Complex Projective Structures on Surfaces

Sam Ballas
(joint with P. Bowers, A. Casella, \& L. Ruffoni)

Florida State University
UF Colloquium
Feb 11, 2022

Overview

- Correspondences between an analytic object (ODEs \& measured laminations) and geometric objects (complex projective structures)

Overview

- Correspondences between an analytic object (ODEs \& measured laminations) and geometric objects (complex projective structures)
- In general, these correspondences are not explicit

Overview

- Correspondences between an analytic object (ODEs \& measured laminations) and geometric objects (complex projective structures)
- In general, these correspondences are not explicit
- Today: In certain cases we can make these correspondences are explicit

$\mathbb{C P}^{1}$ geometry

$\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\} \quad$ (Riemann Sphere)
$\mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm /\} \quad\left(\right.$ Biholomorphisms of $\left.\mathbb{C P}^{1}\right)$

$\mathbb{C P}^{1}$ geometry

$\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\} \quad$ (Riemann Sphere)
$\mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm l\} \quad$ (Biholomorphisms of $\mathbb{C P}^{1}$)
$\mathrm{PSL}_{2}(\mathbb{C})$ acts on $\mathbb{C} \mathbb{P}^{1}$ via linear fractional transformations

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot z=\frac{a z+b}{c z+d}
$$

$\mathbb{C P}^{1}$ geometry

$\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\} \quad$ (Riemann Sphere)
$\mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm l\} \quad$ (Biholomorphisms of $\mathbb{C P}^{1}$)
$\mathrm{PSL}_{2}(\mathbb{C})$ acts on $\mathbb{C} \mathbb{P}^{1}$ via linear fractional transformations

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot z=\frac{a z+b}{c z+d}
$$

- There is no $\mathrm{PSL}_{2}(\mathbb{C})$-invariant metric on $\mathbb{C P}^{1}$

$\mathbb{C P}^{1}$ geometry

$\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\} \quad$ (Riemann Sphere)
$\mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm l\} \quad$ (Biholomorphisms of $\mathbb{C P}^{1}$)
$\mathrm{PSL}_{2}(\mathbb{C})$ acts on $\mathbb{C P}^{1}$ via linear fractional transformations

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot z=\frac{a z+b}{c z+d}
$$

- There is no $\mathrm{PSL}_{2}(\mathbb{C})$-invariant metric on $\mathbb{C P}^{1}$
- Circles are invariant and play the role of geodesics

Hyperbolic surfaces

Let $\Sigma:=\Sigma_{g}$ be a surface of genus g with $\chi(\Sigma):=2-2 g<0$

Hyperbolic surfaces

Let $\Sigma:=\Sigma_{g}$ be a surface of genus g with $\chi(\Sigma):=2-2 g<0$

- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit disk)
- \mathbb{D} is a model of the hyperbolic plane

Hyperbolic surfaces

Let $\Sigma:=\Sigma_{g}$ be a surface of genus g with $\chi(\Sigma):=2-2 g<0$

- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit disk)
- \mathbb{D} is a model of the hyperbolic plane
- $G_{\mathbb{D}}:=\operatorname{Stab}_{\mathrm{PSL}_{2}(\mathbb{C})}(\mathbb{D})=\operatorname{Isom}(\mathbb{D})$
$\neq \mathrm{PSL}_{2}(\mathbb{R})$

Hyperbolic surfaces

Let $\Sigma:=\Sigma_{g}$ be a surface of genus g with $\chi(\Sigma):=2-2 g<0$

- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit disk)
- \mathbb{D} is a model of the hyperbolic plane
- $G_{\mathbb{D}}:=\operatorname{Stab}_{\mathrm{PSL}_{2}(\mathbb{C})}(\mathbb{D})=\operatorname{Isom}(\mathbb{D})=\operatorname{PSU}(1,1) \neq \mathrm{PSL}_{2}(\mathbb{R})$

Hyperbolic surfaces

Let $\Sigma:=\Sigma_{g}$ be a surface of genus g with $\chi(\Sigma):=2-2 g<0$

- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit disk)
- \mathbb{D} is a model of the hyperbolic plane
- $G_{\mathbb{D}}:=\operatorname{Stab}_{\mathrm{PSL}_{2}(\mathbb{C})}(\mathbb{D})=\operatorname{Isom}(\mathbb{D})=\operatorname{PSU}(1,1) \neq \mathrm{PSL}_{2}(\mathbb{R})$

Theorem (Uniformization)
There is a discrete group $\Gamma \subset G_{\mathbb{D}}$ so that $\Sigma \cong \mathbb{D} / \Gamma$.

