Generalized cusps in convex projective manifolds

Sam Ballas

(joint with D. Cooper and A. Leitner)

GEAR Retreat Stanford University August 7, 2017

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Outline

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへぐ

- 1. Cusps in finite volume hyperbolic manifolds
 - Geometry of cusps
 - Moduli space of cusps (a manifold)

Outline

- 1. Cusps in finite volume hyperbolic manifolds
 - Geometry of cusps
 - Moduli space of cusps (a manifold)
- 2. Properly convex manifolds
 - Generalize hyperbolic manifolds
 - Are more flexible
 - · Occur as deformations of hyperbolic manifolds

Outline

- 1. Cusps in finite volume hyperbolic manifolds
 - Geometry of cusps
 - Moduli space of cusps (a manifold)
- 2. Properly convex manifolds
 - Generalize hyperbolic manifolds
 - Are more flexible
 - Occur as deformations of hyperbolic manifolds
- 3. Generalized cusps
 - · Occur as ends of properly convex manifolds
 - · Have similar geometry to hyperbolic cusps
 - Have more complicated moduli space (stratified by orbifolds)

うつん 川 エー・エー・ エー・ ひゃう

Exhibit interesting "transitional phenomena"

A projective model for hyperbolic space

Let $\mathbb{H}^{n} = \{(z, v) \in \underbrace{\mathbb{R}}_{Vertical} \times \underbrace{\mathbb{R}^{n-1}}_{Horizontal} | z > \frac{1}{2} |v|^{2} \} \subset \mathbb{R}^{n} \subset \mathbb{R}\mathbb{P}^{n}$

- A projective model for hyperbolic space
- Analogous to upper half space model

Let $\mathbb{H}^n = \{(z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} | z > \frac{1}{2} |v|^2\} \subset \mathbb{R}^n \subset \mathbb{R}\mathbb{P}^n$

- Vertical Horizontal
 A projective model for hyperbolic space
- Analogous to upper half space model
- Geodesics are (affine) straight lines

Let $\mathbb{H}^{n} = \{(z, v) \in \underbrace{\mathbb{R}}_{Vertical} \times \underbrace{\mathbb{R}^{n-1}}_{Horizontal} | z > \frac{1}{2} |v|^{2} \} \subset \mathbb{R}^{n} \subset \mathbb{R}\mathbb{P}^{n}$

- A projective model for hyperbolic space
- Analogous to upper half space model
- Geodesics are (affine) straight lines

•
$$\mathsf{Isom}(\mathbb{H}^n) = \mathsf{PGL}(\mathbb{H}^n) := \{A \in \mathsf{PGL}_{n+1}(\mathbb{R}) \mid A(\mathbb{H}^n) = \mathbb{H}^n\}$$

Let $\mathbb{H}^{n} = \{(z, v) \in \underbrace{\mathbb{R}}_{Vertical} \times \underbrace{\mathbb{R}^{n-1}}_{Horizontal} | z > \frac{1}{2} |v|^{2} \} \subset \mathbb{R}^{n} \subset \mathbb{R}\mathbb{P}^{n}$

- A projective model for hyperbolic space
- Analogous to upper half space model
- Geodesics are (affine) straight lines
- $\mathsf{Isom}(\mathbb{H}^n) = \mathsf{PGL}(\mathbb{H}^n) := \{ A \in \mathsf{PGL}_{n+1}(\mathbb{R}) \mid A(\mathbb{H}^n) = \mathbb{H}^n \}$
- Metric is given by $d_{\mathbb{H}^n}(x, y) = \frac{1}{2} \log([a : x : y : b])$

Paraboloid model

Let $\mathbb{H}^{n} = \{(z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid z > \frac{1}{2} |v|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}\mathbb{P}^{n}$

• Foliated by horospheres $S_t = \{(z, v) \in \mathbb{H}^n \mid z = \frac{1}{2} |v|^2 + t\}, t > 0$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆□ のへ⊙

Paraboloid model

Let $\mathbb{H}^{n} = \{(z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid z > \frac{1}{2} |v|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}\mathbb{P}^{n}$ *Vertical Horizontal*

- Foliated by horospheres $S_t = \{(z, v) \in \mathbb{H}^n \mid z = \frac{1}{2} |v|^2 + t\}, t > 0$
- Also foliated by lines through ∞, that are *orthogonal* to the S_t

Paraboloid model

Let $\mathbb{H}^{n} = \{(z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid z > \frac{1}{2} |v|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}\mathbb{P}^{n}$ *Vertical Horizontal*

- Foliated by horospheres $S_t = \{(z, v) \in \mathbb{H}^n \mid z = \frac{1}{2} |v|^2 + t\}, t > 0$
- Also foliated by lines through ∞, that are *orthogonal* to the *S*_t
- The induced metric on S_t is flat and given by the Hessian of $z = \frac{1}{2} |v|^2$

うつん 川 エー・エー・ エー・ ひゃう

Paraboloid model Consider the following subgroups of $Aff_n(\mathbb{R})$

$$T = \left\{ \begin{pmatrix} 1 & u^t & \frac{1}{2} |u|^2 \\ 0 & l & u \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

Paraboloid model Consider the following subgroups of $Aff_n(\mathbb{R})$

$$T = \left\{ \begin{pmatrix} 1 & u^t & \frac{1}{2} |u|^2 \\ 0 & l & u \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

- *T* acts simply transitively on each *S_t* (translation on ℝⁿ⁻¹ factor)
- O is a point stabilizes a unique point on each horosphere

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Paraboloid model Consider the following subgroups of $Aff_n(\mathbb{R})$

$$T = \left\{ \begin{pmatrix} 1 & u^t & \frac{1}{2} |u|^2 \\ 0 & l & u \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

- *T* acts simply transitively on each S_t (translation on ℝⁿ⁻¹ factor)
- O is a point stabilizes a unique point on each horosphere
- $G := \langle T, O \rangle \cong T \rtimes O \cong \mathsf{Isom}(\mathbb{R}^{n-1})$

うつん 川 エー・エー・ エー・ ひゃう

Cusps of hyperbolic orbifolds

Topology of cusps

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Let $\Gamma \subset \text{Isom}(\mathbb{H}^n)$ be a lattice and $M = \mathbb{H}^n / \Gamma$ be a complete hyperbolic *n*-orbifold.

