Exotic properly convex manifolds via Dehn filling

(joint with J. Danciger, G.-S. Lee, and L. Marquis)

Florida State University

University of Virginia Geometry Seminar Oct 26, 2021

うつん 川 エー・エー・ エー・ ひゃう

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let *M* be a closed hyperbolic manifold. Let $\mathbb{H}(M)$ be the space of hyperbolic structures on *M*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

Let M be a closed hyperbolic manifold.

Let $\mathbb{H}(M)$ be the space of hyperbolic structures on M

Theorem $\mathbb{H}(M)$ is connected

Let M be a closed hyperbolic manifold.

Let $\mathbb{H}(M)$ be the space of hyperbolic structures on M

Theorem $\mathbb{H}(M)$ is connected

proof sketch:

 dim(*M*) = 2: Fenchel-Neilsen coordinates on Teichmüller space

• dim(*M*) > 2: Mostow rigidity.

Let M be a closed hyperbolic manifold.

Let $\mathbb{H}(M)$ be the space of hyperbolic structures on M

Theorem $\mathbb{H}(M)$ is connected

proof sketch:

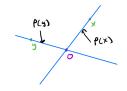
 dim(M) = 2: Fenchel-Neilsen coordinates on Teichmüller space

• dim(*M*) > 2: Mostow rigidity.

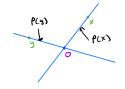
Motivating Question: What happens if we look at other geometries?

Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1} .

Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1} . Let $P : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be *projectivization*.

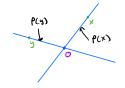


Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1} . Let $P : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be *projectivization*.



$$G = \mathsf{PGL}_{n+1}(\mathbb{R}) := \mathsf{GL}_{n+1}(\mathbb{R})/\mathbb{R}^{\times}I$$

Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1} . Let $P : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be *projectivization*.



$$G = \mathsf{PGL}_{n+1}(\mathbb{R}) := \mathsf{GL}_{n+1}(\mathbb{R})/\mathbb{R}^{\times}\mathrm{I}$$

 \mathbb{RP}^n is a geometry with automorphism group *G*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let \widetilde{H} be a hyperplane in \mathbb{R}^{n+1} Let $H = P(\widetilde{H})$ be the corresponding projective hyperplane Let \widetilde{H} be a hyperplane in \mathbb{R}^{n+1} Let $H = P(\widetilde{H})$ be the corresponding projective hyperplane $A_H := \mathbb{RP}^n \setminus H$ is an *affine patch*

Let \widetilde{H} be a hyperplane in \mathbb{R}^{n+1} Let $H = P(\widetilde{H})$ be the corresponding projective hyperplane $A_H := \mathbb{RP}^n \setminus H$ is an *affine patch* (i.e. $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$)

うつん 川 エー・エー・ エー・ ひゃう

Let \widetilde{H} be a hyperplane in \mathbb{R}^{n+1} Let $H = P(\widetilde{H})$ be the corresponding projective hyperplane $A_H := \mathbb{RP}^n \setminus H$ is an *affine patch* (i.e. $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$) $\Omega \subset \mathbb{RP}^n$ is *properly convex* if $\overline{\Omega}$ is a convex subset of some affine patch

うつん 川 エー・エー・ エー・ ひゃう

Let \widetilde{H} be a hyperplane in \mathbb{R}^{n+1} Let $H = P(\widetilde{H})$ be the corresponding projective hyperplane $A_H := \mathbb{RP}^n \setminus H$ is an *affine patch* (i.e. $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$) $\Omega \subset \mathbb{RP}^n$ is *properly convex* if $\overline{\Omega}$ is a convex subset of some affine patch

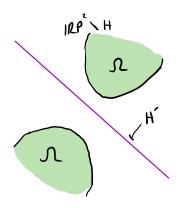
Let Ω be properly convex. Define

$$\mathsf{PGL}(\Omega) = \{ \boldsymbol{A} \in \boldsymbol{G} \mid \boldsymbol{A}(\Omega) = \Omega \}$$

