Gluing Properly Convex Manifolds

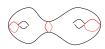
Sam Ballas

(joint with J. Danciger and G.-S. Lee)

Higher Teichmüller theory and Higgs bundles Heidelberg November 3, 2015

• If you want to construct/understand hyperbolic structures on a closed surface Σ you...

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.



- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

Understand hyperbolic structures on pants.

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

 Understand hyperbolic structures on pants. (Completely determined by geometry of boundary!)

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

- Understand hyperbolic structures on pants. (Completely determined by geometry of boundary!)
- Understand how to glue together pants.

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

- Understand hyperbolic structures on pants. (Completely determined by geometry of boundary!)
- Understand how to glue together pants. (Completely determined by twisting!)

What about a (prime) closed 3 manifold?

• By geometrization, you can cut *M* into pieces along tori.

- By geometrization, you can cut *M* into pieces along tori.
- Can put a complete finite volume Thurston geometric structure on each of the pieces.

- By geometrization, you can cut *M* into pieces along tori.
- Can put a complete finite volume Thurston geometric structure on each of the pieces.
- If there are multiple geometric pieces, we can't glue them to get a Thurston geometric structure on all of M.

- By geometrization, you can cut M into pieces along tori.
- Can put a complete finite volume Thurston geometric structure on each of the pieces.
- If there are multiple geometric pieces, we can't glue them to get a Thurston geometric structure on all of M.
- However, if we allow more general geometric structures then this strategy still works (at least some of the time)

To construct/understand geometric structures on a closed 3-manifold ${\it M}$ we try to:

To construct/understand geometric structures on a closed 3-manifold M we try to:

1. Cut *M* into nice pieces.

To construct/understand geometric structures on a closed 3-manifold M we try to:

- 1. Cut *M* into nice pieces.
- 2. In many cases these pieces behave like pairs of pants (geometry of the pieces are (locally) determined by boundary geometry).

To construct/understand geometric structures on a closed 3-manifold M we try to:

- 1. Cut *M* into nice pieces.
- 2. In many cases these pieces behave like pairs of pants (geometry of the pieces are (locally) determined by boundary geometry).
- 3. Try to glue the pieces together by matching the geometry on the boundary.

To construct/understand geometric structures on a closed 3-manifold M we try to:

- 1. Cut *M* into nice pieces.
- 2. In many cases these pieces behave like pairs of pants (geometry of the pieces are (locally) determined by boundary geometry).
- 3. Try to glue the pieces together by matching the geometry on the boundary.
- 4. Analyze the different ways to glue structures with matching boundary geometry.

Projective Space

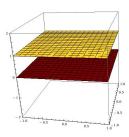
- \mathbb{RP}^n is the space of lines through origin in \mathbb{R}^{n+1} .
- Let $P : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be the obvious projection.
- The automorphism group of \mathbb{RP}^n is $\mathrm{PGL}_{n+1}(\mathbb{R}) := \mathrm{GL}_{n+1}(\mathbb{R})/\mathbb{R}^{\times}$.

Affine Patches

• Every hyperplane H in \mathbb{R}^{n+1} gives rise to a decomposition of $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$ into an affine part and an ideal part.

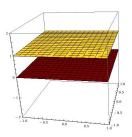
Affine Patches

• Every hyperplane H in \mathbb{R}^{n+1} gives rise to a decomposition of $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$ into an affine part and an ideal part.



Affine Patches

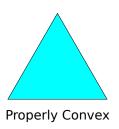
• Every hyperplane H in \mathbb{R}^{n+1} gives rise to a decomposition of $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$ into an affine part and an ideal part.



• $\mathbb{RP}^n \backslash P(H)$ is called an *affine patch*.

Convex Projective Domains

- $\Omega \subset \mathbb{RP}^n$ is *properly convex* if it is a bounded convex subset of some affine patch.
- If $\partial\Omega$ contains no non-trivial line segments then Ω is *strictly convex*.



