) \in \mathbb{R}_{>0}^{3}\right\} \\
" \cong "
\end{gathered}
$$

$\{$ Pants with boundary lengths $\alpha, \beta, \gamma>0\}$
(Thurston's shear coordinates)

Other surfaces

Let S be a closed surface of genus $g \geqslant 2$.

Other surfaces

Let S be a closed surface of genus $g \geqslant 2$.
Decompose S into pants by cutting along $3 g-3$ curves

Other surfaces

Let S be a closed surface of genus $g \geqslant 2$.
Decompose S into pants by cutting along $3 g-3$ curves

- Each pants has 3-dims of metrics

Other surfaces

Let S be a closed surface of genus $g \geqslant 2$.
Decompose S into pants by cutting along $3 g-3$ curves

- Each pants has 3-dims of metrics
- Metric can be glued if "cuff" lengths match

Other surfaces

Let S be a closed surface of genus $g \geqslant 2$.
Decompose S into pants by cutting along $3 g-3$ curves

- Each pants has 3-dims of metrics
- Metric can be glued if "cuff" lengths match
- Lots of metrics on S !

Other surfaces

Let S be a closed surface of genus $g \geqslant 2$.
Decompose S into pants by cutting along $3 g-3$ curves

- Each pants has 3-dims of metrics
- Metric can be glued if "cuff" lengths match
- Lots of metrics on S !
$\mathcal{T}(S)$ " $=$ " $\{$ hyperbolic metrics on $S\} /$ isometries $\cong \mathbb{R}^{6 g-6}$
(Teichmüller space)

Metrics on 3-manifolds

Let M be a closed 3-manifold.
Fact: "Most" closed 3-manifolds admit hyperbolic metrics
We want to construct a hyperbolic metric on M.

Dehn Filling

Let M^{\prime} be a manifold with torus boundary and let D be a solid torus.

Dehn Filling

Let M^{\prime} be a manifold with torus boundary and let D be a solid torus.

We can build a closed manifold M by gluing M^{\prime} and D along their boundaries (Dehn filling)

Dehn Filling

Let M^{\prime} be a manifold with torus boundary and let D be a solid torus.

We can build a closed manifold M by gluing M^{\prime} and D along their boundaries (Dehn filling)

(Lickorish-Wallace, 60's): All closed 3-manifolds are obtained via Dehn filling

Dehn Filling

Let M^{\prime} be a manifold with torus boundary and let D be a solid torus.

We can build a closed manifold M by gluing M^{\prime} and D along their boundaries (Dehn filling)

(Lickorish-Wallace, 60's): All closed 3-manifolds are obtained via Dehn filling
Idea: Start by constructing metric on M^{\prime}

Hyperbolic 3-space

A crash course
Story is similar to dimension 2

- $\mathbb{H}^{3} \cong B^{3}$
- $\partial \mathbb{H}^{3} \cong S^{2} \cong \mathbb{C} \cup\{\infty\}$
- $G=\mathrm{PSL}_{2}(\mathbb{C}):=$ $\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm /\}$
- G acts on $\partial \mathbb{H}^{3}$ via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- G acts simply transitively on triples of distinct points in $\partial \mathbb{H}^{3}$
- $G \frown \partial \mathbb{H}^{3}$ induces $G \frown \mathbb{H}^{3}$

Metrics for 3-manifolds

Let \bar{M} be a 3-manifold with torus boundary components
Let M be its interior

Metrics for 3-manifolds

Let \bar{M} be a 3-manifold with torus boundary components
Let M be its interior
Take an ideal triangulation of \mathcal{T} of M.

Coordinates for tetrahedra

Take an ideal (no vertices) tetrahedron T

Coordinates for tetrahedra

Take an ideal (no vertices) tetrahedron T
Label the edges of T with complex numbers

Coordinates for tetrahedra

Take an ideal (no vertices) tetrahedron T
Label the edges of T with complex numbers

Labelling tells us how to build T in \mathbb{H}^{3}

Tetrahedra in \mathbb{H}^{3}

Tetrahedra in \mathbb{H}^{3}

Tetrahedra in \mathbb{H}^{3}

Gluing Tetrahedra

Tetrahedra can be glued along faces

Thurston's gluing equations

Given a collection of ideal tetrahedra, we can glue them together around an edge

Thurston's gluing equations

Given a collection of ideal tetrahedra, we can glue them together around an edge

Thurston's gluing equations

Given a collection of ideal tetrahedra, we can glue them together around an edge

Thurston's gluing equations

Given a collection of ideal tetrahedra, we can glue them together around an edge

Thurston's gluing equations

Given a collection of ideal tetrahedra, we can glue them together around an edge

In order for the cycle to close up we need to impose an equation

Thurston's gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations
(Thurston's gluing equations)

Thurston's gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations
(Thurston's gluing equations)

- Variables:
- 1 variable for each tetrahedron of \mathcal{T}

Thurston's gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations
(Thurston's gluing equations)

- Variables:
- 1 variable for each tetrahedron of \mathcal{T}
- Equations:
- 1 edge equation for each edge in \mathcal{T}.

