Overview

- “Geometric Structures” on manifolds give rise to conjugacy classes of representations of fundamental groups into various Lie groups.
- Want to understand the space $\mathcal{R}(\Gamma, G) := \text{Hom}(\Gamma, G)/G$, where Γ is finitely generated, G is a Lie group, and G acts by conjugation.
- Want to understand the space $\mathcal{R}(\Gamma, G)$ locally near a class of representations $[\rho]$.
- Want to understand the space $\mathcal{R}(\Gamma, G)$ infinitesimally near a class of representations $[\rho]$.
Broccoli is good for you

= Computation that is good for you.
If Γ is finitely generated and G is a “nice” group, then the set, $\mathcal{R}(\Gamma, G) := \text{Hom}(\Gamma, G)$ is an algebraic variety.

More concretely, a presentation for Γ gives rise to a polynomial function $f : \mathbb{R}^n \to \mathbb{R}^m$, and $\mathcal{R}(\Gamma, G)$ is $f^{-1}(0)$.
If Γ is finitely generated and G is a “nice” group, then the set, $R(\Gamma, G) := \text{Hom}(\Gamma, G)$ is an algebraic variety.

More concretely, a presentation for Γ gives rise to a polynomial function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$, and $R(\Gamma, G)$ is $f^{-1}(0)$.

If $G = \text{GL}_2(\mathbb{R})$ and $\Gamma = \mathbb{Z}/n\mathbb{Z}$, then $f : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ is given by $f(A) = A^n - I$, where we think of $A \in \mathbb{R}^4$.
Representation Varieties

If \(\Gamma \) is finitely generated and \(G \) is a “nice” group, then the set, \(\mathcal{R}(\Gamma, G) := \text{Hom}(\Gamma, G) \) is an algebraic variety.

More concretely, a presentation for \(\Gamma \) gives rise to a polynomial function \(f : \mathbb{R}^n \to \mathbb{R}^m \), and \(\mathcal{R}(\Gamma, G) \) is \(f^{-1}(0) \).

If \(G = \text{GL}_2(\mathbb{R}) \) and \(\Gamma = \mathbb{Z}/n\mathbb{Z} \), then \(f : \mathbb{R}^4 \to \mathbb{R}^4 \) is given by \(f(A) = A^n - I \), where we think of \(A \in \mathbb{R}^4 \).

If 0 is a regular value of \(f \) then \(f^{-1}(0) \) is a manifold and the tangent space to \(p \in f^{-1}(0) \) is given by \(\ker(f_*|_p) \).

Even if 0 is not a regular value we can think of these kernels as a tangent spaces for \(\mathcal{R}(\Gamma, G) \).
The way we attempt to realize $\mathfrak{A}(\Gamma, G)$ as a variety by looking at polynomials on $\mathcal{R}(\Gamma, G)$, which are invariant under the action of G.

These invariant polynomials are generated by traces of elements of Γ, and when G is “nice” this construction gives rise to a variety.

However, this variety is not always the same as $\mathfrak{A}(\Gamma, G)$.
We need to exclude representations whose image is like

\[
\begin{pmatrix}
1 & t \\
0 & 1
\end{pmatrix}
\]

because they cannot be distinguished from the trivial representation by looking at traces.

To get a variety we need to restrict to the set $\mathcal{R}'(\Gamma, G)$ of “nice” representations. In this case the quotient $\mathcal{R}'(\Gamma, G) := \mathcal{R}'(\Gamma, G)/G$ is a variety.
Twisted Cohomology

Let G be a group and M a G-module. Define a cochain complex $C^n(G; M)$ to be the set of all functions from G^n to M with differential $d_n : C^n(G; M) \to C^{n+1}(G; M)$ by

$$d\phi(g_1, g_2, \ldots, g_{n+1}) = g_1 \cdot \phi(g_2, \ldots, g_{n+1}) + \sum_{i=1}^{n} (-1)^i \phi(g_1, \ldots, g_{i-1}, g_ig_{i+1}, \ldots, g_{n+1}) + (-1)^{n+1} \phi(g_1, \ldots, g_n)$$

Then $H^n(G; M) = Z^n(G; M)/B^n(G; M)$ is the associated cohomology group, where $Z^n(G; M) = \ker d_n$ and $B^n = \text{Im} d_{n-1}$.
$C^0(G; M)$ is the set of constant functions. If $z \in C^0(G; M)$ then

$$d(z)(g) = g \cdot m_z - m_z.$$

Therefore,

$$H^0(G; M) = Z^0(G; M) = \{ m \in M \mid g \cdot m = m \ \forall g \in G \}.$$

So $H^0(G; M)$ is the set of elements invariant under the action of G.
If \(z \in Z^1(G; M) \) then

\[
z(g_1 g_2) = z(g_1) + g_1 \cdot z(g_2)
\]

These maps are sometimes called \textit{crossed homomorphisms}.