Convex projective geometry

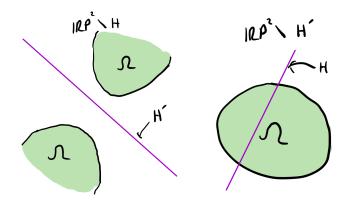
Some examples

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで



Convex projective geometry

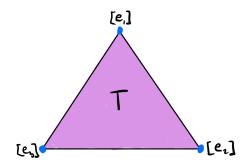
Some examples



Convex Projective Geometry

Some examples

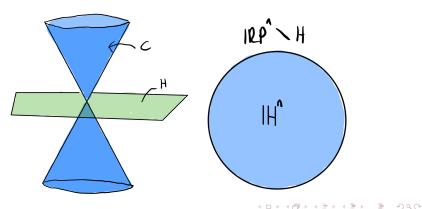
- $\widetilde{T} = \mathbb{R}^3_+$ (positive orthant)
- $T = P(\widetilde{T})$
- $\mathsf{PGL}(\mathcal{T}) \cong \mathsf{Diag}_3 \rtimes \mathcal{S}_3 \subset \mathsf{PGL}_3(\mathbb{R})$



Convex Projective Geometry

Some Examples

- L a Lorentzian form on \mathbb{R}^{n+1}
- $C = \{ v \in \mathbb{R}^{n+1} \mid L(v, v) < 0 \}$
- $\mathbb{H}^n = P(C)$ (Klein Model)
- $PGL(\mathbb{H}^n) \cong PO(L)$



Convex Projective Manifolds

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let Ω be properly convex Let $\Gamma \subset \mathsf{PGL}(\Omega)$ be discrete

Convex Projective Manifolds

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Let Ω be properly convex Let $\Gamma \subset PGL(\Omega)$ be discrete Ω/Γ is a *convex projective manifold*

Some Examples

Complete Hyperbolic Manifolds

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- $\Omega \cong \mathbb{H}^n$
- $\Gamma \subset \mathsf{PGL}(\mathbb{H}^n)$ discrete

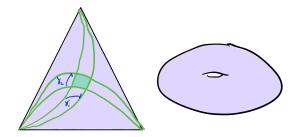
The \mathbb{H}^n/Γ is a complete hyperbolic manifold

Some Examples

Hex Torus

- $\Omega \cong T$
- $\Delta \cong \langle \gamma_1, \gamma_2 \rangle \subset \text{Diag}_3$

T/Δ is a *hex torus*

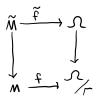


Convex Projective Structures

Let *M* be a compact manifold

A *convex projective structure* on *M* is $(f, \Omega/\Gamma)$

- Ω/Γ properly convex
- $f: M \rightarrow \Omega/\Gamma$ a diffeomorphism

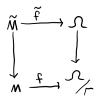


Convex Projective Structures

Let *M* be a compact manifold

A *convex projective structure* on *M* is $(f, \Omega/\Gamma)$

- Ω/Γ properly convex
- $f: M \rightarrow \Omega/\Gamma$ a diffeomorphism



There is an equivalence relation generated by

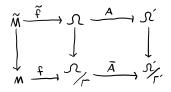
- Isotopy of f
- Replace Ω/Γ with Ω'/Γ' where $\Omega' = A(\Omega)$, $\Gamma' = A\Gamma A^{-1}$ for $A \in G$

Convex Projective Structures

Let *M* be a compact manifold

A convex projective structure on *M* is $(f, \Omega/\Gamma)$

- Ω/Γ properly convex
- $f: M \rightarrow \Omega/\Gamma$ a diffeomorphism



There is an equivalence relation generated by

- Isotopy of f
- Replace Ω/Γ with Ω'/Γ' where $\Omega' = A(\Omega)$, $\Gamma' = A\Gamma A^{-1}$ for $A \in G$

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Let *M* be a closed hyperbolic manifold Let CP(M) be the set of equivalence classes Topologize CP(M) using C^{∞} topology on $C^{\infty}(\widetilde{M}, \mathbb{RP}^n)$ Let *M* be a closed hyperbolic manifold Let CP(M) be the set of equivalence classes Topologize CP(M) using C^{∞} topology on $C^{\infty}(\widetilde{M}, \mathbb{RP}^n)$

Definition

 $p \in CP(M)$ is *exotic* if it is not the same connected component as $\mathbb{H}(M) \subset CP(M)$.

p is exotic if it cannot be continuously deformed to a hyperbolic structure

Existence

When do exotic structures exist?