Thurston's gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations
(Thurston's gluing equations)

- Variables:
- 1 variable for each tetrahedron of \mathcal{T}
- Equations:
- 1 edge equation for each edge in \mathcal{T}.

A solution to these equations is geometric if each component has positive imaginary part (No inside out tetrahedra)

Building the metric

Start with geometric solution to gluing equations

1. Build tetrahedra comprising M in \mathbb{H}^{3}
2. Pull back metric on \mathbb{H}^{3} to M

Building the metric

Start with geometric solution to gluing equations

1. Build tetrahedra comprising M in \mathbb{H}^{3}
2. Pull back metric on \mathbb{H}^{3} to M

- In general, metric is not complete

Building the metric

Start with geometric solution to gluing equations

1. Build tetrahedra comprising M in \mathbb{H}^{3}
2. Pull back metric on \mathbb{H}^{3} to M

- In general, metric is not complete
- For complete metric, we need more equations

Building the metric

Start with geometric solution to gluing equations

1. Build tetrahedra comprising M in \mathbb{H}^{3}
2. Pull back metric on \mathbb{H}^{3} to M

- In general, metric is not complete
- For complete metric, we need more equations
- Some (but not all) incomplete structures can be completed to give hyperbolic metrics on closed manifolds (hyperbolic Dehn filling)

Building the metric

Start with geometric solution to gluing equations

1. Build tetrahedra comprising M in \mathbb{H}^{3}
2. Pull back metric on \mathbb{H}^{3} to M

- In general, metric is not complete
- For complete metric, we need more equations
- Some (but not all) incomplete structures can be completed to give hyperbolic metrics on closed manifolds (hyperbolic Dehn filling)
- (Thurston, 70's): All but finitely many (topological) Dehn fillings of M admit hyperbolic metrics

Motivation

Triangulations

Calculating $\pi_{1}(M)$

Building hyperbolic metrics

Recent work

Coordinates for projective strucures

Previous approach is constrained to build tetrahedra inscribed in $\partial \mathbb{H}^{3}$.
In recent work with A. Casella we extend these techniques to build arbitrary straight tetrahedra in \mathbb{R}^{3} (really $\mathbb{R} \mathbb{P}^{3}$)

Coordinates for projective strucures

Previous approach is constrained to build tetrahedra inscribed in $\partial \mathbb{H}^{3}$.
In recent work with A. Casella we extend these techniques to build arbitrary straight tetrahedra in \mathbb{R}^{3} (really $\mathbb{R P}^{3}$)

Each tetrahedron comes with coordinates

- 6 Edge coordinates: 1 per edge: Describe the shape of the tetrahedron

Coordinates for projective strucures

Previous approach is constrained to build tetrahedra inscribed in $\partial \mathbb{H}^{3}$.
In recent work with A. Casella we extend these techniques to build arbitrary straight tetrahedra in \mathbb{R}^{3} (really $\mathbb{R P}^{3}$)

Each tetrahedron comes with coordinates

- 6 Edge coordinates: 1 per edge: Describe the shape of the tetrahedron
- 4 Gluing coordinates: 1 per face: Describe how this tetrahedron will be glued to adjacent tetrahedra.

Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of real equations

Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of real equations

- Variables:
- 6 edge variables for each tetrahedron of \mathcal{T}
- 4 face variables for each tetrahedron

Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of real equations

- Variables:
- 6 edge variables for each tetrahedron of \mathcal{T}
- 4 face variables for each tetrahedron
- Equations:
- 2 face equations for each face
- 5 edge equations for each edge in \mathcal{T}.

Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of real equations

- Variables:
- 6 edge variables for each tetrahedron of \mathcal{T}
- 4 face variables for each tetrahedron
- Equations:
- 2 face equations for each face
- 5 edge equations for each edge in \mathcal{T}.

A solution to these equations is geometric if each component is positive (No inside out tetrahedra)

Some pictures

Families of solutions give rise to tilings of families of convex regions in \mathbb{R}^{3}

Thank you

