Generalized cusps in convex projective manifolds

Sam Ballas

(joint with D. Cooper and A. Leitner)

GEAR Retreat
Stanford University
August 7, 2017

Outline

1. Cusps in finite volume hyperbolic manifolds

- Geometry of cusps
- Moduli space of cusps (a manifold)

Outline

1. Cusps in finite volume hyperbolic manifolds

- Geometry of cusps
- Moduli space of cusps (a manifold)

2. Properly convex manifolds

- Generalize hyperbolic manifolds
- Are more flexible
- Occur as deformations of hyperbolic manifolds

Outline

1. Cusps in finite volume hyperbolic manifolds

- Geometry of cusps
- Moduli space of cusps (a manifold)

2. Properly convex manifolds

- Generalize hyperbolic manifolds
- Are more flexible
- Occur as deformations of hyperbolic manifolds

3. Generalized cusps

- Occur as ends of properly convex manifolds
- Have similar geometry to hyperbolic cusps
- Have more complicated moduli space (stratified by orbifolds)
- Exhibit interesting "transitional phenomena"

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}^{n}
$$

- A projective model for hyperbolic space
\mathbb{H}^{n}

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}^{n}
$$

- A projective model for hyperbolic space
- Analogous to upper half space model

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}^{n}
$$

- A projective model for hyperbolic space
- Analogous to upper half space model
- Geodesics are (affine) straight lines

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}^{n}
$$

- A projective model for hyperbolic space
- Analogous to upper half space model
- Geodesics are (affine) straight lines
- $\operatorname{Isom}\left(\mathbb{H}^{n}\right)=\operatorname{PGL}\left(\mathbb{H}^{n}\right):=\left\{A \in \mathrm{PGL}_{n+1}(\mathbb{R}) \mid A\left(\mathbb{H}^{n}\right)=\mathbb{H}^{n}\right\}$

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R}^{n}
$$

- A projective model for hyperbolic space
- Analogous to upper half space model
- Geodesics are (affine) straight lines
- $\operatorname{Isom}\left(\mathbb{H}^{n}\right)=\operatorname{PGL}\left(\mathbb{H}^{n}\right):=\left\{A \in \mathrm{PGL}_{n+1}(\mathbb{R}) \mid A\left(\mathbb{H}^{n}\right)=\mathbb{H}^{n}\right\}$
- Metric is given by $d_{\mathbb{H}^{n}}(x, y)=\frac{1}{2} \log ([a: x: y: b])$

$$
\mathbb{H}^{n}
$$

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R P}^{n}
$$

- Foliated by horospheres $S_{t}=\left\{\left.(z, v) \in \mathbb{H}^{n}\left|z=\frac{1}{2}\right| v\right|^{2}+t\right\}, t>0$

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R P}^{n}
$$

- Foliated by horospheres $S_{t}=\left\{\left.(z, v) \in \mathbb{H}^{n}\left|z=\frac{1}{2}\right| v\right|^{2}+t\right\}, t>0$
- Also foliated by lines through ∞, that are orthogonal to the S_{t}

Hyperbolic space

Paraboloid model

$$
\text { Let } \mathbb{H}^{n}=\{(z, v) \in \underbrace{\mathbb{R}}_{\text {Vertical }} \times\left.\underbrace{\mathbb{R}^{n-1}}_{\text {Horizontal }}\left|z>\frac{1}{2}\right| v\right|^{2}\} \subset \mathbb{R}^{n} \subset \mathbb{R P}^{n}
$$

- Foliated by horospheres $S_{t}=\left\{\left.(z, v) \in \mathbb{H}^{n}\left|z=\frac{1}{2}\right| v\right|^{2}+t\right\}, t>0$
- Also foliated by lines through ∞, that are orthogonal to the S_{t}
- The induced metric on S_{t} is flat and given by the Hessian of $z=\frac{1}{2}|v|^{2}$

Cusps of hyperbolic manifolds

Paraboloid model
Consider the following subgroups of $\mathrm{Aff}_{n}(\mathbb{R})$
$T=\left\{\left.\left(\begin{array}{ccc}1 & u^{t} & \left.\frac{1}{2}| |\right|^{2} \\ 0 & 1 & u \\ 0 & 0 & 1\end{array}\right) \right\rvert\, u \in \mathbb{R}^{n-1}\right\}, O=\left\{\left.\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, A \in O(n-1)\right\}$

Cusps of hyperbolic manifolds

Paraboloid model

Consider the following subgroups of $\operatorname{Aff}_{n}(\mathbb{R})$
$T=\left\{\left.\left(\begin{array}{ccc}1 & u^{t} & \frac{1}{2}|u|^{2} \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, u \in \mathbb{R}^{n-1}\right\}, O=\left\{\left.\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, A \in O(n-1)\right\}$

- T acts simply transitively on each S_{t} (translation on \mathbb{R}^{n-1} factor)
- O is a point stabilizes a unique point on each horosphere

Cusps of hyperbolic manifolds

Paraboloid model

Consider the following subgroups of $\mathrm{Aff}_{n}(\mathbb{R})$
$T=\left\{\left.\left(\begin{array}{ccc}1 & u^{t} & \frac{1}{2}|u|^{2} \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, u \in \mathbb{R}^{n-1}\right\}, O=\left\{\left.\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, A \in O(n-1)\right\}$

- T acts simply transitively on each S_{t} (translation on \mathbb{R}^{n-1} factor)
- O is a point stabilizes a unique point on each horosphere
- $G:=\langle T, O\rangle \cong T \rtimes O \cong \operatorname{Isom}\left(\mathbb{R}^{n-1}\right)$

Cusps of hyperbolic orbifolds

Topology of cusps

Let $\Gamma \subset \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ be a lattice and $M=\mathbb{H}^{n} / \Gamma$ be a complete hyperbolic n-orbifold.

Cusps of hyperbolic orbifolds

Topology of cusps

Let $\Gamma \subset \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ be a lattice and $M=\mathbb{H}^{n} / \Gamma$ be a complete hyperbolic n-orbifold.

Using the "thick-thin" decomposition M can be decomposed into

$$
M=M_{K} \bigsqcup_{i} C_{i},
$$

M_{K} compact and C_{i} finitely covered by $T^{n-1} \times[0, \infty)$.

