Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Find the equation of the plane parallel to the plane $2 x-y-5 z=5$ and passing through the point $(-1,2,-3)$.
2. Find the equation of the plane through the points $(1,-1,0),(1,1,1)$ and $(0,1,2)$.
3. The following are contour plots of $z=4 x^{2}+y^{2}, z=x^{2}+4 y^{2}, z=x^{3}-3 x y^{2}, z=x+y$, and $z=3 x+3 y$ over the range $x=-3 . .3$ and $y=-3 . .3$. Match the plot to the function.

4. Find the point of intersection of the two lines below or show they do not intersect.

$$
\ell_{1}: x=5+2 t \quad y=5+t \quad z=-2+3 t \quad \text { and } \quad \ell_{2}: x=4-3 t \quad y=1-5 t \quad z=2+t
$$

5. Find the equation of the line through the origin perpendicular to the plane $x-2 y+2 z=18$. Find P, the point of intersection. Find the distance from the origin to P.
6. An ant is standing at the origin O of a flat plain and looks to an apple at point A in a tree. The ant crawls to the apple avoiding an obstacle. The ant starts along a line making a angle of $\pi / 6$ with the x-axis (slightly east of northeast) for 10 meters. The ant then turns north (parallel to the y-axis) and travels another 10 meters. Finally the ant climbs 2 meters straight up the tree and arrives at the point A. Find the vector $\overrightarrow{O A}$ its length and a unit vector pointing in the same direction.
7. Check your calculator and make sure it is in radian mode. Let $\mathbf{r}(t)=\langle\cos (t), \sin (6 t)\rangle$
(a) Find the velocity and acceleration of $\mathbf{r}(t)$.
(b) Plot the curve for $0 \leq t \leq 2 \pi$ [Hint: use the TI-89.]
(c) Write an integral which will give the arclength of the curve and find a numerical approximation for the integral. [Calculator]
8. Write $\mathbf{a}=\langle 3,2,-5\rangle$ as the sum of two vectors, one parallel, and one perpenducular to $\mathbf{d}=\langle 2,-2,1\rangle$. Use your answer to find the distance from the point $(3,2,-5)$ [the endpoint of \mathbf{a}] to the line $\langle x, y, z\rangle=\langle 2 t,-2 t, t\rangle$. [the line in the direction of \mathbf{d} and through the origin.]
9. Let $\mathbf{X}=\langle x, y, z\rangle, \mathbf{A}=\langle-1,-3,2\rangle, \mathbf{B}=\langle 11,1,-1\rangle, \mathbf{C}=\langle 1,1,1\rangle$, and $\mathbf{D}=\langle 3,-1,2\rangle$. Find the vector projection of $\mathbf{B}-\mathbf{A}$ onto $\mathbf{C} \times \mathbf{D}$ and call it \mathbf{E}. In general, so long as \mathbf{C} and \mathbf{D} are not parallel, the lines $\mathbf{X}=\mathbf{A}+\mathbf{E}+t \mathbf{C}$ and $\mathbf{X}=\mathbf{B}+t \mathbf{D}$ now intersect. Using the numbers above where do they intersect?
10. Plot the contour lines for the equation $x^{2}+(y-z)^{2}=4$ for the z values $z=0,1$, 2, and 3. Label your contours with the z values. [Since the equation is not a function $z=f(x, y)$, it is ok for the contours to intersect.] On a separate graph give a 3D sketch of the surface and describe the graph in words.