Existence

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

When do exotic structures exist?

• Dimension 2: No exotic structures (Goldman '90)

Existence

When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman '90)
- Dimension 3: Infinitely many examples (B-Danciger-Lee-Marquis)

Existence

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman '90)
- Dimension 3: Infinitely many examples (B-Danciger-Lee-Marquis)
- Dimension ≥ 4: ???

Existence

When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman '90)
- Dimension 3: Infinitely many examples (B-Danciger-Lee-Marquis)
- Dimension ≥ 4: ???

Question: Does every closed hyperbolic 3-manifold admit an exotic convex projective structure?

Existence

When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman '90)
- Dimension 3: Infinitely many examples (B-Danciger-Lee-Marquis)
- Dimension ≥ 4: ???

Question: Does every closed hyperbolic 3-manifold admit an exotic convex projective structure? (maybe yes!)

Some Tools

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Let $[(f, \Omega/\Gamma)] \in CP(M)$. Define $f_* : \pi_1 M \hookrightarrow \Gamma \subset G$ (*holonomy*) This is only well defined up to conjugacy in *G*

Some Tools

Let $[(f, \Omega/\Gamma)] \in CP(M)$. Define $f_* : \pi_1 M \hookrightarrow \Gamma \subset G$ (*holonomy*) This is only well defined up to conjugacy in GHol : $CP(M) \to Rep(\pi_1 M, G) := Hom(\pi_1 M, G)/G$ $[(f, \Omega/\Gamma)] \mapsto [f_*]$ (*holonomy map*)

Some Tools

Let $[(f, \Omega/\Gamma)] \in CP(M)$. Define $f_* : \pi_1 M \hookrightarrow \Gamma \subset G$ (holonomy) This is only well defined up to conjugacy in GHol : $CP(M) \to Rep(\pi_1 M, G) := Hom(\pi_1 M, G)/G$ $[(f, \Omega/\Gamma)] \mapsto [f_*]$ (holonomy map) Theorem (Koszul)

Hol is an open map

Let $[(f, \Omega/\Gamma)] \in CP(M)$.

Define $f_* : \pi_1 M \hookrightarrow \Gamma \subset G$ (holonomy)

This is only well defined up to conjugacy in G

Hol :
$$CP(M) \rightarrow Rep(\pi_1 M, G) := Hom(\pi_1 M, G)/G$$

[$(f, \Omega/\Gamma)$] $\mapsto [f_*]$ (holonomy map)

Theorem (Koszul)

Hol is an open map

Moral: If you can deform the representation you can deform the structure.

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

- *M* a closed hyperbolic 3-manifold
- $[(f_{hyp}, \mathbb{H}^n/\Gamma)] \in CP(M)$ the hyperbolic structure
- $\rho_{hyp} = (f_{hyp})_*$ hyperbolic holonomy
- g the Lie algebra of G
- $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ (twisted cohomology)

うつん 川 エー・エー・ エー・ ひゃう

- M a closed hyperbolic 3-manifold
- $[(f_{hyp}, \mathbb{H}^n/\Gamma)] \in CP(M)$ the hyperbolic structure
- $\rho_{hyp} = (f_{hyp})_*$ hyperbolic holonomy
- g the Lie algebra of G
- $H^{1}_{\rho_{hyp}}(\pi_{1}M,\mathfrak{g})$ (twisted cohomology)

Fact: $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ is the "Zariski tangent space" to $\operatorname{Rep}(\pi_1 M, G)$ at $[\rho_{hyp}]$

うつん 川 エー・エー・ エー・ ひゃう

- M a closed hyperbolic 3-manifold
- $[(f_{hyp}, \mathbb{H}^n/\Gamma)] \in CP(M)$ the hyperbolic structure
- $\rho_{hyp} = (f_{hyp})_*$ hyperbolic holonomy
- g the Lie algebra of G
- $H^{1}_{\rho_{hyp}}(\pi_{1}M, \mathfrak{g})$ (twisted cohomology)

Fact: $H^{1}_{\rho_{hyp}}(\pi_{1}M, \mathfrak{g})$ is the "Zariski tangent space" to $\operatorname{Rep}(\pi_{1}M, G)$ at $[\rho_{hyp}]$

If $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g}) = 0$ then *M* is *infinitesimally rigid*