Cusps of hyperbolic manifolds

Geometry of cusps
Let

- $B_{T}=\bigcup_{t \geqslant T} S_{t}$ (horoball)
- Δ a lattice in G_{0}.

Cusps of hyperbolic manifolds

Geometry of cusps
Let

- $B_{T}=\bigcup_{t \geqslant T} S_{t}$ (horoball)
- Δ a lattice in G_{0}.

The cusp C can be realized as B_{T} / Δ

Cusps of hyperbolic manifolds

Geometry of cusps
Let

- $B_{T}=\bigcup_{t \geqslant T} S_{t}$ (horoball)
- Δ a lattice in G_{0}.

The cusp C can be realized as B_{T} / Δ
The S_{t} / Δ give a foliation of C by Euclidean $(n-1)$-orbifolds.

Cusps of hyperbolic manifolds

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.

Cusps of hyperbolic manifolds

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ such that $g \circ f=f^{\prime}$ (up to isotopy).

Cusps of hyperbolic manifolds

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ such that $g \circ f=f^{\prime}$ (up to isotopy).

- Let \mathfrak{T} be the space of equivalence classes of marked torus cusps

Cusps of hyperbolic manifolds

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ such that $g \circ f=f^{\prime}$ (up to isotopy).

- Let \mathfrak{T} be the space of equivalence classes of marked torus cusps
- Can topologize \mathfrak{T} using compact C^{∞} topology on markings

Cusps of hyperbolic manifolds

Moduli space of cusps

- A marked torus cusp is (f, C) where C is a cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ such that $g \circ f=f^{\prime}$ (up to isotopy).

- Let \mathfrak{T} be the space of equivalence classes of marked torus cusps
- Can topologize \mathfrak{T} using compact C^{∞} topology on markings
- How can we use parameterize \mathfrak{T} ?

Cusps of hyperbolic manifolds

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$

Cusps of hyperbolic manifolds

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_{T} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T$

Cusps of hyperbolic manifolds

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_{T} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in \mathrm{GL}_{n-1}(\mathbb{R})$)

Cusps of hyperbolic manifolds

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_{T} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in \mathrm{GL}_{n-1}(\mathbb{R})$)
- Bases from equivalent cusps differ by a Euclidean similarity

Cusps of hyperbolic manifolds

Moduli space of cusps

Let $[(f, C)] \in \mathfrak{T}$

- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- $C \cong B_{T} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in \mathrm{GL}_{n-1}(\mathbb{R})$)
- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \backslash \mathrm{SL}_{n-1}^{ \pm}(\mathbb{R})$

Properly convex geometry

Properly convex domains

$\mathbb{R} \mathbb{P}^{n}=\mathbb{R}^{n} \sqcup \mathbb{R}^{n-1}$, so complement of any projective hyperplane is a copy of affine space called an affine patch.

Properly convex geometry

Properly convex domains

$\mathbb{R}^{p}=\mathbb{R}^{n} \sqcup \mathbb{R} \mathbb{P}^{n-1}$, so complement of any projective hyperplane is a copy of affine space called an affine patch.
$\Omega \subset \mathbb{R P}^{n}$ is properly convex if

1. $\bar{\Omega}$ is contained in an affine patch
2. Ω is a convex subset of an affine patch
Ω properly convex $\Longleftrightarrow \Omega$ is a bounded convex subset of some affine patch

Properly convex geometry

Properly convex domains
$\mathbb{R P}^{n}=\mathbb{R}^{n} \sqcup \mathbb{R P}^{n-1}$, so complement of any projective hyperplane is a copy of affine space called an affine patch.
$\Omega \subset \mathbb{R P}^{n}$ is properly convex if

1. $\bar{\Omega}$ is contained in an affine patch
2. Ω is a convex subset of an affine patch
Ω properly convex $\Longleftrightarrow \Omega$ is a bounded convex subset of some affine patch

Properly convex geometry

Properly convex domains

Ω determines a group $\operatorname{PGL}(\Omega):=\left\{A \in \operatorname{PGL}_{n+1}(\mathbb{R}) \mid A(\Omega)=\Omega\right\}$

Properly convex geometry

Properly convex domains

Ω determines a group $\operatorname{PGL}(\Omega):=\left\{A \in \operatorname{PGL}_{n+1}(\mathbb{R}) \mid A(\Omega)=\Omega\right\}$

Properly convex geometry

Properly convex domains

Ω determines a group $\operatorname{PGL}(\Omega):=\left\{A \in \operatorname{PGL}_{n+1}(\mathbb{R}) \mid A(\Omega)=\Omega\right\}$

Generically, $\operatorname{PGL}(\Omega)$ is trivial

Properly convex geometry

Properly convex manifolds

- Let Ω be properly convex and let $\Gamma \subset \operatorname{PGL}(\Omega)$ be discrete and torsion free.
- Ω / Γ is a properly convex manifold

Properly convex geometry

Properly convex manifolds

- Let Ω be properly convex and let $\Gamma \subset \operatorname{PGL}(\Omega)$ be discrete and torsion free.
- Ω / Γ is a properly convex manifold
- Are there interesting properly convex manifolds? (Since $\operatorname{PGL}(\Omega)$ is generically trivial)

Properly convex geometry

Properly convex manifolds

- Let Ω be properly convex and let $\Gamma \subset \operatorname{PGL}(\Omega)$ be discrete and torsion free.
- Ω / Γ is a properly convex manifold
- Are there interesting properly convex manifolds? (Since $\operatorname{PGL}(\Omega)$ is generically trivial) Yes!

