Fun Exercises 3

For maa4402
October 14, 2015

These are just more problems like hw11.1

1. Without evaluating the integral, show that

$$
\left|\int_{C} \frac{d z}{z^{2}-1}\right| \leq \frac{\pi}{3}
$$

when C is the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant.
2. Let C be the line segment from $z=i$ to $z=1$. By observing that the midpoint is the closest point to the orgin, show

$$
\left|\int_{C} \frac{d z}{z^{2}}\right| \leq 4 \sqrt{2}
$$

3. Let C be the circle $|z|=R(R>1)$ in a counterclockwise direction from $-R$ back to $-R(-\pi<\theta<\pi)$. Show that

$$
\left|\int_{C} \frac{\log z}{z^{2}} d z\right| \leq 2 \pi\left(\frac{\pi+\ln R}{R}\right)
$$

and then show that the integral tends to zero as R tend to infinity. (Hint: L'Hospitial.)
4. Find an upper bound for

$$
\left|\int_{C} \frac{d z}{\left(z^{2}+1\right)}\right|
$$

where C is the upper half-circle $|z|=R$ with radius $R>1$. answer $\pi R /\left(R^{2}-1\right)$
5. C is the square with corners $R, R i,-R$ and $-R i$ oriented counterclockwise. Find an upper bound to

$$
\left|\int_{C} f(z) d z\right|
$$

when $f(z)$ has the given value.
(a) $f(z)=z^{4}+4 z^{2}+4$
(b) $f(z)=\left(z^{4}+4 z^{2}+4\right)^{-1}$
(c) $f(z)=\bar{z}^{4}+4 \bar{z}^{2}+4$
(d) $f(z)=\left(\bar{z}^{4}+4 \bar{z}^{2}+4\right)^{-1}$

