
Complex Projective Structures on Surfaces

Sam Ballas
(joint with P. Bowers, A. Casella, & L. Ruffoni)

Florida State University

UF Colloquium
Feb 11, 2022



Overview

• Correspondences between an analytic object (ODEs &
measured laminations) and geometric objects (complex
projective structures)

• In general, these correspondences are not explicit
• Today: In certain cases we can make these
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CP1 geometry

CP1 “ CY t8u (Riemann Sphere)

PSL2pCq “ SL2pCq{t˘Iu (Biholomorphisms of CP1)

PSL2pCq acts on CP1 via linear fractional transformations
„

a b
c d



¨ z “
az ` b
cz ` d

• There is no PSL2pCq-invariant metric on CP1

• Circles are invariant and play the role of geodesics
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Hyperbolic surfaces

Let Σ :“ Σg be a surface of genus g with χpΣq :“ 2´ 2g ă 0

• D “ tz P C | |z| ă 1u (unit disk)
• D is a model of the hyperbolic plane
• GD :“ StabPSL2pCqpDq “ IsompDq

“ PSUp1,1q

‰ PSL2pRq

Theorem (Uniformization)
There is a discrete group Γ Ă GD so that Σ – D{Γ.

Let T pΣq be the space of hyperbolic structures on Σ

Theorem
The space, T pΣq – R6g´6
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Complex projective structures
Definition

Let Σ be a surface. A complex projective structure on Σ
consists of charts from Σ into CP1 whose transition functions
are elements of PSL2pCq

For z P U1 X U2, φ1pzq “ g12φ2pzq
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Development and holonomy
A more global approach

Using analytic continuation we can attempt to enlarge our
charts

Not well defined on Σ, We are really defining

dev : rΣ “ DÑ CP1, hol : π1Σ – Γ Ñ PSL2pCq

r`s ÞÑ g12 . . . gm´1mφmp`p1qq rγs ÞÑ pg12 . . . gk1q
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Properties

• dev is called a developing map
• hol is called a holonomy representation

• dev is a hol-equivariant local diffeomorphism
i.e. devpγ ¨ zq “ holpγq ¨ devpzq @z P D, γ P π1M

• Constructing a complex projective structure is equivalent to
constructing such an equivariant pair

Let PpΣq be space of all complex projective structures on Σ
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Second order linear ODEs
Simply connected case

Let φ : DÑ C be holomorphic and consider the differential
equation

u2 `
1
2
φu “ 0 (1)

Theorem (Cauchy)
For any c1, c2 P C there is unique u : DÑ C solution to (1)
satisfying the initial condition up0q “ c1 and u1p0q “ c2

The solutions to (1) form a 2-dimensional vector space
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Second order linear ODEs
A local approach

Let U Ă C be connected, and let φ : U Ñ C be holomorphic

For p P U there is a basis tu1,u2u of local solutions to (1)

Using analytic continuation we can attempt to extend u1 and u2
to all of U.

Problem: when we analytically continue around a loop γ we
may arrive at new solutions pv1, v2q ‰ pu1,u2q.
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Second order linear ODEs
A global approach

Solution:
• There is Mpγq P GL2pCq so that Mpγqui “ vi

• Mpγq only depends on homotopy class of γ.

• Let π : rU Ñ U be the universal covering
• Think of ui : rU Ñ C (defined on universal cover)
• For each rγs P π1pΣq – Deckpπq and each z P rU,

pui ˝ rγsqpzq “ Mpγquipzq

Get an equivariant pair:

pu1,u2q : rU Ñ C M : π1pΣq Ñ GL2pCq
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An Example
Let U “ Dzt0u and consider the equation

u2 `
u

4z2 “ 0

upzq “ z1{2 is a “solution”

(it’s multivalued)

φ : HÑ U, t φ
ÞÑ expp2πitq is a universal cover

Deck group generated by t ÞÑ t ` 1

z1{2 “ exp plogpzq{2q “ exppπitq

exppπipt ` 1qq “ exppπiqexppπitq “ ´exppπitq “ ´z´1{2
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Relation between constructions
Equations give structure

