7.5 \# 7 The graph is decreasing so we expect LEFT $>\int>$ RIGHT and LEFT $>$ MIDDLE $>$ RIGHT. Always, TRAP is between LEFT and RIGHT The graph is smiling so we expect TRAP $>\int>$ MID. So we have LEFT $>$ TRAP $>\int>$ MID $>$ RIGHT. Therefore LEFT $=0.664$, TRAP $=0.633$, MID $=0.632$, and RIGHT $=0.601$ and the true value is between 0.663 and 0.633 .
7.5 \# 17 Use the TRAP rule which in this case is equal to LEFT and RIGHT $=100 *(80+85+95+110+105+$ $100+100+105+110)=89000$ square feet. So we will need $89000 / 200=445$ pounds of fertilizer.
$7.6 \# 9 \int_{0}^{4} e^{x} d x=\left.e^{x}\right|_{0} ^{4}=e^{4}-1=53.59815003$

Method	approx $_{2}$	approx $_{4}$	error $_{2}$	error $_{4}$	ratio
LEFT	16.77811220	31.19287485	36.82003783	22.40527518	1.64
RIGHT	123.9744123	84.79102488	-70.37626227	-31.19287485	2.26
MIDDLE	45.60763750	51.42835626	7.99051253	2.16979377	3.68
TRAP	70.37626223	57.99194987	-16.77811220	-4.39379984	3.82
SIMPSON	53.86384573	53.61622080	-.26569570	-.01807077	14.7

a 53.59815003
b table above for $n=2$
c table above for $n=4$
d yes errors improve roughly as they should, $2,2,4,4,16$
7.7 \# 10

$$
\int_{1}^{\infty} \frac{1}{x^{2}+1} d x=\lim _{M \rightarrow \infty} \int_{1}^{M} \frac{1}{x^{2}+1} d x=\left.\lim _{M \rightarrow \infty} \arctan x\right|_{1} ^{M}=\lim _{M \rightarrow \infty}(\arctan M-\arctan 1)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
$$

$7.8 \# 5$ This looks like $1 / x^{3}$ on the tail which converges. And since $x^{3}+1>x^{3}$ we have $0<1 /\left(x^{3}+1\right)<1 / x^{3}$ so

$$
\int_{1}^{\infty} \frac{d x}{x^{3}+1}<\int_{1}^{\infty} \frac{d x}{x^{3}}
$$

and the integral converges by the comparison test.