Hyperbolic surfaces

Let $\Sigma:=\Sigma_{g}$ be a surface of genus g with $\chi(\Sigma):=2-2 g<0$

- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit disk)
- \mathbb{D} is a model of the hyperbolic plane
- $G_{\mathbb{D}}:=\operatorname{Stab}_{\mathrm{PSL}_{2}(\mathbb{C})}(\mathbb{D})=\operatorname{Isom}(\mathbb{D})=\operatorname{PSU}(1,1) \neq \operatorname{PSL}_{2}(\mathbb{R})$

Theorem (Uniformization)
There is a discrete group $\Gamma \subset G_{\mathbb{D}}$ so that $\Sigma \cong \mathbb{D} / \Gamma$.
Let $\mathcal{T}(\Sigma)$ be the space of hyperbolic structures on Σ
Theorem
The space, $\mathcal{T}(\Sigma) \cong \mathbb{R}^{6 g-6}$

Complex projective structures

Definition

Let Σ be a surface. A complex projective structure on Σ consists of charts from Σ into $\mathbb{C} \mathbb{P}^{1}$ whose transition functions are elements of $\mathrm{PSL}_{2}(\mathbb{C})$

Complex projective structures

Definition

Let Σ be a surface. A complex projective structure on Σ consists of charts from Σ into $\mathbb{C} \mathbb{P}^{1}$ whose transition functions are elements of $\mathrm{PSL}_{2}(\mathbb{C})$

For $z \in U_{1} \cap U_{2}, \phi_{1}(z)=g_{12} \phi_{2}(z)$

Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our charts

Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our charts

Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our charts

Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our charts

Not well defined on Σ, We are really defining

$$
\operatorname{dev}: \tilde{\Sigma}=\mathbb{D} \rightarrow \mathbb{C P}^{1}
$$

$$
\text { hol : } \pi_{1} \Sigma \cong \Gamma \rightarrow \mathrm{PSL}_{2}(\mathbb{C})
$$

Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our charts

Not well defined on Σ, We are really defining

$$
\begin{array}{ll}
\operatorname{dev}: \tilde{\Sigma}=\mathbb{D} \rightarrow \mathbb{C P}^{1}, & \text { hol }: \pi_{1} \Sigma \cong \Gamma \rightarrow \mathrm{PSL}_{2}(\mathbb{C}) \\
{[\ell] \mapsto g_{12} \ldots g_{m-1 m} \phi_{m}(\ell(1))} &
\end{array}
$$

Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our charts

Not well defined on Σ, We are really defining

$$
\begin{array}{ll}
\operatorname{dev}: \tilde{\Sigma}=\mathbb{D} \rightarrow \mathbb{C P}^{1}, & \text { hol }: \pi_{1} \Sigma \cong \Gamma \rightarrow \mathrm{PSL}_{2}(\mathbb{C}) \\
{[\ell] \mapsto g_{12} \ldots g_{m-1 m} \phi_{m}(\ell(1))} & {[\gamma] \mapsto\left(g_{12} \ldots g_{k 1}\right)}
\end{array}
$$

Development and holonomy

Properties

- dev is called a developing map
- hol is called a holonomy representation

Development and holonomy

Properties

- dev is called a developing map
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism
i.e. $\operatorname{dev}(\gamma \cdot z)=\operatorname{hol}(\gamma) \cdot \operatorname{dev}(z) \quad \forall z \in \mathbb{D}, \gamma \in \pi_{1} M$

Development and holonomy

Properties

- dev is called a developing map
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism i.e. $\operatorname{dev}(\gamma \cdot z)=\operatorname{hol}(\gamma) \cdot \operatorname{dev}(z) \quad \forall z \in \mathbb{D}, \gamma \in \pi_{1} M$
- Constructing a complex projective structure is equivalent to constructing such an equivariant pair

Development and holonomy

Properties

- dev is called a developing map
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism i.e. $\operatorname{dev}(\gamma \cdot z)=\operatorname{hol}(\gamma) \cdot \operatorname{dev}(z) \quad \forall z \in \mathbb{D}, \gamma \in \pi_{1} M$
- Constructing a complex projective structure is equivalent to constructing such an equivariant pair

Let $\mathcal{P}(\Sigma)$ be space of all complex projective structures on Σ

Second order linear ODEs

Simply connected case

Let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic and consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}+\frac{1}{2} \phi u=0 \tag{1}
\end{equation*}
$$

Second order linear ODEs

Simply connected case

Let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic and consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}+\frac{1}{2} \phi u=0 \tag{1}
\end{equation*}
$$

Theorem (Cauchy)
For any $c_{1}, c_{2} \in \mathbb{C}$ there is unique $u: \mathbb{D} \rightarrow \mathbb{C}$ solution to (1) satisfying the initial condition $u(0)=c_{1}$ and $u^{\prime}(0)=c_{2}$

Second order linear ODEs

Simply connected case

Let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic and consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}+\frac{1}{2} \phi u=0 \tag{1}
\end{equation*}
$$

Theorem (Cauchy)
For any $c_{1}, c_{2} \in \mathbb{C}$ there is unique $u: \mathbb{D} \rightarrow \mathbb{C}$ solution to (1) satisfying the initial condition $u(0)=c_{1}$ and $u^{\prime}(0)=c_{2}$
The solutions to (1) form a 2-dimensional vector space

