Problems on continuous linear functionals (part of HW#4)

- 1. Let $E = \mathbb{R}^2$ with the norm $||(x, y)|| = \max\{|x|, |y|, |y x|\}$
 - (a) Draw the unit sphere $S = \{(x, y) : ||(x, y)|| = 1\}$
 - (b) Compute the norms of the functionals f(x, y) = x, g(x, y) = y, h(x, y) = x + y and k(x, y) = x y.
 - (c) Derive a formula for the norm of the function f(x, y) = ax + by for any reals a and b.
- 2. Let $c = \{(x_n) : \lim x_n \text{ exists}\}$ with the sup norm so that $c_0 \subset c \subset m = \ell_{\infty}$.
 - (a) Show $\phi : c \to \mathbb{R}$ given by $\phi((x_n)) = \lim x_n$ is a continuous linear function on c and compute its norm.
 - (b) show ϕ is not defined on m and ϕ is the 0 functional on c_0 .
 - (c) Let η be the sequence (1) which is constantly one. Show for $x = (x_n) \in c, x \phi(x)\eta \in c_0$.
- 3. Let c and ϕ be as in 2, Show the dual of c is given by

$$c^* = \{\alpha \phi + x : \alpha \in \mathbb{R}, x \in \ell_1\}$$

Part of this problem is coming up with a formula for $\|\alpha\phi + x\|$. Hint: If $y = (y_n) \in \ell_1$ and $x = (x_n) \in c$ then $\langle y, x \rangle = \sum_n y_n x_n$ is the linear functional on c associated with this y in ℓ_1 .