We have already seen that \(B^1(G; M) \) consists of maps where \(z(g) = g \cdot m_z - m_z \) for some \(m \in M \).
A Simple Example

Let \mathbb{Z} act by conjugation (i.e. trivially) on \mathbb{R}, then if $B^1(\mathbb{Z}, \mathbb{R}) = 0$ and if $z \in Z^1(\mathbb{Z}, \mathbb{R})$ then

$$z(mn) = z(m) + z(n),$$

and so $H^1(\mathbb{Z}, \mathbb{R}) = \text{Hom}(\mathbb{Z}, \mathbb{R}) = \mathbb{R}$ is the tangent space to $\text{Hom}(\mathbb{Z}, \mathbb{R}) = \mathcal{N}(\mathbb{Z}, \mathbb{R}) = \mathbb{R}$

In general, H^1 can be thought of as a “tangent space” to $\mathcal{N}(\Gamma, G)$.
Let $\rho_0 : \Gamma \rightarrow G$ be a representation, let \mathfrak{g} be the lie algebra of G, and let Γ act on \mathfrak{g}, by $\gamma \cdot x = \text{Ad}_{\rho_0}(\gamma) \cdot x$.

Denote the resulting cohomology groups $H^* (\Gamma, \mathfrak{g}_{\rho_0})$.

Let ρ_t be a curve of representations passing through ρ_0.

For $\gamma \in \Gamma$ we can use a series expansion to write

$$
\rho_t(\gamma) = (I + z_\gamma t + O(t^2))\rho_0(\gamma),
$$

where $z_\gamma \in \mathfrak{g}$.

In this way we can think of z as an element of $C^1 (\Gamma, \mathfrak{g}_{\rho_0})$.

H^1 as a Tangent Space
Repeatedly using this expansion again we see that

\[\rho_t(\gamma_1 \gamma_2) = (I + z_{\gamma_1 \gamma_2} t + O(t))\rho_0(\gamma_1 \gamma_2) \quad \text{and} \]

\[\rho_t(\gamma_1) \rho_t(\gamma_2) = (I + (z_{\gamma_1 \gamma_2} + \gamma_1 \cdot z_{\gamma_2}) t + O(t^2))\rho_0(\gamma_1 \gamma_2) \quad \text{and} \]

Therefore

\[z_{\gamma_1 \gamma_2} = z_{\gamma_1} + \gamma_1 \cdot z_{\gamma_2} \]

and so \(\rho_t \) gives rise to an element of \(\mathbb{Z}_1^1(\Gamma; g \rho_0) \). In this way \(\mathbb{Z}_1^1(\Gamma, G \rho_0) \) is the tangent space to \(\mathbb{R}(\Gamma, G) \).
Repeatedly using this expansion again we see that

\[\rho_t(\gamma_1 \gamma_2) = (I + z_{\gamma_1 \gamma_2} t + O(t))\rho_0(\gamma_1 \gamma_2) \] and

\[\rho_t(\gamma_1)\rho_t(\gamma_2) = (I + z_{\gamma_1} t + O(t^2))\rho_0(\gamma_1)(I + z_{\gamma_2} t + O(t^2))\rho_0(\gamma_2) = (I + (z_{\gamma_1} + \gamma_1 \cdot z_{\gamma_2}) t + O(t^2))\rho_0(\gamma_1 \gamma_2) \]
Repeatedly using this expansion again we see that

\[\rho_t(\gamma_1 \gamma_2) = (I + z_{\gamma_1 \gamma_2} t + O(t)) \rho_0(\gamma_1 \gamma_2) \]

and

\[\rho_t(\gamma_1) \rho_t(\gamma_2) = (I + z_{\gamma_1} t + O(t^2)) \rho_0(\gamma_1)(I + z_{\gamma_2} t + O(t^2)) \rho_0(\gamma_2) \]

\[= (I + (z_{\gamma_1} + \gamma_1 \cdot z_{\gamma_2}) t + O(t^2)) \rho_0(\gamma_1 \gamma_2) \]

Therefore \(z_{\gamma_1 \gamma_2} = z_{\gamma_1} + \gamma_1 \cdot z_{\gamma_2} \), and so \(\rho_t \) gives rise to an element of \(Z^1(\Gamma; g_{\rho_0}) \).

