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Some Questions

• What are convex projective manifolds?

Generalizations of Hyperbolic manifolds
• How are they similar to hyperbolic manifolds? How are

they different?

Strictly Convex⇒ very similar. Properly convex⇒ less
similar

• What sort of structure do convex projective manifolds
have?

Deformations of finite volume strictly convex manifolds are
structurally similar to complete finite volume hyperbolic
manifolds
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Projective Space

• RPn is the space of lines through origin in Rn+1.

• Let P : Rn+1\{0} → RPn be the obvious projection.
• The automorphism group of RPn is

PGLn+1(R) := GLn+1(R)/R×.
• A codimension k projective plane is the projectivization of

a codimension k plane in Rn+1

• A projective line is the projectivization of a 2-plane in Rn+1

• A projective hyperplane is the projectivization of an n-plane
in Rn+1.
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A Decomposition of RPn

• Let H be a hyperplane in Rn+1.
• H gives rise to a Decomposition of RPn = Rn t RPn−1 into

an affine part and an ideal part.

• RPn\P(H) is called an affine patch.
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What is convex projective geometry?
Motivation from hyperbolic geometry

• Let 〈x , y〉 = x1y1 + . . . xnyn − xn+1yn+1 be the standard
bilinear form of signature (n,1) on Rn+1

• Let C = {x ∈ Rn+1|〈x , x〉 < 0}

• P(C) is the Klein model of hyperbolic space.
• P(C) has isometry group PSO(n,1) ≤ PGLn+1(R)
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What is convex projective geometry?
Motivation from hyperbolic geometry

Nice Properties of Hyperbolic Space

• Convex: Intersection with projective lines is connected.

• Properly Convex: Convex and closure is contained in an
affine patch⇐⇒ Disjoint from some projective hyperplane.

• Strictly Convex: Properly convex and boundary contains
no non-trivial projective line segments.
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Convex projective geometry focuses on the geometry of
manifolds that are locally modeled on properly (strictly) convex
domains.
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Hn/Γ

Γ ≤ Isom(Hn)

Γ discrete + torsion free

Convex Projective
Geometry
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What is Convex Projective Geometry
Examples

1. Hyperbolic manifolds

2. Let T be the interior of a triangle in RP2 and let Γ ≤ Diag+

be a suitable lattice inside the group of 3× 3 diagonal
matrices with determinant 1 and distinct positive
eigenvalues. T/Γ is a properly convex torus.

These are extreme examples of properly convex manifolds.
Generic examples interpolate between these extreme cases.
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Hilbert Metric
Let Ω be a properly convex set and PGL(Ω) be the projective
automorphisms preserving Ω.

Every properly convex set Ω admits a Hilbert metric given by

dΩ(x , y) = log[a, x ; y ,b] = log
(
|x − b| |y − a|
|x − a| |y − b|

)

• When Ω is an ellipsoid dΩ is twice the hyperbolic metric.
• PGL(Ω) ≤ Isom(Ω) and equal when Ω is strictly convex.
• Discrete subgroups of PGL(Ω) act properly discontinuously

on Ω.
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Classification of Isometries
a la Cooper, Long, Tillmann

If Ω is open and properly convex then PGL(Ω) embeds in
SL±n+1(R) which allows us to talk about eigenvalues.

If γ ∈ PGL(Ω) then γ is
1. elliptic if γ fixes a point in Ω (zero translation length +

realized),
2. parabolic if γ acts freely on Ω and has all eigenvalues of

modulus 1 (zero translation length + not realized), and
3. hyperbolic otherwise (positive translation length)
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Similarities to Hyperbolic Isometries
Strictly Convex Case

1. When Ω is an ellipsoid this classification is the same as the
standard classification of hyperbolic isometries.

2. When Ω is strictly convex, parabolic isometries have a
unique fixed point on ∂Ω.

3. When Ω is strictly convex, hyperbolic isometries have 2
fixed points on ∂Ω and act by translation along the line
connecting them.

