- 7.5 # 7 The graph is decreasing so we expect LEFT > \int > RIGHT and LEFT > MIDDLE > RIGHT. Always, TRAP is between LEFT and RIGHT The graph is smiling so we expect TRAP > \int > MID. So we have LEFT > TRAP > \int > MID > RIGHT. Therefore LEFT = 0.664, TRAP=0.633, MID=0.632, and RIGHT=0.601 and the true value is between 0.663 and 0.633.
- 7.5 # 17 Use the TRAP rule which in this case is equal to LEFT and RIGHT = 100 * (80 + 85 + 95 + 110 + 105 + 100 + 100 + 105 + 110) = 89000 square feet. So we will need 89000/200 = 445 pounds of fertilizer.

Method	approx_2	approx_4	error ₂	error_4	ratio
LEFT	16.77811220	31.19287485	36.82003783	22.40527518	1.64
RIGHT	123.9744123	84.79102488	-70.37626227	-31.19287485	2.26
MIDDLE	45.60763750	51.42835626	7.99051253	2.16979377	3.68
TRAP	70.37626223	57.99194987	-16.77811220	-4.39379984	3.82
SIMPSON	53.86384573	53.61622080	26569570	01807077	14.7

7.6 # 9 $\int_0^4 e^x dx = e^x \Big|_0^4 = e^4 - 1 = 53.59815003$

a 53.59815003

b table above for n = 2

c table above for n = 4

d yes errors improve roughly as they should, 2,2,4,4,16

 $7.7 \ \# \ 10$

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \lim_{M \to \infty} \int_{1}^{M} \frac{1}{x^2 + 1} dx = \lim_{M \to \infty} \arctan x \Big|_{1}^{M} = \lim_{M \to \infty} (\arctan M - \arctan 1) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

7.8 # 5 This looks like $1/x^3$ on the tail which converges. And since $x^3 + 1 > x^3$ we have $0 < 1/(x^3 + 1) < 1/x^3$ so

$$\int_{1}^{\infty} \frac{dx}{x^3 + 1} < \int_{1}^{\infty} \frac{dx}{x^3}$$

and the integral converges by the comparison test.