Let Σ “ D{Γ be hyperbolic surface, φ : Σ Ñ C holomorphic
• u1,u2 : DÑ C a basis of solutions to

u2 ` 1{2uφ “ 0
• rMs : π1pΣq Ñ PGL2pCq (projectivized) monodromy.

dev : DÑ CP1, z dev
ÞÑ

u1pzq
u2pzq

Let rMpγqs “
„

a b
c d



pdev ˝ γqpzq “
pu1 ˝ γqpzq
pu2 ˝ γqpzq

“
au1pzq ` bu2pzq
cu1pzq ` du2pzq

“
a ¨ devpzq ` b
c ¨ devpzq ` d

“ rMpγqs ¨ devpzq

pdev, rMsq give a complex projective structure on M.



Relation between constructions
Equations give structure

Let Σ “ D{Γ be hyperbolic surface, φ : Σ Ñ C holomorphic
• u1,u2 : DÑ C a basis of solutions to

u2 ` 1{2uφ “ 0
• rMs : π1pΣq Ñ PGL2pCq (projectivized) monodromy.

dev : DÑ CP1, z dev
ÞÑ

u1pzq
u2pzq

Let rMpγqs “
„

a b
c d



pdev ˝ γqpzq “
pu1 ˝ γqpzq
pu2 ˝ γqpzq

“
au1pzq ` bu2pzq
cu1pzq ` du2pzq

“
a ¨ devpzq ` b
c ¨ devpzq ` d

“ rMpγqs ¨ devpzq

pdev, rMsq give a complex projective structure on M.



Relation between constructions
Equations give structure

Let Σ “ D{Γ be hyperbolic surface, φ : Σ Ñ C holomorphic
• u1,u2 : DÑ C a basis of solutions to

u2 ` 1{2uφ “ 0
• rMs : π1pΣq Ñ PGL2pCq (projectivized) monodromy.

dev : DÑ CP1, z dev
ÞÑ

u1pzq
u2pzq

Let rMpγqs “
„

a b
c d



pdev ˝ γqpzq “
pu1 ˝ γqpzq
pu2 ˝ γqpzq

“
au1pzq ` bu2pzq
cu1pzq ` du2pzq

“
a ¨ devpzq ` b
c ¨ devpzq ` d

“ rMpγqs ¨ devpzq

pdev, rMsq give a complex projective structure on M.



Relation between constructions
Equations give structure

Let Σ “ D{Γ be hyperbolic surface, φ : Σ Ñ C holomorphic
• u1,u2 : DÑ C a basis of solutions to

u2 ` 1{2uφ “ 0
• rMs : π1pΣq Ñ PGL2pCq (projectivized) monodromy.

dev : DÑ CP1, z dev
ÞÑ

u1pzq
u2pzq

Let rMpγqs “
„

a b
c d



pdev ˝ γqpzq “
pu1 ˝ γqpzq
pu2 ˝ γqpzq

“
au1pzq ` bu2pzq
cu1pzq ` du2pzq

“
a ¨ devpzq ` b
c ¨ devpzq ` d

“ rMpγqs ¨ devpzq

pdev, rMsq give a complex projective structure on M.



Relations between the construction
Structure gives equations

If f : DÑ C is holomorphic the Schwartzian of f is given by

Spf q “
ˆ

f 2

f 1

˙1

´
1
2

ˆ

f 2

f 1

˙2

• If u1,u2 solve u2 ` 1
2φu “ 0 then Spu1{u2q “ φ

(ODE “inverts” Schwartzian)
• pdev , ρq a complex projective structure on Σ let φ̃ “ Spdevq
• Equivariance of dev ñ π1pΣq-invariance of φ̃,

get φ : Σ Ñ C
• Can form the ODE u2 ` 1

2φu “ 0 on Σ

dev comes from a solution to this equation
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Analytic properties

?
ðñ Geometric properties
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Another Correspondence
Grafting

Let Σ “ D{Γ hyperbolic, γ Ă Σ a closed geodesic, t P R`

We can produce a new complex projective structure, GrtγpX q
on Σ by grafting in a Euclidean cylinder of height t

Complex Projective Structures 15

X

Grt� X

eX

Ĝrt� X

Figure 2. Projective grafting: Gluing a cylinder into the surface along a
geodesic corresponds to inserting a sector or lune into each lift of the geodesic.
Only one lift is shown here, but the gluing construction is repeated equivari-

antly in Ĝrt�X.

plane C⇤ some number of times. Alternatively, we could define At for t � 2⇡
by gluing n copies of At/n end-to-end, for a su�ciently large n 2 N.