Second order linear ODEs

A local approach
Let $U \subset \mathbb{C}$ be connected, and let $\phi: U \rightarrow \mathbb{C}$ be holomorphic
For $p \in U$ there is a basis $\left\{u_{1}, u_{2}\right\}$ of local solutions to (1)

Second order linear ODEs

A local approach
Let $U \subset \mathbb{C}$ be connected, and let $\phi: U \rightarrow \mathbb{C}$ be holomorphic
For $p \in U$ there is a basis $\left\{u_{1}, u_{2}\right\}$ of local solutions to (1)
Using analytic continuation we can attempt to extend u_{1} and u_{2} to all of U.

Second order linear ODEs

A local approach
Let $U \subset \mathbb{C}$ be connected, and let $\phi: U \rightarrow \mathbb{C}$ be holomorphic
For $p \in U$ there is a basis $\left\{u_{1}, u_{2}\right\}$ of local solutions to (1)
Using analytic continuation we can attempt to extend u_{1} and u_{2} to all of U.

Second order linear ODEs

A local approach
Let $U \subset \mathbb{C}$ be connected, and let $\phi: U \rightarrow \mathbb{C}$ be holomorphic
For $p \in U$ there is a basis $\left\{u_{1}, u_{2}\right\}$ of local solutions to (1)
Using analytic continuation we can attempt to extend u_{1} and u_{2} to all of U.

Problem: when we analytically continue around a loop γ we may arrive at new solutions $\left(v_{1}, v_{2}\right) \neq\left(u_{1}, u_{2}\right)$.

Second order linear ODEs

A global approach

Solution:

- There is $M(\gamma) \in G L_{2}(\mathbb{C})$ so that $M(\gamma) u_{i}=v_{i}$
- $M(\gamma)$ only depends on homotopy class of γ.

Second order linear ODEs

A global approach

Solution:

- There is $M(\gamma) \in G L_{2}(\mathbb{C})$ so that $M(\gamma) u_{i}=v_{i}$
- $M(\gamma)$ only depends on homotopy class of γ.
- Let $\pi: \widetilde{U} \rightarrow U$ be the universal covering
- Think of $u_{i}: \widetilde{U} \rightarrow \mathbb{C}$ (defined on universal cover)

Second order linear ODEs

A global approach

Solution:

- There is $M(\gamma) \in \mathrm{GL}_{2}(\mathbb{C})$ so that $M(\gamma) u_{i}=v_{i}$
- $M(\gamma)$ only depends on homotopy class of γ.
- Let $\pi: \widetilde{U} \rightarrow U$ be the universal covering
- Think of $u_{i}: \widetilde{U} \rightarrow \mathbb{C}$ (defined on universal cover)
- For each $[\gamma] \in \pi_{1}(\Sigma) \cong \operatorname{Deck}(\pi)$ and each $z \in \widetilde{U}$,

$$
\left(u_{i} \circ[\gamma]\right)(z)=M(\gamma) u_{i}(z)
$$

Second order linear ODEs

A global approach

Solution:

- There is $M(\gamma) \in \mathrm{GL}_{2}(\mathbb{C})$ so that $M(\gamma) u_{i}=v_{i}$
- $M(\gamma)$ only depends on homotopy class of γ.
- Let $\pi: \widetilde{U} \rightarrow U$ be the universal covering
- Think of $u_{i}: \widetilde{U} \rightarrow \mathbb{C}$ (defined on universal cover)
- For each $[\gamma] \in \pi_{1}(\Sigma) \cong \operatorname{Deck}(\pi)$ and each $z \in \widetilde{U}$,

$$
\left(u_{i} \circ[\gamma]\right)(z)=M(\gamma) u_{i}(z)
$$

Get an equivariant pair:

$$
\left(u_{1}, u_{2}\right): \widetilde{U} \rightarrow \mathbb{C} \quad M: \pi_{1}(\Sigma) \rightarrow \mathrm{GL}_{2}(\mathbb{C})
$$

An Example

Let $U=\mathbb{D} \backslash\{0\}$ and consider the equation

$$
u^{\prime \prime}+\frac{u}{4 z^{2}}=0
$$

$u(z)=z^{1 / 2}$ is a "solution"

An Example

Let $U=\mathbb{D} \backslash\{0\}$ and consider the equation

$$
u^{\prime \prime}+\frac{u}{4 z^{2}}=0
$$

$u(z)=z^{1 / 2}$ is a "solution" (it's multivalued)

An Example

Let $U=\mathbb{D} \backslash\{0\}$ and consider the equation

$$
u^{\prime \prime}+\frac{u}{4 z^{2}}=0
$$

$u(z)=z^{1 / 2}$ is a "solution" (it's multivalued)
$\phi: \mathbb{H} \rightarrow U, t \stackrel{\phi}{\mapsto} \exp (2 \pi i t)$ is a universal cover
Deck group generated by $t \mapsto t+1$