Cusps of hyperbolic orbifolds Topology of cusps

Let $\Gamma \subset \text{Isom}(\mathbb{H}^n)$ be a lattice and $M = \mathbb{H}^n / \Gamma$ be a complete hyperbolic *n*-orbifold.

Using the "thick-thin" decomposition M can be decomposed into

$$M=M_{K}\bigsqcup_{i}C_{i},$$

 M_K compact and C_i finitely covered by $T^{n-1} \times [0, \infty)$.

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Cusps of hyperbolic manifolds Geometry of cusps

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Let

- $B_T = \bigcup_{t \ge T} S_t$ (horoball)
- Δ a lattice in G_0 .

Cusps of hyperbolic manifolds Geometry of cusps

Let

- $B_T = \bigcup_{t \ge T} S_t$ (horoball)
- Δ a lattice in G_0 .

The cusp C can be realized as B_T/Δ

Cusps of hyperbolic manifolds Geometry of cusps

Let

- $B_T = \bigcup_{t \ge T} S_t$ (horoball)
- Δ a lattice in G_0 .

The cusp *C* can be realized as B_T/Δ

The S_t/Δ give a foliation of *C* by *Euclidean* (n-1)-orbifolds.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Moduli space of cusps

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆□ のへ⊙

• A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times [0, \infty) \to C$ is a diffeomorphism called a marking.

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times [0, \infty) \to C$ is a diffeomorphism called a marking.
- (f, C) and (f', C') are equivalent if ∃ g ∈ lsom(ℍⁿ) such that g ∘ f = f' (up to isotopy).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times [0, \infty) \to C$ is a diffeomorphism called a marking.
- (f, C) and (f', C') are equivalent if ∃ g ∈ lsom(ℍⁿ) such that g ∘ f = f' (up to isotopy).

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

• Let $\ensuremath{\mathfrak{T}}$ be the space of equivalence classes of marked torus cusps

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times [0, \infty) \to C$ is a diffeomorphism called a marking.
- (f, C) and (f', C') are equivalent if ∃ g ∈ lsom(ℍⁿ) such that g ∘ f = f' (up to isotopy).

- Let $\ensuremath{\mathfrak{T}}$ be the space of equivalence classes of marked torus cusps
- Can topologize \mathfrak{T} using compact C^{∞} topology on markings

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times [0, \infty) \to C$ is a diffeomorphism called a marking.
- (f, C) and (f', C') are equivalent if ∃ g ∈ lsom(ℍⁿ) such that g ∘ f = f' (up to isotopy).

- Let $\ensuremath{\mathfrak{T}}$ be the space of equivalence classes of marked torus cusps
- Can topologize ℑ using compact C[∞] topology on markings
- How can we use parameterize T?

Moduli space of cusps

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let $[(f, C)] \in \mathfrak{T}$

• Pick a basis for $T \cong \mathbb{R}^{n-1}$

Moduli space of cusps

▲ロト ▲□ ト ▲ヨト ▲ヨト ヨー の々で

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_T / \Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leqslant T$

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_T / \Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leqslant T$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in GL_{n-1}(\mathbb{R})$)

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_T / \Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leqslant T$
- A marked torus cusp gives a basis for ℝⁿ⁻¹ (get A ∈ GL_{n-1}(ℝ))

Bases from equivalent cusps differ by a Euclidean similarity

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_T / \Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leqslant T$
- A marked torus cusp gives a basis for ℝⁿ⁻¹ (get A ∈ GL_{n-1}(ℝ))

- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \backslash SL_{n-1}^{\pm}(\mathbb{R})$

Properly convex domains

 $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$, so complement of any projective hyperplane is a copy of affine space called an *affine patch*.

Properly convex geometry Properly convex domains

 $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$, so complement of any projective hyperplane is a copy of affine space called an *affine patch*.

$\Omega \subset \mathbb{RP}^n$ is properly convex if

- 1. $\overline{\Omega}$ is contained in an affine patch
- 2. Ω is a convex subset of an affine patch

 Ω properly convex $\iff \Omega$ is a bounded convex subset of some affine patch

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Properly convex domains $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$, so complement of any projective hyperplane is a copy of affine space called an *affine patch*.

- $\Omega \subset \mathbb{RP}^n$ is properly convex if
 - 1. $\overline{\Omega}$ is contained in an affine patch
 - 2. Ω is a convex subset of an affine patch

 Ω properly convex $\iff \Omega$ is a bounded convex subset of some affine patch

・ロット (雪) ・ ヨ)

Properly convex domains

Ω determines a group PGL(Ω) := {*A* ∈ PGL_{*n*+1}(\mathbb{R}) | *A*(Ω) = Ω}

Properly convex domains

Ω determines a group PGL(Ω) := {*A* ∈ PGL_{*n*+1}(ℝ) | *A*(Ω) = Ω}

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Properly convex geometry Properly convex domains

Ω determines a group PGL(Ω) := {*A* ∈ PGL_{*n*+1}(ℝ) | *A*(Ω) = Ω}

Generically, $PGL(\Omega)$ is trivial

Properly convex geometry

Properly convex manifolds

• Let Ω be properly convex and let $\Gamma \subset PGL(\Omega)$ be discrete and torsion free.

