Complex Projective Structures on Surfaces

Sam Ballas

(joint with P. Bowers, A. Casella, & L. Ruffoni)

Florida State University

UF Colloquium Feb 11, 2022

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

 Correspondences between an analytic object (ODEs & measured laminations) and geometric objects (complex projective structures)

 Correspondences between an analytic object (ODEs & measured laminations) and geometric objects (complex projective structures)

• In general, these correspondences are not explicit

 Correspondences between an analytic object (ODEs & measured laminations) and geometric objects (complex projective structures)

- In general, these correspondences are not explicit
- Today: In certain cases we can make these correspondences are explicit

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

$$\begin{split} \mathbb{CP}^1 &= \mathbb{C} \cup \{\infty\} \quad (\textit{Riemann Sphere}) \\ \text{PSL}_2(\mathbb{C}) &= \text{SL}_2(\mathbb{C})/\{\pm I\} \quad (\textit{Biholomorphisms of } \mathbb{CP}^1) \end{split}$$

\mathbb{CP}^1 geometry

$$\begin{split} \mathbb{CP}^1 &= \mathbb{C} \cup \{\infty\} \quad (\textit{Riemann Sphere}) \\ \mathsf{PSL}_2(\mathbb{C}) &= \mathsf{SL}_2(\mathbb{C})/\{\pm I\} \quad (\textit{Biholomorphisms of } \mathbb{CP}^1) \\ \mathsf{PSL}_2(\mathbb{C}) \text{ acts on } \mathbb{CP}^1 \text{ via linear fractional transformations} \end{split}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az+b}{cz+d}$$

\mathbb{CP}^1 geometry

$$\begin{split} \mathbb{CP}^1 &= \mathbb{C} \cup \{\infty\} \quad (\textit{Riemann Sphere}) \\ \mathsf{PSL}_2(\mathbb{C}) &= \mathsf{SL}_2(\mathbb{C})/\{\pm \textit{I}\} \quad (\textit{Biholomorphisms of } \mathbb{CP}^1) \\ \mathsf{PSL}_2(\mathbb{C}) \text{ acts on } \mathbb{CP}^1 \text{ via linear fractional transformations} \end{split}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az+b}{cz+d}$$

うつん 川 エー・エー・ エー・ ひゃう

• There is no $PSL_2(\mathbb{C})$ -invariant metric on \mathbb{CP}^1

\mathbb{CP}^1 geometry

$$\begin{split} \mathbb{CP}^1 &= \mathbb{C} \cup \{\infty\} \quad (\textit{Riemann Sphere}) \\ \text{PSL}_2(\mathbb{C}) &= \text{SL}_2(\mathbb{C})/\{\pm \textit{I}\} \quad (\textit{Biholomorphisms of } \mathbb{CP}^1) \\ \text{PSL}_2(\mathbb{C}) \text{ acts on } \mathbb{CP}^1 \text{ via linear fractional transformations} \end{split}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az+b}{cz+d}$$

(日本本語を本書を本書を入して)

- There is no $\text{PSL}_2(\mathbb{C})$ -invariant metric on \mathbb{CP}^1
- · Circles are invariant and play the role of geodesics

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

- $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ (unit disk)
- \mathbb{D} is a model of the *hyperbolic plane*

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ (unit disk)
- \mathbb{D} is a model of the *hyperbolic plane*

•
$$G_{\mathbb{D}} := Stab_{\mathsf{PSL}_2(\mathbb{C})}(\mathbb{D}) = \mathsf{Isom}(\mathbb{D}) \qquad \neq \mathsf{PSL}_2(\mathbb{R})$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ (unit disk)
- \mathbb{D} is a model of the *hyperbolic plane*
- $G_{\mathbb{D}} := Stab_{PSL_2(\mathbb{C})}(\mathbb{D}) = Isom(\mathbb{D}) = PSU(1,1) \neq PSL_2(\mathbb{R})$

うつん 川 エー・エー・ エー・ ひゃう

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ (unit disk)
- D is a model of the *hyperbolic plane*
- $G_{\mathbb{D}} := Stab_{PSL_2(\mathbb{C})}(\mathbb{D}) = Isom(\mathbb{D}) = PSU(1,1) \neq PSL_2(\mathbb{R})$

<日 > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Uniformization)

There is a discrete group $\Gamma \subset G_{\mathbb{D}}$ so that $\Sigma \cong \mathbb{D}/\Gamma$.