In this way \(Z^1(\Gamma, g_{\rho_0}) \) is the tangent space to \(\mathcal{R}(\Gamma, G) \).
If $\rho_t(\gamma) = g_t^{-1}\rho_0 g_t$, where $g_t \in G$ and $g_0 = I$, then

$$\rho_t(\gamma) = (I - ct + O(t^2))\rho_0(\gamma)(I + ct + O(t^2))$$

So for deformations of this type, $z_\gamma = \gamma \cdot c - c$, and so $z \in B^1(\Gamma; g_{\rho_0})$

In this way trivial curves of deformations give rise to 1-coboundaries, and so $H^1(\Gamma, g_{\rho_0})$ is the tangent space to $\mathcal{R}'(\Gamma, G)$ at ρ_0.
Another Simple Example

Let's compute the dimension of $H^1(\mathbb{Z}^2, \mathfrak{sl}_2(\mathbb{C})_{\rho_0})$ where

$$\rho_0(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \rho_0(b) = \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix}, \omega \neq 0$$
Another Simple Example

Let's compute the dimension of $H^1(\mathbb{Z}^2, sl_2(\mathbb{C})_{\rho_0})$ where

$$\rho_0(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \rho_0(b) = \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix}, \omega \neq 0$$

Using “implicit differentiation” at $t = 0$ on the relation

$$\rho_t(a)\rho_t(b) = \rho_t(b)\rho_t(a)$$

we get a 2×2 matrix equation that is equivalent to 2 real valued equations.
Another Simple Example

Let's compute the dimension of $H^1(\mathbb{Z}^2, \mathfrak{sl}_2(\mathbb{C})_{\rho_0})$ where

$$\rho_0(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \rho_0(b) = \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix}, \omega \neq 0$$

Using "implicit differentiation" at $t = 0$ on the relation

$$\rho_t(a)\rho_t(b) = \rho_t(b)\rho_t(a)$$

we get a 2×2 matrix equation that is equivalent to 2 real valued equations.

Using the exact sequence

$$0 \rightarrow \mathbb{Z}^0(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0}) \rightarrow C^0(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0}) \rightarrow B^1(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0}) \rightarrow 0$$

We see that $B^1(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0})$ has dimension 2.
Another Simple Example

Let's compute the dimension of $H^1(\mathbb{Z}^2, \mathfrak{sl}_2(\mathbb{C})_{\rho_0})$ where

$$\rho_0(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \rho_0(b) = \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix}, \omega \neq 0$$

Using “implicit differentiation” at $t = 0$ on the relation

$$\rho_t(a)\rho_t(b) = \rho_t(b)\rho_t(a)$$

we get a 2×2 matrix equation that is equivalent to 2 real valued equations.

Using the exact sequence

$$0 \rightarrow Z^0(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0}) \rightarrow C^0(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0}) \rightarrow B^1(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0}) \rightarrow 0$$

We see that $B^1(\mathbb{Z}^2; \mathfrak{sl}_2(\mathbb{C})_{\rho_0})$ has dimension 2.

Therefore,

$$\dim H^1(\mathbb{Z}^2, \mathfrak{sl}_2(\mathbb{C})_{\rho_0}) = 6 - 2 - 2 = 2$$
Consequences

Theorem (Weil 64)

If ρ_0 is infinitesimally rigid (i.e. $H^1(\Gamma, \mathfrak{g}_{\rho_0}) = 0$), then ρ_0 is locally rigid (i.e. representations sufficiently close to ρ_0 are all conjugate)

• More generally, the dimension of $H^1(\Gamma, \mathfrak{g}_{\rho_0})$ is an upper bound for the dimension of $R'(\Gamma, G)$ near ρ_0.

• One problem is that this bound is not always sharp (there can be infinitesimal deformations that do not come from actual deformations).

Example $f(x) = x^2$ gives rise to a variety that is a single point, but whose tangent space is 1-dimensional.
Consequences

Theorem (Weil 64)

If ρ_0 is infinitesimally rigid (i.e. $H^1(\Gamma, g_{\rho_0}) = 0$), then ρ_0 is locally rigid (i.e. representations sufficiently close to ρ_0 are all conjugate)

- More generally, the dimension of $H^1(\Gamma, g_{\rho_0})$ is an upper bound for the dimension of $\mathcal{R}'(\Gamma, G)$ near ρ_0.
Consequences

Theorem (Weil 64)

If ρ_0 is infinitesimally rigid (i.e. $H^1(\Gamma, g_{\rho_0}) = 0$), then ρ_0 is locally rigid (i.e. representations sufficiently close to ρ_0 are all conjugate)

- More generally, the dimension of $H^1(\Gamma, g_{\rho_0})$ is an upper bound for the dimension of $\mathcal{H}'(\Gamma, G)$ near ρ_0.
- One problem is that this bound is not always sharp (there can be infinitesimal deformations that do not come from actual deformations).
Consequences

Theorem (Weil 64)

If ρ_0 is infinitesimally rigid (i.e. $H^1(\Gamma, g_{\rho_0}) = 0$), then ρ_0 is locally rigid (i.e. representations sufficiently close to ρ_0 are all conjugate)

- More generally, the dimension of $H^1(\Gamma, g_{\rho_0})$ is an upper bound for the dimension of $\mathcal{R}'(\Gamma, G)$ near ρ_0.
- One problem is that this bound is not always sharp (there can be infinitesimal deformations that do not come from actual deformations).