Strictly Convex

Convex Projecive Structures

• A convex projective n-manifold is a manifold of the form $\Gamma \setminus \Omega$, where $\Omega \subset \mathbb{RP}^n$ is properly convex and $\Gamma \subset \mathrm{PGL}(\Omega)$ is a discrete torsion free subgroup.

Convex Projective Structures

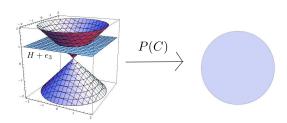
- A convex projective n-manifold is a manifold of the form Γ\Ω, where Ω ⊂ ℝℙⁿ is properly convex and Γ ⊂ PGL(Ω) is a discrete torsion free subgroup.
- A (marked) convex projective structure on a manifold M is an identification of M with a properly convex manifold (up to equivalence).

Convex Projective Structures

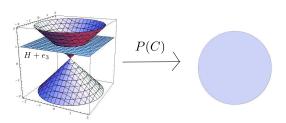
- A convex projective n-manifold is a manifold of the form Γ\Ω, where Ω ⊂ ℝℙⁿ is properly convex and Γ ⊂ PGL(Ω) is a discrete torsion free subgroup.
- A (marked) convex projective structure on a manifold M is an identification of M with a properly convex manifold (up to equivalence).
- A marked convex projective structure gives rise to a (conjugacy class of) representation ρ: π₁M → PGL_{n+1}(ℝ) called a *holonomy* of the structure and an equivariant map Dev: M̃ → Ω called a *developing map*.



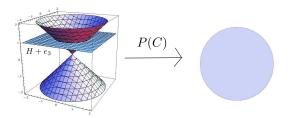
- Let $\langle x, y \rangle = x_1 y_1 + \dots x_n y_n x_{n+1} y_{n+1}$ be the standard bilinear form of signature (n, 1) on \mathbb{R}^{n+1}
- Let $C = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle < 0\}$



- Let $\langle x, y \rangle = x_1 y_1 + \dots x_n y_n x_{n+1} y_{n+1}$ be the standard bilinear form of signature (n, 1) on \mathbb{R}^{n+1}
- Let $C = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle < 0\}$
- $P(C) = \mathbb{H}^n$ is the *Klein model* of hyperbolic space.
- $PGL(\mathbb{H}^n) \cong PO(n,1) \leq PGL_{n+1}(\mathbb{R})$

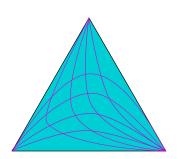


- Let $\langle x, y \rangle = x_1 y_1 + \dots x_n y_n x_{n+1} y_{n+1}$ be the standard bilinear form of signature (n, 1) on \mathbb{R}^{n+1}
- Let $C = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle < 0\}$
- $P(C) = \mathbb{H}^n$ is the *Klein model* of hyperbolic space.
- $PGL(\mathbb{H}^n) \cong PO(n, 1) \leq PGL_{n+1}(\mathbb{R})$
- If Γ is a torsion-free Kleinian group then $\Gamma \backslash \mathbb{H}^n$ is a (strictly) convex projective manifold.



• Let $O \subset \mathbb{R}^3$ is the positive orthant, then $\Delta = P(O)$ is a triangle.

- Let $O \subset \mathbb{R}^3$ is the positive orthant, then $\Delta = P(O)$ is a triangle.
- Let $\Gamma \leq Diag_+ \leq \mathrm{PGL}(\Delta)$ be lattice, then $\Gamma \cong \mathbb{Z}^2$ and $\Gamma \backslash \Delta$ is a torus (really, a Hex Torus)



Let Ω be a properly convex set and $PGL(\Omega)$ be the projective automorphisms preserving Ω .

Let Ω be a properly convex set and $PGL(\Omega)$ be the projective automorphisms preserving Ω .

