Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. If the position function is $\mathbf{r}(t)=\left\langle t^{3}, t^{2}+1, t^{3}-1\right\rangle$, find the velocity, the speed and the acceleration.
2. Find the equation of the plane through the point $(6,5,-2)$ parallel to the plane $x+2 y-z+1=0$.
3. Find the point where the line $x=1+t, y=2 t, z=3 t$ intersects the plane $3 x-2 y+z=9$.
4. Find the value of x such that the vectors $\langle 2, x, 3\rangle$ and $\langle x, 8,6\rangle$ are perpendicular and find the value x such the vectors are parallel.
5. Find the scalar and vector projections of $\mathbf{b}=\mathbf{i}+6 \mathbf{j}-2 \mathbf{k}$ onto $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k}$.
6. Find parametric equations for the line of intersection of the planes $2 x+5 z=-3$, and $x-3 y+z=-2$.
7. Identify and sketch the graph of the equation $x^{2}+y^{2}+z^{2}=2 x$ and re-write the equation in both cylinderical and spherical co-ordinates.
8. Find the equation of the plane that passes through the point $(0,1,2)$ and contains the line $x=y-1=z$.
9. Find and simplify both the unit tangent vector $\mathbf{T}(t)$ and the curvature $\kappa=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$ of the space curve $\mathbf{r}(t)=\left\langle t^{2}, 2 t^{3} / 3, t\right\rangle$.
10. Find and simplify the arclength of $\mathbf{r}(t)=\left\langle e^{t}, e^{t} \sin (t), e^{t} \cos (t)\right\rangle, 0 \leq t \leq 2 \pi$.
