Classification of Generalized Cusps

Sam Ballas
Florida State University
(joint with D. Cooper and A. Leitner)

Joint Mathematics Meeting
Atlanta, GA
January 7, 2017
Outline

1. Cusps of hyperbolic manifolds
 • Description/geometry of cusps
 • Focus on properties to generalize
Outline

1. Cusps of hyperbolic manifolds
 - Description/geometry of cusps
 - Focus on properties to generalize

2. Properly Convex Manifolds
 - What are they?
 - How do they similar/different to hyperbolic manifolds
Outline

1. Cusps of hyperbolic manifolds
 - Description/geometry of cusps
 - Focus on properties to generalize

2. Properly Convex Manifolds
 - What are they?
 - How do they similar/different to hyperbolic manifolds

3. Generalized Cusps
 - Description/geometry
 - How to classify
Cusps of hyperbolic orbifolds

Let $\Gamma \subset \text{Isom}(\mathbb{H}^n)$ be a lattice and $M = \mathbb{H}^n/\Gamma$ be a complete hyperbolic n-orbifold.
Cusps of hyperbolic orbifolds

Let $\Gamma \subset \text{Isom}(\mathbb{H}^n)$ be a lattice and $M = \mathbb{H}^n/\Gamma$ be a complete hyperbolic n-orbifold.

Using the “thik-thin” decomposition M can be decomposed into

$$M = M_k \bigsqcup_i C_i,$$

where C_i is finitely covered by $T^{n-1} \times [0, \infty)$.

\[\text{Diagram:} \quad M_K \quad \text{and} \quad C \]
Cusps of hyperbolic manifolds

Geometry of cusps

- Let $\mathbb{H}^n = \{(z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} | z > \frac{1}{2} |v|^2 \} \subset \mathbb{RP}^n$
Cusps of hyperbolic manifolds
Geometry of cusps

- Let $\mathbb{H}^n = \{ (z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid z > \frac{1}{2} \|v\|^2 \} \subset \mathbb{RP}^n$
- \mathbb{H}^n is foliated by horospheres
 $S_t = \{ (z, v) \in \mathbb{H}^n \mid x = \frac{1}{2} \|v\|^2 + t \}, \ t > 0$
Cusps of hyperbolic manifolds

Geometry of cusps

Consider the following subgroups of $\text{SL}_{n+1}^\pm(\mathbb{R})$

$$T = \left\{ \begin{pmatrix} 1 & u & \frac{1}{2} |u|^2 \\ 0 & 0 & u \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, \quad O = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

- T acts simply transitively on each S_t
Cusps of hyperbolic manifolds

Geometry of cusps

Consider the following subgroups of $\text{SL}_{n+1}^\pm(\mathbb{R})$

$$T = \left\{ \begin{pmatrix} 1 & u & \frac{1}{2} |u|^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, \quad O = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

- T acts simply transitively on each S_t
- O is a point stabilizer
Cusps of hyperbolic manifolds

Geometry of cusps

Consider the following subgroups of $SL_{n+1}^\pm(\mathbb{R})$

$$T = \left\{ \begin{pmatrix} 1 & u & \frac{1}{2} |u|^2 \\ 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, \quad O = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n - 1) \right\}$$

- T acts simply transitively on each S_t
- O is a point stabilizer
- $G = T \rtimes O$ preserves the foliation leafwise
Let

- $B_T = \bigcup_{t \geq T} S_t$ (horoball)
- Δ a lattice in G.

Cusps of hyperbolic manifolds

Geometry of cusps
Cusps of hyperbolic manifolds
Geometry of cusps

Let

- $B_T = \bigcup_{t \geq T} S_t$ (horoball)
- Δ a lattice in G.

The cusp C can be realized as B_T/Δ
Cusps of hyperbolic manifolds

Geometry of cusps

Let

- \(B_T = \bigcup_{t \geq T} S_t \) (horoball)
- \(\Delta \) a lattice in \(G \).

The cusp \(C \) can be realized as \(B_T/\Delta \)

The \(S_t/\Delta \) give a foliation of \(C \) by Euclidean \((n - 1)\)-orbifolds.
Properly convex manifolds

A subset $\Omega \subset \mathbb{RP}^n$ with non-empty interior is *properly convex* if

1. Ω is convex in \mathbb{RP}^n (intersections with projective lines are connected)
2. $\overline{\Omega}$ is disjoint from some projective hyperplane.
A subset $\Omega \subset \mathbb{RP}^n$ with non-empty interior is *properly convex* if

1. Ω is convex in \mathbb{RP}^n (intersections with projective lines are connected)
2. $\overline{\Omega}$ is disjoint from some projective hyperplane.