An Example

Let $U=\mathbb{D} \backslash\{0\}$ and consider the equation

$$
u^{\prime \prime}+\frac{u}{4 z^{2}}=0
$$

$u(z)=z^{1 / 2}$ is a "solution" (it's multivalued)
$\phi: \mathbb{H} \rightarrow U, t \stackrel{\phi}{\mapsto} \exp (2 \pi i t)$ is a universal cover
Deck group generated by $t \mapsto t+1$

$$
z^{1 / 2}=\exp (\log (z) / 2)=\exp (\pi i t)
$$

An Example

Let $U=\mathbb{D} \backslash\{0\}$ and consider the equation

$$
u^{\prime \prime}+\frac{u}{4 z^{2}}=0
$$

$u(z)=z^{1 / 2}$ is a "solution" (it's multivalued)
$\phi: \mathbb{H} \rightarrow U, t \stackrel{\phi}{\mapsto} \exp (2 \pi i t)$ is a universal cover
Deck group generated by $t \mapsto t+1$

$$
\begin{aligned}
z^{1 / 2}=\exp (\log (z) / 2) & =\exp (\pi i t) \\
\exp (\pi i(t+1))=\exp (\pi i) \exp (\pi i t) & =-\exp (\pi i t)=-z^{-1 / 2}
\end{aligned}
$$

Relation between constructions

Equations give structure

Let $\Sigma=\mathbb{D} / \Gamma$ be hyperbolic surface, $\phi: \Sigma \rightarrow \mathbb{C}$ holomorphic

- $u_{1}, u_{2}: \mathbb{D} \rightarrow \mathbb{C}$ a basis of solutions to

$$
u^{\prime \prime}+1 / 2 u \phi=0
$$

- $[M]: \pi_{1}(\Sigma) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})$ (projectivized) monodromy.

Relation between constructions

Equations give structure

Let $\Sigma=\mathbb{D} / \Gamma$ be hyperbolic surface, $\phi: \Sigma \rightarrow \mathbb{C}$ holomorphic

- $u_{1}, u_{2}: \mathbb{D} \rightarrow \mathbb{C}$ a basis of solutions to

$$
u^{\prime \prime}+1 / 2 u \phi=0
$$

- $[M]: \pi_{1}(\Sigma) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})$ (projectivized) monodromy.
$\operatorname{dev}: \mathbb{D} \rightarrow \mathbb{C P}^{1}, z \stackrel{\text { dev }}{\mapsto} \frac{u_{1}(z)}{u_{2}(z)} \quad$ Let $[M(\gamma)]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Relation between constructions

Equations give structure

Let $\Sigma=\mathbb{D} / \Gamma$ be hyperbolic surface, $\phi: \Sigma \rightarrow \mathbb{C}$ holomorphic

- $u_{1}, u_{2}: \mathbb{D} \rightarrow \mathbb{C}$ a basis of solutions to

$$
u^{\prime \prime}+1 / 2 u \phi=0
$$

- $[M]: \pi_{1}(\Sigma) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})$ (projectivized) monodromy.
$\operatorname{dev}: \mathbb{D} \rightarrow \mathbb{C P}^{1}, z \stackrel{\operatorname{dev}}{\mapsto} \frac{u_{1}(z)}{u_{2}(z)} \quad$ Let $[M(\gamma)]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\begin{aligned}
(\operatorname{dev} \circ \gamma)(z) & =\frac{\left(u_{1} \circ \gamma\right)(z)}{\left(u_{2} \circ \gamma\right)(z)}=\frac{a u_{1}(z)+b u_{2}(z)}{c u_{1}(z)+d u_{2}(z)} \\
& =\frac{a \cdot \operatorname{dev}(z)+b}{c \cdot \operatorname{dev}(z)+d}=[M(\gamma)] \cdot \operatorname{dev}(z)
\end{aligned}
$$

Relation between constructions

Equations give structure

Let $\Sigma=\mathbb{D} / \Gamma$ be hyperbolic surface, $\phi: \Sigma \rightarrow \mathbb{C}$ holomorphic

- $u_{1}, u_{2}: \mathbb{D} \rightarrow \mathbb{C}$ a basis of solutions to

$$
u^{\prime \prime}+1 / 2 u \phi=0
$$

- $[M]: \pi_{1}(\Sigma) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})$ (projectivized) monodromy.
$\operatorname{dev}: \mathbb{D} \rightarrow \mathbb{C P}^{1}, z \stackrel{\operatorname{dev}}{\mapsto} \frac{u_{1}(z)}{u_{2}(z)} \quad$ Let $[M(\gamma)]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\begin{aligned}
(\operatorname{dev} \circ \gamma)(z) & =\frac{\left(u_{1} \circ \gamma\right)(z)}{\left(u_{2} \circ \gamma\right)(z)}=\frac{a u_{1}(z)+b u_{2}(z)}{c u_{1}(z)+d u_{2}(z)} \\
& =\frac{a \cdot \operatorname{dev}(z)+b}{c \cdot \operatorname{dev}(z)+d}=[M(\gamma)] \cdot \operatorname{dev}(z)
\end{aligned}
$$

(dev, $[M]$) give a complex projective structure on M.

