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Geometry According to Klein
Erlangen Program

Geometry is the study of the properties of a space X that are
invariant under the action of a group G.

Formally, a geometry is a pair pG,X q. Typically, X Ă RPn and
G Ă PGLn`1pRq
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The Projective Sphere
Let
• Sn :“ pRn`1zt0uq{px „ λxq, λ ą 0 and
• SL˘n`1pRq :“ tA P GLn`1pRq | detpAq “ ˘1u

pSL˘n`1pRq,Snq is convenient because
• Sn is simply connected and orientable
• No need to work with equivalence classes in SL˘n`1pRq
• pSL˘n`1pRq, Snq is a double cover of pPGLn`1pRq,RPnq
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Benefits of Klein’s Approach

1. Lots of examples!

• Spherical geometry
• Affine geometry
• Euclidean geometry
• Hyperbolic geometry
• More exotic geometries

2. Provides natural hierarchy for geometries

• pX 1,G1q is a subgeometry of pX ,Gq if X 1 Ă X and G1 Ă G
• e.g. Euclidean geometry is a subgeometry of affine
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Examples
Spherical Geometry

• Spherical geometry consists of pOpn ` 1q, Snq

• Comes with a Riemannian metric coming from the
Euclidean inner product on Rn`1

• Geometry is homogeneous i.e. Opn ` 1q acts transitively
on Sn.



Examples
Spherical Geometry

• Spherical geometry consists of pOpn ` 1q, Snq

• Comes with a Riemannian metric coming from the
Euclidean inner product on Rn`1

• Geometry is homogeneous i.e. Opn ` 1q acts transitively
on Sn.



Examples
Spherical Geometry

• Spherical geometry consists of pOpn ` 1q, Snq

• Comes with a Riemannian metric coming from the
Euclidean inner product on Rn`1

• Geometry is homogeneous i.e. Opn ` 1q acts transitively
on Sn.



Examples
Affine/Euclidean geometry

• Every hyperplane H in Rn`1 gives rise to a decomposition
of Sn “ Rn

` \ Sn´1 \ Rn
´ into affine parts and an ideal part.

• A component of SnzH is called an affine patch.
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Examples
Affine/Euclidean geometry

Rn – tx P Rn`1 | xn`1 “ 1u (affine patch).
• Affine geometry

AffpRnq –

"ˆ

A b
0 1

˙

| A P GLnpRq,b P Rn
*

• Well defined notion of lines, parallelism, and convexity.

• Euclidean Geometry

IsompRnq –

"ˆ

A b
0 1

˙

P AffpRnq | A P Opnq
*

• Well defined notion of lengths an angles.

These geometries are also homogeneous.
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Some Examples
Hyperbolic geometry

• Let xx , yy “ x1y1 ` . . . xnyn ´ xn`1yn`1 be the standard
bilinear form of signature pn,1q on Rn`1

• Let C` “ tx P Rn`1|xx , xy ă 0, xn`1 ą 0u

• C` “ Hn is the Klein model of hyperbolic space.
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Some Examples
Hyperbolic geometry

The metric on Hn is given by

dHnpx , yq “
1
2

logpra : x : y : bsq “
1
2

log
ˆ

|b ´ x | |a´ y |
|b ´ y | |a´ x |

˙

This metric is Riemannian and has constant curvature -1

Straight lines are the only geodesics

IsompHnq – O`pn,1q ď SL˘n`1pRq (also homogeneous).
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Some Examples
Properly convex geometry

Ω Ă Sn is properly convex if clpΩq is a convex subset of an
affine patch.

AutpΩq “ tA P SL˘n`1 | ApΩq “ Ωu

Often not homogeneous (i.e. AutpΩq does not act transitively)
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We can define the Hilbert metric on Ω by

• Straight lines are geodesics (there can be others)
• This metric is usually not Riemannian (only Finsler)
• AutpΩq Ă IsompΩq
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Geometry on Manifolds

Let
• M be an oriented n-manifold,
• Ω Ă Sn (usually simply connected), and
• Γ Ă AutpΩq be a discrete and torsion-free subgroup.

ΓzΩ is a complete projective manifold
(ΓzΩ inherits all the geometry of Ω.)
Can replace projective with other adjectives
(e.g. hyperbolic, properly convex,. . .)