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ (unit disk)
- \mathbb{D} is a model of the *hyperbolic plane*
- $G_{\mathbb{D}} := Stab_{PSL_2(\mathbb{C})}(\mathbb{D}) = Isom(\mathbb{D}) = PSU(1,1) \neq PSL_2(\mathbb{R})$

Theorem (Uniformization)

There is a discrete group $\Gamma \subset G_{\mathbb{D}}$ so that $\Sigma \cong \mathbb{D}/\Gamma$.

Let $\mathcal{T}(\Sigma)$ be the space of hyperbolic structures on Σ

Theorem The space, $\mathcal{T}(\Sigma) \cong \mathbb{R}^{6g-6}$

Complex projective structures

Let Σ be a surface. A *complex projective structure* on Σ consists of charts from Σ into \mathbb{CP}^1 whose transition functions are elements of $PSL_2(\mathbb{C})$

うつん 川 エー・エー・ エー・ ひゃう

Complex projective structures

Let Σ be a surface. A *complex projective structure* on Σ consists of charts from Σ into \mathbb{CP}^1 whose transition functions are elements of $PSL_2(\mathbb{C})$

イロト 不得 トイヨト イヨト ニヨー

For $z \in U_1 \cap U_2$, $\phi_1(z) = g_{12}\phi_2(z)$

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

・ ロ ト ス 厚 ト ス 目 ト ス 目 ト

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

Not well defined on Σ , We are really defining

$$\operatorname{dev}: \widetilde{\Sigma} = \mathbb{D} \to \mathbb{CP}^1, \qquad \qquad \operatorname{hol}: \pi_1 \Sigma \cong \Gamma \to \operatorname{PSL}_2(\mathbb{C})$$

・ ロ ト ス 厚 ト ス 目 ト ス 目 ト

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

Not well defined on Σ , We are really defining

$$\begin{aligned} & \operatorname{dev} : \widetilde{\Sigma} = \mathbb{D} \to \mathbb{CP}^1, & \operatorname{hol} : \pi_1 \Sigma \cong \Gamma \to \operatorname{PSL}_2(\mathbb{C}) \\ & [\ell] \mapsto g_{12} \dots g_{m-1m} \phi_m(\ell(1)) \end{aligned}$$

・ ロ ト ス 厚 ト ス 目 ト ス 目 ト

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

Not well defined on Σ , We are really defining

$$\begin{aligned} \operatorname{dev} : \widetilde{\Sigma} &= \mathbb{D} \to \mathbb{CP}^{1}, & \operatorname{hol} : \pi_{1}\Sigma \cong \Gamma \to \operatorname{PSL}_{2}(\mathbb{C}) \\ [\ell] &\mapsto g_{12} \dots g_{m-1m} \phi_{m}(\ell(1)) & [\gamma] \mapsto (g_{12} \dots g_{k1}) \end{aligned}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

- dev is called a *developing map*
- hol is called a holonomy representation

- dev is called a *developing map*
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism
 i.e. dev(γ · z) = hol(γ) · dev(z) ∀z ∈ D, γ ∈ π₁M

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

- dev is called a *developing map*
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism
 i.e. dev(γ · z) = hol(γ) · dev(z) ∀z ∈ D, γ ∈ π₁M
- Constructing a complex projective structure is equivalent to constructing such an equivariant pair

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

- dev is called a *developing map*
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism
 i.e. dev(γ · z) = hol(γ) · dev(z) ∀z ∈ D, γ ∈ π₁M
- Constructing a complex projective structure is equivalent to constructing such an equivariant pair

うつん 川 エー・エー・ エー・ ひゃう

Let $\mathcal{P}(\Sigma)$ be space of all complex projective structures on Σ

Simply connected case

Let $\phi:\mathbb{D}\to\mathbb{C}$ be holomorphic and consider the differential equation

$$u'' + \frac{1}{2}\phi u = 0 \tag{1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Simply connected case

Let $\phi:\mathbb{D}\to\mathbb{C}$ be holomorphic and consider the differential equation

$$u'' + \frac{1}{2}\phi u = 0 \tag{1}$$

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Theorem (Cauchy)