4. In particular, when Ω is strictly convex, hyperbolic
isometries are positive proximal (eigenvalues of minimum
and maximum modulus are unique, real, and positive)
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Similarities to Hyperbolic Isometries
The General Case

A properly convex domain is a compact convex subset of Rn

and so if γ ∈ PGL(Ω) then Brouwer fixed point theorem applies

• Elliptic elements are all conjugate into O(n).
• Parabolic elements have a connected fixed set in ∂Ω.
• Hyperbolic elements have an attracting and repelling

subspaces A+ and A− in ∂Ω. The action on these sets is
orthogonal and their dimension is determined by the
number of “powerful” Jordan blocks of γ
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Margulis Lemma

Let Ω ⊂ RPn is an open properly convex domain and let
Γ ≤ PGL(Ω) be a discrete group. Then there exists a number
µn (depending only on n) such that if x ∈ Ω then the group

Γx = 〈γ ∈ Γ|dΩ(x , γx) < µn〉

is virtually nilpotent.

• Γx can be thought of as the subgroup of Γ generated by
loops in Ω/Γ of length at most µn passing through [x ].

• The Margulis lemma places restrictions on the topology
and geometry of the “thin” part of Ω/Γ.

Result due to Gromov-Margulis-Thurston for Hn and
Cooper-Long-Tillmann in general.
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Rigidity and Flexibility

When n ≥ 3 Mostow-Prasad rigidity tells us that complete finite
volume hyperbolic structures are very rigid

Theorem 1 (Mostow ’70, Prasad ’73)
Let n ≥ 3 and suppose that Hn/Γ1 and Hn/Γ2 both have finite
volume. If Γ1 and Γ2 are isomorphic then Hn/Γ1 and Hn/Γ2 are
isometric.

There is no Mostow-Prasad rigidity for properly (strictly) convex
domains.
There are examples of finite volume hyperbolic manifolds
whose complete hyperbolic structure can be “deformed” to a
non-hyperbolic convex projective structure.
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Deformations

• Start with M0 = Ω0/Γ0 which is properly convex.

• “Perturb” Γ0 to Γ1 ≤ PGL(Ω1) ≤ PGLn+1(R), where Γ0
∼= Γ1

and Ω1 is properly convex.
• We say that M1 = Ω1/Γ1 is a deformation of M0

Ex: Let Ω0
∼= Hn, Γ0 ≤ PSO(n,1), such that Ω0/Γ0 is finite

volume and contains an embedded totally geodesic
hypersurface Σ. Let Γ1 be obtained by “bending” along Σ.
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The Closed Case

Let Hn/Γ be a closed hyperbolic manifold.
• Since Γ acts cocompactly by isometries on Hn we see that

Γ is δ-hyperbolic group (Švarc-Milnor)

• By compactness, we see that if 1 6= γ ∈ Γ then γ is
hyperbolic

• In particular, if 1 6= γ ∈ Γ then γ is positive proximal
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Structure of Convex Projective Manifolds
The Closed Case

Let M = Ω/Γ be a closed properly convex manifold that is a
deformation of a closed strictly convex manifold M0 = Ω0/Γ0.

Theorem 2 (Benoist)
Suppose Ω/Γ is closed. Ω/Γ is strictly convex if and only if Γ is
δ-hyperbolic.

⇐= Proof sketch.
If Ω is not strictly convex then it will
contain arbitrarily fat triangles and is
thus not δ-hyperbolic. Since Γ acts
cocompactly by isometries on Ω,
Švarc-Milnor tells us that Ω is q.i. to Γ
and is thus δ-hyperbolic.
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Structure of Convex Projective Manifolds
The Closed Case

Theorem 3 (Benoist)
Let 1 6= γ ∈ Γ then γ is positive proximal.

Proof.

• Again by compactness we have that if 1 6= γ ∈ Γ then γ is
hyperbolic.

• Since Ω is strictly convex and γ is hyperbolic we see that γ
has exactly 2 fixed points in ∂Ω and acts as translation
along the geodesic connecting them. γ is thus positive
proximal.
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Structure of Hyperbolic Manifolds
Finite Volume Case

Let M = Hn/Γ be a finite volume hyperbolic manifold. We can
decompose M as

M = MK
⊔

i

Ci ,

where MK is a compact and π1(MK ) = Γ and Ci are
components of the thin part called cusps.