Relations between the construction

Structure gives equations

If $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic the Schwartzian of f is given by

$$
\mathcal{S}(f)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

Relations between the construction

Structure gives equations

If $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic the Schwartzian of f is given by

$$
\mathcal{S}(f)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

- If u_{1}, u_{2} solve $u^{\prime \prime}+\frac{1}{2} \phi u=0$ then $\mathcal{S}\left(u_{1} / u_{2}\right)=\phi$ (ODE "inverts" Schwartzian)

Relations between the construction

Structure gives equations

If $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic the Schwartzian of f is given by

$$
\mathcal{S}(f)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

- If u_{1}, u_{2} solve $u^{\prime \prime}+\frac{1}{2} \phi u=0$ then $\mathcal{S}\left(u_{1} / u_{2}\right)=\phi$ (ODE "inverts" Schwartzian)
- $(\operatorname{dev}, \rho)$ a complex projective structure on Σ let $\tilde{\phi}=\mathcal{S}(\mathrm{dev})$

Relations between the construction

Structure gives equations

If $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic the Schwartzian of f is given by

$$
\mathcal{S}(f)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

- If u_{1}, u_{2} solve $u^{\prime \prime}+\frac{1}{2} \phi u=0$ then $\mathcal{S}\left(u_{1} / u_{2}\right)=\phi$ (ODE "inverts" Schwartzian)
- (dev, $\rho)$ a complex projective structure on Σ let $\tilde{\phi}=\mathcal{S}(\operatorname{dev})$
- Equivariance of $\mathrm{dev} \Rightarrow \pi_{1}(\Sigma)$-invariance of $\tilde{\phi}$, get $\phi: \Sigma \rightarrow \mathbb{C}$

Relations between the construction

Structure gives equations

If $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic the Schwartzian of f is given by

$$
\mathcal{S}(f)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

- If u_{1}, u_{2} solve $u^{\prime \prime}+\frac{1}{2} \phi u=0$ then $\mathcal{S}\left(u_{1} / u_{2}\right)=\phi$ (ODE "inverts" Schwartzian)
- $(\operatorname{dev}, \rho)$ a complex projective structure on Σ let $\tilde{\phi}=\mathcal{S}(\operatorname{dev})$
- Equivariance of $\mathrm{dev} \Rightarrow \pi_{1}(\Sigma)$-invariance of $\tilde{\phi}$, get $\phi: \Sigma \rightarrow \mathbb{C}$
- Can form the ODE $u^{\prime \prime}+\frac{1}{2} \phi u=0$ on Σ

Relations between the construction

Structure gives equations

If $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic the Schwartzian of f is given by

$$
\mathcal{S}(f)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

- If u_{1}, u_{2} solve $u^{\prime \prime}+\frac{1}{2} \phi u=0$ then $\mathcal{S}\left(u_{1} / u_{2}\right)=\phi$ (ODE "inverts" Schwartzian)
- (dev, $\rho)$ a complex projective structure on Σ let $\tilde{\phi}=\mathcal{S}(\operatorname{dev})$
- Equivariance of $\mathrm{dev} \Rightarrow \pi_{1}(\Sigma)$-invariance of $\tilde{\phi}$, get $\phi: \Sigma \rightarrow \mathbb{C}$
- Can form the ODE $u^{\prime \prime}+\frac{1}{2} \phi u=0$ on Σ dev comes from a solution to this equation

Overview

Good News: Have constructions that relate an analytic object (ODEs) to a geometric object (complex projective structures)

Overview

Good News: Have constructions that relate an analytic object (ODEs) to a geometric object (complex projective structures)

Bad News: The correspondence is opaque:
Analytic properties $\stackrel{?}{\Longleftrightarrow}$ Geometric properties

Another Correspondence

Grafting

Let $\Sigma=\mathbb{D} / \Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^{+}$

Another Correspondence

Grafting

Let $\Sigma=\mathbb{D} / \Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^{+}$
We can produce a new complex projective structure, $\operatorname{Gr}_{t \gamma}(X)$ on Σ by grafting in a Euclidean cylinder of height t

Figure: Picture from Dumas, Complex Projective Structures

Another Correspondence

Grafting

Let $\Sigma=\mathbb{D} / \Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^{+}$
We can produce a new complex projective structure, $\operatorname{Gr}_{t \gamma}(X)$ on Σ by grafting in a Euclidean cylinder of height t

Figure: Picture from Dumas, Complex Projective Structures

Let \mathcal{S} be free homotopy class of s.c.c's. Get

$$
\operatorname{Gr}: \mathcal{S} \times \mathbb{R}^{+} \times \mathcal{T}(\Sigma) \rightarrow \mathcal{P}(\Sigma)
$$