For any $c_1, c_2 \in \mathbb{C}$ there is unique $u : \mathbb{D} \to \mathbb{C}$ solution to (1) satisfying the initial condition $u(0) = c_1$ and $u'(0) = c_2$

Simply connected case

Let $\phi:\mathbb{D}\to\mathbb{C}$ be holomorphic and consider the differential equation

$$u'' + \frac{1}{2}\phi u = 0 \tag{1}$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Theorem (Cauchy)

For any $c_1, c_2 \in \mathbb{C}$ there is unique $u : \mathbb{D} \to \mathbb{C}$ solution to (1) satisfying the initial condition $u(0) = c_1$ and $u'(0) = c_2$ The solutions to (1) form a 2-dimensional vector space

A local approach

Let $U \subset \mathbb{C}$ be connected, and let $\phi : U \to \mathbb{C}$ be holomorphic

For $p \in U$ there is a basis $\{u_1, u_2\}$ of local solutions to (1)

A local approach

Let $U \subset \mathbb{C}$ be connected, and let $\phi : U \to \mathbb{C}$ be holomorphic

For $p \in U$ there is a basis $\{u_1, u_2\}$ of local solutions to (1)

Using analytic continuation we can attempt to extend u_1 and u_2 to all of U.

A local approach

Let $U \subset \mathbb{C}$ be connected, and let $\phi : U \to \mathbb{C}$ be holomorphic

For $p \in U$ there is a basis $\{u_1, u_2\}$ of local solutions to (1)

Using analytic continuation we can attempt to extend u_1 and u_2 to all of U.

A local approach

Let $U \subset \mathbb{C}$ be connected, and let $\phi : U \to \mathbb{C}$ be holomorphic

For $p \in U$ there is a basis $\{u_1, u_2\}$ of local solutions to (1)

Using analytic continuation we can attempt to extend u_1 and u_2 to all of U.

Problem: when we analytically continue around a loop γ we may arrive at new solutions $(v_1, v_2) \neq (u_1, u_2)$.

うつん 川 エー・エー・ エー・ ひゃう

A global approach

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Solution:

- There is $M(\gamma) \in GL_2(\mathbb{C})$ so that $M(\gamma)u_i = v_i$
- $M(\gamma)$ only depends on homotopy class of γ .

A global approach

Solution:

- There is $M(\gamma) \in GL_2(\mathbb{C})$ so that $M(\gamma)u_i = v_i$
- $M(\gamma)$ only depends on homotopy class of γ .
- Let $\pi: \widetilde{U} \to U$ be the universal covering
- Think of $u_i: \widetilde{U} \to \mathbb{C}$ (defined on universal cover)

A global approach

Solution:

- There is $M(\gamma) \in GL_2(\mathbb{C})$ so that $M(\gamma)u_i = v_i$
- $M(\gamma)$ only depends on homotopy class of γ .
- Let $\pi: \widetilde{U} \to U$ be the universal covering
- Think of $u_i: \widetilde{U} \to \mathbb{C}$ (defined on universal cover)
- For each $[\gamma] \in \pi_1(\Sigma) \cong \text{Deck}(\pi)$ and each $z \in \widetilde{U}$,

$$(u_i \circ [\gamma])(z) = M(\gamma)u_i(z)$$

(日本本語を本書を本書を入して)
Second order linear ODEs

A global approach

Solution:

- There is $M(\gamma) \in GL_2(\mathbb{C})$ so that $M(\gamma)u_i = v_i$
- $M(\gamma)$ only depends on homotopy class of γ .
- Let $\pi: \widetilde{U} \to U$ be the universal covering
- Think of $u_i: \widetilde{U} \to \mathbb{C}$ (defined on universal cover)
- For each $[\gamma] \in \pi_1(\Sigma) \cong \text{Deck}(\pi)$ and each $z \in \widetilde{U}$,

$$(u_i \circ [\gamma])(z) = M(\gamma)u_i(z)$$

Get an equivariant pair:

$$(u_1, u_2): \widetilde{U} \to \mathbb{C}$$
 $M: \pi_1(\Sigma) \to \operatorname{GL}_2(\mathbb{C})$