• Ω/Γ is a properly convex manifold

Properly convex geometry

Properly convex manifolds

• Let Ω be properly convex and let $\Gamma \subset PGL(\Omega)$ be discrete and torsion free.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

- Ω/Γ is a properly convex manifold
- Are there interesting properly convex manifolds? (Since PGL(Ω) is generically trivial)

Properly convex geometry

Properly convex manifolds

• Let Ω be properly convex and let $\Gamma \subset PGL(\Omega)$ be discrete and torsion free.

- Ω/Γ is a properly convex manifold
- Are there interesting properly convex manifolds? (Since PGL(Ω) is generically trivial) Yes!

Example 1

A complete hyperbolic manifold \mathbb{H}^n/Γ is a properly convex manifold

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Example 1

A complete hyperbolic manifold \mathbb{H}^n/Γ is a properly convex manifold

Example 2

Deformations of properly hyperbolic manifolds

Example 1

A complete hyperbolic manifold \mathbb{H}^n/Γ is a properly convex manifold

Example 2

Deformations of properly hyperbolic manifolds

Theorem 1 (Koszul)

If $M = \Omega/\Gamma$ is a closed properly convex manifold and $\Gamma' \leq PGL_{n+1}(\mathbb{R})$ is a small deformation of Γ then there is a properly convex domain Ω' such that $\Gamma' \leq PGL(\Omega')$ is discrete and $M \cong \Omega'/\Gamma'$

Example 1

A complete hyperbolic manifold \mathbb{H}^n/Γ is a properly convex manifold

Example 2

Deformations of properly hyperbolic manifolds

Theorem 1 (Koszul)

If $M = \Omega/\Gamma$ is a closed properly convex manifold and $\Gamma' \leq \mathsf{PGL}_{n+1}(\mathbb{R})$ is a small deformation of Γ then there is a properly convex domain Ω' such that $\Gamma' \leq \mathsf{PGL}(\Omega')$ is discrete and $M \cong \Omega'/\Gamma'$

Remark

Cooper–Long–Tillmann have proven a "relative version" of Koszul for *M* non-compact

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Remark

By "bending" hyperbolic manifolds along totally geodesic hypersurfaces we get non-hyperbolic convex projective manifolds (Benoist, Marquis)

・ ロ ト ス 厚 ト ス 目 ト ス 目 ト

Remark

By "bending" hyperbolic manifolds along totally geodesic hypersurfaces we get non-hyperbolic convex projective manifolds (Benoist, Marquis)

Remark

By "bending" hyperbolic manifolds along totally geodesic hypersurfaces we get non-hyperbolic convex projective manifolds (Benoist, Marquis)

ヘロト 人間 とくき とくきとう き

- If *M* = ℍⁿ/Γ is a non-compact finite volume hyperbolic manifold
- Let M' = Ω/Γ' be a small properly convex deformation of M.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

• What does the geometry of the ends of *M'* look like?

- If *M* = ℍⁿ/Γ is a non-compact finite volume hyperbolic manifold
- Let M' = Ω/Γ' be a small properly convex deformation of M.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

• What does the geometry of the ends of *M'* look like? It's a *generalized cusp*

- If *M* = ℍⁿ/Γ is a non-compact finite volume hyperbolic manifold
- Let M' = Ω/Γ' be a small properly convex deformation of M.
- What does the geometry of the ends of *M'* look like? It's a *generalized cusp*

A properly convex manifold $C = \Omega' / \Delta$ is a *generalized cusp* if

- $C \cong \Sigma \times [0, \infty)$ with Σ compact
- Σ is a *strictly convex* hypersurface (lifts to Ω' are locally graphs of convex functions)
- Δ is vitually nilpotent (*or virtually Abelian*)

Questions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let $C = \Omega / \Delta$ is a generalized cusp

Questions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let $C = \Omega/\Delta$ is a generalized cusp

1. What does Ω look like?

Questions

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Let $C = \Omega/\Delta$ is a generalized cusp

- 1. What does Ω look like?
- 2. What does Δ look like?

Questions

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Let $C = \Omega/\Delta$ is a generalized cusp

- 1. What does Ω look like?
- 2. What does Δ look like?
- 3. What does the geometry of C look like?

Questions

Let $C = \Omega/\Delta$ is a generalized cusp

- 1. What does Ω look like?
- 2. What does Δ look like?
- 3. What does the geometry of C look like?
- 4. What is the moduli space of generalized cusps?

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Given an *n*-dimensional generalized cusp $C \cong \Omega' / \Delta$ we get

Given an *n*-dimensional generalized cusp $C \cong \Omega' / \Delta$ we get

 A properly convex domain Ω ⊂ Ω' with smooth boundary (e.g. B_T ⊂ ℍⁿ)

Given an *n*-dimensional generalized cusp $C \cong \Omega' / \Delta$ we get

- A properly convex domain Ω ⊂ Ω' with smooth boundary (e.g. B_T ⊂ ℍⁿ)
- A foliation of Ω by strictly convex hypersurfaces, S_t (horospheres)
- A S_t -transverse foliation of Ω by concurrent geodesic

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Given an *n*-dimensional generalized cusp $C \cong \Omega' / \Delta$ we get

- A properly convex domain Ω ⊂ Ω' with smooth boundary (e.g. B_T ⊂ ℍⁿ)
- A foliation of Ω by strictly convex hypersurfaces, S_t (horospheres)
- A S_t -transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_t (Affine 2nd fundamental form)

