Lines in Space

This short section is about equations of lines in three dimensions. The first equation is analogous to the point-slope form in two dimensions. The second is analogous to the the two point form. The equation

$$
\begin{equation*}
\mathbf{X}=\mathbf{X}_{\mathbf{0}}+\mathbf{D} t \tag{1v}
\end{equation*}
$$

is the vector equation of the line going throught the "point" or rather the vector $\mathbf{X}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ $x_{0} \mathbf{i}+y_{0} \mathbf{j}+z_{0} \mathbf{k}$ and in the direction $\mathbf{D}=\langle a, b, c\rangle$. Equivalently, the vector equation above is equivalent to the three scalar equations

$$
\begin{equation*}
x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t \tag{1s}
\end{equation*}
$$

These are sometimes called parameteric equations, since the parameter t need not be one of the coordinate axes. The equation of the line through the vectors $\mathbf{X}_{\mathbf{0}}$ and X_{1} can be obtained from equation 1 by letting $\mathbf{D}=\mathbf{X}_{\mathbf{1}}-\mathbf{X}_{\mathbf{0}}$.

Note when $t=0$ the curve is at the vector $\mathbf{X}_{\mathbf{0}}$ or the point $\left(x_{0}, y_{0}, z_{0}\right)$ and in the second case the curve is at $\mathbf{X}_{\mathbf{1}}$ when $t=1$. Some example problems. Maple will plot lines, and more general parametric equations with the spacecurve command (needs with(plots);), for example the command below will plot the parameteric equations $x=\sin t, y=\cos t, z=2 \pi t$ which is the graph of a helix.
$\triangleright \operatorname{spacecurve}([\sin (t), \cos (t), 2 * \operatorname{Pi} * t], t=0 . .3, t i t l e=' 3$ turns of a Helix' $)$;
\#1 Find the vector equation of the line through the points $(1,0,1)$ and $(3,2,0)$.
Ans. $\mathbf{D}=\langle 3-1,2-0,0-1\rangle=\langle 2,2,-1\rangle$. So $\mathbf{X}=\langle 1,0,1\rangle+\mathbf{D} t=\langle 1+2 t, 2 t, 1-t\rangle$.
\#2 Find where the line $x=1+t, y=t, z=1-t$ intersects the sphere $x^{2}+y^{2}+z^{2}=14$.
Ans. Substituting in we have

$$
\begin{aligned}
(1+t)^{2}+t^{2}+(1-t)^{2} & =14 \\
1+2 t+t^{2}+t^{2}+1-2 t+t^{2} & =14 \\
2+3 t^{2} & =14 \\
t^{2} & =4 \\
t & =-2 \text { or } 2
\end{aligned}
$$

So when $t=2$ we have the point of intersection $(3,2,-1)$ and when $t=-2$ we have the point of intersection ($-1,-2,3$)
\#3 Find where the two lines $x=1+t, y=2+t, z=3+t$ and $x=1+3 s, y=1+4 s, z=1+5 s$ intersect.
Ans. Note that not every pair of lines intersect. Parallel lines in the plane to do not intersect, in space there are non-parallel lines (skew lines) which do not intersect. The solution is to solve the equations the three equations $1+t=1+3 s, 2+t=1+4 s, 3+t=1+5 s$ in two unknowns. If it has no solution the lines do not intersect, if it has infinitely many solutions, the lines are the same, and if it has a unique solution it will give the point of intersection. In practice, if is often fastest to solve two of equations say $1+t=1+3 s, 2+t=1+4 s$ and substitute in the third to see if it is a solution to the third as well. Here if we substract equation 1 from 2 we get $1=s$ and so $1+t=1+3(1)$ or $t=3$. In this case $t=3, s=1$ is a solution to the third equation as well so $(1+3,2+3,3+3)=(4,5,6)=(1+3(1), 1+4(1), 1+5(1))$ is the point of intersection. Note if $z=1+5 s$ is replaced by $z=0+5 s$, then the lines do not intersect.
\#4 Find the equation of a line through $(1,1,1)$ parallel to $\mathbf{X}=\langle 3-t, 2-2 t, 5 t\rangle$.
Ans. The lines having the same direction are parallel. So we can use the direction $\mathbf{D}=\langle-1,-2,5\rangle$, so $\mathbf{X}=\langle 1,1,1\rangle+\langle-1,-2,5\rangle t$ is a solution.
\#5 Find the equation of line which is the intersection of the two planes $x+y+z=3$ and $x-y+z=5$
Ans . Solve for two variables in terms of the third. Solving $x+y=3-z, x-y=5-z$ yields $x=4-z, y=$ -1 which yield the parametric equations $x=4-z, y=-1, z=z$ or perhaps the equivalent form $x=4-t, y=-1+0 t, z=0+t$ looks more satisfying.
$\# 6$ Find the equation of the y-axis.
Ans. A point on the line is $(0,0,0)$ and the direction is $\mathbf{j}=\langle 0,1,0\rangle$ which yields the equations $x=0, y=$ $t, z=0$
Exercise: Find the coordinates of the point on the plane $x+2 y+4 z=4$ nearest the origin. Repeat for the plane $A x+B y+C z=D$.