Every properly convex set Ω admits a Hilbert metric given by

$$d_{\Omega}(x, y) = \log[a : x : y : b] = \log\left(\frac{|x - b||y - a|}{|x - a||y - b|}\right)$$

Nice Properties

• When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.

Nice Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler

Nice Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.

Hilbert Metric

Nice Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.
- Point stabilizers are compact

Hilbert Metric

Nice Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.
- Point stabilizers are compact
- Discrete subgroups of PGL(Ω) act properly discontinuously on Ω.

Hilbert Metric

Nice Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.
- Point stabilizers are compact
- Discrete subgroups of PGL(Ω) act properly discontinuously on Ω.

Convex projective structures are like Thurston geometric structures, sans homogeneity

Convex Projective Structure in Dimension 3

Let $M \cong \Gamma \setminus \Omega$ be a closed indecomposable convex projective 3-manifold.

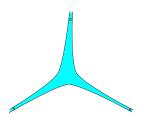
Theorem (Benoist 2006)

Let M be as above then either

- i M is strictly convex and admits a hyperbolic structure
- ii M is not strictly convex and contains a finite number of embedded totally geodesic Hex tori. The pieces obtained by cutting along these tori are a JSJ decomposition for M. Furthermore, each piece admits a finite volume hyperbolic structure.

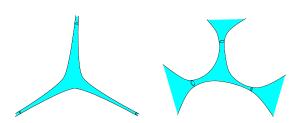
Let \mathcal{P} be a thrice punctures sphere.

• Then there is a unique complete finite volume hyperbolic structure on \mathcal{P} .



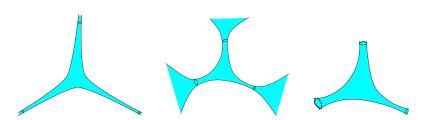
Let \mathcal{P} be a thrice punctures sphere.

- Then there is a unique complete finite volume hyperbolic structure on \mathcal{P} .
- We can deform this structure to a complete infinite volume structure.



Let \mathcal{P} be a thrice punctures sphere.

- Then there is a unique complete finite volume hyperbolic structure on \mathcal{P} .
- We can deform this structure to a complete infinite volume structure.
- We can truncate the ends of this infinite volume structure along geodesics to get a structure on a pair of pants $\overline{\mathcal{P}}$.



• The lengths of the 3 cuffs of $\overline{\mathcal{P}}$ completely determine the hyperbolic structure.

- The lengths of the 3 cuffs of $\overline{\mathcal{P}}$ completely determine the hyperbolic structure.
- All possible cuff lengths can be realized by this construction.

- The lengths of the 3 cuffs of $\overline{\mathcal{P}}$ completely determine the hyperbolic structure.
- All possible cuff lengths can be realized by this construction.
- We can glue pairs of pants along boundary components whenever the cuff lengths agree.

Let *N* be a finite-volume hyperbolic 3-manifold

- $\mathfrak{B}(N)$ = Space of marked convex projective structures
- $\mathcal{X}(N) = \text{Hom}(\pi_1 N, \text{PGL}_4(\mathbb{R}))/\text{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Let *N* be a finite-volume hyperbolic 3-manifold

- B(N) = Space of marked convex projective structures
- $\mathcal{X}(N) = \text{Hom}(\pi_1 N, \text{PGL}_4(\mathbb{R}))/\text{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Some Facts

1 There is a canonical basepoint $[N_{hyp}] \in \mathfrak{B}(N)$ and $[\rho_{hyp}] = \operatorname{Hol}([N_{hyp}])$ (Mostow rigidity)

Let *N* be a finite-volume hyperbolic 3-manifold

- B(N) = Space of marked convex projective structures
- $\mathcal{X}(N) = \text{Hom}(\pi_1 N, \text{PGL}_4(\mathbb{R}))/\text{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Some Facts

- 1 There is a canonical basepoint $[N_{hyp}] \in \mathfrak{B}(N)$ and $[\rho_{hyp}] = \operatorname{Hol}([N_{hyp}])$ (Mostow rigidity)
- 2 When N is closed HoI is a local homemorphism near $[N_{hyp}]$ (Ehresmann-Thurston, Koszul)

