Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. The graph (below left) is of the function $g(x)$. Let $f(x)=\int_{0}^{x} g(t) d t$, find the values of f to fill a table like the one below (right). Then sketch the graph of $f(x)$ carefully showing the concavity.

x	0	1	2	3	4	5	6	7
$f(x)$								

2. Compute these integrals (Hint: the Fundamental Theorem of Calculus)

$$
\text { (A) } \quad \int_{-1}^{1} x^{2}(x+4)^{2} d x \quad(B) \quad \int_{0}^{\pi} e^{x}+\sin x d x
$$

3. Approximate $\int_{3}^{5} x \cos (\pi x) d x$ by the left sum L_{4} and the right sum R_{4} and the middle point rule M_{4}. (Exact answers only please.)
4. A particle traveling towards a brick wall is deaccelerating so $a(t)=-10$. At time $t=0$ the particle is 100 units from the wall and has velocity $v(0)=60$ units/time and $s(0)=0$ How fast is the particle going when it slams into the brick wall? That is, what is $v\left(t_{0}\right)$, when $s\left(t_{0}\right)=100$?
5. Find the maximal area that a trapezoid inscribed into a semi-circle of radius R can have.