- M a closed hyperbolic 3-manifold
- $[(f_{hyp}, \mathbb{H}^n/\Gamma)] \in CP(M)$ the hyperbolic structure
- $\rho_{hyp} = (f_{hyp})_*$ hyperbolic holonomy
- g the Lie algebra of G
- $H^{1}_{\rho_{hyp}}(\pi_{1}M, \mathfrak{g})$ (twisted cohomology)

Fact: $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ is the "Zariski tangent space" to $\operatorname{Rep}(\pi_1 M, G)$ at $[\rho_{hyp}]$

If $H^1_{\rho_{hvo}}(\pi_1 M, \mathfrak{g}) = 0$ then *M* is *infinitesimally rigid*

Fact: Infinitesimally rigid \Rightarrow locally rigid \Rightarrow all non-hyperbolic structures are exotic.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

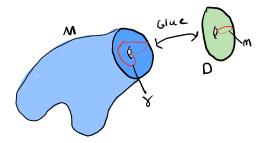
Let *N* be a manifold with $\partial N \cong T^2$. Let $[\gamma] \in \pi_1(\partial N)$ be simple Let *D* be a solid torus with meridian *m*

Let *N* be a manifold with $\partial N \simeq T^2$.

Let $[\gamma] \in \pi_1(\partial N)$ be simple

Let D be a solid torus with meridian m

Let N_{γ} be obtained by gluing *N* and *D* along boundaries by diffeomorphism mapping γ to *m* (*Dehn filling of N along* γ)



うつん 川 エー・エー・ エー・ ひゃう

(ロト (個) (E) (E) (E) (E) のへの

Let N be the complement of the figure-8 knot

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Let *N* be the complement of the figure-8 knot Theorem (Thurston's Dehn Filling Theorem) All but finitely many Dehn fillings of *N* admit a hyperbolic structure.

Let N be the complement of the figure-8 knot

Theorem (Thurston's Dehn Filling Theorem) All but finitely many Dehn fillings of N admit a hyperbolic structure.

Theorem (Heusener-Porti)

All but finitely many Dehn fillings of N are infinitesimally rigid.

Let N be the complement of the figure-8 knot

Theorem (Thurston's Dehn Filling Theorem) All but finitely many Dehn fillings of N admit a hyperbolic structure.

Theorem (Heusener-Porti)

All but finitely many Dehn fillings of N are infinitesimally rigid.

Theorem (B-Danciger-Lee-Marquis)

Infinitely many Dehn fillings of N admit exotic convex projective structures.

Let N be the complement of the figure-8 knot

Theorem (Thurston's Dehn Filling Theorem) All but finitely many Dehn fillings of N admit a hyperbolic structure.

Theorem (Heusener-Porti)

All but finitely many Dehn fillings of N are infinitesimally rigid.

Theorem (B-Danciger-Lee-Marquis)

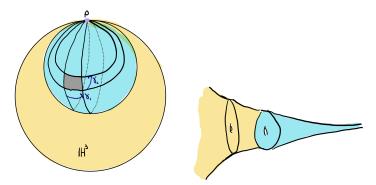
Infinitely many Dehn fillings of N admit exotic convex projective structures.

N can be replaced by other 1-cusped hyperbolic manifolds.

Let $\rho_{hyp} : \pi_1 N \to \mathsf{PSL}(2, \mathbb{C})$ be the hyperbolic holonomy Let $\Delta = \pi_1 \partial N = \langle \gamma_1, \gamma_2 \rangle \cong \mathbb{Z}^2$. $\rho_{hyp}(\Delta) \subset G_p \cong \mathbb{R}^2$ (stabilizer of $p \in \partial \mathbb{H}^3$)

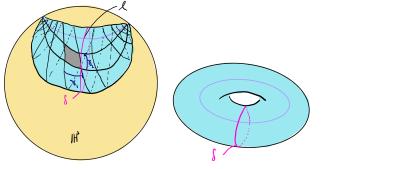
▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆□ のへ⊙

Let $\rho_{hyp} : \pi_1 N \to \mathsf{PSL}(2, \mathbb{C})$ be the hyperbolic holonomy Let $\Delta = \pi_1 \partial N = \langle \gamma_1, \gamma_2 \rangle \cong \mathbb{Z}^2$. $\rho_{hyp}(\Delta) \subset G_p \cong \mathbb{R}^2$ (stabilizer of $p \in \partial \mathbb{H}^3$)