Let N be a finite-volume hyperbolic 3-manifold

- B(N) = Space of marked convex projective structures
- $\mathcal{X}(N) = \text{Hom}(\pi_1 N, \text{PGL}_4(\mathbb{R}))/\text{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Some Facts

- 1 There is a canonical basepoint $[N_{hyp}] \in \mathfrak{B}(N)$ and $[\rho_{hyp}] = \operatorname{Hol}([N_{hyp}])$ (Mostow rigidity)
- 2 When N is closed HoI is a local homemorphism near $[N_{hyp}]$ (Ehresmann-Thurston, Koszul)
- 3 When N is non-compact, Hol is a local homeomorphism near $[N_{hyp}]$ onto a subset of $\mathcal{X}(N)$ (Cooper–Long–Tillmann)

Theorem 1 (B-Danciger-Lee)

Theorem 1 (B-Danciger-Lee)

Theorem 1 (B-Danciger-Lee)

Theorem 1 (B-Danciger-Lee)

• N is infinitesimally rigid rel boundary if map res : $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4) \to H^1_{\rho_{hyp}}(\pi_1 \partial N, \mathfrak{sl}_4)$ is injective.

- N is infinitesimally rigid rel boundary if map res : $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4) \to H^1_{\rho_{hyp}}(\pi_1 \partial N, \mathfrak{sl}_4)$ is injective.
- $H^1_{\rho_{hyp}}(\pi_1N,\mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$

- N is infinitesimally rigid rel boundary if map res : $H^1_{\rho_{hvo}}(\pi_1 N, \mathfrak{sl}_4) \to H^1_{\rho_{hvo}}(\pi_1 \partial N, \mathfrak{sl}_4)$ is injective.
- $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$
- Infinitesimally, the geometry of N is determined by geometry near ∂N.

- N is infinitesimally rigid rel boundary if map res : $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4) \to H^1_{\rho_{hyp}}(\pi_1 \partial N, \mathfrak{sl}_4)$ is injective.
- $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$
- Infinitesimally, the geometry of N is determined by geometry near ∂N .
- res always has half dimensional image (even when N is not inf. rigid rel boundary).

- N is infinitesimally rigid rel boundary if map res : $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4) \to H^1_{\rho_{hyp}}(\pi_1 \partial N, \mathfrak{sl}_4)$ is injective.
- $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$
- Infinitesimally, the geometry of N is determined by geometry near ∂N .
- res always has half dimensional image (even when N is not inf. rigid rel boundary).

Proving Theorem 1

1. Find deformations of $[\rho_{hyp}]$ whose restriction to $\pi_1 \partial N$ is diagonalizable *over the reals*.

Proving Theorem 1

- 1. Find deformations of $[\rho_{hyp}]$ whose restriction to $\pi_1 \partial N$ is diagonalizable *over the reals*.
- 2. Use Cooper–Long–Tillmann holonomy principle to show that ρ_t are holonomies of *some* convex projective structure

Proving Theorem 1

- 1. Find deformations of $[\rho_{hyp}]$ whose restriction to $\pi_1 \partial N$ is diagonalizable *over the reals*.
- 2. Use Cooper–Long–Tillmann holonomy principle to show that ρ_t are holonomies of *some* convex projective structure
- Use a convex hull construction to build a structure with totally geodesic boundary.