Therefore we have a projective grafting map,

Gr : S ⇥ R+ ⇥ T (S) ! P(S)

which is a lift of grafting through the forgetful map ⇡ : P(S) ! T (S), i.e. ⇡ �
Gr = gr.

Variations on simple grafting. Grafting along a simple geodesic with
weight t = 2⇡ was originally used by Maskit [83], Hejhal [47], and Sullivan-
Thurston [109] to construct examples of exotic Fuchsian projective structures
(discussed in §5.4 below). Grafting with weight 2⇡ is special because it does
not change the holonomy representation of the Fuchsian projective structure
(see §5).

It is possible to extend this holonomy-preserving grafting operation to cer-
tain simple closed curves which are not geodesic, and to projective structures
that are not standard Fuchsian (see [66, Ch. 7]); this generalization has been
important to some applications in Kleinian groups and hyperbolic geometry
(e.g. [13][11, §5]), and it will appear again in our description of quasi-Fuchsian
projective structures (§5.5). However, our main focus in this chapter is a dif-
ferent extension of grafting, defined by Thurston, which leads to a geometric
model for the entire moduli space P(S).

Figure: Picture from Dumas, Complex Projective Structures

Let S be free homotopy class of s.c.c’s. Get

Gr : S ˆ R` ˆ T pΣq Ñ PpΣq
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Only one lift is shown here, but the gluing construction is repeated equivari-

antly in Ĝrt�X.

plane C⇤ some number of times. Alternatively, we could define At for t � 2⇡
by gluing n copies of At/n end-to-end, for a su�ciently large n 2 N.

Therefore we have a projective grafting map,

Gr : S ⇥ R+ ⇥ T (S) ! P(S)

which is a lift of grafting through the forgetful map ⇡ : P(S) ! T (S), i.e. ⇡ �
Gr = gr.

Variations on simple grafting. Grafting along a simple geodesic with
weight t = 2⇡ was originally used by Maskit [83], Hejhal [47], and Sullivan-
Thurston [109] to construct examples of exotic Fuchsian projective structures
(discussed in §5.4 below). Grafting with weight 2⇡ is special because it does
not change the holonomy representation of the Fuchsian projective structure
(see §5).

It is possible to extend this holonomy-preserving grafting operation to cer-
tain simple closed curves which are not geodesic, and to projective structures
that are not standard Fuchsian (see [66, Ch. 7]); this generalization has been
important to some applications in Kleinian groups and hyperbolic geometry
(e.g. [13][11, §5]), and it will appear again in our description of quasi-Fuchsian
projective structures (§5.5). However, our main focus in this chapter is a dif-
ferent extension of grafting, defined by Thurston, which leads to a geometric
model for the entire moduli space P(S).

Figure: Picture from Dumas, Complex Projective Structures

Let S be free homotopy class of s.c.c’s. Get

Gr : S ˆ R` ˆ T pΣq Ñ PpΣq
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Thurston’s Theorem

Construction produces all complex projective structures

LetMLpΣq be measured laminations on Σ
(limits of weighted multicurves)

Theorem (Thurston)

Gr :MLpΣq ˆ T pΣq Ñ PpΣq
is a homeomorphism.
Good News: Every complex projective structure arises from
grafting a hyperbolic surface.