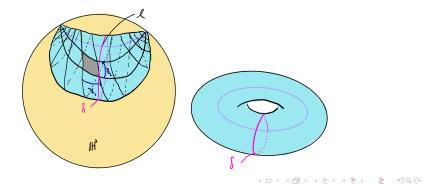
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つく⊙

 $\begin{array}{l} \text{Deform } \rho_{\textit{hyp}} \text{ to non-conjugate } \rho' \in \text{Hom}(\pi_1 N, \text{PSL}(2, \mathbb{C})) \\ \rho'(\Delta) \subset \mathcal{G}_{\ell} \cong \mathbb{C}^* & (\textit{stabilizer of geodesic } \ell) \end{array}$



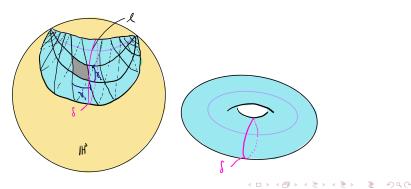
 $\begin{array}{l} \text{Deform } \rho_{\textit{hyp}} \text{ to non-conjugate } \rho' \in \text{Hom}(\pi_1 N, \text{PSL}(2,\mathbb{C})) \\ \rho'(\Delta) \subset G_\ell \cong \mathbb{C}^* & (\textit{stabilizer of geodesic } \ell) \end{array}$

 ρ' is the holonomy of an *incomplete* hyperbolic structure on *N*.

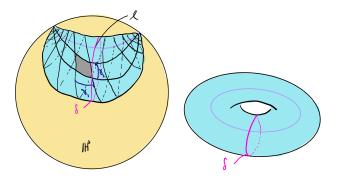


 $\begin{array}{ll} \text{Deform }\rho_{hyp} \text{ to non-conjugate }\rho' \in \text{Hom}(\pi_1 N, \text{PSL}(2,\mathbb{C}))\\ \rho'(\Delta) \subset G_\ell \cong \mathbb{C}^* & (\textit{stabilizer of geodesic }\ell)\\ \rho' \text{ is the holonomy of an }\textit{incomplete hyperbolic structure on } N.\\ \text{Let }g_1 = \rho'(\gamma_1), \ g_2 = \rho'(\gamma_2)\\ \text{There are unique }(a,b) \in \mathbb{R}^2 \text{ so that } & \textit{Dehn filling coordinates} \end{array}$

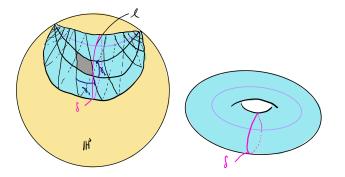
 $a\log(g_1) + b\log(g_2) = 2\pi i$



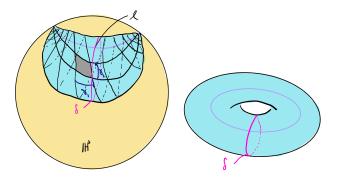
Dehn filling coordinates control geometry of the completion



Dehn filling coordinates control geometry of the completion If $(a, b) \in \mathbb{Z}^2$ relatively prime $\delta = \gamma_1^a \gamma_2^b$ is simple curve in ker ρ' , $\rho'(\Delta) \cong \mathbb{Z}$



Dehn filling coordinates control geometry of the completion If $(a, b) \in \mathbb{Z}^2$ relatively prime $\delta = \gamma_1^a \gamma_2^b$ is simple curve in ker $\rho', \rho'(\Delta) \cong \mathbb{Z}$ The completion of incomplete structure is N_δ N_δ has a hyperbolic structure!!



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Which δ arise from this construction?

Which δ arise from this construction?

Thurston: there is k so that if

- (*a*, *b*) ∈ ℤ²
- a, b relatively prime
- $a^2 + b^2 > k^2$

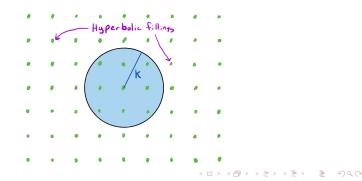
then (a, b) are the Dehn filling coordinates of incomplete structure on N

Which δ arise from this construction?