Properly convex manifolds

Example 1

A complete hyperbolic manifold \mathbb{H}^{n} / Γ is a properly convex manifold

Properly convex manifolds

Example 1

A complete hyperbolic manifold \mathbb{H}^{n} / Γ is a properly convex manifold

Example 2
Deformations of properly hyperbolic manifolds

Properly convex manifolds

Example 1

A complete hyperbolic manifold \mathbb{H}^{n} / Γ is a properly convex manifold

Example 2

Deformations of properly hyperbolic manifolds
Theorem 1 (Koszul)
If $M=\Omega / \Gamma$ is a closed properly convex manifold and
$\Gamma^{\prime} \leqslant \mathrm{PGL}_{n+1}(\mathbb{R})$ is a small deformation of Γ then there is a properly convex domain Ω^{\prime} such that $\Gamma^{\prime} \leqslant \operatorname{PGL}\left(\Omega^{\prime}\right)$ is discrete and $M \cong \Omega^{\prime} / \Gamma^{\prime}$

Properly convex manifolds

Example 1

A complete hyperbolic manifold \mathbb{H}^{n} / Γ is a properly convex manifold

Example 2

Deformations of properly hyperbolic manifolds
Theorem 1 (Koszul)
If $M=\Omega / \Gamma$ is a closed properly convex manifold and
$\Gamma^{\prime} \leqslant \mathrm{PGL}_{n+1}(\mathbb{R})$ is a small deformation of Γ then there is a properly convex domain Ω^{\prime} such that $\Gamma^{\prime} \leqslant \operatorname{PGL}\left(\Omega^{\prime}\right)$ is discrete and $M \cong \Omega^{\prime} / \Gamma^{\prime}$

Remark

Cooper-Long-Tillmann have proven a "relative version" of Koszul for M non-compact

Properly convex manifolds

Remark

By "bending" hyperbolic manifolds along totally geodesic hypersurfaces we get non-hyperbolic convex projective manifolds (Benoist, Marquis)

Properly convex manifolds

Remark

By "bending" hyperbolic manifolds along totally geodesic hypersurfaces we get non-hyperbolic convex projective manifolds (Benoist, Marquis)

Properly convex manifolds

Remark

By "bending" hyperbolic manifolds along totally geodesic hypersurfaces we get non-hyperbolic convex projective manifolds (Benoist, Marquis)

Generalized cusps

Motivation

- If $M=\mathbb{H}^{n} / \Gamma$ is a non-compact finite volume hyperbolic manifold
- Let $M^{\prime}=\Omega / \Gamma^{\prime}$ be a small properly convex deformation of M.
- What does the geometry of the ends of M^{\prime} look like?

Generalized cusps

Motivation

- If $M=\mathbb{H}^{n} / \Gamma$ is a non-compact finite volume hyperbolic manifold
- Let $M^{\prime}=\Omega / \Gamma^{\prime}$ be a small properly convex deformation of M.
- What does the geometry of the ends of M^{\prime} look like?

It's a generalized cusp

Generalized cusps

Motivation

- If $M=\mathbb{H}^{n} / \Gamma$ is a non-compact finite volume hyperbolic manifold
- Let $M^{\prime}=\Omega / \Gamma^{\prime}$ be a small properly convex deformation of M.
- What does the geometry of the ends of M^{\prime} look like? It's a generalized cusp

A properly convex manifold $C=\Omega^{\prime} / \Delta$ is a generalized cusp if

- $C \cong \Sigma \times[0, \infty)$ with Σ compact
- Σ is a strictly convex hypersurface (lifts to Ω^{\prime} are locally graphs of convex functions)
- Δ is vitually nilpotent (or virtually Abelian)

Generalized cusps

Questions

Let $C=\Omega / \Delta$ is a generalized cusp

Generalized cusps

Questions

Let $C=\Omega / \Delta$ is a generalized cusp

1. What does Ω look like?

Generalized cusps

Questions

Let $C=\Omega / \Delta$ is a generalized cusp

1. What does Ω look like?
2. What does Δ look like?

Generalized cusps

Questions

Let $C=\Omega / \Delta$ is a generalized cusp

1. What does Ω look like?
2. What does Δ look like?
3. What does the geometry of C look like?

Generalized cusps

Questions

Let $C=\Omega / \Delta$ is a generalized cusp

1. What does Ω look like?
2. What does Δ look like?
3. What does the geometry of C look like?
4. What is the moduli space of generalized cusps?

Geometry of generalized cusps

Overview
Given an n-dimensional generalized cusp $C \cong \Omega^{\prime} / \Delta$ we get

Geometry of generalized cusps

Overview
Given an n-dimensional generalized cusp $C \cong \Omega^{\prime} / \Delta$ we get

- A properly convex domain $\Omega \subset \Omega^{\prime}$ with smooth boundary (e.g. $B_{T} \subset \mathbb{H}^{n}$)

Geometry of generalized cusps

Given an n-dimensional generalized cusp $C \cong \Omega^{\prime} / \Delta$ we get

- A properly convex domain $\Omega \subset \Omega^{\prime}$ with smooth boundary (e.g. $B_{T} \subset \mathbb{H}^{n}$)
- A foliation of Ω by strictly convex hypersurfaces, S_{t} (horospheres)
- A S_{t}-transverse foliation of Ω by concurrent geodesic

Geometry of generalized cusps

Given an n-dimensional generalized cusp $C \cong \Omega^{\prime} / \Delta$ we get

- A properly convex domain $\Omega \subset \Omega^{\prime}$ with smooth boundary (e.g. $B_{T} \subset \mathbb{H}^{n}$)
- A foliation of Ω by strictly convex hypersurfaces, S_{t} (horospheres)
- A S_{t}-transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_{t} (Affine 2nd fundamental form)

Geometry of generalized cusps

Given an n-dimensional generalized cusp $C \cong \Omega^{\prime} / \Delta$ we get

- A properly convex domain $\Omega \subset \Omega^{\prime}$ with smooth boundary (e.g. $B_{T} \subset \mathbb{H}^{n}$)
- A foliation of Ω by strictly convex hypersurfaces, S_{t} (horospheres)
- A S_{t}-transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_{t} (Affine 2nd fundamental form)
- Foliation preserving group $G \supset \Delta$

$$
\operatorname{Aff}_{n}(\mathbb{R}) \supset G \cong \underbrace{T}_{\text {translations }} \rtimes \underbrace{O}_{\text {point stabilizer }}
$$

Geometry of generalized cusps

Overview

Given an n-dimensional generalized cusp $C \cong \Omega^{\prime} / \Delta$ we get