Bad News: The inverse procedure is fairly non-constructive.
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A transparent case

Let Σ “ Σ0,3 (thrice punctured sphere)
Let σ “ pdev, ρq P PpΣq
σ is:

• tame if dev can be extended (meromorphically) to the
punctures

• relatively elliptic if holonomy of peripheral curves is elliptic
(conjugate to rotation z ÞÑ eiθz, θ P R)

• non-degenerate if ρpπ1Σq has no finite orbits
(e.g. no global fixed points)

Let PdpΣq be the space of tame, relatively elliptic, and
non-degenerate structures on Σ
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Examples
Triangular structures

Given a configuration of 3 circles in CP1 we can build (several)
complex projective structures on Σ. (triangular structures)

π1pΣq – xα, βy,
ρpαq “ RpC2qRpC3q – pz ÞÑ e2iθzq,
ρpβq “ RpC3qRpC1q – pz ÞÑ e2iφzq
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Grafting again

Given a triangular structure we can do 2 different types of
grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in
copy of CP1

• Edge grafting (blue)
• Core grafting (red)

This grafting is discrete, not continuous!
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Theorem 1

Theorem 1 (B-Bowers-Casella-Ruffoni)
Let Σ “ Σ0,3 and let τ P PdpΣq. Then τ is obtained from a
triangular structure by a finite sequence of edge and core
graftings.
The sequence of graftings and the triangular structure can be
computed explicitly (Algorithmic).



Sketch of proof

• If τ “ pdev, ρq, then near each puncture dev looks like
z ÞÑ zα{2π, for α P R (punctures have winding number)

• Winding numbers determine τ P PdpΣq (Complex analysis)
• Let p2a,2b,2cq be winding numbers of τ
• Edge grafting increases winding numbers by p2π,2πq and

core grafting increases winding number by 4π
• If winding numbers are small there is a triangular structure

with winding number p2a,2b,2cq (angles are a,b, c)
• If some winding numbers are big can find, a1,b1, c1 small,

and ka, kb, kc P N, pa1,b1, c1q “ pa,b, cq ´ πpka, kb, kcq so
that there is a triangular structure with winding numbers
p2a1,2b1,2c1q that can be grafted to τ .

pa1,b1, c1q determine triangular structure, pka, kb, kcq

determine grafting.



Sketch of proof

• If τ “ pdev, ρq, then near each puncture dev looks like
z ÞÑ zα{2π, for α P R (punctures have winding number)

• Winding numbers determine τ P PdpΣq (Complex analysis)

• Let p2a,2b,2cq be winding numbers of τ
• Edge grafting increases winding numbers by p2π,2πq and

core grafting increases winding number by 4π
• If winding numbers are small there is a triangular structure

with winding number p2a,2b,2cq (angles are a,b, c)
• If some winding numbers are big can find, a1,b1, c1 small,

and ka, kb, kc P N, pa1,b1, c1q “ pa,b, cq ´ πpka, kb, kcq so
that there is a triangular structure with winding numbers
p2a1,2b1,2c1q that can be grafted to τ .

pa1,b1, c1q determine triangular structure, pka, kb, kcq

determine grafting.



Sketch of proof

• If τ “ pdev, ρq, then near each puncture dev looks like
z ÞÑ zα{2π, for α P R (punctures have winding number)

• Winding numbers determine τ P PdpΣq (Complex analysis)
• Let p2a,2b,2cq be winding numbers of τ

• Edge grafting increases winding numbers by p2π,2πq and
core grafting increases winding number by 4π

• If winding numbers are small there is a triangular structure
with winding number p2a,2b,2cq (angles are a,b, c)

• If some winding numbers are big can find, a1,b1, c1 small,
and ka, kb, kc P N, pa1,b1, c1q “ pa,b, cq ´ πpka, kb, kcq so
that there is a triangular structure with winding numbers
p2a1,2b1,2c1q that can be grafted to τ .

pa1,b1, c1q determine triangular structure, pka, kb, kcq

determine grafting.



Sketch of proof

• If τ “ pdev, ρq, then near each puncture dev looks like
z ÞÑ zα{2π, for α P R (punctures have winding number)

• Winding numbers determine τ P PdpΣq (Complex analysis)
• Let p2a,2b,2cq be winding numbers of τ
• Edge grafting increases winding numbers by p2π,2πq and

core grafting increases winding number by 4π

• If winding numbers are small there is a triangular structure
with winding number p2a,2b,2cq (angles are a,b, c)

• If some winding numbers are big can find, a1,b1, c1 small,
and ka, kb, kc P N, pa1,b1, c1q “ pa,b, cq ´ πpka, kb, kcq so
that there is a triangular structure with winding numbers
p2a1,2b1,2c1q that can be grafted to τ .

pa1,b1, c1q determine triangular structure, pka, kb, kcq

determine grafting.