うつん 川 エー・エー・ エー・ ひゃう

Let $U = \mathbb{D} \setminus \{0\}$ and consider the equation

$$u''+\frac{u}{4z^2}=0$$

 $u(z) = z^{1/2}$ is a "solution"

Let $U = \mathbb{D} \setminus \{0\}$ and consider the equation

$$u''+\frac{u}{4z^2}=0$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

 $u(z) = z^{1/2}$ is a "solution" (*it's multivalued*)

Let $U = \mathbb{D} \setminus \{0\}$ and consider the equation

$$u''+\frac{u}{4z^2}=0$$

 $u(z) = z^{1/2}$ is a "solution" (*it's multivalued*) $\phi : \mathbb{H} \to U, t \stackrel{\phi}{\mapsto} \exp(2\pi i t)$ is a universal cover Deck group generated by $t \mapsto t + 1$

Let $U = \mathbb{D} \setminus \{0\}$ and consider the equation

$$u''+\frac{u}{4z^2}=0$$

 $u(z) = z^{1/2}$ is a "solution" (*it's multivalued*) $\phi : \mathbb{H} \to U, t \stackrel{\phi}{\mapsto} \exp(2\pi i t)$ is a universal cover Deck group generated by $t \mapsto t + 1$

$$z^{1/2} = \exp\left(\log(z)/2\right) = \exp(\pi i t)$$

Let $U = \mathbb{D} \setminus \{0\}$ and consider the equation

$$u''+\frac{u}{4z^2}=0$$

 $u(z) = z^{1/2}$ is a "solution" (*it's multivalued*) $\phi : \mathbb{H} \to U, t \stackrel{\phi}{\mapsto} \exp(2\pi i t)$ is a universal cover Deck group generated by $t \mapsto t + 1$

$$z^{1/2} = \exp(\log(z)/2) = \exp(\pi i t)$$
$$\exp(\pi i (t+1)) = \exp(\pi i) \exp(\pi i t) = -\exp(\pi i t) = -z^{-1/2}$$

Equations give structure

Let $\Sigma = \mathbb{D}/\Gamma$ be hyperbolic surface, $\phi: \Sigma \to \mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \to \mathbb{C}$ a basis of solutions to $u'' + 1/2u\phi = 0$
- $[M] : \pi_1(\Sigma) \to \mathsf{PGL}_2(\mathbb{C})$ (*projectivized*) monodromy.

Equations give structure

Let $\Sigma=\mathbb{D}/\Gamma$ be hyperbolic surface, $\phi:\Sigma\to\mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \to \mathbb{C}$ a basis of solutions to $u'' + 1/2u\phi = 0$
- $[M] : \pi_1(\Sigma) \to \mathsf{PGL}_2(\mathbb{C})$ (*projectivized*) monodromy.

dev :
$$\mathbb{D} \to \mathbb{CP}^1$$
, $z \stackrel{\text{dev}}{\mapsto} \frac{u_1(z)}{u_2(z)}$ Let $[M(\gamma)] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Equations give structure

Let $\Sigma = \mathbb{D}/\Gamma$ be hyperbolic surface, $\phi: \Sigma \to \mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \to \mathbb{C}$ a basis of solutions to $u'' + 1/2u\phi = 0$
- $[M] : \pi_1(\Sigma) \to \mathsf{PGL}_2(\mathbb{C})$ (*projectivized*) monodromy.

dev :
$$\mathbb{D} \to \mathbb{CP}^1$$
, $z \xrightarrow{\text{dev}} \frac{u_1(z)}{u_2(z)}$ Let $[M(\gamma)] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$(\operatorname{dev} \circ \gamma)(z) = \frac{(u_1 \circ \gamma)(z)}{(u_2 \circ \gamma)(z)} = \frac{au_1(z) + bu_2(z)}{cu_1(z) + du_2(z)}$$
$$= \frac{a \cdot \operatorname{dev}(z) + b}{c \cdot \operatorname{dev}(z) + d} = [M(\gamma)] \cdot \operatorname{dev}(z)$$

Equations give structure

Let $\Sigma=\mathbb{D}/\Gamma$ be hyperbolic surface, $\phi:\Sigma\to\mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \to \mathbb{C}$ a basis of solutions to $u'' + 1/2u\phi = 0$
- $[M] : \pi_1(\Sigma) \to \mathsf{PGL}_2(\mathbb{C})$ (*projectivized*) monodromy.