Thurston's Theorem

Construction produces all complex projective structures

Thurston's Theorem

Construction produces all complex projective structures
Let $\mathcal{M} \mathcal{L}(\Sigma)$ be measured laminations on Σ (limits of weighted multicurves)

Thurston's Theorem

Construction produces all complex projective structures
Let $\mathcal{M} \mathcal{L}(\Sigma)$ be measured laminations on Σ (limits of weighted multicurves)
Theorem (Thurston)

$$
\operatorname{Gr}: \mathcal{M} \mathcal{L}(\Sigma) \times \mathcal{T}(\Sigma) \rightarrow \mathcal{P}(\Sigma)
$$

is a homeomorphism.

Thurston's Theorem

Construction produces all complex projective structures
Let $\mathcal{M} \mathcal{L}(\Sigma)$ be measured laminations on Σ (limits of weighted multicurves)
Theorem (Thurston)

$$
\operatorname{Gr}: \mathcal{M} \mathcal{L}(\Sigma) \times \mathcal{T}(\Sigma) \rightarrow \mathcal{P}(\Sigma)
$$

is a homeomorphism.
Good News: Every complex projective structure arises from grafting a hyperbolic surface.

Thurston's Theorem

Construction produces all complex projective structures
Let $\mathcal{M} \mathcal{L}(\Sigma)$ be measured laminations on Σ (limits of weighted multicurves)
Theorem (Thurston)

$$
\operatorname{Gr}: \mathcal{M} \mathcal{L}(\Sigma) \times \mathcal{T}(\Sigma) \rightarrow \mathcal{P}(\Sigma)
$$

is a homeomorphism.
Good News: Every complex projective structure arises from grafting a hyperbolic surface.
Bad News: The inverse procedure is fairly non-constructive.

A transparent case

Let $\Sigma=\Sigma_{0,3}$ (thrice punctured sphere)
Let $\sigma=(\operatorname{dev}, \rho) \in \mathcal{P}(\Sigma)$
σ is:

A transparent case

Let $\Sigma=\Sigma_{0,3}$ (thrice punctured sphere)
Let $\sigma=(\operatorname{dev}, \rho) \in \mathcal{P}(\Sigma)$
σ is:

- tame if dev can be extended (meromorphically) to the punctures

A transparent case

Let $\Sigma=\Sigma_{0,3}$ (thrice punctured sphere)
Let $\sigma=(\operatorname{dev}, \rho) \in \mathcal{P}(\Sigma)$
σ is:

- tame if dev can be extended (meromorphically) to the punctures
- relatively elliptic if holonomy of peripheral curves is elliptic (conjugate to rotation $z \mapsto e^{i \theta} z, \theta \in \mathbb{R}$)

A transparent case

Let $\Sigma=\Sigma_{0,3}$ (thrice punctured sphere)
Let $\sigma=(\operatorname{dev}, \rho) \in \mathcal{P}(\Sigma)$
σ is:

- tame if dev can be extended (meromorphically) to the punctures
- relatively elliptic if holonomy of peripheral curves is elliptic (conjugate to rotation $z \mapsto e^{i \theta} z, \theta \in \mathbb{R}$)
- non-degenerate if $\rho\left(\pi_{1} \Sigma\right)$ has no finite orbits (e.g. no global fixed points)

Let $\mathcal{P} \odot(\Sigma)$ be the space of tame, relatively elliptic, and non-degenerate structures on Σ

Examples

Triangular structures
Given a configuration of 3 circles in $\mathbb{C P}^{1}$ we can build (several) complex projective structures on Σ. (triangular structures)

Examples

Triangular structures
Given a configuration of 3 circles in $\mathbb{C P}^{1}$ we can build (several) complex projective structures on Σ. (triangular structures)

Examples

Triangular structures
Given a configuration of 3 circles in $\mathbb{C P}^{1}$ we can build (several) complex projective structures on Σ. (triangular structures)

$\pi_{1}(\Sigma) \cong\langle\alpha, \beta\rangle$,
$\rho(\alpha)=R\left(C_{2}\right) R\left(C_{3}\right) \cong\left(z \mapsto e^{2 i \theta} z\right)$,
$\rho(\beta)=R\left(C_{3}\right) R\left(C_{1}\right) \cong\left(z \mapsto e^{2 i \phi} \boldsymbol{z}\right)$

Examples

Triangular structures

Given a configuration of 3 circles in $\mathbb{C P}^{1}$ we can build (several) complex projective structures on Σ. (triangular structures)

Examples

Triangular structures

Given a configuration of 3 circles in $\mathbb{C P}^{1}$ we can build (several) complex projective structures on Σ. (triangular structures)

Examples

Triangular structures

Given a configuration of 3 circles in $\mathbb{C P}^{1}$ we can build (several) complex projective structures on Σ. (triangular structures)

The same circles support several different developing maps.

Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of $\mathbb{C P}^{1}$

Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of $\mathbb{C P}^{1}$

- Edge grafting (blue)
- Core grafting (red)

Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of $\mathbb{C P}^{1}$

- Edge grafting (blue)
- Core grafting (red)

This grafting is discrete, not continuous!

Grafting Example

Edge grafting

How does grafting change the developing map?

Grafting Example

Edge grafting

How does grafting change the developing map?

Grafting Example

Edge grafting

How does grafting change the developing map?

How does grafting change the holonomy?
It doesn't!!

Theorem 1

Theorem 1 (B-Bowers-Casella-Ruffoni)
Let $\Sigma=\Sigma_{0,3}$ and let $\tau \in \mathcal{P}^{\oplus}(\Sigma)$. Then τ is obtained from a triangular structure by a finite sequence of edge and core graftings.
The sequence of graftings and the triangular structure can be computed explicitly (Algorithmic).

Sketch of proof

- If $\tau=(\mathrm{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha / 2 \pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)

Sketch of proof

- If $\tau=(\mathrm{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha / 2 \pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (Complex analysis)

Sketch of proof

- If $\tau=(\mathrm{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha / 2 \pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (Complex analysis)
- Let $(2 a, 2 b, 2 c)$ be winding numbers of τ

Sketch of proof

- If $\tau=(\mathrm{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha / 2 \pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (Complex analysis)
- Let $(2 a, 2 b, 2 c)$ be winding numbers of τ
- Edge grafting increases winding numbers by $(2 \pi, 2 \pi)$ and core grafting increases winding number by 4π

Sketch of proof

- If $\tau=(\mathrm{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha / 2 \pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (Complex analysis)
- Let $(2 a, 2 b, 2 c)$ be winding numbers of τ
- Edge grafting increases winding numbers by $(2 \pi, 2 \pi)$ and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number $(2 a, 2 b, 2 c)$ (angles are a, b, c)

Sketch of proof

- If $\tau=(\operatorname{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha / 2 \pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P} \odot(\Sigma)$ (Complex analysis)
- Let $(2 a, 2 b, 2 c)$ be winding numbers of τ
- Edge grafting increases winding numbers by $(2 \pi, 2 \pi)$ and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number $(2 a, 2 b, 2 c)$ (angles are a, b, c)
- If some winding numbers are big can find, $a^{\prime}, b^{\prime}, c^{\prime}$ small, and $k_{a}, k_{b}, k_{c} \in \mathbb{N},\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=(a, b, c)-\pi\left(k_{a}, k_{b}, k_{c}\right)$ so that there is a triangular structure with winding numbers $\left(2 a^{\prime}, 2 b^{\prime}, 2 c^{\prime}\right)$ that can be grafted to τ.

Sketch of proof

- If $\tau=(\operatorname{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha / 2 \pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P} \odot(\Sigma)$ (Complex analysis)
- Let $(2 a, 2 b, 2 c)$ be winding numbers of τ
- Edge grafting increases winding numbers by $(2 \pi, 2 \pi)$ and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number $(2 a, 2 b, 2 c)$ (angles are a, b, c)
- If some winding numbers are big can find, $a^{\prime}, b^{\prime}, c^{\prime}$ small, and $k_{a}, k_{b}, k_{c} \in \mathbb{N},\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=(a, b, c)-\pi\left(k_{a}, k_{b}, k_{c}\right)$ so that there is a triangular structure with winding numbers $\left(2 a^{\prime}, 2 b^{\prime}, 2 c^{\prime}\right)$ that can be grafted to τ. ($a^{\prime}, b^{\prime}, c^{\prime}$) determine triangular structure, $\left(k_{a}, k_{b}, k_{c}\right)$ determine grafting.

A typical example

Winding numbers are $2 a=9 \pi, 2 b=3 \pi, 2 c=\pi$

A typical example

Winding numbers are $2 a=9 \pi, 2 b=3 \pi, 2 c=\pi$
Then $2 a^{\prime}=3 \pi, 2 b^{\prime}=\pi, 2 c^{\prime}=\pi, k_{a}=3, k_{b}=1, k_{c}=0$

A typical example

Winding numbers are $2 a=9 \pi, 2 b=3 \pi, 2 c=\pi$
Then $2 a^{\prime}=3 \pi, 2 b^{\prime}=\pi, 2 c^{\prime}=\pi, k_{a}=3, k_{b}=1, k_{c}=0$

A typical example

Winding numbers are $2 a=9 \pi, 2 b=3 \pi, 2 c=\pi$
Then $2 a^{\prime}=3 \pi, 2 b^{\prime}=\pi, 2 c^{\prime}=\pi, k_{a}=3, k_{b}=1, k_{c}=0$

A typical example

Winding numbers are $2 a=9 \pi, 2 b=3 \pi, 2 c=\pi$
Then $2 a^{\prime}=3 \pi, 2 b^{\prime}=\pi, 2 c^{\prime}=\pi, k_{a}=3, k_{b}=1, k_{c}=0$

Complex analytic perspective

How do analytic properties of $u^{\prime \prime}+1 / 2 \phi u=0$ correspond to geometric properties of complex projective structures??