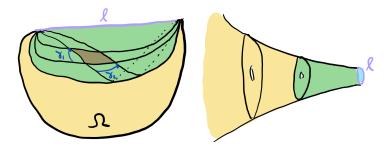
Thurston: there is k so that if

- (*a*, *b*) ∈ ℤ²
- a, b relatively prime
- $a^2 + b^2 > k^2$

then (a, b) are the Dehn filling coordinates of incomplete structure on N



Deform ρ_{hyp} to $\rho' \in \text{Hom}(\pi_1 N, G)$ where ρ' is holonomy of convex projective structure with "generalized cusp" (*Cooper-Long-Tillmann extension of Koszul Thm*)



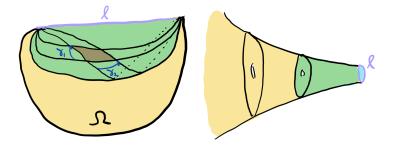
イロト 不良 とくほう 不良 とうほ

first deformation

 $\rho'(\Delta) \subset G^{\Omega}_{\ell} \cong \mathbb{R}_{dil} \oplus i\mathbb{R}_{uni} \cong \mathbb{C} \quad (stabilizer of \ \ell \ in \ \mathsf{PGL}(\Omega))$ There is (non-unique) $(a, b) \in \mathbb{R}^2$ so that

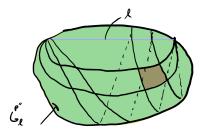
 $\rho'(\gamma_1^a \gamma_2^b) \in i\mathbb{R}_{uni}$

 $a/b \in S^1 = \mathbb{R} \cup \{\infty\}$ is well defined (*unipotent slope*)



<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Deform ρ' to $\rho'' \in \text{Hom}(\pi_1 M, G)$ so that $\rho''(\Delta) \subset G_{\ell}^{\rho''} \cong \mathbb{C}^*$ (stabilizer of convex "nbhd" of ℓ)



<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Step 2

Let $g_1 = \rho''(\gamma_1)$, $g_2 = \rho''(\gamma_2)$ Get *Dehn filling coordinates* (a, b)

 $a\log(g_1) + b\log(g_2) = 2\pi i$

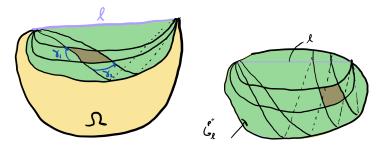
<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Step 2

Let $g_1 = \rho''(\gamma_1)$, $g_2 = \rho''(\gamma_2)$ Get *Dehn filling coordinates* (a, b)

 $a\log(g_1) + b\log(g_2) = 2\pi i$

Unipotent elements in $i\mathbb{R}_{uni} \subset G_{\ell}^{\Omega}$ deform to rotations in $G_{\ell}^{\rho''}$ so a/b is close to unipotent slope of ρ'



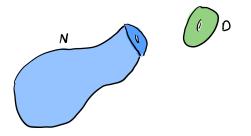
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose $(a, b) \in \mathbb{Z}^2$, relatively prime, $\delta = \gamma_1^a \gamma_2^b$

Suppose
$$(a, b) \in \mathbb{Z}^2$$
, relatively prime, $\delta = \gamma_1^a \gamma_2^b$
 $\rho''(\Delta) \cong \mathbb{Z}$
 $D \cong G_{\ell}^{\rho''} / \rho''(\Delta)$ (properly convex solid torus)

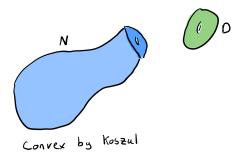
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Suppose $(a, b) \in \mathbb{Z}^2$, relatively prime, $\delta = \gamma_1^a \gamma_2^b$ $\rho''(\Delta) \cong \mathbb{Z}$ $D \cong G_{\ell}^{\rho''} / \rho''(\Delta)$ (properly convex solid torus)

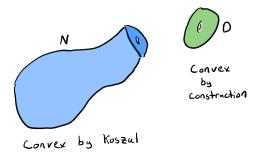


<ロト < 理ト < ヨト < ヨト = ヨ = のへの

 $\begin{array}{l} \text{Suppose } (a,b) \in \mathbb{Z}^2 \text{, relatively prime, } \delta = \gamma_1^a \gamma_2^b \\ \rho''(\Delta) \cong \mathbb{Z} \\ D \cong G_\ell^{\rho''} / \rho''(\Delta) \end{array} \\ (\textit{properly convex solid torus}) \end{array}$