- A properly convex domain $\Omega \subset \Omega^{\prime}$ with smooth boundary (e.g. $B_{T} \subset \mathbb{H}^{n}$)
- A foliation of Ω by strictly convex hypersurfaces, S_{t} (horospheres)
- A S_{t}-transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_{t} (Affine 2nd fundamental form)
- Foliation preserving group $G \supset \Delta$

$$
\operatorname{Aff}_{n}(\mathbb{R}) \supset G \cong \underbrace{T}_{\text {translations }} \rtimes \underbrace{O}_{\text {point stabilizer }}
$$

- G is a subgroup of the isometry group of $\operatorname{Isom}\left(S_{t}\right)$

Geometry of generalized cusps

Given an n-dimensional generalized cusp $C \cong \Omega^{\prime} / \Delta$ we get

- A properly convex domain $\Omega \subset \Omega^{\prime}$ with smooth boundary (e.g. $B_{T} \subset \mathbb{H}^{n}$)
- A foliation of Ω by strictly convex hypersurfaces, S_{t} (horospheres)
- A S_{t}-transverse foliation of Ω by concurrent geodesic
- A Euclidean metric on S_{t} (Affine 2nd fundamental form)
- Foliation preserving group $G \supset \Delta$

$$
\operatorname{Aff}_{n}(\mathbb{R}) \supset G \cong \underbrace{T}_{\text {translations }} \rtimes \underbrace{O}_{\text {point stabilizer }}
$$

- G is a subgroup of the isometry group of $\operatorname{Isom}\left(S_{t}\right)$ (may be missing some rotations)

Examples

A quasi-hyperbolic cusp
Let $0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$

- Let $\Omega=\{(z, y) \in \underbrace{\mathbb{R}}_{\text {vertical }} \times \underbrace{\left(\mathbb{R}_{+}\right)^{n-1}}_{\text {horizontal }} \mid z>-\sum_{i} \lambda_{i}^{-1} \log \left(y_{i}\right)\}$

Examples

A quasi-hyperbolic cusp
Let $0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$

- Let $\Omega=\{(z, y) \in \underbrace{\mathbb{R}}_{\text {vertical }} \times \underbrace{\left(\mathbb{R}_{+}\right)^{n-1}}_{\text {horizontal }} \mid z>-\sum_{i} \lambda_{i}^{-1} \log \left(y_{i}\right)\}$
- Ω is foliated by $S_{t}=\left\{(z, y) \in \Omega \mid z=-\sum_{i} \lambda_{i}^{-1} \log \left(y_{i}\right)+t\right\}$ (horospheres)

Examples

A quasi-hyperbolic cusp
Let $0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$

- Let $\Omega=\{(z, y) \in \underbrace{\mathbb{R}}_{\text {vertical }} \times \underbrace{\left(\mathbb{R}_{+}\right)^{n-1}}_{\text {horizontal }} \mid z>-\sum_{i} \lambda_{i}^{-1} \log \left(y_{i}\right)\}$
- Ω is foliated by $S_{t}=\left\{(z, y) \in \Omega \mid z=-\sum_{i} \lambda_{i}^{-1} \log \left(y_{i}\right)+t\right\}$ (horospheres)
- Ω is also foliated by vertical lines

Examples

A quasi-hyperbolic cusp

Let $0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$
$T=\left\{\left.\left(\begin{array}{ccc}1 & 0 & -\sum_{i} \lambda_{i}^{-1} u_{i} \\ 0 & D_{e^{u}} & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, u \in \mathbb{R}^{n-1}\right\}, O=\langle\underbrace{\Pi_{i j}}_{\text {Horizontal Coord. Perms. }} \mid \lambda_{i}=\lambda_{j}\rangle$
Let $G=T \rtimes O$ and let $\Gamma \leqslant G$ be a lattice.

Examples

A quasi-hyperbolic cusp

Let $0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$
$T=\left\{\left.\left(\begin{array}{ccc}1 & 0 & -\sum_{i} \lambda_{i}^{-1} u_{i} \\ 0 & D_{e^{u}} & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, u \in \mathbb{R}^{n-1}\right\}, O=\langle\underbrace{\Pi_{i j}}_{\text {Horizontal Coord. Perms. }} \mid \lambda_{i}=\lambda_{j}\rangle$
Let $G=T \rtimes O$ and let $\Gamma \leqslant G$ be a lattice. Ω / Γ is a generalized cusp

Examples

A quasi-hyperbolic cusp

$$
\begin{aligned}
& \text { Let } 0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1} \\
& T=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & -\sum_{i} \lambda_{i}^{-1} u_{i} \\
0 & D_{e^{u}} & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, u \in \mathbb{R}^{n-1}\right\}, O=\langle\underbrace{\Pi_{i j}}_{\text {Horizonal Coord. Perms. }} \mid \lambda_{i}=\lambda_{j}\rangle
\end{aligned}
$$

These cusps are "chiral"

Examples

A quasi-hyperbolic cusp

$$
\begin{aligned}
& \text { Let } 0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1} \\
& T=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & -\sum_{i} \lambda_{i}^{-1} u_{i} \\
0 & D_{e^{u}} & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, u \in \mathbb{R}^{n-1}\right\}, O=\langle\underbrace{\Pi_{i j}}_{\text {Horizontal Coord. Perms. }} \mid \lambda_{i}=\lambda_{j}\rangle
\end{aligned}
$$

These cusps are "chiral"

Mixed cusps

- Let $0 \leqslant \lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$

Mixed cusps

- Let $0 \leqslant \lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$
- Let $p=\max \left\{i \mid \lambda_{i}=0\right\}$ and $s=n-p-1$

Mixed cusps

- Let $0 \leqslant \lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$
- Let $p=\max \left\{i \mid \lambda_{i}=0\right\}$ and $s=n-p-1$
- Let $f: \mathbb{R}_{s}^{p}:=\mathbb{R}^{p} \times \mathbb{R}_{+}^{s} \subset \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ given by

$$
\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots y_{s}\right) \mapsto \underbrace{\frac{1}{2} \sum_{i=1}^{p} x_{i}^{2}}_{\text {hyperbolic part }}-\underbrace{\sum_{i=1}^{s} \lambda_{p+i}^{-1} \log \left(y_{i}\right)}_{\text {quasi-hyperbolic part }}
$$