Complex analytic perspective

How do analytic properties of $u^{\prime \prime}+1 / 2 \phi u=0$ correspond to geometric properties of complex projective structures??
$\Sigma_{0,3} \cong \mathbb{C P}^{1} \backslash\{0,1, \infty\}$
Theorem 2 (B-Bowers-Casella-Ruffoni)
$\tau \in \mathcal{P} \odot\left(\Sigma_{0,3}\right)$ iff τ comes from a solution to $u^{\prime \prime}+1 / 2 \phi u=0$ where $\phi: \mathbb{C P}^{1} \rightarrow \mathbb{C}$ is meromorphic with poles of order $\leqslant 2$ at $\{0,1, \infty\}$.

Complex analytic perspective

How do analytic properties of $u^{\prime \prime}+1 / 2 \phi u=0$ correspond to geometric properties of complex projective structures??
$\Sigma_{0,3} \cong \mathbb{C P}^{1} \backslash\{0,1, \infty\}$
Theorem 2 (B-Bowers-Casella-Ruffoni)
$\tau \in \mathcal{P} \odot\left(\Sigma_{0,3}\right)$ iff τ comes from a solution to $u^{\prime \prime}+1 / 2 \phi u=0$ where $\phi: \mathbb{C P}^{1} \rightarrow \mathbb{C}$ is meromorphic with poles of order $\leqslant 2$ at $\{0,1, \infty\}$.

We can determine the winding numbers from the poles of $\phi!!$

Determining winding number

- Near $z=0, \phi(z)=\frac{a}{z^{2}}+O(1 / z)$

Determining winding number

- Near $z=0, \phi(z)=\frac{a}{z^{2}}+O(1 / z)$
- Let r_{1}, r_{2} solutions to $r(r-1)+\frac{a}{2}=0$

Determining winding number

- Near $z=0, \phi(z)=\frac{a}{z^{2}}+O(1 / z)$
- Let r_{1}, r_{2} solutions to $r(r-1)+\frac{a}{2}=0$
- Generically, solutions to $u^{\prime \prime}+1 / 2 \phi u=0$ are of form

$$
u_{1}(z)=z^{r_{1}} h_{1}(z), \quad u_{2}=z^{r_{2}} h_{2}(z)
$$

where $h_{i}(z)$ analytic and non-zero near $z=0$. (not quite if $r_{1}-r_{2} \in \mathbb{Z}$)

Determining winding number

- Near $z=0, \phi(z)=\frac{a}{z^{2}}+O(1 / z)$
- Let r_{1}, r_{2} solutions to $r(r-1)+\frac{a}{2}=0$
- Generically, solutions to $u^{\prime \prime}+1 / 2 \phi u=0$ are of form

$$
u_{1}(z)=z^{r_{1}} h_{1}(z), \quad u_{2}=z^{r_{2}} h_{2}(z)
$$

where $h_{i}(z)$ analytic and non-zero near $z=0$. (not quite if $r_{1}-r_{2} \in \mathbb{Z}$)

- $\operatorname{dev}(z)=\frac{u_{1}(z)}{u_{2}(z)}=z^{\theta} M(z)$ where $\theta=r_{1}-r_{2}, M(z)$ analytic and non-zero at $z=0$

Determining winding number

- Near $z=0, \phi(z)=\frac{a}{z^{2}}+O(1 / z)$
- Let r_{1}, r_{2} solutions to $r(r-1)+\frac{a}{2}=0$
- Generically, solutions to $u^{\prime \prime}+1 / 2 \phi u=0$ are of form

$$
u_{1}(z)=z^{r_{1}} h_{1}(z), \quad u_{2}=z^{r_{2}} h_{2}(z)
$$

where $h_{i}(z)$ analytic and non-zero near $z=0$. (not quite if $r_{1}-r_{2} \in \mathbb{Z}$)

- $\operatorname{dev}(z)=\frac{u_{1}(z)}{u_{2}(z)}=z^{\theta} M(z)$ where $\theta=r_{1}-r_{2}, M(z)$ analytic and non-zero at $z=0$
- $2 \pi \theta$ is winding number and $\theta= \pm \sqrt{1-2 a}$

Remaining questions

Can we give specific relationship between geometric/analytic properties for general non-compact Σ ?

Remaining questions

Can we give specific relationship between geometric/analytic properties for general non-compact Σ ?

- Not an obvious candidate to replace triangular structures

Remaining questions

Can we give specific relationship between geometric/analytic properties for general non-compact Σ ?

- Not an obvious candidate to replace triangular structures
- Winding numbers don't determine structure (complex structure not unique)

Thank you!