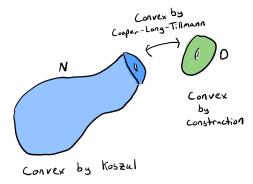


Suppose $(a, b) \in \mathbb{Z}^2$, relatively prime, $\delta = \gamma_1^a \gamma_2^b$ $\rho''(\Delta) \cong \mathbb{Z}$ $D \cong G_{\ell}^{\rho''} / \rho''(\Delta)$ (properly convex solid torus)



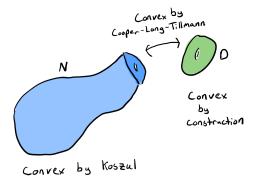
<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Suppose
$$(a, b) \in \mathbb{Z}^2$$
, relatively prime, $\delta = \gamma_1^a \gamma_2^b$
 $\rho''(\Delta) \cong \mathbb{Z}$
 $D \cong G_{\ell}^{\rho''} / \rho''(\Delta)$ (properly convex solid torus)



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Suppose
$$(a, b) \in \mathbb{Z}^2$$
, relatively prime, $\delta = \gamma_1^a \gamma_2^b$
 $\rho''(\Delta) \cong \mathbb{Z}$
 $D \cong G_{\ell}^{\rho''} / \rho''(\Delta)$ (properly convex solid torus)

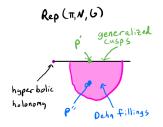


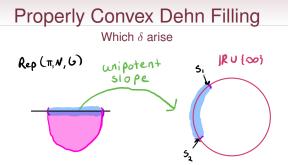
(日)

N_{δ} admits a non-hyperbolic properly convex structure

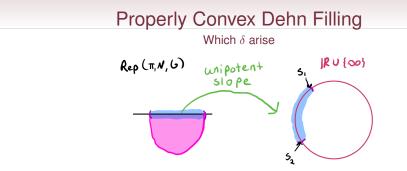
Which δ arise

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

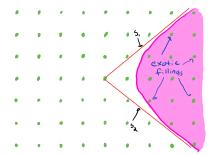


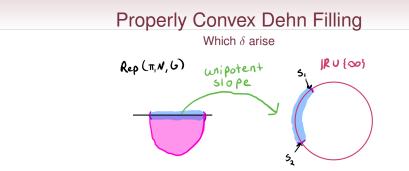


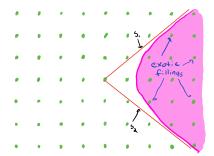
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □







A positive proportion of fillings are exotic!

・ロト・日本・日本・日本・日本・日本・日本

Constructing the deformations

- $\operatorname{Rep}(\mathbb{Z}^2, G)$ " \cong " \mathbb{R}^6 , $\operatorname{Rep}(\pi_1 N, G)$ " \cong " \mathbb{R}^3
- There is a 3-dim locus of "pure" reps *P* ⊂ Rep(\mathbb{Z}^2, G) with repeated eigenvalue
- Contains holonomy of with generalized cusps and Dehn fillings
- Examine how *P* intersects res : $\operatorname{Rep}(\pi_1 N, G) \to \operatorname{Rep}(\mathbb{Z}^2, G)$

The Real Result

Theorem (B-Danciger-Lee-Marquis)

Let M be a 1-cusped infinitesimally rigid 3-manifold with non-constant unipotent slope then a positive proportion of the Dehn fillings of M admit exotic convex projective structures

The Real Result

Theorem (B-Danciger-Lee-Marquis)

Let *M* be a 1-cusped infinitesimally rigid 3-manifold with non-constant unipotent slope then a positive proportion of the Dehn fillings of *M* admit exotic convex projective structures So far M_{004} (fig-8), M_{003} (fig-8 sister), M_{007} , and M_{019} have been shown to satisfy these hypotheses.

Effective Questions

- Which cusped 3-manifolds are infinitesimally rigid?
- Which cusped 3-manifolds have non-constant unipotent slope?
- For a given *M* what is the range of the unipotent slope map?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Thank you

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで