4.8#12 Since  $f'(x) = 3\cos 3x$ , so f'(0) = 3 is the slope at x = 0. Since g'(x) = 5, so g'(0) = 5 is the slope at x = 0. Thus by L'Hopital's rule

$$\lim_{x \to 0} \frac{\sin 3x}{5x} = \lim_{x \to 0} \frac{3}{5} = \frac{3}{5}$$

7.5#19. Let  $\Delta x = (b-a)/n$  and  $x_0 = a, x_1 = x_0 + \Delta x, \dots, x_i = x_0 + i\Delta x \dots, x_n = x_0 + n\Delta x = b$ . Then

$$RIGHT(n) = \sum_{i=1}^{n} f(x_i)\Delta x \qquad LEFT(n) = \sum_{i=0}^{n-1} f(x_i)\Delta x.$$

Note that these are the same terms but for the last term of RIGHT(n) and the first term of LEFT(n) so  $RIGHT(n) - LEFT(n) = f(x_n)\Delta x - f(x_0)\Delta x = f(b)\Delta x - f(a)\Delta x$ . Adding LEFT(n) to both sides produces the desired equation.

7.6#3 A table of simpsom values for different n via TI-89 and Maple. Looking at the trends it looks like we were within 0.001 for n = 3

| n | TI - 89              | Maple       |
|---|----------------------|-------------|
| 1 | 4.2539               | 4.253895009 |
| 2 | 4.23811              | 4.238106772 |
| 3 | 4.2368               | 4.236800683 |
| 4 | 4.23661              | 4.236613761 |
| 5 | 4.23656              | 4.236564539 |
| 6 | 4.23655              | 4.236547143 |
| 7 | 4.23654              | 4.236539751 |
| 8 | $4.23\overline{654}$ | 4.236536180 |

In the table below the approx error is SIMP(2n) - SIMP(n) and the next error for twice n is 1/16 of the approx error. Looking at the error estimates it looks like the error at n = 2 is expected to be 0.001 which is too close 0.001 to trust, but by n = 4 we are really safe to say we are within 0.001 of the true value.

| n | Maple       | approxerror | nexterror for twice n |
|---|-------------|-------------|-----------------------|
| 1 | 4.253895009 | 015788237   | 0009867648125         |
| 2 | 4.238106772 | 001493011   | 00009331318750        |
| 4 | 4.236613761 | 000077581   | 000004848812500       |
| 8 | 4.236536180 |             |                       |

7.7#30 (a) We plot the graph below. (b) r is at its height when  $\frac{dr}{dt}$  is zero.  $r' = 1000e^{-0.5t} - 500te^{-0.5t} = (1000 - 500t)e^{-0.5t}$ . Since  $e^x$  is never zero, the max occurs at t = 2 days. (c) This is asking for  $\int_0^\infty r \, dt$  and since  $\int r \, dt = -2000te^{-0.5t} - 4000e^{-0.5t}$  and  $\lim_{x\to\infty} xe^{-x/2} = \lim_{x\to\infty} x/e^{x/2} = \lim_{x\to\infty} 1/(0.5e^{0.5x}) = 0$ . The improper integral is 4000 which is the number of people that got sick.



7.8#8 We compare this to  $e^y \le e^y + 1$  so  $0 \le 1/(1+e^y) \le 1/e^y$  and hence

$$\int_{0}^{\infty} \frac{dy}{1+e^{y}} \le \int_{0}^{\infty} e^{-y} dy = \lim_{M \to \infty} \int_{0}^{M} e^{-y} dy = \lim_{M \to \infty} -e^{-y} |_{0}^{M} \lim_{M \to \infty} (-e^{-M} + 1) = 1 < \infty.$$

So the integral converges.