As we will see, the Margulis lemma tells us that the Ci have
relatively simple geometry.
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Geometry of the Cusps

Let C be a cusp of a finite volume hyperbolic manifold and let

P =


1 vT |v |2

0 In−1 v
0 0 1

 |v ∈ Rn−1


be the group of parabolic translations fixing∞. Let x0 ∈ Hn,
then C ∼= B/∆ where B is horoball bounded by Px0 and ∆ is a
finite extension of a lattice in P.



Structure of Hyperbolic Manifolds
The Finite Volume Case

• Γ no longer acts cocompactly on Hn and Γ is no longer
δ-hyperbolic

• Instead Γ is δ-hyperbolic relative to the cusps
• If 1 6= γ ∈ Γ is freely homotopic into a cusp then γ is

parabolic, otherwise γ is hyperbolic (positive proximal)
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Structures of Convex Projective Manifolds
The Strictly Convex Finite Volume Case

Let Ω/Γ be a finite volume (Hausdorff measure of Hilbert
metric) strictly convex manifold.

Theorem 4 (Cooper, Long, Tillmann ‘11)
Let M = Ω/Γ be as above then
• M = MK

⊔
i Ci , where MK is compact and Ci is projectively

equivalent to the cusp of a finite volume hyperbolic
manifold,

• Γ is δ-hyperbolic relative to its cusps, and
• If 1 6= γ ∈ Γ is freely homotopic into a cusp then γ is

parabolic. Otherwise γ is hyperbolic (positive proximal).



Figure-8 Example
Consider the following example.

Let K be the figure-8 knot, let M = S3\K , and let G = π1(M)

Theorem 5 (B)
There exists ε > 0 such that for each t ∈ (−ε, ε) there is a
properly convex domain Ωt and a discrete group Γt ≤ PGL(Ωt )
such that
• Ωt/Γt ∼= M,
• Ω0/Γ0 is the complete hyperbolic structure on M, and
• If t 6= 0 then Ωt is not strictly convex.
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Theorem 6 (B)
For each t ∈ (−ε, ε) we can decompose Ωt/Γt as M t

K
⊔

Ct ,
where M t

K is compact and Ct ∼= T 2 × [1,∞).

• For each t , Ct ∼= Bt/∆t , where ∆t is a lattice an Abelian
group Pt of “translations,” and Bt is a “horoball” bounded by
an orbit of Pt .



Figure-8 Example

• For each t 6= 0 there is 1 6= γt ∈ Γt such that γt is
hyperbolic, freely homotopic into Ct , but not positive
proximal.

• Ωt contains non-trivial line segments in ∂Ωt that are
preserved by conjugates of ∆t . In particular, Ωt is not
δ-hyperbolic.
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Theorem 7 (B, Long)
1 6= γ ∈ Γt is positive proximal if and only if it cannot be freely
homotoped into Ct .

Proof.
⇐ Let 1 6= γ ∈ Γt . No elements of Pt are positive proximal, so if
γ is freely homotopic to Ct then it is not positive proximal.

⇒ If γ is not freely homotopic to Ct then γ has positive
translation length and is thus hyperbolic. Furthermore, this
translation length is realized by points on an axis.
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Proof (Continued).
Use Margulis lemma to construct a disjoint and Γt invariant
collection Ht of horoballs in Ωt .

let Ω̂t be the electric space obtained by collapsing the
horospherical boundary components of Ωt\Ht .

Lemma 8 (B, Long)
Ω̂t is δ-hyperbolic
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Proof (Continued).

• Since γ is hyperbolic and preserves Ωt we know that γ has
real eigenvalues of largest and smallest modulus and that
these eigenvalues have the same sign.

• If γ is not positive proximal then there will be a γ-invariant
set T ⊂ Ωt disjoint from all the horoballs that contains a
positive dimensional flat in its boundary

• This gives rise to arbitrarily fat triangles in Ω̂t
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Summary and Questions

• The structure of a finite volume strictly convex manifold is
well understood.

• As you deform the structure the “coarse” geometry of the
compact part doesn’t change.

• The geometry of the cusps may change as we deform, but
can be understood using the Margulis lemma.

• Theorem 7 holds for all properly convex deformations of
finite volume strictly convex manifolds in dimension 3

• Theorem 7 should hold for higher dimensions.
• What can we say for deformations of deformations of

infinite volume hyperbolic manifolds?
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