Problems on continuous linear functionals (part of HW\#4)

1. Let $E=\mathbb{R}^{2}$ with the norm $\|(x, y)\|=\max \{|x|,|y|,|y-x|\}$
(a) Draw the unit sphere $S=\{(x, y):\|(x, y)\|=1\}$
(b) Compute the norms of the functionals $f(x, y)=x, g(x, y)=y, h(x, y)=x+y$ and $k(x, y)=x-y$.
(c) Derive a formula for the norm of the function $f(x, y)=a x+b y$ for any reals a and b.
2. Let $c=\left\{\left(x_{n}\right): \lim x_{n}\right.$ exists $\}$ with the sup norm so that $c_{0} \subset c \subset m=\ell_{\infty}$.
(a) Show $\phi: c \rightarrow \mathbb{R}$ given by $\phi\left(\left(x_{n}\right)\right)=\lim x_{n}$ is a continuous linear function on c and compute its norm.
(b) show ϕ is not defined on m and ϕ is the 0 functional on c_{0}.
(c) Let η be the sequence (1) which is constantly one. Show for $x=\left(x_{n}\right) \in c, x-\phi(x) \eta \in c_{0}$.
3. Let c and ϕ be as in 2, Show the dual of c is given by

$$
c^{*}=\left\{\alpha \phi+x: \alpha \in \mathbb{R}, x \in \ell_{1}\right\}
$$

Part of this problem is coming up with a formula for $\|\alpha \phi+x\|$. Hint: If $y=\left(y_{n}\right) \in \ell_{1}$ and $x=\left(x_{n}\right) \in c$ then $\langle y, x\rangle=\sum_{n} y_{n} x_{n}$ is the linear functional on c associated with this y in ℓ_{1}.