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Given an *n*-dimensional generalized cusp $C \cong \Omega' / \Delta$ we get

- A properly convex domain Ω ⊂ Ω' with smooth boundary (e.g. B_T ⊂ ℍⁿ)
- A foliation of Ω by strictly convex hypersurfaces, S_t (horospheres)
- A S_t-transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_t (Affine 2nd fundamental form)
- Foliation preserving group $G \supset \Delta$

$$\operatorname{Aff}_n(\mathbb{R}) \supset G \cong \underbrace{T}_{\operatorname{translations}} \rtimes \underbrace{O}_{\operatorname{point stabilizer}}$$

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Given an *n*-dimensional generalized cusp $C \cong \Omega' / \Delta$ we get

- A properly convex domain Ω ⊂ Ω' with smooth boundary (e.g. B_T ⊂ ℍⁿ)
- A foliation of Ω by strictly convex hypersurfaces, S_t (horospheres)
- A S_t-transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_t (Affine 2nd fundamental form)
- Foliation preserving group $G \supset \Delta$

$$\operatorname{Aff}_n(\mathbb{R}) \supset G \cong \underbrace{T}_{\operatorname{translations}} \rtimes \underbrace{O}_{\operatorname{point stabilizer}}$$

• *G* is a subgroup of the isometry group of Isom(*S*_t)

Given an *n*-dimensional generalized cusp $C \cong \Omega' / \Delta$ we get

- A properly convex domain Ω ⊂ Ω' with smooth boundary (e.g. B_T ⊂ ℍⁿ)
- A foliation of Ω by strictly convex hypersurfaces, S_t (horospheres)
- A S_t -transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_t (Affine 2nd fundamental form)
- Foliation preserving group $G \supset \Delta$

$$\operatorname{Aff}_n(\mathbb{R}) \supset G \cong \underbrace{T}_{\operatorname{translations}} \rtimes \underbrace{O}_{\operatorname{point stabilizer}}$$

• *G* is a subgroup of the isometry group of Isom(*S*_t) (may be missing some rotations)

A quasi-hyperbolic cusp

Let
$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

• Let $\Omega = \{(z, y) \in \underbrace{\mathbb{R}}_{vertical} \times \underbrace{(\mathbb{R}_+)^{n-1}}_{horizontal} \mid z > -\sum_i \lambda_i^{-1} \log(y_i)\}$

・ロト・西ト・モート ヨー うへの

A quasi-hyperbolic cusp

Let
$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

• Let $\Omega = \{(z, y) \in \underbrace{\mathbb{R}}_{vertical} \times \underbrace{(\mathbb{R}_+)^{n-1}}_{horizontal} \mid z > -\sum_i \lambda_i^{-1} \log(y_i)\}$
• Ω is foliated by $S_i = \int (z, y) \in \Omega \mid z = -\sum_i \lambda_i^{-1} \log(y_i) + t\}$

• Ω is foliated by $S_t = \{(z, y) \in \Omega \mid z = -\sum_i \lambda_i^{-1} \log(y_i) + t\}$ (horospheres)

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

A quasi-hyperbolic cusp

Let
$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

• Let $\Omega = \{(z, y) \in \underbrace{\mathbb{R}}_{vertical} \times \underbrace{(\mathbb{R}_+)^{n-1}}_{horizontal} \mid z > -\sum_i \lambda_i^{-1} \log(y_i)\}$

• Ω is foliated by $S_t = \{(z, y) \in \Omega \mid z = -\sum_i \lambda_i^{-1} \log(y_i) + t\}$ (horospheres)

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

• Ω is also foliated by vertical lines

A quasi-hyperbolic cusp

Let
$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

$$T = \left\{ \begin{pmatrix} 1 & 0 & -\sum_i \lambda_i^{-1} u_i \\ 0 & D_{e^u} & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \langle \underbrace{\Pi_{ij}}_{\text{Horizontal Coord. Perms.}} \mid \lambda_i = \lambda_j \rangle$$

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

Let $G = T \rtimes O$ and let $\Gamma \leq G$ be a lattice.

A quasi-hyperbolic cusp

Let
$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

$$T = \left\{ \begin{pmatrix} 1 & 0 & -\sum_i \lambda_i^{-1} u_i \\ 0 & D_{e^u} & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \langle \underbrace{\Pi_{ij}}_{\text{Horizontal Coord. Perms.}} \mid \lambda_i = \lambda_j \rangle$$

Let $G = T \rtimes O$ and let $\Gamma \leq G$ be a lattice. Ω/Γ is a generalized cusp

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Examples A quasi-hyperbolic cusp

Let
$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

$$T = \left\{ \begin{pmatrix} 1 & 0 & -\sum_i \lambda_i^{-1} u_i \\ 0 & D_{e^u} & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \langle \underbrace{\Pi_{ij}}_{\text{Horizontal Coord. Perms.}} \mid \lambda_i = \lambda_j \rangle$$

These cusps are "chiral"

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○臣 ○のへで

Examples A quasi-hyperbolic cusp

Let
$$0 < \lambda_1 \leq \ldots \leq \lambda_{n-1}$$

$$T = \left\{ \begin{pmatrix} 1 & 0 & -\sum_i \lambda_i^{-1} u_i \\ 0 & D_{e^u} & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \langle \underbrace{\Pi_{ij}}_{\text{Horizontal Coord. Perms.}} \mid \lambda_i = \lambda_j \rangle$$

These cusps are "chiral"

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

• Let $0 \leq \lambda_1 \leq \ldots \leq \lambda_{n-1}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

