1. Determine if the statement is True or False and give a (short) supporting reason.
(a) The singularities of $\csc z$ are all simple poles.
(b) $\sin z / z$ has a removable singularity at $z=0$ and is thus really an entire function.
(c) If $z=0$ is a pole of order 5 for $f(z)$, then $f(1 / z)$ is a polynomial of degree 5 .
(d) For $a>0, \int_{-\infty}^{\infty}\left(a^{2}+\theta^{2}\right)^{-1} d \theta=\pi / a$
(e) If $g(z)$ is entire, then the residue of $f(z) g(z)$ at $z=z_{0}$ is the residue of $f(z)$ at $z=z_{0}$ times $g\left(z_{0}\right)$.
(f) $\left(\sum a_{n} z^{n}\right)\left(\sum b_{n} z^{n}\right)=\sum a_{n} b_{n} z^{2 n}$
(g) In the region where sides are defined, $1 /\left(1+z+z^{2}+z^{3}+\cdots\right)=1-z$
(h) If $f(z)$ is bounded near its singularity at $z=z_{0}$ then $z=z_{0}$ is a pole for $f(z)$.
(i) The residue of $\log z$ at $z=0$ is 1 .
(j) The residue of $\exp (i z) / z$ at $z=0$ is $1 / 2$