Ω can be realized as a compact, convex subset of $\mathbb{R}^n \subset \mathbb{RP}^n$.
Properly convex manifolds

Let Ω be properly convex and let
$\text{PGL}(\Omega) = \{ A \in \text{PGL}_{n+1}(\mathbb{R}) \mid A(\Omega) = \Omega \}$.
Properly convex manifolds

Let Ω be properly convex and let
\[\text{PGL}(\Omega) = \{ A \in \text{PGL}_{n+1}(\mathbb{R}) \mid A(\Omega) = \Omega \}. \]

A manifold $M = \Omega/\Gamma$ where Ω is properly convex and $\Gamma \subset \text{PGL}(\Omega)$ is a discrete subgroup is called \textit{properly convex}
Properly convex manifolds

Let Ω be properly convex and let
\[\text{PGL}(\Omega) = \{ A \in \text{PGL}_{n+1}(\mathbb{R}) \mid A(\Omega) = \Omega \}. \]

A manifold $M = \Omega/\Gamma$ where Ω is properly convex and $\Gamma \subset \text{PGL}(\Omega)$ is a discrete subgroup is called \textit{properly convex}.

\mathbb{H}^n is a properly convex domain (via the Klein model). Therefore complete hyperbolic manifolds are properly convex.
Properly convex manifolds

Let Ω be properly convex and let $\text{PGL}(\Omega) = \{ A \in \text{PGL}_{n+1}(\mathbb{R}) \mid A(\Omega) = \Omega \}$.

A manifold $M = \Omega/\Gamma$ where Ω is properly convex and $\Gamma \subset \text{PGL}(\Omega)$ is a discrete subgroup is called properly convex.

\mathbb{H}^n is a properly convex domain (via the Klein model). Therefore complete hyperbolic manifolds are properly convex.

In general, properly convex domains can have “flats” in their boundary.
Deforming properly convex manifolds

Let $M \cong \Omega_0/\Gamma_0$ be a complete hyperbolic manifold.
Deforming properly convex manifolds

Let $M \cong \Omega_0/\Gamma_0$ be a complete hyperbolic manifold.

In many cases one can find \textit{non-trivial} continuous families $\Omega_t/\Gamma_t \cong M$ of properly convex manifolds.
Deforming properly convex manifolds

Let $M \cong \Omega_0/\Gamma_0$ be a complete hyperbolic manifold.

In many cases one can find non-trivial continuous families $\Omega_t/\Gamma_t \cong M$ of properly convex manifolds.
Deforming properly convex manifolds

Let $M \cong \Omega_0/\Gamma_0$ be a complete hyperbolic manifold

In many cases one can find *non-trivial* continuous families $\Omega_t/\Gamma_t \cong M$ of properly convex manifolds

If M has cusps, what does the geometry of the cusps of Ω_t/Γ_t look like if $t \neq 0$?
Deforming properly convex manifolds

Let $M \cong \Omega_0/\Gamma_0$ be a complete hyperbolic manifold.

In many cases one can find *non-trivial* continuous families $\Omega_t/\Gamma_t \cong M$ of properly convex manifolds.

If M has cusps, what does the geometry of the cusps of Ω_t/Γ_t look like if $t \neq 0$? *They are generalized cusps.*
Generalized cusps

A generalized cusp is a properly convex manifold $C = \Omega/\Gamma$ where

- C is diffeomorphic to $\partial C \times [0, \infty)$, with ∂C compact
- $\Gamma \cong \pi_1 \partial C$ is virtually abelian
- ∂C is strictly convex
Generalized cusps

A generalized cusp is a properly convex manifold $C = \Omega/\Gamma$ where

- C is diffeomorphic to $\partial C \times [0, \infty)$, with ∂C compact
- $\Gamma \cong \pi_1 \partial C$ is virtually abelian
- ∂C is strictly convex

Cusps of finite volume hyperbolic manifolds are generalized cusps
Geometry of generalized cusps

Overview

Let \(W_n = \{ (\lambda_1, \ldots, \lambda_n) \mid 0 \leq \lambda_1 \leq \ldots \leq \lambda_n \} \)

Given an \(n \)-dimensional generalized cusp \(C \cong \Omega/\Gamma \) we get

...
Geometry of generalized cusps

Overview

Let $\mathcal{W}_n = \{(\lambda_1, \ldots, \lambda_n) \mid 0 \leq \lambda_1 \leq \ldots \leq \lambda_n\}$

