Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. Write the equation $x^{2}+y^{2}-z^{2}=16$ in both cylinderical and spherical co-ordinates.
2. Find the scalar and vector projections of $\mathbf{b}=\mathbf{i}-\mathbf{j}$ onto $\mathbf{a}=\mathbf{i}+\mathbf{k}$.
3. Find an equation of the plane which contains the three points $(-1,1,-1),(1,-1,2)$ and $(4,0,3)$.
4. Find a unit vector perpendicular to both the line $\frac{x-2}{2}=2 y-3=\frac{z+1}{3}$, and the line $\langle x, y, z\rangle=$ $\langle 2+t, 0,-1-2 t\rangle$
5. Find the position vector $\mathbf{r}(t)$ and velocity vector $\mathbf{v}(t)$ of a paticle that has the acceleration $\mathbf{a}(t)=\langle 0,0,1\rangle$, initial velocity $\mathbf{v}(0)=\langle 1,-1,0\rangle$ and initial postion $\mathbf{r}(0)=\langle 0,0,0\rangle$
6. Find parametric equations for the line of intersection of the planes $z=x+y$ and $2 x-5 y-z=1$.
7. Find BOTH the equation of the plane through the point $\mathrm{Q}(2,8,5)$ parallel to the plane P given be the equation $x-2 y-2 z-1=0$ and find the distance from Q to P .
8. Find and simplify the unit tangent vector $\mathbf{T}(t)$, the unit normal vector $\mathbf{N}(t)$ and the curvature $\kappa=$ $\left|\mathbf{T}^{\prime}(t) /\left|\mathbf{r}^{\prime}(t)\right|\right.$ of the space curve $\mathbf{r}(t)=\langle\sqrt{2} \cos t, \sin t, \sin t\rangle$.
9. Reduce the quadric equation below to one of the standard forms, classify the surface and sketch it. $4 x^{2}-y^{2}+z^{2}+8 x+8 z+24=0$
10. Graph the curves $\langle\cos t, \sin t, \cos 4 t\rangle,\langle\cos 4 t, \sin 4 t, 4 t\rangle,\langle t \cos t, t \sin t, t\rangle$ and $\langle 4 t, \sin 4 t, \cos 4 t\rangle$. Hint: Below are maple spacecurve plots of the functions in some order.