Mixed cusps

- Let $0 \leqslant \lambda_{1} \leqslant \ldots \leqslant \lambda_{n-1}$
- Let $p=\max \left\{i \mid \lambda_{i}=0\right\}$ and $s=n-p-1$
- Let $f: \mathbb{R}_{s}^{p}:=\mathbb{R}^{p} \times \mathbb{R}_{+}^{s} \subset \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ given by

$$
\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots y_{s}\right) \mapsto \underbrace{\frac{1}{2} \sum_{i=1}^{p} x_{i}^{2}}_{\text {hyperbolic part }}-\underbrace{\sum_{i=1}^{s} \lambda_{p+i}^{-1} \log \left(y_{i}\right)}_{\text {quasi-hyperbolic part }}
$$

- Let $\Omega=\{(z,(x, y)) \in \underbrace{\mathbb{R}}_{\text {vertical }} \times \underbrace{\mathbb{R}_{s}^{p}}_{\text {horizontal }} \subset \mathbb{R}^{n} \mid z>f(x, y)\}$

Foliated by $S_{t}=\{z=f(x, y)+t\}$ and by vertical lines

Figure: left: $\lambda_{1}=0, \lambda_{2}=1$. right: $\lambda_{1}=\lambda_{2}=1$

Mixed cusps

$$
\begin{gathered}
T=\left\{\left.\left(\begin{array}{cccc}
1 & u & 0 & f(u, v) \\
0 & I_{p} & 0 & u \\
0 & 0 & D_{v} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \operatorname{Aff}_{n}(\mathbb{R}) \right\rvert\,(u, v) \in \mathbb{R}_{s}^{p}\right\} \\
O=\underbrace{O(p)}_{\text {Orthogonal }} \times \underbrace{P_{s, \lambda}}_{\text {Permutations }}
\end{gathered}
$$

Figure: left: $\lambda_{1}=0, \lambda_{2}=1$. right: $\lambda_{1}=\lambda_{2}=1$

Mixed cusps

$$
\begin{gathered}
T=\left\{\left.\left(\begin{array}{cccc}
1 & u & 0 & f(u, v) \\
0 & I_{p} & 0 & u \\
0 & 0 & D_{v} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \operatorname{Aff}_{n}(\mathbb{R}) \right\rvert\,(u, v) \in \mathbb{R}_{s}^{p}\right\} \\
O=\underbrace{O(p)}_{\text {Orthogonal }} \times \underbrace{P_{s, \lambda}}_{\text {Permutations }}
\end{gathered}
$$

If $\Gamma \leqslant T \rtimes O$ is a lattice then Ω / Γ is a generalized cusp

Figure: left: $\lambda_{1}=0, \lambda_{2}=1$. right: $\lambda_{1}=\lambda_{2}=1$

Examples

Diagonalizable cusps

Let $0<\lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}$

- $\Omega=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} \lambda_{i}^{-1} \log \left(x_{i}\right)>0\right\}$

Examples

Diagonalizable cusps

Let $0<\lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}$

- $\Omega=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} \lambda_{i}^{-1} \log \left(x_{i}\right)>0\right\}$
- Ω is foliated by $S_{t}=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} \lambda_{i}^{-1} \log \left(x_{i}\right)=t\right\}$ (horospheres)

Examples

Diagonalizable cusps

Let $0<\lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}$

- $\Omega=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} \lambda_{i}^{-1} \log \left(x_{i}\right)>0\right\}$
- Ω is foliated by $S_{t}=\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} \lambda_{i}^{-1} \log \left(x_{i}\right)=t\right\}$ (horospheres)
- Ω is also foliated by lines through the origin

Examples

Diagonalizable cusps
Let $0<\lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}$

$$
\begin{gathered}
T=\left\{\left.\left(\begin{array}{llll}
u_{1} & & & \\
& \ddots & & \\
& & u_{n} & \\
\hline
\end{array}\right) \right\rvert\, \sum_{i=1}^{n} \lambda_{i}^{-1} \log \left(u_{i}\right)=0\right\} \\
O=\langle\underbrace{\Pi_{i j}}_{\text {Coord. Perms. }} \mid \lambda_{i}=\lambda_{j}\rangle
\end{gathered}
$$

Examples

Diagonalizable cusps

Let $0<\lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}$

$$
\begin{gathered}
T=\left\{\left.\left(\begin{array}{cccc}
u_{1} & & & \\
& \ddots & & \\
& & u_{n} & \\
\hline
\end{array}\right) \right\rvert\, \sum_{i=1}^{n} \lambda_{i}^{-1} \log \left(u_{i}\right)=0\right\} \\
O=\langle\underbrace{\Pi_{i j}}_{\text {Coord. Perms. }} \mid \lambda_{i}=\lambda_{j}\rangle
\end{gathered}
$$

Let Γ be a lattice in $G=T \rtimes O$ then Ω / Γ is a generalized cusp

The big picture

Let $W_{n}=\left\{\lambda \in \mathbb{R}^{n} \mid 0 \leqslant \lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}\right\}$ be the Weyl chamber of \mathbb{R}^{n}
For $\lambda \in W_{n}$ we get

The big picture

Let $W_{n}=\left\{\lambda \in \mathbb{R}^{n} \mid 0 \leqslant \lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}\right\}$ be the Weyl chamber of \mathbb{R}^{n}
For $\lambda \in W_{n}$ we get

- A properly convex domain Ω_{λ} (diagonalizable $\Longleftrightarrow \lambda \in \operatorname{int}\left(W_{n}\right)$, otherwise mixed)

The big picture

Let $W_{n}=\left\{\lambda \in \mathbb{R}^{n} \mid 0 \leqslant \lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}\right\}$ be the Weyl chamber of \mathbb{R}^{n}
For $\lambda \in W_{n}$ we get

- A properly convex domain Ω_{λ} (diagonalizable $\Longleftrightarrow \lambda \in \operatorname{int}\left(W_{n}\right)$, otherwise mixed)
- A foliation of Ω_{λ} by strictly convex hypersurfaces S_{t}
- A transverse foliation of Ω_{λ} by concurrent geodesics