dev :
$$\mathbb{D} \to \mathbb{CP}^1$$
, $z \xrightarrow{\text{dev}} \frac{u_1(z)}{u_2(z)}$ Let $[M(\gamma)] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$(\operatorname{dev} \circ \gamma)(z) = \frac{(u_1 \circ \gamma)(z)}{(u_2 \circ \gamma)(z)} = \frac{au_1(z) + bu_2(z)}{cu_1(z) + du_2(z)}$$
$$= \frac{a \cdot \operatorname{dev}(z) + b}{c \cdot \operatorname{dev}(z) + d} = [M(\gamma)] \cdot \operatorname{dev}(z)$$

(dev, [*M*]) give a complex projective structure on *M*.

Structure gives equations

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of *f* is given by

$$\mathcal{S}(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Relations between the construction Structure gives equations

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of *f* is given by

$$S(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

• If u_1, u_2 solve $u'' + \frac{1}{2}\phi u = 0$ then $S(u_1/u_2) = \phi$ (*ODE "inverts" Schwartzian*)

Relations between the construction Structure gives equations

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of *f* is given by

$$S(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2$$

- If u_1, u_2 solve $u'' + \frac{1}{2}\phi u = 0$ then $S(u_1/u_2) = \phi$ (*ODE "inverts" Schwartzian*)
- (dev, ρ) a complex projective structure on Σ let $\tilde{\phi} = S(dev)$

うつん 川 エー・エー・ エー・ ひゃう

Relations between the construction Structure gives equations

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of *f* is given by

$$S(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2$$

- If u_1, u_2 solve $u'' + \frac{1}{2}\phi u = 0$ then $S(u_1/u_2) = \phi$ (*ODE "inverts" Schwartzian*)
- (dev, ρ) a complex projective structure on Σ let $\tilde{\phi} = S(dev)$

うつう 山 ふ ふ う え 山 マ ふ し マ う く し マ

 Equivariance of dev ⇒ π₁(Σ)-invariance of φ̃, get φ : Σ → C

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of *f* is given by

$$S(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2$$

- If u_1, u_2 solve $u'' + \frac{1}{2}\phi u = 0$ then $S(u_1/u_2) = \phi$ (*ODE "inverts" Schwartzian*)
- (dev, ρ) a complex projective structure on Σ let $\tilde{\phi} = S(dev)$

(日本本語を本書を本書を入して)

- Equivariance of dev ⇒ π₁(Σ)-invariance of φ̃, get φ : Σ → C
- Can form the ODE $u'' + \frac{1}{2}\phi u = 0$ on Σ

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of *f* is given by

$$S(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2$$

- If u_1, u_2 solve $u'' + \frac{1}{2}\phi u = 0$ then $S(u_1/u_2) = \phi$ (*ODE "inverts" Schwartzian*)
- (dev, ρ) a complex projective structure on Σ let $\tilde{\phi} = S(dev)$
- Equivariance of dev ⇒ π₁(Σ)-invariance of φ̃, get φ : Σ → C
- Can form the ODE $u'' + \frac{1}{2}\phi u = 0$ on Σ

dev comes from a solution to this equation

Good News: Have constructions that relate an analytic object (*ODEs*) to a geometric object (*complex projective structures*)

Good News: Have constructions that relate an analytic object (*ODEs*) to a geometric object (*complex projective structures*)

Bad News: The correspondence is opaque: Analytic properties $\stackrel{?}{\longleftrightarrow}$ Geometric properties

Another Correspondence

Grafting

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Let $\Sigma = \mathbb{D}/\Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^+$

Another Correspondence

Grafting

Let $\Sigma = \mathbb{D}/\Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^+$

We can produce a new complex projective structure, $Gr_{t\gamma}(X)$ on Σ by *grafting* in a Euclidean cylinder of height *t*

Figure: Picture from Dumas, Complex Projective Structures

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Another Correspondence

Grafting

Let $\Sigma = \mathbb{D}/\Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^+$

We can produce a new complex projective structure, $Gr_{t\gamma}(X)$ on Σ by *grafting* in a Euclidean cylinder of height *t*

Figure: Picture from Dumas, Complex Projective Structures

Let ${\mathcal S}$ be free homotopy class of s.c.c's. Get

$$\mathsf{Gr}: \mathcal{S} \times \mathbb{R}^+ \times \mathcal{T}(\Sigma) \to \mathcal{P}(\Sigma)$$

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Construction produces all complex projective structures

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be *measured laminations* on Σ (limits of weighted multicurves)

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be *measured laminations* on Σ (limits of weighted multicurves)

Theorem (Thurston)

$$Gr: \mathcal{ML}(\Sigma) \times \mathcal{T}(\Sigma) \to \mathcal{P}(\Sigma)$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

is a homeomorphism.

