Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Match the slope fields below with the differential equations $y^{\prime}=x^{2}, y^{\prime}=\sin y, y^{\prime}=1-y$ and $y^{\prime}=x+y$.

2. Find all values of r so that $y=x^{r}$ is a solution to $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0$.
3. Find the solution of $y^{\prime}=-y / x, y(1)=-2$. Sketch the graph of your solution.
4. For the differential equation $\frac{d P}{d t}=f(P)$, the graph of $f(P)$ or $\frac{d P}{d t}$ versus P is given below (left).
a. Sketch a graph of the slope field for this differential equation.
b. Find both equilibrium solutions, and label them as stable or unstable.
c. On your slope field, find and sketch a solution with an inflection point, and label your inflection point with its coordinates.

5. Approximating $\sin x$ by x and $x-x^{3} / 3$!.
a. The graph to the above (right) graphs these three functions, identify which is which. [Hint: What is the next term in the Taylor series?]
b. Use $\sin x \approx x-x^{3} / 3$! to show

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

c. Use $\sin x \approx x-x^{3} / 3$! to estimate (to five significant digits) the relative error $=(\sin x-x) / \sin x$ of using x to approximate $\sin x$ for the angle x in radiams that corresponds to 15°. [So you are using the better approximation to gauge the error in the simpler approximation.]
6. Consider the IVP

$$
y^{\prime}=1+y^{2}, y(0)=1
$$

(a) Use Euler's method by hand with two steps to estimate $y(1)$.
(b) Sketch the slope field for this differential equation in the first quadrant, and use it to decide if your estimate is an over- or underestimate.
(c) Use Euler's method via your calculator to estimate $y(1)$ with ten steps.
$7 \& 8$. These problems are about the Taylor series for the functions f and g given below.

$$
\begin{gathered}
f(x)=\sum_{n=1}^{\infty} n x^{n}=x+2 x^{2}+3 x^{3}+4 x^{4}+\ldots \\
g(x)=\sum_{n=1}^{\infty} 2^{n-1} x^{n}=x+2 x^{2}+4 x^{3}+8 x^{4}+\ldots
\end{gathered}
$$

a. Is f or g larger for small positive x and why?
b. Find $g^{\prime \prime \prime}(0)$.
c. Using substitution, find the Taylor series for $f(2 u)$.
d. Find the Taylor series for $g^{\prime}(x)$.
e. Show the multiplication needed to get the first 4 non-zero terms of the Taylor series for $f g$.
9. A Calculus class at a party school brings an ice cream cake to a 7:30 final. The cake is frozen $\left(40^{\circ} \mathrm{F}\right)$ too hard to eat right away. Besides the class is eager to take the final. Two hours later the cake is at $50^{\circ} \mathrm{F}$ and is eaten immediately. The classroom is at a constant $70^{\circ} \mathrm{F}$.
a. Assuming the temperature, T, of the cake obeys Newton's Law of Cooling, write a differential equation for T.
b. Solve the differential equation to estimate the time the cake was taken out of a $30^{\circ} \mathrm{F}$ freezer.
10. Santa is making a list. He is adding names at the rate of 1 million names a day and 99% of the new names are "nice". At the same time 1 million names a day are randomly selected to fall off the list. (The list always has the same number of names.) The list starts with 1 billion people, 95% of whom are nice. Derive a differential equation and initial conditions for N the number of "nice" people on the list. Do NOT solve your IVP. [Hint: It is like salt in water.] Be sure to check your list twice.