The big picture

Let $W_{n}=\left\{\lambda \in \mathbb{R}^{n} \mid 0 \leqslant \lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}\right\}$ be the Weyl chamber of \mathbb{R}^{n}
For $\lambda \in W_{n}$ we get

- A properly convex domain Ω_{λ} (diagonalizable $\Longleftrightarrow \lambda \in \operatorname{int}\left(W_{n}\right)$, otherwise mixed)
- A foliation of Ω_{λ} by strictly convex hypersurfaces S_{t}
- A transverse foliation of Ω_{λ} by concurrent geodesics
- Can use foliation to give S_{t} a Euclidean metric

The big picture

Let $W_{n}=\left\{\lambda \in \mathbb{R}^{n} \mid 0 \leqslant \lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}\right\}$ be the Weyl chamber of \mathbb{R}^{n}
For $\lambda \in W_{n}$ we get

- A properly convex domain Ω_{λ} (diagonalizable $\Longleftrightarrow \lambda \in \operatorname{int}\left(W_{n}\right)$, otherwise mixed)
- A foliation of Ω_{λ} by strictly convex hypersurfaces S_{t}
- A transverse foliation of Ω_{λ} by concurrent geodesics
- Can use foliation to give S_{t} a Euclidean metric
- A foliation preserving group $G_{\lambda} \cong T_{\lambda} \rtimes O_{\lambda}$ of isometries

The big picture

Let $W_{n}=\left\{\lambda \in \mathbb{R}^{n} \mid 0 \leqslant \lambda_{0} \leqslant \ldots \leqslant \lambda_{n-1}\right\}$ be the
Weyl chamber of \mathbb{R}^{n}
For $\lambda \in W_{n}$ we get

- A properly convex domain Ω_{λ} (diagonalizable $\Longleftrightarrow \lambda \in \operatorname{int}\left(W_{n}\right)$, otherwise mixed)
- A foliation of Ω_{λ} by strictly convex hypersurfaces S_{t}
- A transverse foliation of Ω_{λ} by concurrent geodesics
- Can use foliation to give S_{t} a Euclidean metric
- A foliation preserving group $G_{\lambda} \cong T_{\lambda} \rtimes O_{\lambda}$ of isometries

Remark 1

If $\exists c>0$ such that $\lambda=c \lambda^{\prime}$ then Ω_{λ} and $\Omega_{\lambda^{\prime}}$ are projectively equivalent and G_{λ} and $G_{\lambda^{\prime}}$ are conjugate.

Main Theorem

Theorem 2 (B-Cooper-Leitner)
Let $C=\Omega / \Gamma$ be an n-dimensional generalized cusp. Then there is a is a $\lambda \in W_{n}$, unique up to scaling, such that

- Γ is conjugate to a lattice $\Gamma^{\prime} \subset G_{\lambda}$
- C deformation retracts (along the geodesic foliation) onto a submanifold that is projectively equivalent to $\Omega_{\lambda} / \Gamma^{\prime}$.

Main Theorem

Theorem 2 (B-Cooper-Leitner)

Let $C=\Omega / \Gamma$ be an n-dimensional generalized cusp. Then there is a is a $\lambda \in W_{n}$, unique up to scaling, such that

- Γ is conjugate to a lattice $\Gamma^{\prime} \subset G_{\lambda}$
- C deformation retracts (along the geodesic foliation) onto a submanifold that is projectively equivalent to $\Omega_{\lambda} / \Gamma^{\prime}$.

Moduli space of cusps

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.

Moduli space of cusps

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \mathrm{PGL}_{n+1}(\mathbb{R})$ such that $g \circ f=f^{\prime}$ (up to isotopy).

Moduli space of cusps

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \mathrm{PGL}_{n+1}(\mathbb{R})$ such that $g \circ f=f^{\prime}$ (up to isotopy).
- Let \mathfrak{C} be the space of equivalence classes of marked torus cusps.

Moduli space of cusps

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \mathrm{PGL}_{n+1}(\mathbb{R})$ such that $g \circ f=f^{\prime}$ (up to isotopy).
- Let \mathfrak{C} be the space of equivalence classes of marked torus cusps.
- Can topologize \mathfrak{C} using the compact C^{∞} topology on markings.

Moduli space of cusps

- A marked generalized torus cusp is (f, C) where C is a generalized cusp and $f: T^{n-1} \times[0, \infty) \rightarrow C$ is a diffeomorphism called a marking.
- (f, C) and $\left(f^{\prime}, C^{\prime}\right)$ are equivalent if $\exists g \in \mathrm{PGL}_{n+1}(\mathbb{R})$ such that $g \circ f=f^{\prime}$ (up to isotopy).
- Let \mathfrak{C} be the space of equivalence classes of marked torus cusps.
- Can topologize \mathfrak{C} using the compact C^{∞} topology on markings.
- How can we use parameterize \mathfrak{C} ?

Moduli space of generalized cusps

- Let (f, C) be a marked torus cusp
- $C \cong B_{T} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T \cong \mathbb{R}^{n-1}$
- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in \mathrm{GL}_{n-1}(\mathbb{R})$)
- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \backslash S L_{n-1}^{ \pm}(\mathbb{R})$

Moduli space of generalized cusps

- Let (f, C) be a marked generalized torus cusp
- $C \cong B_{T} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T \cong \mathbb{R}^{n-1}$
- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in \mathrm{GL}_{n-1}(\mathbb{R})$)
- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \backslash S L_{n-1}^{ \pm}(\mathbb{R})$

Moduli space of generalized cusps

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_{n}$
- Pick a basis for $T \cong \mathbb{R}^{n-1}$
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in \mathrm{GL}_{n-1}(\mathbb{R})$)
- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \backslash S L_{n-1}^{ \pm}(\mathbb{R})$

Moduli space of generalized cusps

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_{n}$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked torus cusp gives a basis for \mathbb{R}^{n-1} (get $A \in \mathrm{GL}_{n-1}(\mathbb{R})$)
- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \backslash S L_{n-1}^{ \pm}(\mathbb{R})$