Given an n-dimensional generalized cusp $C \cong \Omega/\Gamma$ we get

- $\lambda \in \mathcal{W}_n$, unique up to scaling.
- A Lie group $\text{PGL}_{n+1}(\mathbb{R}) \supset G_\lambda \cong \underbrace{T_\lambda}_{\text{translations}} \rtimes \underbrace{O_\lambda}_{\text{point stabilizer}}$ that contains a conjugate of Γ as a lattice.
Geometry of generalized cusps

Overview

Let $W_n = \{(\lambda_1, \ldots, \lambda_n) \mid 0 \leq \lambda_1 \leq \ldots \leq \lambda_n\}$

Given an n-dimensional generalized cusp $C \cong \Omega / \Gamma$ we get

- $\lambda \in W_n$, unique up to scaling.
- A Lie group $\text{PGL}_{n+1}(\mathbb{R}) \supset G_\lambda \cong \underbrace{T_\lambda \times O_\lambda}_{\text{translations \ point stabilizer}}$ that contains a conjugate of Γ as a lattice.
- A G_λ-invariant properly convex domain $\Omega_\lambda \subset \Omega$ (e.g. $B_T \subset \mathbb{H}^n$)
Geometry of generalized cusps

Overview

Let \(W_n = \{ (\lambda_1, \ldots, \lambda_n) \mid 0 \leq \lambda_1 \leq \ldots \leq \lambda_n \} \)

Given an \(n \)-dimensional generalized cusp \(C \cong \Omega / \Gamma \) we get

- \(\lambda \in W_n \), unique up to scaling.
- A Lie group \(\text{PGL}_{n+1}(\mathbb{R}) \supset G_\lambda \cong T_\lambda \rtimes O_\lambda \) that contains a conjugate of \(\Gamma \) as a lattice.
- A \(G_\lambda \)-invariant properly convex domain \(\Omega_\lambda \subset \Omega \) (e.g. \(B_T \subset \mathbb{H}^n \))
- A foliation of \(\Omega_\lambda \) by strictly convex hypersurfaces (horospheres)
A quasi-hyperbolic cusp

- Let $\Omega_{(0,1)} = \{(z, y) \in \mathbb{R} \times \mathbb{R}_+ \mid z > -\log(y)\}$
- $\Omega_{(0,1)}$ is foliated by $S_t = \{(z, y) \in \Omega \mid z = -\log(y) + t\}$ (horospheres)
A quasi-hyperbolic cusp

- Let $\Omega_{(0,1)} = \{ (z, y) \in \mathbb{R} \times \mathbb{R}_+ \mid z > -\log(y) \}$
- $\Omega_{(0,1)}$ is foliated by $S_t = \{ (z, y) \in \Omega \mid z = -\log(y) + t \}$ (horospheres)

Let Γ be a lattice in the Lie group $G_{(0,1)} = \left\{ \begin{pmatrix} 1 & 0 & -u \\ 0 & e^u & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R} \right\}$
Mixed cusps

Let
- $\lambda \in \mathcal{W}_n$ such that $\lambda_1 = 0$
Mixed cusps

Let

- $\lambda \in \mathcal{W}_n$ such that $\lambda_1 = 0$
- Let $p = \max\{i \mid \lambda_i = 0\}$ and $s = n - p$
Mixed cusps

Let

- $\lambda \in \mathcal{W}_n$ such that $\lambda_1 = 0$
- Let $p = \max\{i \mid \lambda_i = 0\}$ and $s = n - p$
- Let $f_\lambda : \mathbb{R}^{p-1}_s := \mathbb{R}^{p-1} \times \mathbb{R}_+^s \rightarrow \mathbb{R}$ given by

$$
(x_1, \ldots, x_{p-1}, y_1, \ldots, y_s) \mapsto \frac{1}{2} \sum_{i=1}^{p-1} x_i^2 - \sum_{i=1}^s \lambda_{p+i}^{-1} \log(y_i)
$$

hyperbolic part

quasi-hyperbolic part
Mixed cusps

Let

- $\lambda \in W_n$ such that $\lambda_1 = 0$
- Let $p = \max\{i \mid \lambda_i = 0\}$ and $s = n - p$
- Let $f_\lambda : \mathbb{R}^{p-1}_s := \mathbb{R}^{p-1} \times \mathbb{R}_+^s \to \mathbb{R}$ given by

$$f_\lambda : \mathbb{R}^{p-1}_s \to \mathbb{R}$$

$$\left(x_1, \ldots, x_{p-1}, y_1, \ldots, y_s \right) \mapsto \frac{1}{2} \sum_{i=1}^{p-1} x_i^2 - \sum_{i=1}^{s} \lambda_{p+i}^{-1} \log(y_i)$$