- Let $0 \leq \lambda_1 \leq \ldots \leq \lambda_{n-1}$
- Let $p = \max\{i \mid \lambda_i = 0\}$ and s = n p 1

- Let $0 \leq \lambda_1 \leq \ldots \leq \lambda_{n-1}$
- Let $p = \max\{i \mid \lambda_i = 0\}$ and s = n p 1
- Let $f : \mathbb{R}^p_s := \mathbb{R}^p \times \mathbb{R}^s_+ \subset \mathbb{R}^{n-1} \to \mathbb{R}$ given by

$$(x_1, \ldots, x_p, y_1, \ldots, y_s) \mapsto \underbrace{\frac{1}{2} \sum_{i=1}^{p} x_i^2}_{\text{hyperbolic part}} - \sum_{i=1}^{s} \lambda_{p+i}^{-1} \log(y_i)}_{\text{quasi-hyperbolic part}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Let
$$0 \le \lambda_1 \le \ldots \le \lambda_{n-1}$$

• Let $p = \max\{i \mid \lambda_i = 0\}$ and $s = n - p - 1$
• Let $f : \mathbb{R}^p_s := \mathbb{R}^p \times \mathbb{R}^s_+ \subset \mathbb{R}^{n-1} \to \mathbb{R}$ given by
 $(x_1, \ldots, x_p, y_1, \ldots, y_s) \mapsto \underbrace{\frac{1}{2} \sum_{i=1}^p x_i^2}_{\text{hyperbolic part}} - \underbrace{\sum_{i=1}^s \lambda_{p+i}^{-1} \log(y_i)}_{\text{quasi-hyperbolic part}}$
• Let $\Omega = \{(z, (x, y)) \in \mathbb{R} \times \mathbb{R}^p_s \subset \mathbb{R}^n \mid z > f(x, y)\}$
Foliated by $S_t = \{z = f(x, y) + t\}$ and by vertical lines

Figure: left: $\lambda_1 = 0, \lambda_2 = 1$. right: $\lambda_1 = \lambda_2 = 1$

Mixed cusps

Figure: left: $\lambda_1 = 0, \lambda_2 = 1$. right: $\lambda_1 = \lambda_2 = 1$

・ロト・4回ト・4回ト・4回ト・回・9900

Mixed cusps

$$T = \left\{ \begin{pmatrix} 1 & u & 0 & f(u, v) \\ 0 & l_{p} & 0 & u \\ 0 & 0 & D_{v} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \mathsf{Aff}_{n}(\mathbb{R}) \mid (u, v) \in \mathbb{R}_{s}^{p} \right\}$$
$$O = \underbrace{O(p)}_{\mathsf{Orthogonal}} \times \underbrace{P_{s,\lambda}}_{\mathsf{Permutations}}$$

If $\Gamma \leq T \rtimes O$ is a lattice then Ω/Γ is a generalized cusp

Figure: left: $\lambda_1 = 0, \lambda_2 = 1$. right: $\lambda_1 = \lambda_2 = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Examples Diagonalizable cusps

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Let $0 < \lambda_0 \leq \ldots \leq \lambda_{n-1}$ • $\Omega = \{(x_1, \ldots, x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) > 0\}$

Examples Diagonalizable cusps

Let $0 < \lambda_0 \leq \ldots \leq \lambda_{n-1}$

- $\Omega = \{(x_1, ..., x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) > 0\}$
- Ω is foliated by $S_t = \{x \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) = t\}$ (horospheres)

Examples Diagonalizable cusps

Let $0 < \lambda_0 \leq \ldots \leq \lambda_{n-1}$

- $\Omega = \{(x_1, ..., x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) > 0\}$
- Ω is foliated by $S_t = \{x \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) = t\}$ (horospheres)

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

• Ω is also foliated by lines through the origin

Examples

Diagonalizable cusps

Let $0 < \lambda_0 \leqslant \ldots \leqslant \lambda_{n-1}$

$$T = \left\{ \begin{pmatrix} u_1 & & \\ & \ddots & \\ & & u_n & \\ & & & 1 \end{pmatrix} | \sum_{i=1}^n \lambda_i^{-1} \log(u_i) = 0 \right\}$$
$$O = \left\langle \underbrace{\prod_{ij}}_{\text{Coord, Perms,}} | \lambda_i = \lambda_j \right\rangle$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Examples

Diagonalizable cusps

Let $0 < \lambda_0 \leq \ldots \leq \lambda_{n-1}$

$$T = \left\{ \begin{pmatrix} u_1 & & \\ & \ddots & \\ & & u_n & \\ & & & 1 \end{pmatrix} \mid \sum_{i=1}^n \lambda_i^{-1} \log(u_i) = 0 \right\}$$
$$O = \left\langle \underbrace{\Pi_{ij}} \mid \lambda_i = \lambda_j \right\rangle$$

Coord. Perms.