Theorem (B-D-L)

Theorem (B-D-L)

If N is a 1-cusped finite volume hyperbolic 3-manifold that is infinitesimally rigid rel boundary then $[\rho_{hyp}]$ is a smooth point of $\mathcal{X}(N)$. Furthermore, $\mathcal{X}(N)$ is 3-dimensional near $[\rho_{hyp}]$

• $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)

Theorem (B-D-L)

- $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)
- res : $\mathcal{X}(N) \to \mathcal{X}(\partial N)$ is smooth local embedding near $[\rho_{geo}]$

Theorem (B-D-L)

- $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)
- res : $\mathcal{X}(N) \to \mathcal{X}(\partial N)$ is smooth local embedding near $[\rho_{geo}]$
- There is a 4-dimensional slice S ⊂ X(∂N) of generically diagonalizable representations transverse to res at [ρ_{hyp}]

Theorem (B-D-L)

- $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)
- res : $\mathcal{X}(N) \to \mathcal{X}(\partial N)$ is smooth local embedding near $[\rho_{geo}]$
- There is a 4-dimensional slice S ⊂ X(∂N) of generically diagonalizable representations transverse to res at [ρ_{hyp}]
- We get a curve $[\rho_t]$ in $\mathcal{X}(N)$ diagonalizable over \mathbb{R} on $\pi_1 \partial N$.

Let γ_1 and γ_2 be generators for $\pi_1 \partial N \cong \mathbb{Z}^2$.

Let γ_1 and γ_2 be generators for $\pi_1 \partial N \cong \mathbb{Z}^2$. For t > 0 define

$$egin{aligned} x_{t, heta} &= egin{pmatrix} 2t\cos heta & 2t\cos(heta+2\pi/3) & & & & \\ & 2t\cos(heta+4\pi/3) & & & \\ & & 2t\sin(heta+2\pi/3) & & \\ & & & 2t\sin(heta+4\pi/3) & & \\ & & & 0 \end{pmatrix} \in \mathfrak{a} \end{aligned}$$

Let γ_1 and γ_2 be generators for $\pi_1 \partial N \cong \mathbb{Z}^2$. For t > 0 define

$$egin{aligned} x_{t, heta} = egin{pmatrix} 2t\cos heta & & & \ & 2t\cos(heta+2\pi/3) & & \ & & 2t\cos(heta+4\pi/3) & \ & & 0 \end{pmatrix} \in \mathfrak{a} \end{aligned}$$

$$y_{t, heta} = egin{pmatrix} 2t\sin heta & 2t\sin(heta+2\pi/3) & & & \ & 2t\sin(heta+4\pi/3) & & \ & & 0 \end{pmatrix} \in \mathfrak{a}$$

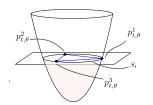
Define
$$\rho_{(t,\theta,a,b)}: \pi_1 \partial N \to A = \exp(\mathfrak{a}) \subset \mathrm{PGL}_4(\mathbb{R})$$
 by

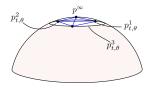
$$\rho_{(t,\theta,a,b)}(\gamma_1) = \exp(x_{t,\theta}), \rho_{(t,\theta,a,b)}(\gamma_2) = \exp(ax_{t,\theta} + by_{t,\theta}).$$

Another model for \mathbb{H}^3 is

$$\{[x_1:x_2:x_3:1]\in\mathbb{RP}^3\mid x_1>2(x_2^2+x_3^2)\}$$

For t > 0, let S_t crosssection of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.

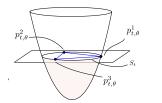


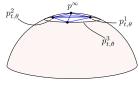


Another model for \mathbb{H}^3 is

$$\{[x_1:x_2:x_3:1]\in\mathbb{RP}^3\mid x_1>2(x_2^2+x_3^2)\}$$

For t > 0, let S_t crosssection of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.



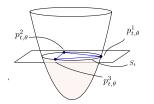


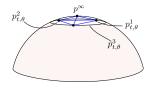
• Using $x_{t,\theta}$ and $y_{t,\theta}$ we construct three complex numbers $\{z_{t,\theta}^i\}_{i=1}^3$ equally spaced on the circle of radius 2t.

Another model for \mathbb{H}^3 is

$$\{[x_1:x_2:x_3:1]\in\mathbb{RP}^3\mid x_1>2(x_2^2+x_3^2)\}$$

For t > 0, let S_t crosssection of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.