- hyperbolic part
- quasi-hyperbolic part

- Let $\Omega_\lambda = \{(z, (x, y)) \in \mathbb{R} \times \mathbb{R}^{p-1}_s \mid z \geq f_\lambda(x, y)\}$ foliated by f_λ level sets
Mixed cusps

Let

- \(\lambda \in W_n \) such that \(\lambda_1 = 0 \)
- Let \(p = \max\{i \mid \lambda_i = 0\} \) and \(s = n - p \)
- Let \(f_\lambda : \mathbb{R}^{p-1}_s : = \mathbb{R}^{p-1} \times \mathbb{R}_+^s \to \mathbb{R} \) given by
 \[
 (x_1, \ldots, x_{p-1}, y_1, \ldots, y_s) \mapsto \frac{1}{2} \sum_{i=1}^{p-1} x_i^2 - \sum_{i=1}^{s} \lambda_{p+i}^{-1} \log(y_i)
 \]

 - hyperbolic part
 - quasi-hyperbolic part

- Let \(\Omega_\lambda = \{(z, (x, y)) \in \mathbb{R} \times \mathbb{R}^{p-1}_s \mid z \geq f_\lambda(x, y)\} \) foliated by \(f_\lambda \) level sets

Figure: On the left \(\Omega_{(0,0,1)} \) and on the right \(\Omega_{(0,1,1)} \)
Mixed cusps
Symmetry group

\[T_\lambda = \left\{ \begin{pmatrix} 1 & x & 0 & f(x, y) \\ 0 & I_{p-1} & 0 & x \\ 0 & 0 & D_y & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in PGL_{n+1}(\mathbb{R}) \mid (x, y) \in \mathbb{R}^{p-1}_s \right\} \]

\[O_\lambda = \underbrace{O_x}_{\text{Orthogonal}} \times \underbrace{P_{y,\lambda}}_{\text{Permutations}} \]
Diagonalizable cusps

Let $\lambda \in W_n$ with $\lambda_1 > 0$ and let

$$O_\lambda = \{(x_1, \ldots, x_n) \in \mathbb{R}_+^n \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) > 0\}$$

O_λ is foliated by $S_t = \{(x_1, \ldots, x_n) \in \mathbb{R}_+^n \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) = t\}$
Diagonalizable cusps

Let $\lambda \in W_n$ with $\lambda_1 > 0$ and let

$$O_\lambda = \{(x_1, \ldots, x_n) \in \mathbb{R}_+^n \mid \sum_{i=1}^n \lambda^{-1}_i \log(x_i) > 0\}$$

O_λ is foliated by $S_t = \{(x_1, \ldots, x_n) \in \mathbb{R}_+^n \mid \sum_{i=1}^n \lambda^{-1}_i \log(x_i) = t\}$

Let Γ be a lattice in the Lie group

$$T_\lambda = \left\{ \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \mid \sum_{i=1}^n \lambda^{-1}_i \log(u_i) = 0 \right\}$$

O_λ = Coordinate permutation where $\lambda_i = \lambda_j$
Main Theorem

Theorem 1

(B–Cooper–Leitner) Let $C = \Omega/\Gamma$ be an n-dimensional generalized cusp. Then there is a is a $\lambda \in W_n$, unique up to scaling, such that

- \(\Gamma \) is conjugate to a lattice \(\Gamma' \subset G_\lambda \)
- \(C \) deformation retracts onto a submanifold \(C' = \Omega'/\Gamma \) that is projectively equivalent to \(\Omega_\lambda/\Gamma' \).
Remaining questions

• How do different types of cusps transition to one another?
Remaining questions

- How do different types of cusps transition to one another?
- What is the moduli space of generalized cusps? Is it an orbifold?
Remaining questions

- How do different types of cusps transition to one another?
- What is the moduli space of generalized cusps? Is it an orbifold?
- Realization Problem: given a generalized cusp C, can you find an interesting properly convex manifold M with a cusp projectively equivalent to C?
- Can we use the geometry of generalized cusps to give coordinates on the space of convex projective structures on a fixed manifold? (Fenchel-Nielsen coordinates)
Remaining questions

- How do different types of cusps transition to one another?
- What is the moduli space of generalized cusps? Is it an orbifold?
- Realization Problem: given a generalized cusp C, can you find an *interesting* properly convex manifold M with a cusp projectively equivalent to C?
- Can we use the geometry of generalized cusps to give coordinates on the space of convex projective structures on a fixed manifold? (Fenchel-Nielsen coordinates)
Thank you