Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. For $f(x)=x^{3}+x-1, a=0$ and $b=2$, find all $c$ that satisfies both conclusions of the Mean Value Theorem, one of which is

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

2. Find the limits.

$$
\text { (a) } \lim _{x \rightarrow 0} \frac{5^{x}-3^{x}}{x} \quad \text { (b) } \lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}
$$

3. Find the absolute maximum and absolute minimum VALUES of $f(x)=x /\left(x^{2}+1\right)$ on $[-3,2]$.
4. True or False and a brief reason why or why not.
(a) $\lim _{x \rightarrow \infty} x^{1000} / e^{x}=0$
(b) If $f^{\prime}(x)<0$ for $x<c$ and $f^{\prime}(x)>0$ for $x>c$, then $(c, f(c))$ is a local maximum for $y=f(x)$
(c) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $(c, f(c))$ is a local maximum for $y=f(x)$.
(d) There exists a function such that $f(x)<0, f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ for all $x$.
(e) There exists a function such that $f(x)>0, f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$ for all $x$.
(f) If $f^{\prime}(c)=f^{\prime \prime}(c)=0$, then $x=c$ is neither a local minimum nor a local maximum.
(g) If $f^{\prime \prime \prime}(x)>0$ for all $x$ and $f^{\prime \prime}(c)=0$, then $(c, f(c))$ is a point of inflection for $y=f(x)$.
(h) $\lim _{x \rightarrow \pi^{-}} \sin x /(1-\cos x)=\lim _{x \rightarrow \pi^{-}} \cos x / \sin x=-\infty$
(i) If $f^{\prime}(x)$ exist for all $x$, then between any two zero's of $f(x)$ there is a zero of $f^{\prime}(x)$.
(j) If $f(c)=f^{\prime}(c)=0$ and $f^{\prime \prime}(x)>0$ for all $x$ then $f(x)>0$ for $x>c$.
5. Graph the function $y=f(x)$ given the data below, label all local minimums, local maximums and points of inflection.
$f(0)=0, \lim _{x \rightarrow-\infty} f(x)=1$, and $\lim _{x \rightarrow \infty} f(x)=3$
$f^{\prime}(x)>0$ for $(-\infty,-2),(0,2)$ and $(2, \infty)$ and $f^{\prime}(x)<0$ for $(-2,0)$
$f^{\prime \prime}(x)>0$ for $(-\infty,-3),(-1,1)$ and $(2,3)$ and $f^{\prime \prime}(x)<0$ for $(-3,-1),(1,2)$ and $(3, \infty)$.