Let Γ be a lattice in $G = T \rtimes O$ then Ω/Γ is a generalized cusp

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Let $W_n = \{\lambda \in \mathbb{R}^n \mid 0 \le \lambda_0 \le \ldots \le \lambda_{n-1}\}$ be the *Weyl chamber of* \mathbb{R}^n For $\lambda \in W_n$ we get

Let $W_n = \{\lambda \in \mathbb{R}^n \mid 0 \le \lambda_0 \le \ldots \le \lambda_{n-1}\}$ be the *Weyl chamber of* \mathbb{R}^n

For $\lambda \in W_n$ we get

 A properly convex domain Ω_λ (diagonalizable ⇔ λ ∈ int(W_n), otherwise mixed)

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Let $W_n = \{\lambda \in \mathbb{R}^n \mid 0 \le \lambda_0 \le \ldots \le \lambda_{n-1}\}$ be the *Weyl chamber of* \mathbb{R}^n

For $\lambda \in W_n$ we get

- A properly convex domain Ω_λ (diagonalizable ⇔ λ ∈ int(W_n), otherwise mixed)
- A foliation of Ω_λ by strictly convex hypersurfaces S_t
- A transverse foliation of Ω_{λ} by concurrent geodesics

Let $W_n = \{\lambda \in \mathbb{R}^n \mid 0 \le \lambda_0 \le \ldots \le \lambda_{n-1}\}$ be the *Weyl chamber of* \mathbb{R}^n

For $\lambda \in W_n$ we get

- A properly convex domain Ω_λ (diagonalizable ⇔ λ ∈ int(W_n), otherwise mixed)
- A foliation of Ω_λ by strictly convex hypersurfaces S_t
- A transverse foliation of Ω_λ by concurrent geodesics

• Can use foliation to give S_t a Euclidean metric

Let $W_n = \{\lambda \in \mathbb{R}^n \mid 0 \le \lambda_0 \le \ldots \le \lambda_{n-1}\}$ be the *Weyl chamber of* \mathbb{R}^n

For $\lambda \in W_n$ we get

- A properly convex domain Ω_λ (diagonalizable ⇔ λ ∈ int(W_n), otherwise mixed)
- A foliation of Ω_{λ} by strictly convex hypersurfaces S_t
- A transverse foliation of Ω_λ by concurrent geodesics
- Can use foliation to give S_t a Euclidean metric
- A foliation preserving group $G_{\lambda} \cong T_{\lambda} \rtimes O_{\lambda}$ of isometries

Let $W_n = \{\lambda \in \mathbb{R}^n \mid 0 \le \lambda_0 \le \ldots \le \lambda_{n-1}\}$ be the Weyl chamber of \mathbb{R}^n For $\lambda \in W_n$ we get

- A properly convex domain Ω_λ (diagonalizable ⇔ λ ∈ int(W_n), otherwise mixed)
- A foliation of Ω_λ by strictly convex hypersurfaces S_t
- A transverse foliation of Ω_λ by concurrent geodesics
- Can use foliation to give S_t a Euclidean metric
- A foliation preserving group $G_{\lambda} \cong T_{\lambda} \rtimes O_{\lambda}$ of isometries

Remark 1

If $\exists c > 0$ such that $\lambda = c\lambda'$ then Ω_{λ} and $\Omega_{\lambda'}$ are projectively equivalent and G_{λ} and $G_{\lambda'}$ are conjugate.

Main Theorem

Theorem 2 (B-Cooper-Leitner)

Let $C = \Omega/\Gamma$ be an n-dimensional generalized cusp. Then there is a is a $\lambda \in W_n$, unique up to scaling, such that

- Γ is conjugate to a lattice $\Gamma' \subset G_{\lambda}$
- C deformation retracts (along the geodesic foliation) onto a submanifold that is projectively equivalent to Ω_λ/Γ'.

Main Theorem

Theorem 2 (B-Cooper-Leitner)

Let $C = \Omega/\Gamma$ be an n-dimensional generalized cusp. Then there is a is a $\lambda \in W_n$, unique up to scaling, such that

- Γ is conjugate to a lattice $\Gamma' \subset G_{\lambda}$
- C deformation retracts (along the geodesic foliation) onto a submanifold that is projectively equivalent to Ω_λ/Γ'.

A marked generalized torus cusp is (f, C) where C is a generalized cusp and f : Tⁿ⁻¹ × [0,∞) → C is a diffeomorphism called a marking.

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and f : Tⁿ⁻¹ × [0,∞) → C is a diffeomorphism called a marking.
- (*f*, *C*) and (*f'*, *C'*) are equivalent if ∃ *g* ∈ PGL_{*n*+1}(ℝ) such that *g* ∘ *f* = *f'* (up to isotopy).

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and f : Tⁿ⁻¹ × [0,∞) → C is a diffeomorphism called a marking.
- (*f*, *C*) and (*f'*, *C'*) are equivalent if ∃ *g* ∈ PGL_{*n*+1}(ℝ) such that *g* ∘ *f* = *f'* (up to isotopy).
- Let \mathfrak{C} be the space of equivalence classes of marked torus cusps.

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and f : Tⁿ⁻¹ × [0,∞) → C is a diffeomorphism called a marking.
- (*f*, *C*) and (*f'*, *C'*) are equivalent if ∃ *g* ∈ PGL_{*n*+1}(ℝ) such that *g* ∘ *f* = *f'* (up to isotopy).
- Let \mathfrak{C} be the space of equivalence classes of marked torus cusps.

 Can topologize ℭ using the compact C[∞] topology on markings.

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and f : Tⁿ⁻¹ × [0,∞) → C is a diffeomorphism called a marking.
- (*f*, *C*) and (*f'*, *C'*) are equivalent if ∃ *g* ∈ PGL_{*n*+1}(ℝ) such that *g* ∘ *f* = *f'* (up to isotopy).
- Let \mathfrak{C} be the space of equivalence classes of marked torus cusps.

- Can topologize ℭ using the compact C[∞] topology on markings.
- How can we use parameterize €?