Sketch of proof

• If τ “ pdev, ρq, then near each puncture dev looks like
z ÞÑ zα{2π, for α P R (punctures have winding number)

• Winding numbers determine τ P PdpΣq (Complex analysis)
• Let p2a,2b,2cq be winding numbers of τ
• Edge grafting increases winding numbers by p2π,2πq and

core grafting increases winding number by 4π
• If winding numbers are small there is a triangular structure

with winding number p2a,2b,2cq (angles are a,b, c)

• If some winding numbers are big can find, a1,b1, c1 small,
and ka, kb, kc P N, pa1,b1, c1q “ pa,b, cq ´ πpka, kb, kcq so
that there is a triangular structure with winding numbers
p2a1,2b1,2c1q that can be grafted to τ .

pa1,b1, c1q determine triangular structure, pka, kb, kcq

determine grafting.



Sketch of proof

• If τ “ pdev, ρq, then near each puncture dev looks like
z ÞÑ zα{2π, for α P R (punctures have winding number)

• Winding numbers determine τ P PdpΣq (Complex analysis)
• Let p2a,2b,2cq be winding numbers of τ
• Edge grafting increases winding numbers by p2π,2πq and

core grafting increases winding number by 4π
• If winding numbers are small there is a triangular structure

with winding number p2a,2b,2cq (angles are a,b, c)
• If some winding numbers are big can find, a1,b1, c1 small,

and ka, kb, kc P N, pa1,b1, c1q “ pa,b, cq ´ πpka, kb, kcq so
that there is a triangular structure with winding numbers
p2a1,2b1,2c1q that can be grafted to τ .

pa1,b1, c1q determine triangular structure, pka, kb, kcq

determine grafting.



Sketch of proof

• If τ “ pdev, ρq, then near each puncture dev looks like
z ÞÑ zα{2π, for α P R (punctures have winding number)

• Winding numbers determine τ P PdpΣq (Complex analysis)
• Let p2a,2b,2cq be winding numbers of τ
• Edge grafting increases winding numbers by p2π,2πq and

core grafting increases winding number by 4π
• If winding numbers are small there is a triangular structure

with winding number p2a,2b,2cq (angles are a,b, c)
• If some winding numbers are big can find, a1,b1, c1 small,

and ka, kb, kc P N, pa1,b1, c1q “ pa,b, cq ´ πpka, kb, kcq so
that there is a triangular structure with winding numbers
p2a1,2b1,2c1q that can be grafted to τ .
pa1,b1, c1q determine triangular structure, pka, kb, kcq

determine grafting.



A typical example
Winding numbers are 2a “ 9π, 2b “ 3π, 2c “ π
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Complex analytic perspective

How do analytic properties of u2 ` 1{2φu “ 0 correspond to
geometric properties of complex projective structures??

Σ0,3 – CP1zt0,1,8u

Theorem 2 (B-Bowers-Casella-Ruffoni)
τ P PdpΣ0,3q iff τ comes from a solution to u2 ` 1{2φu “ 0
where φ : CP1 Ñ C is meromorphic with poles of order ď 2 at
t0,1,8u.

We can determine the winding numbers from the poles of φ!!
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Determining winding number

• Near z “ 0, φpzq “ a
z2 `Op1{zq

• Let r1, r2 solutions to rpr ´ 1q ` a
2 “ 0

• Generically, solutions to u2 ` 1{2φu “ 0 are of form

u1pzq “ zr1h1pzq, u2 “ zr2h2pzq

where hipzq analytic and non-zero near z “ 0.
(not quite if r1 ´ r2 P Z)

• devpzq “ u1pzq
u2pzq

“ zθMpzq where θ “ r1 ´ r2, Mpzq analytic
and non-zero at z “ 0

• 2πθ is winding number and θ “ ˘
?

1´ 2a
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Remaining questions

Can we give specific relationship between geometric/analytic
properties for general non-compact Σ?

• Not an obvious candidate to replace triangular structures
• Winding numbers don’t determine structure

(complex structure not unique)
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Thank you!