A pair pf , ΓzΩq, where f : M Ñ ΓzΩ is a diffeomorphism is called
a complete projective structure on M.
(f is called a marking)
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Geometry on Manifolds

rM

π1Mü

��

Dev
–
// Ω

ýΓ
��

M
–

f // ΓzΩ

By lifting f we get a map Dev : rM Ñ Ω called a developing map.

f also gives a representation

ρ : π1M Ñ Γ Ă SL˘n`1pRq

called a holonomy representation. Dev is ρ-equivariant.

Realize deck transformations geometrically!
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Geometry on Manifolds
Equivalent Structures

We regard two complete projective structures on M are
equivalent if

1. Markings are isotopic

2. Markings differ by a “projective map”
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–

g
// Γ1zΩ1

Equivalent structures have conjugate holonomy
representations.
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π1S2 “ 1, so S2 is a complete projective (spherical) manifold

S2 admits a homogeneous Riemannian metric.
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Other surfaces

Every surface of negative Euler characteristic can be
decomposed into pairs of pants.

Given, a,b, c ą 0 there is a unique hyperbolic structure on a
pair of pants with cuff lengths a,b, and c

Cuffs can be glued if they have the same length.There is 1
degree of freedom for the gluing coming from “twisting”

A surface of genus g ě 2 admits R6g´6 hyperbolic structures
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We can construct complete hyperbolic structures on surfaces
by gluing structures on pants

Can also use this deform/glue strategy to construct structures
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3-manifolds

Can we find homogeneous complete projective structures for all
closed 3-manifolds?

No!

(Cooper–Goldman, ’12) RP3#RP3 does not admit any
complete projective structure

We can find a complete projective structure on RP3, but we
can’t extend the structure over the gluing 2 sphere
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3-manifolds
Prime Decomposition

A 3-manifold M is prime if M – M1#M2 implies that M1 – S3 or
M2 – S3.

(Kneser ’28, Milnor ’68) Every closed 3 manifold can be written
uniquely (up to order of factors) as M – P1# . . .#Pn, where Pi
is prime.

Does every closed prime 3-manifold admit a homogenous
complete projective structure?
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3-manifolds
Geometrization

There are eight 3-dimensional Thurston geometries: S3, R3,
H3, S2 ˆ R, H2 ˆ R, Nil, Sol, and ČSL2pRq.

Each of these geometries can be realized projectively (almost)

S2 ˆ R and H2 ˆ R have isometries that cannot be realized
projectively.
(Flipping the R factor)



3-manifolds
Geometrization

There are eight 3-dimensional Thurston geometries: S3, R3,
H3, S2 ˆ R, H2 ˆ R, Nil, Sol, and ČSL2pRq.

Each of these geometries can be realized projectively (almost)

S2 ˆ R and H2 ˆ R have isometries that cannot be realized
projectively.
(Flipping the R factor)



3-manifolds
Geometrization

There are eight 3-dimensional Thurston geometries: S3, R3,
H3, S2 ˆ R, H2 ˆ R, Nil, Sol, and ČSL2pRq.

Each of these geometries can be realized projectively (almost)

S2 ˆ R and H2 ˆ R have isometries that cannot be realized
projectively.
(Flipping the R factor)



3-manifolds
Geometrization

(Jaco–Shalen ’79, Johannson ’79) Let M be a closed prime
3-manifold. There is a (unique up to isotopy) collection T of tori
such that

MzT “
ğ

i

Mi (JSJ decomposition)

each Mi has “nice” topology.



3-manifolds
Geometrization

Theorem 1 (Thurston ’80s, Perelman ’03)
For each Mi in the JSJ decomposition, Mi – ΓizXi where Xi is a
Thurston geometry and Γi Ă IsompXiq is a lattice.

A generic JSJ piece is hyperbolic.

Virtually, the pieces have homogeneous complete projective
structures.
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3-manifolds
Geometrization

Problem: The homogeneous structures cannot be glued
together.
(The ends are “cusps”)

(Mostow ’68, Prasad ’73) The complete hyperbolic structures
on the hyperbolic pieces are unique.

Lots of symmetries tend to lead to rigid geometry!
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3-manifolds
Convex Projective Structures

Solution: Use less homogeneous, but more flexible geometric
structures (properly convex structures).

Sometimes possible to find properly convex structures on a
closed 3-manifold N when all the JSJ pieces are hyperbolic.