Moduli space of generalized cusps

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_{n}$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked generalized torus cusp gives a unimodular basis for \mathbb{R}^{n-1} for appropriate λ (get $A \in S L_{n-1}^{ \pm}(\mathbb{R})$)
- Bases from equivalent cusps differ by a Euclidean similarity
- $\mathfrak{T} \cong O(n-1) \backslash S L_{n-1}^{ \pm}(\mathbb{R})$

Moduli space of generalized cusps

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_{n}$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked generalized torus cusp gives a unimodular basis for \mathbb{R}^{n-1} for appropriate $\lambda\left(\right.$ get $A \in S L_{n-1}^{ \pm}(\mathbb{R})$)
- Bases from equivalent generalized cusps differ by an element of O_{λ}
- $\mathfrak{T} \cong O(n-1) \backslash S L_{n-1}^{ \pm}(\mathbb{R})$

Moduli space of generalized cusps

- Let (f, C) be a marked generalized torus cusp
- $C \cong \Omega_{\lambda} / \Gamma$ where $f_{*}\left(\mathbb{Z}^{n-1}\right)=: \Gamma \leqslant T_{\lambda} \cong \mathbb{R}^{n-1}$, for some $\lambda \in W_{n}$
- Pick a basis for $T_{\lambda} \cong \mathbb{R}^{n-1}$ (varying continuously with λ)
- A marked generalized torus cusp gives a unimodular basis for \mathbb{R}^{n-1} for appropriate $\lambda\left(\right.$ get $A \in S L_{n-1}^{ \pm}(\mathbb{R})$)
- Bases from equivalent generalized cusps differ by an element of O_{λ}
- $\mathfrak{C} \cong W_{n} " \times{ }^{\prime \prime} O_{\lambda} \backslash S L_{n-1}^{ \pm}(\mathbb{R})$

Transitions

Rough idea

Let $\left[f_{k}, C_{k}\right]=\left(\lambda_{k},\left[A_{k}\right]\right) \rightarrow\left[f_{\infty}, C_{\infty}\right]=\left(\lambda_{\infty},\left[A_{\infty}\right]\right)$ be a sequence of marked generalized torus cusps such that some non-zero components of λ_{k} tend to zero

Transitions

Rough idea

Let $\left[f_{k}, C_{k}\right]=\left(\lambda_{k},\left[A_{k}\right]\right) \rightarrow\left[f_{\infty}, C_{\infty}\right]=\left(\lambda_{\infty},\left[A_{\infty}\right]\right)$ be a sequence of marked generalized torus cusps such that some non-zero components of λ_{k} tend to zero

In the limit, the geometry of the cusp transitions

Transitions

Rough idea

Let $\left[f_{k}, C_{k}\right]=\left(\lambda_{k},\left[A_{k}\right]\right) \rightarrow\left[f_{\infty}, C_{\infty}\right]=\left(\lambda_{\infty},\left[A_{\infty}\right]\right)$ be a sequence of marked generalized torus cusps such that some non-zero components of λ_{k} tend to zero

In the limit, the geometry of the cusp transitions

Two perspectives

- Geometrically: Since cusp is non-compact, different parts look very different.
- Algebraically: Non-Hausdorff behavior of the character variety.

Transitions

Example

Let $\Gamma_{b} \leqslant G_{(0, b)}$ be the Lattice generated by

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Transitions

Example

Let $\Gamma_{b} \leqslant G_{(0, b)}$ be the Lattice generated by

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\Omega_{(0, b)} / \Gamma_{b}$ are generalized cusps

Figure: From left to right: $b=1, b=.5, b=.01$

Transitions

Example

Let $\Gamma_{b} \leqslant G_{(0, b)}$ be the Lattice generated by

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\Omega_{(0, b)} / \Gamma_{b}$ are generalized cusps

Figure: From left to right: $b=1, b=.5, b=.01$

Transitions

Example

Let $\Gamma_{b} \leqslant G_{(0, b)}$ be the Lattice generated by

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\Omega_{(0, b)} / \Gamma_{b}$ are generalized cusps

Figure: From left to right: $b=1, b=.5, b=.01$

Transitions

Example

Let $\Gamma_{b} \leqslant G_{(0, b)}$ be the Lattice generated by

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\Omega_{(0, b)} / \Gamma_{b}$ are generalized cusps appear to "degenerate"

Figure: From left to right: $b=1, b=.5, b=.01$

Transitions

$$
\begin{aligned}
& \text { Let } \left.\begin{array}{l}
g_{b}=\left(\begin{array}{ccc}
1 / b & 1 / b & 0 \\
0 & 1 & -1 / b \\
0 & 0 & 1
\end{array}\right) . \text { We can conjugate } \\
g_{b}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right) g_{b}^{-1}=\left(\begin{array}{ccc}
1 & 1+O(b) & \frac{1}{2}+O\left(b^{2}\right) \\
0 & e^{b} & 1+O(b) \\
0 & 0 & 1
\end{array}\right)
\end{array} . . \begin{array}{l}
0
\end{array}\right)
\end{aligned}
$$

Transitions

Example

Let $g_{b}=\left(\begin{array}{ccc}1 / b & 1 / b & 0 \\ 0 & 1 & -1 / b \\ 0 & 0 & 1\end{array}\right)$. We can conjugate

$$
g_{b}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right) g_{b}^{-1}=\left(\begin{array}{ccc}
1 & 1+O(b) & \frac{1}{2}+O\left(b^{2}\right) \\
0 & e^{b} & 1+O(b) \\
0 & 0 & 1
\end{array}\right)
$$

Figure: From left to right: $b=1, b=.5, b=.01$

Transitions

Example

Let $g_{b}=\left(\begin{array}{ccc}1 / b & 1 / b & 0 \\ 0 & 1 & -1 / b \\ 0 & 0 & 1\end{array}\right)$. We can conjugate

$$
g_{b}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right) g_{b}^{-1}=\left(\begin{array}{ccc}
1 & 1+O(b) & \frac{1}{2}+O\left(b^{2}\right) \\
0 & e^{b} & 1+O(b) \\
0 & 0 & 1
\end{array}\right)
$$