Example

$f(x) = x^2$ gives rise to a variety that is a single point, but whose tangent space is 1-dimensional.
Rigidity Results

There are various situations where rigidity results are known to hold.

Theorem (Weil)

If M is a compact, hyperbolic manifold of dimension $n \geq 3$ and ρ_0 is a discrete, faithful representation of $\Gamma = \pi_1(M)$ then $H^1(\Gamma, \mathfrak{so}(n, 1)_{\rho_0}) = 0$

Similar results hold for cocompact lattices in most other semi-simple Lie groups.

However when Γ is no longer cocompact then interesting flexibility phenomena can occur.
Rigidity and Flexibility

The previous result tells us that ρ_0 cannot be deformed in $\text{PSO}(n, 1)$.

However, we can embed $\text{PSO}(n, 1)$ into other Lie groups (e.g. $\text{PSO}(n + 1, 1)$, $\text{PSU}(n, 1)$, or $\text{PGL}_{n+1}(\mathbb{R})$), and ask if it is possible to deform ρ_0 inside of this larger Lie group.
Rigidity and Flexibility

Examples

Quasi-Fuchsian Deformations

When $n = 2$ then quasi-Fuchsian deformations are an example of a deformation from $\text{SO}(2, 1)$ into $\text{SO}(3, 1)$.
Rigidity and Flexibility

Examples

Quasi-Fuchsian Deformations

When $n = 2$ then quasi-Fuchsian deformations are an example of a deformation from $\text{SO}(2, 1)$ into $\text{SO}(3, 1)$.

Projective Deformations

Cooper, Long, and Thistlethwaite examined deformations into $\text{PGL}_4(\mathbb{R})$ by computing $H^1(\Gamma, \mathfrak{sl}_4 \rho_0)$ for all closed, hyperbolic, two generator manifolds in the SnapPea census.

A majority of these two generator manifolds were rigid, however about 1.4 percent were infinitesimally deformable, and of those several have been rigorously shown to deform.
Rigidity and Flexibility
Non-compact Case
When M is a non-compact, finite volume, hyperbolic manifold of dimension 3 there are always non-trivial, hyperbolic deformations near ρ_0, but only one whose peripheral elements map to parabolics.

In this case, we can still ask if ρ_0 is locally rigid relative ∂M (i.e. peripheral elements of $\pi_1(M)$ are sent to “parabolic” elements of $\text{PGL}_4(\mathbb{R})$).
Rigidity and Flexibility

Non-compact Case

When M is a non-compact, finite volume, hyperbolic manifold of dimension 3 there are always non-trivial, hyperbolic deformations near ρ_0, but only one whose peripheral elements map to parabolics.

In this case, we can still ask if ρ_0 is locally rigid relative ∂M (i.e. peripheral elements of $\pi_1(M)$ are sent to “parabolic” elements of $\text{PGL}_4(\mathbb{R})$).

Theorem (Heusener-Porti, B)

For the two-bridge links with rational number $5/2$, $8/3$, $7/3$, and $9/5$ are locally rigid relative ∂M at ρ_0.
Rigidity and Flexibility

Non-compact Case

When M is a non-compact, finite volume, hyperbolic manifold of dimension 3 there are always non-trivial, hyperbolic deformations near ρ_0, but only one whose peripheral elements map to parabolics.

In this case, we can still ask if ρ_0 is locally rigid relative ∂M (i.e. peripheral elements of $\pi_1(M)$ are sent to “parabolic” elements of $\text{PGL}_4(\mathbb{R})$).

Theorem (Heusener-Porti, B)

For the two-bridge links with rational number $5/2$, $8/3$, $7/3$, and $9/5$ are locally rigid relative ∂M at ρ_0.

There is strong numerical evidence that the knots $11/3$, $13/3$, and $13/5$ are also rigid in this sense.
Rigidity and Flexibility

Non-compact Case

When M is a non-compact, finite volume, hyperbolic manifold of dimension 3 there are always non-trivial, hyperbolic deformations near ρ_0, but only one whose peripheral elements map to parabolics.

In this case, we can still ask if ρ_0 is locally rigid relative ∂M (i.e. peripheral elements of $\pi_1(M)$ are sent to “parabolic” elements of $\text{PGL}_4(\mathbb{R})$).

Theorem (Heusener-Porti, B)

For the two-bridge links with rational number $5/2$, $8/3$, $7/3$, and $9/5$ are locally rigid relative ∂M at $\rho_0.

There is strong numerical evidence that the knots $11/3$, $13/3$, and $13/5$ are also rigid in this sense.

Question

Are all two-bridge knots and links rigid in this sense?