## Using the limit definition of $\int$

Problem A: Use the formula

$$
\sum_{1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

and the limit-of-the-left-sum definition

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{0}^{n-1} f\left(x_{i}\right) \Delta x
$$

to show that the integral

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3}
$$

In class, we did this for $\int_{0}^{1} x d x$ using $\sum_{1}^{n} i=n(n+1) / 2$ as follows: $f(x)=x, a=0, b=1$ and $\Delta x=(b-a) / n=(1-0) / n=1 / n$. It follows that $x_{i}=a+i \cdot \Delta x=i / n$ So

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sum_{0}^{n-1} f\left(x_{i}\right) \Delta x \\
=\lim _{n \rightarrow \infty} \sum_{0}^{n-1} x_{i} \frac{1}{n} \\
=\lim _{n \rightarrow \infty} \sum_{0}^{n-1} \frac{i}{n^{2}} \\
=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{0}^{n-1} i \\
=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \frac{(n-1)((n-1)+1)}{2} \\
=\lim _{n \rightarrow \infty} \frac{n^{2}-n}{2 n^{2}} \\
=\frac{1}{2}
\end{gathered}
$$