- Let (f, C) be a marked torus cusp
- $C \cong B_T / \Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leqslant T \cong \mathbb{R}^{n-1}$
- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in GL_{n-1}(\mathbb{R})$)

- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \setminus SL_{n-1}^{\pm}(\mathbb{R})$

- Let (f, C) be a marked generalized torus cusp
- $C \cong B_T / \Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leqslant T \cong \mathbb{R}^{n-1}$
- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in GL_{n-1}(\mathbb{R})$)

- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \setminus SL_{n-1}^{\pm}(\mathbb{R})$

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda}/\Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leq T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_n$
- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in GL_{n-1}(\mathbb{R})$)

- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \setminus SL_{n-1}^{\pm}(\mathbb{R})$

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda}/\Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leq T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_n$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in GL_{n-1}(\mathbb{R})$)

(日本本語を本語を本語を本目を)

- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \setminus SL_{n-1}^{\pm}(\mathbb{R})$

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda}/\Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leq T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_n$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked generalized torus cusp gives a unimodular basis for ℝⁿ⁻¹ for appropriate λ (get A ∈ SL[±]_{n-1}(ℝ))

- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \setminus SL_{n-1}^{\pm}(\mathbb{R})$

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda}/\Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leq T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_n$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked generalized torus cusp gives a unimodular basis for ℝⁿ⁻¹ for appropriate λ (get A ∈ SL[±]_{n-1}(ℝ))

(日本本語を本語を本語を本目を)

- Bases from equivalent generalized cusps differ by an element of O_λ
- $\mathfrak{T} \cong O(n-1) \setminus SL_{n-1}^{\pm}(\mathbb{R})$

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda}/\Gamma$ where $f_*(\mathbb{Z}^{n-1}) =: \Gamma \leq T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_n$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked generalized torus cusp gives a unimodular basis for ℝⁿ⁻¹ for appropriate λ (get A ∈ SL[±]_{n-1}(ℝ))

- Bases from equivalent generalized cusps differ by an element of O_λ
- $\mathfrak{C} \cong W_n$ "×" $O_{\lambda} \setminus SL_{n-1}^{\pm}(\mathbb{R})$

Transitions Rough idea

Let $[f_k, C_k] = (\lambda_k, [A_k]) \rightarrow [f_{\infty}, C_{\infty}] = (\lambda_{\infty}, [A_{\infty}])$ be a sequence of marked generalized torus cusps such that some non-zero components of λ_k tend to zero

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Transitions Rough idea

Let $[f_k, C_k] = (\lambda_k, [A_k]) \rightarrow [f_{\infty}, C_{\infty}] = (\lambda_{\infty}, [A_{\infty}])$ be a sequence of marked generalized torus cusps such that some non-zero components of λ_k tend to zero

うつん 川 エー・エー・ エー・ ひゃう

In the limit, the geometry of the cusp transitions

Transitions Rough idea

Let $[f_k, C_k] = (\lambda_k, [A_k]) \rightarrow [f_{\infty}, C_{\infty}] = (\lambda_{\infty}, [A_{\infty}])$ be a sequence of marked generalized torus cusps such that some non-zero components of λ_k tend to zero

In the limit, the geometry of the cusp transitions

Two perspectives

- Geometrically: Since cusp is non-compact, different parts look very different.
- Algebraically: Non-Hausdorff behavior of the character variety.

Example

Let $\Gamma_b \leqslant G_{(0,b)}$ be the Lattice generated by

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Example

Let $\Gamma_b \leqslant G_{(0,b)}$ be the Lattice generated by

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\Omega_{(0,b)}/\Gamma_b$ are generalized cusps

Figure: From left to right: b = 1, b = .5, b = .01

Example Let $\Gamma_b \leq G_{(0,b)}$ be the Lattice generated by

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\Omega_{(0,b)}/\Gamma_b$ are generalized cusps

Figure: From left to right: b = 1, b = .5, b = .01

・ロト・(四ト・(日下・(日下・))の(で)

Example

Let $\Gamma_b \leqslant G_{(0,b)}$ be the Lattice generated by

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\Omega_{(0,b)}/\Gamma_b$ are generalized cusps

Figure: From left to right: b = 1, b = .5, b = .01

・ロト・国ト・ヨト・ヨー シック

Example

Let $\Gamma_b \leqslant G_{(0,b)}$ be the Lattice generated by

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\Omega_{(0,b)}/\Gamma_b$ are generalized cusps appear to "degenerate"

Figure: From left to right: b = 1, b = .5, b = .01

・ロト・(部・・モト・モー・)への

Example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

Let
$$g_b = \begin{pmatrix} 1/b & 1/b & 0 \\ 0 & 1 & -1/b \\ 0 & 0 & 1 \end{pmatrix}$$
. We can conjugate
 $g_b \begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix} g_b^{-1} = \begin{pmatrix} 1 & 1 + O(b) & \frac{1}{2} + O(b^2) \\ 0 & e^b & 1 + O(b) \\ 0 & 0 & 1 \end{pmatrix}$

Example

Let
$$g_b = \begin{pmatrix} 1/b & 1/b & 0 \\ 0 & 1 & -1/b \\ 0 & 0 & 1 \end{pmatrix}$$
. We can conjugate
 $g_b \begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix} g_b^{-1} = \begin{pmatrix} 1 & 1 + O(b) & \frac{1}{2} + O(b^2) \\ 0 & e^b & 1 + O(b) \\ 0 & 0 & 1 \end{pmatrix}$

Figure: From left to right: b = 1, b = .5, b = .01

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

Example

Let
$$g_b = \begin{pmatrix} 1/b & 1/b & 0 \\ 0 & 1 & -1/b \\ 0 & 0 & 1 \end{pmatrix}$$
. We can conjugate
 $g_b \begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix} g_b^{-1} = \begin{pmatrix} 1 & 1+O(b) & \frac{1}{2}+O(b^2) \\ 0 & e^b & 1+O(b) \\ 0 & 0 & 1 \end{pmatrix}$

Figure: From left to right: b = 1, b = .5, b = .01

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

Example

Let
$$g_b = \begin{pmatrix} 1/b & 1/b & 0 \\ 0 & 1 & -1/b \\ 0 & 0 & 1 \end{pmatrix}$$
. We can conjugate
 $g_b \begin{pmatrix} 1 & 0 & -1 \\ 0 & e^b & 0 \\ 0 & 0 & 1 \end{pmatrix} g_b^{-1} = \begin{pmatrix} 1 & 1+O(b) & \frac{1}{2}+O(b^2) \\ 0 & e^b & 1+O(b) \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
Figure: From left to right: $b = 1, b = .5, b = .01$

・ロト・西ト・ヨト・ヨー シック

Example

Let
$$g_b = \begin{pmatrix} 1/b & 1/b & 0\\ 0 & 1 & -1/b\\ 0 & 0 & 1 \end{pmatrix}$$
. We can conjugate
 $g_b \begin{pmatrix} 1 & 0 & -1\\ 0 & e^b & 0\\ 0 & 0 & 1 \end{pmatrix} g_b^{-1} = \begin{pmatrix} 1 & 1+O(b) & \frac{1}{2}+O(b^2)\\ 0 & e^b & 1+O(b)\\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \frac{1}{2}\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{pmatrix}$

After applying a projective transform, $\Omega_{(0,b)}/\Gamma_b \to \Omega_{(0,0)}/\Gamma_0$

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

We use the *compact* C^{∞} topology and so what the limit "looks like" depends on where you "look from"

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

We use the *compact* C^{∞} topology and so what the limit "looks like" depends on where you "look from"

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

We use the *compact* C^{∞} topology and so what the limit "looks like" depends on where you "look from"

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

We use the *compact* C^{∞} topology and so what the limit "looks like" depends on where you "look from"

There are similar transitions anytime a coordinate in W_n goes to zero.

Representation variety perspective

• Let $\mathcal{X} = Hom(\mathbb{Z}^{n-1}, PGL_{n+1}(\mathbb{R})) / PGL_{n+1}(\mathbb{R})$ (character variety)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Representation variety perspective

- Let $\mathcal{X} = Hom(\mathbb{Z}^{n-1}, PGL_{n+1}(\mathbb{R})) / PGL_{n+1}(\mathbb{R})$ (character variety)
- There is a map $\text{Hol}:\mathfrak{C}\to\mathcal{X}$

$$[(f, C)] \mapsto [f_*] : \mathbb{Z}^{n-1} \to \mathsf{PGL}_{n+1}(\mathbb{R})$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Representation variety perspective

- Let $\mathcal{X} = Hom(\mathbb{Z}^{n-1}, PGL_{n+1}(\mathbb{R})) / PGL_{n+1}(\mathbb{R})$ (character variety)
- There is a map $\text{Hol}:\mathfrak{C}\to\mathcal{X}$

$$[(f, C)] \mapsto [f_*] : \mathbb{Z}^{n-1} \to \mathsf{PGL}_{n+1}(\mathbb{R})$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Representation variety perspective

- Let $\mathcal{X} = Hom(\mathbb{Z}^{n-1}, PGL_{n+1}(\mathbb{R})) / PGL_{n+1}(\mathbb{R})$ (character variety)
- There is a map $\text{Hol}:\mathfrak{C}\to\mathcal{X}$

$$[(f, C)] \mapsto [f_*] : \mathbb{Z}^{n-1} \to \mathsf{PGL}_{n+1}(\mathbb{R})$$

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

• X is non-Hausdorff space (contains lots of reducible reps)

Representation variety perspective

- Let $\mathcal{X} = Hom(\mathbb{Z}^{n-1}, PGL_{n+1}(\mathbb{R})) / PGL_{n+1}(\mathbb{R})$ (character variety)
- There is a map Hol $: \mathfrak{C} \to \mathcal{X}$

$$[(f, C)] \mapsto [f_*] : \mathbb{Z}^{n-1} \to \mathsf{PGL}_{n+1}(\mathbb{R})$$

うつん 川 エー・エー・ エー・ ひゃう

- X is non-Hausdorff space (contains lots of reducible reps)
- There are reps ρ_t and $g_t \in \mathsf{PGL}_{n+1}(\mathbb{R})$ such that

•
$$\rho_t \rightarrow \rho$$
 as $t \rightarrow 0$

•
$$g_t \rho_t g_t^{-1} \to \rho'$$
 as $t \to 0$

•
$$[\rho] \neq [\rho']$$

• Realization Problem: given a generalized cusp *C*, can you find an *interesting* properly convex manifold *M* with a cusp projectively equivalent to *C*?

• Realization Problem: given a generalized cusp *C*, can you find an *interesting* properly convex manifold *M* with a cusp projectively equivalent to *C*? *A few low dimensional examples, but mostly unknown*

- Realization Problem: given a generalized cusp *C*, can you find an *interesting* properly convex manifold *M* with a cusp projectively equivalent to *C*? *A few low dimensional examples, but mostly unknown*
- Can we use the geometry of generalized cusps to give coordinates on the space of convex projective structures on a fixed manifold? (Fenchel-Nielsen coordinates)

- Realization Problem: given a generalized cusp *C*, can you find an *interesting* properly convex manifold *M* with a cusp projectively equivalent to *C*? *A few low dimensional examples, but mostly unknown*
- Can we use the geometry of generalized cusps to give coordinates on the space of convex projective structures on a fixed manifold? (Fenchel-Nielsen coordinates)
- Better understand the action of the mapping class group on € and study the quotient (unmarked cusps)

うつん 川 エー・エー・ エー・ ひゃう

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●