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be *measured laminations* on Σ (limits of weighted multicurves)

Theorem (Thurston)

$$Gr:\mathcal{ML}(\Sigma)\times\mathcal{T}(\Sigma)\to\mathcal{P}(\Sigma)$$

is a homeomorphism.

Good News: Every complex projective structure arises from grafting a hyperbolic surface.

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be *measured laminations* on Σ (limits of weighted multicurves)

Theorem (Thurston)

$$Gr: \mathcal{ML}(\Sigma) \times \mathcal{T}(\Sigma) \to \mathcal{P}(\Sigma)$$

is a homeomorphism.

Good News: Every complex projective structure arises from grafting a hyperbolic surface.

Bad News: The inverse procedure is fairly non-constructive.

Let $\Sigma = \Sigma_{0,3}$ (*thrice punctured sphere*) Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$ σ is:

Let $\Sigma = \Sigma_{0,3}$ (*thrice punctured sphere*) Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$ σ is:

• *tame* if dev can be extended (meromorphically) to the punctures

Let $\Sigma = \Sigma_{0,3}$ (*thrice punctured sphere*) Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$ σ is:

- *tame* if dev can be extended (meromorphically) to the punctures
- relatively elliptic if holonomy of peripheral curves is elliptic (conjugate to rotation z → e^{iθ}z, θ ∈ ℝ)

うつん 川 エー・エー・ エー・ ひゃう

Let $\Sigma = \Sigma_{0,3}$ (*thrice punctured sphere*) Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$ σ is:

- *tame* if dev can be extended (meromorphically) to the punctures
- relatively elliptic if holonomy of peripheral curves is elliptic (conjugate to rotation z → e^{iθ}z, θ ∈ ℝ)

 non-degenerate if ρ(π₁Σ) has no finite orbits (e.g. no global fixed points)

Let $\mathcal{P}^{\odot}(\Sigma)$ be the space of tame, relatively elliptic, and non-degenerate structures on Σ

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Examples Triangular structures

Given a configuration of 3 circles in \mathbb{CP}^1 we can build (several) complex projective structures on Σ . (*triangular structures*)

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Examples

Triangular structures

Given a configuration of 3 circles in \mathbb{CP}^1 we can build (several) complex projective structures on Σ . (*triangular structures*)

イロト イポト イヨト イヨト 二日

$$\begin{split} &\pi_1(\boldsymbol{\Sigma}) \cong \langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle, \\ &\rho(\boldsymbol{\alpha}) = \boldsymbol{R}(\boldsymbol{C}_2) \boldsymbol{R}(\boldsymbol{C}_3) \cong (\boldsymbol{z} \mapsto \boldsymbol{e}^{2i\theta} \boldsymbol{z}), \\ &\rho(\boldsymbol{\beta}) = \boldsymbol{R}(\boldsymbol{C}_3) \boldsymbol{R}(\boldsymbol{C}_1) \cong (\boldsymbol{z} \mapsto \boldsymbol{e}^{2i\phi} \boldsymbol{z}) \end{split}$$

ション ふゆ アメリア メリア しょうめん

ション ふゆ アメリア メリア しょうめん

The same circles support several different developing maps.

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @
▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of \mathbb{CP}^1

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of \mathbb{CP}^1

- Edge grafting (blue)
- Core grafting (red)

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of \mathbb{CP}^1

- Edge grafting (blue)
- Core grafting (red)

<ロト < 理ト < ヨト < ヨト = ヨ = つへで

This grafting is discrete, not continuous!

How does grafting change the developing map?

How does grafting change the developing map?

ヘロン 人間 とくほど 人ほとし ほ

How does grafting change the developing map?

<ロト < 理ト < ヨト < ヨト = ヨ = つへで

How does grafting change the holonomy?