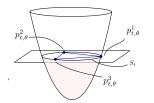


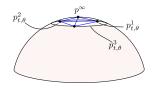
- Using $x_{t,\theta}$ and $y_{t,\theta}$ we construct three complex numbers $\{z_{t,\theta}^i\}_{i=1}^3$ equally spaced on the circle of radius 2t.
- Let $p_{t,\theta}^i$ be the point on $\partial \mathbb{H}^3$ that projects to $\left(z_{t,\theta}^i\right)^{-1}$.

Another model for \mathbb{H}^3 is

$$\{[x_1:x_2:x_3:1]\in\mathbb{RP}^3\mid x_1>2(x_2^2+x_3^2)\}$$

For t > 0, let S_t crosssection of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.





- Using $x_{t,\theta}$ and $y_{t,\theta}$ we construct three complex numbers $\{z_{t,\theta}^i\}_{i=1}^3$ equally spaced on the circle of radius 2t.
- Let $p_{t,\theta}^i$ be the point on $\partial \mathbb{H}^3$ that projects to $\left(z_{t,\theta}^i\right)^{-1}$.
- Let $C_{t,\theta} \in \mathrm{PGL}_4$ be an element taking the vertices of the standard simplex to $p_{t,\theta}^1, p_{t,\theta}^2, p_{t,\theta}^3$, and p^{∞} .

Let
$$ho_{t, heta,a,b}' = C_{t, heta}
ho_{(t, heta,a,b)} C_{t, heta}^{-1}$$

$$\lim_{t\to 0}\rho'_{(t,\theta,a,b)}(\gamma_1) = \begin{pmatrix} 1 & 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\lim_{t o 0}
ho'_{(t, heta,a,b)}(\gamma_2) = egin{pmatrix} 1 & a & b & rac{1}{2}(a^2+b^2) \ 0 & 1 & 0 & a \ 0 & 0 & 1 & b \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Let
$$ho_{t,\theta,a,b}' = C_{t,\theta}
ho_{(t,\theta,a,b)} C_{t,\theta}^{-1}$$

$$\lim_{t\to 0}\rho'_{(t,\theta,a,b)}(\gamma_1) = \begin{pmatrix} 1 & 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\lim_{t o 0}
ho'_{(t, heta,a,b)}(\gamma_2) = egin{pmatrix} 1 & a & b & rac{1}{2}(a^2+b^2) \ 0 & 1 & 0 & a \ 0 & 0 & 1 & b \ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{S} = \{ [\rho'_{(t,\theta,a,b)}] \mid a,b,\theta \in \mathbb{R}, t \in \mathbb{R}^{\geq 0} \}$$

- S is transverse to $res(\mathcal{X}(N))$ at $[\rho_{hyp}]$ with 1-dimensional intersection $[\rho_s]$.
- $[\rho_s]$ is diagonalizable over \mathbb{R} for $s \neq 0$.
- If $t \neq 0$ then elements of S are diagonalizable over reals.
- If z = x + iy is the cusp shape of N w.r.t. $\{\gamma_1, \gamma_2\}$ then $res(\rho_{hyp}) = \rho'_{(0,0,x,y)}$.

 Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂

- Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂
- Let $f: \partial_1 \to \partial_2$ be a diffeomorphism.

- Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂
- Let $f: \partial_1 \to \partial_2$ be a diffeomorphism.
- Let $M = M_1 \sqcup_f M_2$

- Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂
- Let $f: \partial_1 \to \partial_2$ be a diffeomorphism.
- Let $M = M_1 \sqcup_f M_2$

Theorem (B-D-L)

If there exists $g \in \operatorname{PGL}_4(\mathbb{R})$ such that $f_*: \pi_1\partial_1 \to \pi_1\partial_2$ is induced by conjugation by g then there is a properly convex projective structure on M such that the inclusion $M_i \hookrightarrow M$ is a projective embedding.

- Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂
- Let $f: \partial_1 \to \partial_2$ be a diffeomorphism.
- Let $M = M_1 \sqcup_f M_2$

Theorem (B-D-L)

If there exists $g \in \operatorname{PGL}_4(\mathbb{R})$ such that $f_*: \pi_1\partial_1 \to \pi_1\partial_2$ is induced by conjugation by g then there is a properly convex projective structure on M such that the inclusion $M_i \hookrightarrow M$ is a projective embedding.

Corollary

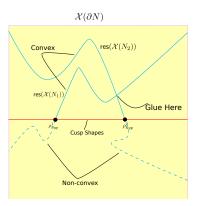
If N is a 1-cusped hyperbolic 3-manifold that is infinitesimally rigid rel. boundary then 2N admits a properly convex projective structure.

The Matching Problem

Let N_1 and N_2 are infinitesimally rigid rel. boundary hyperbolic 3-manifolds and M be obtained by gluing N_1 and N_2 along their boundaries. Can we find a convex projective structure on M?

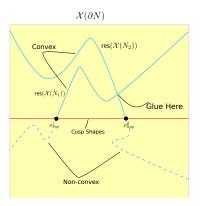
The Matching Problem

Let N_1 and N_2 are infinitesimally rigid rel. boundary hyperbolic 3-manifolds and M be obtained by gluing N_1 and N_2 along their boundaries. Can we find a convex projective structure on M?



The Matching Problem

Let N_1 and N_2 are infinitesimally rigid rel. boundary hyperbolic 3-manifolds and M be obtained by gluing N_1 and N_2 along their boundaries. Can we find a convex projective structure on M?

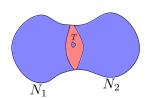


Blue curves → Zero locus of A-polynomial

If N properly convex manifold that contains a totally geodesic hex torus, \mathcal{T} then

If N properly convex manifold that contains a totally geodesic hex torus, \mathcal{T} then

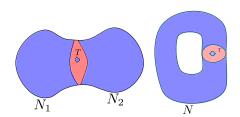
$$\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$$



If N properly convex manifold that contains a totally geodesic hex torus, \mathcal{T} then

$$\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$$

or $\pi_1 N \cong \pi_1 (N \backslash T) *_{\alpha}$

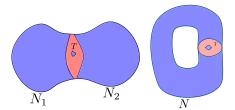


If N properly convex manifold that contains a totally geodesic hex torus, \mathcal{T} then

$$\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$$

or $\pi_1 N \cong \pi_1 (N \backslash T) *_{\alpha}$

each $g \in C_{\mathrm{PGL}_4(\mathbb{R})}(\pi_1 T)^\circ \rightsquigarrow$ different projective structure on N

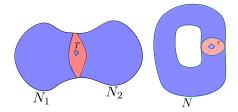


If N properly convex manifold that contains a totally geodesic hex torus, \mathcal{T} then

$$\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$$

or $\pi_1 N \cong \pi_1 (N \setminus T) *_{\alpha}$

each $g \in C_{\mathrm{PGL}_4(\mathbb{R})}(\pi_1 T)^\circ \rightsquigarrow$ different projective structure on N



We get "twist coordinates" on $\mathfrak{B}(N)$!

 Which finite volume 3-manifolds are infinitesimally rigid rel. boundary?

- Which finite volume 3-manifolds are infinitesimally rigid rel. boundary?
- Is the converse to Benoist's theorem true?

- Which finite volume 3-manifolds are infinitesimally rigid rel. boundary?
- Is the converse to Benoist's theorem true?
- If not, what are some obstructions to gluing?

- Which finite volume 3-manifolds are infinitesimally rigid rel. boundary?
- Is the converse to Benoist's theorem true?
- If not, what are some obstructions to gluing?
- Are there "Fenchel-Nielsen" coordinates?

Thank you