Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. The following table of the position s in furlongs versus time t in fortnights. Find the average velocity between $t=1$ and $t=4$, estimate the instantaneous velocity at $t=3$ (by averaging two average velocities), and give the units of $s^{\prime}(3)$.

t	1	2	3	4
s	16	64	144	256

2. Copy the graph of $f(x)$ below and on the copy draw its derivative $f^{\prime}(x)$.

Be especially careful about the placement of the zero's of $f^{\prime}(x)$.
What is the $\lim _{x \rightarrow-\infty} f(x)$? and $\lim _{x \rightarrow-\infty} f^{\prime}(x)$?

3. Find the limits.
(a)

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{3}-5 x^{2}+6 x}
$$

(b)

$$
\lim _{h \rightarrow 0} \frac{\sqrt{x+5 h}-\sqrt{x}}{h}
$$

4. Using the limit definition of the derivative, find the derivative $f^{\prime}(2)$ when $f(x)=x^{5}$. Pascal wants to help you.

Use your answer to find the equation of the tangent line to $f(x)$ at $x=2$.
5. For the function g whose graph is given below, state the value of each quantity, if it exists. If it does not exist explain why.
(a) $\lim _{x \rightarrow-2^{-}} g(x)$
(b) $\lim _{x \rightarrow-2^{+}} g(x)$
(c) $\lim _{x \rightarrow-2} g(x)$
(d) $g(-2)$
(e) $\lim _{x \rightarrow 2^{-}} g(x)$
(f) $\lim _{x \rightarrow 2^{+}} g(x)$
(g) $\lim _{x \rightarrow 2} g(x)$
(h) $g(2)$
(i) $\lim _{x \rightarrow 4^{-}} g(x)$
(j) $\lim _{x \rightarrow 4^{+}} g(x)$
(k) $\lim _{x \rightarrow 0} g(x)$
(l) $g(0)$