It doesn't!!

Theorem 1

Theorem 1 (B-Bowers-Casella-Ruffoni)

Let $\Sigma = \Sigma_{0,3}$ and let $\tau \in \mathcal{P}^{\odot}(\Sigma)$. Then τ is obtained from a triangular structure by a finite sequence of edge and core graftings.

The sequence of graftings and the triangular structure can be computed explicitly (*Algorithmic*).

 If τ = (dev, ρ), then near each puncture dev looks like z → z^{α/2π}, for α ∈ ℝ (punctures have winding number)

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

- If τ = (dev, ρ), then near each puncture dev looks like z → z^{α/2π}, for α ∈ ℝ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (*Complex analysis*)

うつん 川 エー・エー・ エー・ ひゃう

- If τ = (dev, ρ), then near each puncture dev looks like z → z^{α/2π}, for α ∈ ℝ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (*Complex analysis*)

うつん 川 エー・エー・ エー・ ひゃう

• Let (2a, 2b, 2c) be winding numbers of τ

- If τ = (dev, ρ), then near each puncture dev looks like z → z^{α/2π}, for α ∈ ℝ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (*Complex analysis*)
- Let (2*a*, 2*b*, 2*c*) be winding numbers of τ
- Edge grafting increases winding numbers by $(2\pi,2\pi)$ and core grafting increases winding number by 4π

- If τ = (dev, ρ), then near each puncture dev looks like z → z^{α/2π}, for α ∈ ℝ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (*Complex analysis*)
- Let (2a, 2b, 2c) be winding numbers of τ
- Edge grafting increases winding numbers by (2π, 2π) and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number (2*a*, 2*b*, 2*c*) (*angles are a*, *b*, *c*)

(日本本語を本書を本書を入して)

- If τ = (dev, ρ), then near each puncture dev looks like z → z^{α/2π}, for α ∈ ℝ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (*Complex analysis*)
- Let (2*a*, 2*b*, 2*c*) be winding numbers of τ
- Edge grafting increases winding numbers by (2π, 2π) and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number (2*a*, 2*b*, 2*c*) (*angles are a*, *b*, *c*)
- If some winding numbers are big can find, a', b', c' small, and k_a, k_b, k_c ∈ N, (a', b', c') = (a, b, c) - π(k_a, k_b, k_c) so that there is a triangular structure with winding numbers (2a', 2b', 2c') that can be grafted to τ.

- If τ = (dev, ρ), then near each puncture dev looks like z → z^{α/2π}, for α ∈ ℝ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\odot}(\Sigma)$ (*Complex analysis*)
- Let (2*a*, 2*b*, 2*c*) be winding numbers of τ
- Edge grafting increases winding numbers by $(2\pi, 2\pi)$ and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number (2*a*, 2*b*, 2*c*) (*angles are a*, *b*, *c*)
- If some winding numbers are big can find, a', b', c' small, and k_a, k_b, k_c ∈ N, (a', b', c') = (a, b, c) π(k_a, k_b, k_c) so that there is a triangular structure with winding numbers (2a', 2b', 2c') that can be grafted to τ.
 (a', b', c') determine triangular structure, (k_a, k_b, k_c) determine grafting.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Then $2a' = 3\pi$, $2b' = \pi$, $2c' = \pi$, $k_a = 3$, $k_b = 1$, $k_c = 0$

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Then $2a' = 3\pi$, $2b' = \pi$, $2c' = \pi$, $k_a = 3$, $k_b = 1$, $k_c = 0$

▲ロト ▲□ ト ▲ヨト ▲ヨト ヨー の々で

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Then $2a' = 3\pi$, $2b' = \pi$, $2c' = \pi$, $k_a = 3$, $k_b = 1$, $k_c = 0$

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Then $2a' = 3\pi$, $2b' = \pi$, $2c' = \pi$, $k_a = 3$, $k_b = 1$, $k_c = 0$

▲ロト ▲□ ト ▲ヨト ▲ヨト ヨー の々で

Complex analytic perspective

How do analytic properties of $u'' + 1/2\phi u = 0$ correspond to geometric properties of complex projective structures??

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Complex analytic perspective

How do analytic properties of $u'' + 1/2\phi u = 0$ correspond to geometric properties of complex projective structures??