Properly convex structures in dimension 3 behave like
hyperbolic structures in dimension 2!

We can find “cusp opening” deformations
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Deforming Convex Projective Structures

Theorem 2
[B–Danciger–Lee] Let M be a hyperbolic 3-manifold with
boundary consisting of k tori. Suppose further that M is
infinitesimally rigid relative BM.

• Then the unique complete hyperbolic structure on M can
be deformed to a properly convex structure with totally
geodesic tori as boundary.

• Furthermore, there are 3k dimensions worth of such
deformations.

Analogous to the deformations constructed on pairs of pants
we constructed.

The deformations cannot be hyperbolic structures
(Mostow rigidity)
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3-manifolds
Infinitesimal Rigidity

A hyperbolic 3-manifold is infinitesimally rigid rel BM if the map

H1pM, sl4q Ñ H1pBM, sl4q

induced by the inclusion BM ãÑ M is an injection.

• Cohomology groups are “tangent spaces” for the spaces of
projective structures on M and BM

• All deformations of M come from deforming BM.

(M behaves like a pair of pants)

• Linear condition, so easy to verify
• Common amongst known examples

(numerically, satisfied by „ 90% of cusped census
manifolds, B–D–L
as well as some infinite families, Heusener–Porti,’11)
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3-manifolds
Gluing

• Let M1 – Γ1zΩ1 and M2 – Γ2zΩ2 be a properly convex
3-manifolds with principal totally geodesic torus boundary
components, B1 and B2

• Let f : B1 Ñ B2 be an orientation reversing diffeomorphism.
• Let N “ M1 \f M2

Theorem 3 (B–D–L)
If there exists g P SL˘4 pRq such that f˚ : π1B1 Ñ π1B2 is induced
by conjugation by g then there is a properly convex structure on
N such that the inclusion Mi ãÑ N is a projective embedding.
We can glue M1 and M2 if their boundary geometry matches
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3-manifolds
Gluing Examples

• If M1 “ M2 and f is the identity then N admits a properly
convex structure.

• If M1 and M2 can be built from regular ideal hyperbolic
tetrahedra then they can often be glued.
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General Gluings

Suppose we want to glue M1 to M2 using f : B1 Ñ B2.

Let A be the positive diagonal subgroup of SL4pRq and let
Yi Ă Hompπ1Bi ,Aq be the representations which can be
extended to π1Mi .
(Yi is 3-dim and Hompπ1Bi ,Aq is 6-dim.)

There is a map f ˚ : Hompπ1B2,Aq Ñ Hompπ1B1,Aq given by

ρ ÞÑ ρ ˝ f˚

We need f ˚pY2q X Y1 ‰ H to satisfy matching condition.
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Hyperbolic Structure
Holonomy

Blue curves are analogs of zero locus of A-polynomials of M1
and M2.

Blue curves are Lagrangians in a symplectic (yellow) manifold.
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Applications

(Benoist, ’06) Suppose M is a closed prime 3-manifold and M
admits an indecomposable properly convex structure.

Then
there is a (possibly empty) collection of properly embedded
totally geodesic tori along which M can be cut so that all of the
pieces admit complete hyperbolic structures
(geometric JSJ decomposition).

Is the converse of Benoist’s theorem true?
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Linear Representations

Thurston asked if M is a closed 3-manifold does π1M admit a
faithful representation into GL4pRq?

(No, Button ’14, graph manifold counterexamples.)

If all JSJ pieces of M are hyperbolic then does π1M admit a
faithful representation into GL4pRq?

Can help to effectivize various virtual properties of 3-manifold
groups
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Applications
Thin Groups

A group Γ Ă SL4pRq is thin if it is an infinite index subgroup of a
lattice and is Zariski dense.
Such groups have connections to
• Expander families
• Superstrong approximation properties
• Diophantine problems
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Theorem 4 (B)
Let M be the complement of the figure-eight knot in S3. Then
there is a 1-parameter family, Mt of finite volume properly
convex deformations of the complete hyperbolic structure on M.

Theorem 5 (B–Long)
Let ρt : π1M Ñ SL4pRq be a holonomy of Mt then there are
infinitely many specializations of t so that ρtpπ1Mq contains a
thin subgroup.

The deformations constructed in Theorem 2 have Zariski dense
holonomy.

Can try to specialize so that the image (virtually) lives in a
lattice.
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