Figure: From left to right: $b=1, b=.5, b=.01$

Transitions

Example

Let $g_{b}=\left(\begin{array}{ccc}1 / b & 1 / b & 0 \\ 0 & 1 & -1 / b \\ 0 & 0 & 1\end{array}\right)$. We can conjugate

$$
g_{b}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right) g_{b}^{-1}=\left(\begin{array}{ccc}
1 & 1+O(b) & \frac{1}{2}+O\left(b^{2}\right) \\
0 & e^{b} & 1+O(b) \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & \frac{1}{2} \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Figure: From left to right: $b=1, b=.5, b=.01$

Transitions

Example

Let $g_{b}=\left(\begin{array}{ccc}1 / b & 1 / b & 0 \\ 0 & 1 & -1 / b \\ 0 & 0 & 1\end{array}\right)$. We can conjugate

$$
g_{b}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & e^{b} & 0 \\
0 & 0 & 1
\end{array}\right) g_{b}^{-1}=\left(\begin{array}{ccc}
1 & 1+O(b) & \frac{1}{2}+O\left(b^{2}\right) \\
0 & e^{b} & 1+O(b) \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & \frac{1}{2} \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

After applying a projective transform, $\Omega_{(0, b)} / \Gamma_{b} \rightarrow \Omega_{(0,0)} / \Gamma_{0}$

Figure: From left to right: $b=1, b=.5, b=.01$

Transition

A matter of perspective

We use the compact C^{∞} topology and so what the limit "looks like" depends on where you "look from"

Transition

A matter of perspective

We use the compact C^{∞} topology and so what the limit "looks like" depends on where you "look from"

Transition

A matter of perspective

We use the compact C^{∞} topology and so what the limit "looks like" depends on where you "look from"

Transition

A matter of perspective

We use the compact C^{∞} topology and so what the limit "looks like" depends on where you "look from"

There are similar transitions anytime a coordinate in W_{n} goes to zero.

Transitions

Representation variety perspective

- Let $\mathcal{X}=\operatorname{Hom}\left(\mathbb{Z}^{n-1}, \operatorname{PGL}_{n+1}(\mathbb{R})\right) / \mathrm{PGL}_{n+1}(\mathbb{R})$ (character variety)

Transitions

Representation variety perspective

- Let $\mathcal{X}=\operatorname{Hom}\left(\mathbb{Z}^{n-1}, \mathrm{PGL}_{n+1}(\mathbb{R})\right) / \mathrm{PGL}_{n+1}(\mathbb{R})$ (character variety)
- There is a map Hol : $\mathfrak{C} \rightarrow \mathcal{X}$

$$
[(f, C)] \mapsto\left[f_{*}\right]: \mathbb{Z}^{n-1} \rightarrow \mathrm{PGL}_{n+1}(\mathbb{R})
$$

Transitions

Representation variety perspective

- Let $\mathcal{X}=\operatorname{Hom}\left(\mathbb{Z}^{n-1}, \mathrm{PGL}_{n+1}(\mathbb{R})\right) / \mathrm{PGL}_{n+1}(\mathbb{R})$ (character variety)
- There is a map Hol : $\mathfrak{C} \rightarrow \mathcal{X}$

$$
[(f, C)] \mapsto\left[f_{*}\right]: \mathbb{Z}^{n-1} \rightarrow \mathrm{PGL}_{n+1}(\mathbb{R})
$$

Transitions

Representation variety perspective

- Let $\mathcal{X}=\operatorname{Hom}\left(\mathbb{Z}^{n-1}, \mathrm{PGL}_{n+1}(\mathbb{R})\right) / \mathrm{PGL}_{n+1}(\mathbb{R})$ (character variety)
- There is a map Hol : $\mathfrak{C} \rightarrow \mathcal{X}$

$$
[(f, C)] \mapsto\left[f_{*}\right]: \mathbb{Z}^{n-1} \rightarrow \mathrm{PGL}_{n+1}(\mathbb{R})
$$

- \mathcal{X} is non-Hausdorff space (contains lots of reducible reps)

Transitions

Representation variety perspective

- Let $\mathcal{X}=\operatorname{Hom}\left(\mathbb{Z}^{n-1}, \mathrm{PGL}_{n+1}(\mathbb{R})\right) / \mathrm{PGL}_{n+1}(\mathbb{R})$ (character variety)
- There is a map Hol : $\mathfrak{C} \rightarrow \mathcal{X}$

$$
[(f, C)] \mapsto\left[f_{*}\right]: \mathbb{Z}^{n-1} \rightarrow \mathrm{PGL}_{n+1}(\mathbb{R})
$$

- \mathcal{X} is non-Hausdorff space (contains lots of reducible reps)
- There are reps ρ_{t} and $g_{t} \in \operatorname{PGL}_{n+1}(\mathbb{R})$ such that
- $\rho_{t} \rightarrow \rho$ as $t \rightarrow 0$
- $g_{t} \rho_{t} g_{t}^{-1} \rightarrow \rho^{\prime}$ as $t \rightarrow 0$
- $[\rho] \neq\left[\rho^{\prime}\right]$

Remaining questions

- Realization Problem: given a generalized cusp C, can you find an interesting properly convex manifold M with a cusp projectively equivalent to C ?

Remaining questions

- Realization Problem: given a generalized cusp C, can you find an interesting properly convex manifold M with a cusp projectively equivalent to C ? A few low dimensional examples, but mostly unknown

Remaining questions

- Realization Problem: given a generalized cusp C, can you find an interesting properly convex manifold M with a cusp projectively equivalent to C ? A few low dimensional examples, but mostly unknown
- Can we use the geometry of generalized cusps to give coordinates on the space of convex projective structures on a fixed manifold? (Fenchel-Nielsen coordinates)

Remaining questions

- Realization Problem: given a generalized cusp C, can you find an interesting properly convex manifold M with a cusp projectively equivalent to C? A few low dimensional examples, but mostly unknown
- Can we use the geometry of generalized cusps to give coordinates on the space of convex projective structures on a fixed manifold? (Fenchel-Nielsen coordinates)
- Better understand the action of the mapping class group on \mathfrak{C} and study the quotient (unmarked cusps)

Thank you