 $\Sigma_{0,3}\cong \mathbb{CP}^1\backslash\{0,1,\infty\}$

Theorem 2 (B-Bowers-Casella-Ruffoni) $\tau \in \mathcal{P}^{\odot}(\Sigma_{0,3})$ iff τ comes from a solution to $u'' + 1/2\phi u = 0$ where $\phi : \mathbb{CP}^1 \to \mathbb{C}$ is meromorphic with poles of order ≤ 2 at $\{0, 1, \infty\}$.

うつん 川 エー・エー・ エー・ ひゃう

Complex analytic perspective

How do analytic properties of $u'' + 1/2\phi u = 0$ correspond to geometric properties of complex projective structures??

 $\Sigma_{0,3}\cong \mathbb{CP}^1\backslash\{0,1,\infty\}$

Theorem 2 (B-Bowers-Casella-Ruffoni)

 $\tau \in \mathcal{P}^{\odot}(\Sigma_{0,3})$ iff τ comes from a solution to $u'' + 1/2\phi u = 0$ where $\phi : \mathbb{CP}^1 \to \mathbb{C}$ is meromorphic with poles of order ≤ 2 at $\{0, 1, \infty\}$.

We can determine the winding numbers from the poles of ϕ !!

うつん 川 エー・エー・ エー・ ひゃう

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

• Near
$$z = 0$$
, $\phi(z) = \frac{a}{z^2} + O(1/z)$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへぐ

- Near z = 0, $\phi(z) = \frac{a}{z^2} + O(1/z)$
- Let r_1, r_2 solutions to $r(r-1) + \frac{a}{2} = 0$

- Near z = 0, $\phi(z) = \frac{a}{z^2} + O(1/z)$
- Let r_1, r_2 solutions to $r(r-1) + \frac{a}{2} = 0$
- Generically, solutions to $u'' + 1/2\phi u = 0$ are of form

$$u_1(z) = z^{r_1}h_1(z), \quad u_2 = z^{r_2}h_2(z)$$

うつん 川 エー・エー・ エー・ ひゃう

where $h_i(z)$ analytic and non-zero near z = 0. (not quite if $r_1 - r_2 \in \mathbb{Z}$)

• Near
$$z = 0$$
, $\phi(z) = \frac{a}{z^2} + O(1/z)$

- Let r_1, r_2 solutions to $r(r-1) + \frac{a}{2} = 0$
- Generically, solutions to $u'' + 1/2\phi u = 0$ are of form

$$u_1(z) = z^{r_1} h_1(z), \quad u_2 = z^{r_2} h_2(z)$$

where $h_i(z)$ analytic and non-zero near z = 0. (not quite if $r_1 - r_2 \in \mathbb{Z}$)

• $dev(z) = \frac{u_1(z)}{u_2(z)} = z^{\theta}M(z)$ where $\theta = r_1 - r_2$, M(z) analytic and non-zero at z = 0

(日本本語を本書を本書を入して)

- Near z = 0, $\phi(z) = \frac{a}{z^2} + O(1/z)$
- Let r_1, r_2 solutions to $r(r-1) + \frac{a}{2} = 0$
- Generically, solutions to $u'' + 1/2\phi u = 0$ are of form

$$u_1(z) = z^{r_1}h_1(z), \quad u_2 = z^{r_2}h_2(z)$$

where $h_i(z)$ analytic and non-zero near z = 0. (not quite if $r_1 - r_2 \in \mathbb{Z}$)

• $dev(z) = \frac{u_1(z)}{u_2(z)} = z^{\theta} M(z)$ where $\theta = r_1 - r_2$, M(z) analytic and non-zero at z = 0

(日本本語を本書を本書を入して)

• $2\pi\theta$ is winding number and $\theta = \pm\sqrt{1-2a}$

Remaining questions

Can we give specific relationship between geometric/analytic properties for general non-compact Σ ?

Remaining questions

Can we give specific relationship between geometric/analytic properties for general non-compact Σ ?

• Not an obvious candidate to replace triangular structures

Remaining questions

Can we give specific relationship between geometric/analytic properties for general non-compact Σ ?

• Not an obvious candidate to replace triangular structures

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

• Winding numbers don't determine structure (*complex structure not unique*)

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●